WO2014112216A1 - センサとその製造方法 - Google Patents

センサとその製造方法 Download PDF

Info

Publication number
WO2014112216A1
WO2014112216A1 PCT/JP2013/081874 JP2013081874W WO2014112216A1 WO 2014112216 A1 WO2014112216 A1 WO 2014112216A1 JP 2013081874 W JP2013081874 W JP 2013081874W WO 2014112216 A1 WO2014112216 A1 WO 2014112216A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin foam
magnetic
sensor
hardness
urethane
Prior art date
Application number
PCT/JP2013/081874
Other languages
English (en)
French (fr)
Inventor
純一 重藤
福田 武司
安西 弘行
志偉 羅
Original Assignee
東洋ゴム工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋ゴム工業株式会社 filed Critical 東洋ゴム工業株式会社
Priority to US14/653,117 priority Critical patent/US9745436B2/en
Priority to KR1020157017880A priority patent/KR20150091404A/ko
Priority to KR1020167021825A priority patent/KR20160098534A/ko
Priority to EP13871678.2A priority patent/EP2947416B1/en
Priority to CN201380070432.3A priority patent/CN104919271B/zh
Publication of WO2014112216A1 publication Critical patent/WO2014112216A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/02Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles for articles of definite length, i.e. discrete articles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0014Use of organic additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0061Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof characterized by the use of several polymeric components
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0066Use of inorganic compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0095Mixtures of at least two compounding ingredients belonging to different one-dot groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/30Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by mixing gases into liquid compositions or plastisols, e.g. frothing with air
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/16Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge
    • G01B7/24Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge using change in magnetic properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/12Measuring force or stress, in general by measuring variations in the magnetic properties of materials resulting from the application of stress
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/12Measuring force or stress, in general by measuring variations in the magnetic properties of materials resulting from the application of stress
    • G01L1/122Measuring force or stress, in general by measuring variations in the magnetic properties of materials resulting from the application of stress by using permanent magnets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2101/00Manufacture of cellular products
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/02Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
    • C08J2201/022Foams characterised by the foaming process characterised by mechanical pre- or post-treatments premixing or pre-blending a part of the components of a foamable composition, e.g. premixing the polyol with the blowing agent, surfactant and catalyst and only adding the isocyanate at the time of foaming
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2205/00Foams characterised by their properties
    • C08J2205/06Flexible foams
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2207/00Foams characterised by their intended use
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes
    • C08J2375/08Polyurethanes from polyethers

Definitions

  • the present invention relates to a sensor such as a tactile sensor and a bending sensor for detecting deformation caused by contact with a magnetic foam, which is a resin foam containing a magnetic filler, and a method for manufacturing the same.
  • a tactile sensor for detecting deformation caused by contact of an object with another object
  • the tactile sensor detects the strength, position, direction, etc. of the contact
  • the bending sensor detects bending deformation.
  • These sensors are applied to, for example, the robot's hands and skin, and information such as contact strength, position, and direction obtained from the sensors controls the movement of the robot and responds to external pressure. Sometimes it is used as information to determine the next action of the robot.
  • Patent Documents 1 to 3, etc. Many proposals have been made on such sensors and their manufacturing methods.
  • Patent Document 1 describes a pressure detection device that includes a buffer unit that includes a magnet and deforms by pressurization and a sensor unit that detects a change in a magnetic field accompanying the deformation of the buffer unit using a magnetic sensor.
  • the magnet present in the buffer portion of the pressure detection device may be a single large magnet (FIG. 1 in Patent Document 1), or small magnets may be uniformly dispersed (see FIG. 7 in Patent Document 1, etc.). In the case of a single large magnet, it is difficult to detect deformation due to tactile sensation, and there is a problem that a foreign object sensation occurs when touched.
  • Patent Document 2 describes a detection apparatus including a viscoelastic magnet obtained by kneading and molding a magnet raw material and a viscoelastic material, and magnetic flux detection means for detecting a change in magnetic flux density vector due to deformation of the viscoelastic magnet.
  • the magnet raw material is kneaded in the viscoelastic material, the magnet raw material is uniformly dispersed. Therefore, as described in Patent Document 1, the magnetic forces cancel out between the magnet particles. There is a problem that the phenomenon occurs, and the magnet particles near the contact surface move but the inner magnet particles are difficult to move, and the detection sensitivity deteriorates when the external force is small and the deformation is very small.
  • Patent Document 3 discloses a magnetostrictive element having (a) at least one device for generating a magnetic field and (b) at least one molded member made of a porous polymer containing ferromagnetic particles.
  • Patent Document 3 describes the use of a porous polymer containing the ferromagnetic particles as a vibration sensor, performance data such as sensor sensitivity is not shown, and a specific example of the porous polymer is not disclosed.
  • performance data such as sensor sensitivity is not shown, and a specific example of the porous polymer is not disclosed.
  • the present invention solves the problems of the conventional sensor and the manufacturing method thereof as described above, and provides a sensor that is lighter and more flexible than the conventional sensor and has improved sensitivity and accuracy, and a manufacturing method thereof. For the purpose.
  • the present inventors have made a polyurethane resin foam containing a magnetic filler, and a sensor comprising a magnetic sensor for detecting a magnetic change caused by deformation of the resin foam, By limiting the change in JIS-C hardness within one specific range after 1 second and 60 seconds after contacting the pressure surface of the resin foam and the hardness meter within a specific range, it is further lighter and more flexible than conventional sensors.
  • the present inventors have found that a sensor with improved sensitivity and accuracy and a method for manufacturing the same can be provided, and the present invention has been completed.
  • the present invention includes a resin foam containing a magnetic filler, A magnetic sensor for detecting a magnetic change caused by deformation of the resin foam,
  • the resin foam is a polyurethane resin foam containing a polyisocyanate component, an active hydrogen component, a catalyst and a foam stabilizer;
  • the resin foam has a hardness change (H 1 -H 60 ) of JIS-C hardness (H 1 ) 1 second after contact with the pressing surface of the hardness meter and JIS-C hardness (H 60 ) 60 seconds later.
  • the present invention relates to a sensor characterized by having 0-10.
  • the resin foam has a specific gravity of 0.3 to 1.0 and an average cell diameter of 50 to 500 ⁇ m;
  • the blending amount of the foam stabilizer is 1 to 10 parts by mass with respect to 100 parts by mass of the resin foam; It is desirable.
  • a sensor manufacturing method comprising a polyurethane resin foam containing a magnetic filler and a magnetic sensor, (I) forming an isocyanate group-containing urethane prepolymer from a polyisocyanate component and an active hydrogen component; (Ii) a step of pre-stirring the active hydrogen component, catalyst and magnetic filler to form a magnetic filler dispersion; (Iii) a primary stirring step in which a foam stabilizer is added to the isocyanate group-containing urethane prepolymer, and the mixture is vigorously stirred so as to capture bubbles in a non-reactive gas atmosphere; (Iv) a step of further adding the magnetic filler dispersion and performing secondary stirring to prepare a cell-dispersed urethane composition containing the magnetic filler; (V) forming the urethane-dispersed urethane composition into a desired shape and curing to produce a urethane resin foam containing
  • the resin foam and the pressure surface of the hardness meter are brought into contact with each other.
  • the foam stabilizer is not added to the magnetic filler dispersion liquid side, but is added to the isocyanate group-containing urethane prepolymer side having higher viscosity, and stirred (primary stirring). It is possible to provide a sensor in which bubbles taken into the reaction system are difficult to escape, efficient foaming can be performed, weight reduction and flexibility, and sensitivity and accuracy are improved.
  • the sensor of the present invention A resin foam containing a magnetic filler, and a magnetic sensor for detecting a magnetic change caused by deformation of the resin foam
  • the resin foam is a polyurethane resin foam containing a polyisocyanate component, an active hydrogen component, a catalyst and a foam stabilizer;
  • the resin foam has a hardness change (H 1 -H 60 ) of JIS-C hardness (H 1 ) 1 second after contact with the pressing surface of the hardness meter and JIS-C hardness (H 60 ) 60 seconds later. It is a requirement to have 0-10.
  • the magnetic filler used in the present invention is a metal powder or metal oxide powder that can have a magnetic force by being magnetized, and includes rare earth, iron, cobalt, nickel, and oxide types. However, any of these may be used. Preferably, it is a rare earth system that provides a high magnetic force, but is not limited thereto.
  • the shape of the magnetic filler is not particularly limited, and may be spherical, flat, needle-like, columnar, or indefinite.
  • the magnetic filler has an average particle size of 0.02 to 500 ⁇ m, preferably 0.1 to 400 ⁇ m, more preferably 0.5 to 300 ⁇ m. When the average particle size is smaller than 0.02 ⁇ m, the magnetic properties of the magnetic filler deteriorate, and when it exceeds 500 ⁇ m, the mechanical properties of the magnetic resin foam deteriorate (brittleness).
  • the blending amount of the magnetic filler is 1 to 400 parts by mass, preferably 2 to 350 parts by mass with respect to 100 parts by mass of the resin foam.
  • the amount is less than 1 part by mass, it is difficult to detect a change in the magnetic field.
  • the amount exceeds 400 parts by mass, desired properties such as the resin foam itself becomes brittle cannot be obtained.
  • thermosetting resin foam As the resin foam used in the magnetic resin foam of the present invention, a general resin foam can be used, but a thermosetting resin foam is preferable in consideration of characteristics such as compression set.
  • thermosetting resin foam used in the present invention include a polyurethane resin foam and a silicone resin foam, and a polyurethane resin foam is preferable.
  • examples of the isocyanate component and active hydrogen-containing compound that can be used include the following.
  • the isocyanate component a known compound in the field of polyurethane can be used without particular limitation.
  • the isocyanate component 2,4-toluene diisocyanate, 2,6-toluene diisocyanate, 2,2′-diphenylmethane diisocyanate, 2,4′-diphenylmethane diisocyanate, 4,4′-diphenylmethane diisocyanate, 1,5-naphthalene diisocyanate, aromatic diisocyanates such as p-phenylene diisocyanate, m-phenylene diisocyanate, p-xylylene diisocyanate, m-xylylene diisocyanate, ethylene diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate, 1,6-hexamethylene diisocyanate, etc.
  • the isocyanate may be modified by urethane modification, allophanate modification, biuret modification, isocyanurate modification or the like.
  • the isocyanate may be a prepolymer with a polyol described later.
  • active hydrogen-containing compounds include those usually used in the technical field of polyurethane.
  • examples include polyether polyols typified by polytetramethylene ether glycol, polyethylene glycol, etc., polyester polyols typified by polybutylene adipate, polycaprolactone polyols, reactants of polyester glycols such as polycaprolactone and alkylene carbonate, etc.
  • Polyester polycarbonate polyol Polyester polyol obtained by reacting ethylene carbonate with polyhydric alcohol and then reacting the resulting reaction mixture with organic dicarboxylic acid, Polycarbonate polyol obtained by transesterification of polyhydroxyl compound and aryl carbonate Etc. These may be used alone or in combination of two or more.
  • Low molecular weight polyol component such as Ming, ethylenediamine, toly
  • a known catalyst can be used without limitation, but triethylenediamine (1,4-diazabicyclo [2,2,2] octane), N, N, N ′, N
  • a tertiary amine catalyst such as' -tetramethylhexanediamine or bis (2-dimethylaminoethyl) ether is preferably used, and a metal catalyst such as tin octylate or lead octylate can be used in combination.
  • the foam stabilizer used for the polyurethane resin foam for example, a silicone foam stabilizer, a fluorine foam stabilizer, or the like used in the production of a normal polyurethane resin foam can be used.
  • the silicone-based surfactant and fluorine-based surfactant used as the silicone-based foam stabilizer and the fluorine-based foam stabilizer have a polyurethane-soluble part and an insoluble part in the molecule.
  • the insoluble part uniformly disperses the polyurethane material and lowers the surface tension of the polyurethane system, so that bubbles are easily generated and are hard to break. Of course, if the surface tension is too low, bubbles are not easily generated. Become.
  • the dimethylpolysiloxane structure as the insoluble part can reduce the cell diameter or increase the number of cells. It becomes.
  • silicone foam stabilizers examples include “SF-2962,” “SRX 274DL,” “SF-2965,” “SF-2904,” “SF-2908,” manufactured by Toray Dow Corning, “SF-2904", “L5340”, “Tegosutabu (Tegostab R) B8017” manufactured by Evonik Degussa, and the like.
  • SF-2962 examples include “SF-2962,” “SRX 274DL,” “SF-2965,” “SF-2904,” “SF-2908,” manufactured by Toray Dow Corning, “SF-2904", “L5340”, “Tegosutabu (Tegostab R) B8017” manufactured by Evonik Degussa, and the like.
  • FC430 "FC4430” by 3M company
  • FC142D "F552”, “F554", "F558” by Dainippon Ink & Chemicals, Inc.
  • F561 describes SF-2962
  • R41 examples include “RX 274DL,” “SF-
  • the blending amount of the foam stabilizer is 1 to 10 parts by mass, preferably 1.5 to 9.5 parts by mass with respect to 100 parts by mass of the resin foam. If the amount of the foam stabilizer is less than 1 part by mass, foaming is not sufficient, and if it exceeds 10 parts by mass, bleeding may occur.
  • the polyurethane resin foam of the present invention has a hardness change (H 1 ) of JIS-C hardness (H 1 ) after 1 second and JIS-C hardness (H 60 ) after 60 seconds after contacting the pressing surface of the hardness meter.
  • H 1 JIS-C hardness
  • H 60 JIS-C hardness
  • -H 60 0-10, but preferably 0-9, more preferably 0-8.
  • the polyurethane resin foam has a JIS-C hardness (H 1 ) of 10 to 50, preferably 15 to 45, more preferably 20 to 40 one second after contacting the pressure surface of the hardness meter.
  • the JIS-C hardness is measured in accordance with JIS K-7312.
  • the hardness meter has a hole at the center of the pressing surface when the pressing surface of the hardness meter is brought into close contact with the surface of the test piece.
  • a spring hardness tester having a structure in which the distance between the push needle protruding from the test piece by the test piece is indicated on the scale as the hardness is used.
  • the change in hardness (H 1 -H 60 ) of JIS-C hardness (H 1 ) after 1 second and JIS-C hardness (H 60 ) after 60 seconds from contact with the pressing surface of the hardness meter is 10
  • the restoring property of the test piece is poor, and it indicates that the needle of the hardness tester is not pushed back by the H 60 measurement after the H 1 measurement and is further pushed into the test piece.
  • the hardness difference is 0, it indicates that H 1 and H 60 do not change, so the lower limit of the hardness change (H 1 -H 60 ) is 0.
  • the polyurethane resin foam of the present invention desirably has a specific gravity of 0.3 to 1.0, preferably 0.35 to 0.95, more preferably 0.4 to 0.9. If the specific gravity is lower than 0.3, the bubble volume is large and the amount of the magnetic filler is relatively reduced, so that the sensor sensitivity is deteriorated. If the specific gravity is higher than 1.0, the weight is increased.
  • the specific gravity means a value measured in accordance with JIS Z-8807-1976.
  • the polyurethane resin foam of the present invention desirably has an average cell diameter of 50 to 500 ⁇ m, preferably 55 to 450 ⁇ m, more preferably 60 to 400 ⁇ m. If a large amount of a foam stabilizer is used in order to make the average cell diameter smaller than 50 ⁇ m, it causes bleeding, and if it is larger than 500 ⁇ m, the number of bubbles is reduced, the specific gravity is high, and the restoring property is deteriorated.
  • a sample obtained by cutting the urethane resin foam into a thickness of 1 mm is used as a measurement sample, and a cross section of the sample is observed using a scanning electron microscope (SEM) ( Magnification ⁇ 100), and using the image analysis software for the obtained image, the total cell diameter (diameter) in an arbitrary range (2 ⁇ 2.4 mm) of the cross section was measured, and the average cell diameter was calculated.
  • SEM scanning electron microscope
  • the manufacturing method of the sensor of the present invention is as follows.
  • a chemical foaming method using a reactive foaming agent such as water, a mixture containing an active hydrogen component and a catalyst, and a polyisocyanate component are machined in a non-reactive gas atmosphere.
  • a mechanical foaming method with mechanical stirring but the mechanical foaming method is simpler in molding operation than the chemical foaming method and does not use water as a foaming agent, so no urea group is generated, It is known that a molded article having no physical property deterioration, toughness and excellent rebound resilience can be obtained.
  • the molded body obtained by using the mechanical foaming method has a problem that it is difficult to hold bubbles in the reaction mixture, the density of the obtained molded body becomes too high, and the flexibility is low.
  • the mechanical foaming method is used as in the above step (iii), not the chemical foaming method using a reactive foaming agent such as water.
  • a reactive foaming agent such as water.
  • an isocyanate group-containing urethane prepolymer is formed from a polyisocyanate component and an active hydrogen component as in step (i) above, and the active hydrogen component, catalyst and magnetic filler are pre-stirred as in step (ii) above.
  • a magnetic filler dispersion is formed from a polyisocyanate component and an active hydrogen component as in step (i) above, and the active hydrogen component, catalyst and magnetic filler are pre-stirred as in step (ii) above.
  • a magnetic filler dispersion is formed from a polyisocyanate component and an active hydrogen component as in step (i) above, and the active hydrogen component, catalyst and magnetic filler are pre-stirred as in step (ii) above.
  • a foam stabilizer is added to the isocyanate group-containing urethane prepolymer, and the non-reactive gas atmosphere is vigorously stirred to take in bubbles, and the secondary stirring step.
  • the magnetic filler dispersion is further added and stirred vigorous
  • a method for forming a polyurethane resin foam after forming an isocyanate group-containing urethane prepolymer in advance is as follows. It is known to those skilled in the art, and the production conditions can be appropriately selected depending on the compounding material. However, the active hydrogen component and the excess polyisocyanate component are reacted to form a prepolymer having an isocyanate group at the molecular end. To do.
  • the blending ratio of the polyisocyanate component and the active hydrogen component is the ratio of the isocyanate group in the polyisocyanate component to the active hydrogen group in the active hydrogen component (isocyanate group / active hydrogen).
  • Group is selected to be 1-6, preferably 2-5.
  • the reaction temperature is preferably 60 to 120 ° C., and the reaction time is preferably 3 to 8 hours.
  • conventionally known urethanization catalysts and organic catalysts such as lead octylate commercially available from Toei Chemical Co., Ltd.
  • any apparatus used in the step (i) can be used as long as it can react by stirring and mixing the above materials under the above-described conditions, and an apparatus used for ordinary polyurethane production can be used. it can.
  • the method for performing preliminary stirring in the above step (ii) includes a method using a general mixer capable of mixing a liquid resin and a filler, and examples thereof include a homogenizer, a dissolver, and a planetary mixer.
  • the foam stabilizer is not added to the magnetic filler dispersion side formed in the above step (ii), but is added to the isocyanate group-containing urethane prepolymer side having a higher viscosity and stirred. (Primary stirring), and in the step (iv), by further adding the magnetic filler dispersion and performing secondary stirring, bubbles taken into the reaction system are difficult to escape and efficient foaming can be performed. Thus, it is possible to provide a sensor that is lighter, more flexible, and has improved sensitivity and accuracy.
  • the non-reactive gas in the step (iii) is preferably a non-flammable gas. Specifically, nitrogen, oxygen, carbon dioxide gas, helium, argon and other rare gases, and mixed gases thereof are exemplified. It is most preferable to use air from which air has been removed. Further, the conditions for the primary stirring and the secondary stirring, particularly the primary stirring, can be used at the time of urethane foam production by a normal mechanical foaming method, and are not particularly limited. Using a mixer, vigorously stir for 1 to 30 minutes at a rotational speed of 1000 to 10000 rpm. Examples of such an apparatus include a homogenizer, a dissolver, and a mechanical floss foaming machine.
  • the method for molding the cell-dispersed urethane composition into a desired shape such as a sheet is not particularly limited.
  • the mixed solution is injected into a mold subjected to a release treatment.
  • a batch-type molding method for curing and a continuous molding method for continuously supplying and curing the above-mentioned cell-dispersed urethane composition on a release-treated face material can be used.
  • the curing conditions are not particularly limited, and are preferably 60 to 200 ° C. for 10 minutes to 24 hours. If the curing temperature is too high, the resin foam is thermally deteriorated and mechanical strength is deteriorated.
  • the method of magnetizing the magnetic filler is not particularly limited, and a commonly used magnetizing device, for example, “ES-10100-15SH” manufactured by Electronic Magnetic Industry Co., Ltd. It can be performed using “TM-YS4E” manufactured by Tamagawa Seisakusho. Usually, a magnetic field having a magnetic flux density of 1 to 3T is applied.
  • the magnetic filler may be added in the step (ii) for forming the magnetic filler dispersion after magnetization, but from the viewpoint of handling workability of the magnetic filler in the middle step, the magnetic filler is added in the step (vi). It is preferable to magnetize.
  • FIG. 1 is a schematic view showing a cross section of a tactile sensor as a sensor using the magnetic resin foam of the present invention, and changes when no pressure is applied (left side of FIG. 1) and when pressure is applied (right side of FIG. 1). Is schematically represented.
  • FIG. 2 is a schematic diagram showing a cross section of a bending sensor as a sensor using the magnetic resin foam of the present invention, in which there is no bending deformation (left side in FIG. 2) and there is bending deformation (right side in FIG. 2). This is schematically shown. Therefore, these schematic diagrams do not limit the present invention.
  • a tactile sensor as a sensor using the magnetic resin foam of the present invention basically includes a magnetic resin foam 1 and a magnetic sensor 2.
  • the magnetic resin foam 1 contains many bubbles 3 and magnetic filler (not shown).
  • a substrate 4 exists between the magnetic resin foam 1 and the magnetic sensor 2.
  • the substrate 4 may be omitted, but is usually necessary to support the magnetic resin foam 1. Further, if the substrate 4 is not present, when the pressure 5 is applied to the magnetic resin foam 1, the entire magnetic resin foam 1 is bent, and the pressure 5 may not be detected accurately.
  • the bending sensor of the present invention basically includes a magnetic resin foam 13 and magnetic sensors 10, 11, and 12.
  • the magnetic resin foam 13 contains a lot of bubbles 19 and magnetic fillers (not shown), and FIG. 2 shows three magnetic sensors 10, 11, and 12, but there are a plurality of them. Two or more is sufficient, and detection accuracy is improved when there are three or more.
  • the magnetic resin foam 13 On the left side of FIG. 2, the magnetic resin foam 13 is not bent, but on the right side of FIG. 2, the end 14 of the magnetic resin foam 13 is raised in the direction of the arrow 15, and the magnetic resin foam 13 has an angle of 16. Bent up to.
  • the magnetic resin foam 13 is deformed so that the positions of the magnetic fillers are greatly different.
  • the change of the magnetic fillers causes the change of the magnetic field emitted from the magnetic fillers, which is detected by the magnetic sensors 10, 11, and 12. Is done. Due to the bending deformation as described above, the inside of the magnetic resin foam 13 is compressed, so that the bubbles 17 contract, and the outside is pulled, so that the bubbles 18 expand.
  • the presence of the bubbles 19 facilitates displacement of the magnetic filler as the bubbles expand and contract, improving sensor sensitivity.
  • the presence of the air bubbles 19 causes the deformation of the magnetic resin foam 13 to be quickly returned and the recoverability is improved.
  • the magnetic sensor 2 may be any sensor that is normally used for detecting a change in a magnetic field, and may be a magnetoresistive element (for example, a semiconductor compound magnetoresistive element, an anisotropic magnetoresistive element (AMR), a giant magnetoresistive element (GMR)). ) Or tunnel magnetoresistive element (TMR)), Hall element, inductor, MI element, fluxgate sensor, and the like. From the viewpoint of sensitivity, a Hall element is preferably used.
  • a Hall element is preferably used.
  • Example 1 40 parts by mass of polypropylene glycol (number average molecular weight 6000, trifunctional) marketed by Asahi Glass Co., Ltd. under the trade name “Preminol 7001”, and Asahi Glass Co., Ltd. under the trade name “Excenol 3020” 60 parts by mass of polypropylene glycol (number average molecular weight 3000, bifunctional) was added, and vacuum dehydration was performed for 1 hour with stirring. Thereafter, the inside of the reaction vessel was purged with nitrogen. And 10 mass parts of diphenylmethane diisocyanate marketed by Nippon Polyurethane Industry Co., Ltd. under the trade name “Millionate MT” is added to the reaction vessel, and the reaction is carried out for 5 hours while maintaining the temperature in the reaction vessel at 80 ° C. Isocyanate group-containing urethane prepolymer A was synthesized.
  • the cell-dispersed urethane composition was poured into a mold subjected to a release treatment, and adjusted to a thickness of 1 mm with a nip roll. Then, the urethane resin foam containing a magnetic filler was obtained by hardening at 80 degreeC for 1 hour. The obtained urethane resin foam was magnetized at 1.3 T with a magnetizing device (manufactured by Electronic Magnetic Industry Co., Ltd.) to produce a magnetic urethane resin foam.
  • Example 2 A magnetic urethane resin foam was produced in the same manner as in Example 1 except that the primary stirring time was 20 minutes.
  • Example 3 A magnetic urethane resin foam was produced in the same manner as in Example 1 except that the primary stirring time was 1 minute.
  • Example 4 A magnetic urethane resin foam was produced in the same manner as in Example 1 except that the blending amount of the foam stabilizer was 2 parts by mass.
  • Example 5 A magnetic urethane resin foam was produced in the same manner as in Example 1 except that the blending amount of the foam stabilizer was 9 parts by mass.
  • Example 6 A magnetic urethane resin foam was produced in the same manner as in Example 1 except that the blending amount of the foam stabilizer was 9 parts by mass and the primary stirring time was 20 minutes.
  • Example 7 A magnetic urethane resin foam was produced in the same manner as in Example 1 except that the blending amount of the foam stabilizer was 2 parts by mass and the primary stirring time was 1 minute.
  • Example 8 A magnetic urethane resin foam was produced in the same manner as in Example 1 except that the blending amount of the foam stabilizer was 12 parts by mass.
  • Example 1 A magnetic urethane resin foam was produced in the same manner as in Example 1 except that the foam stabilizer was added to the magnetic filler dispersion and primary stirring was performed.
  • Comparative Example 2 20 parts by mass of polypropylene glycol (number average molecular weight 6000, trifunctional) marketed by Asahi Glass Co., Ltd. under the trade name “Preminol 7001”, and polypropylene glycol (trade name “Excenol 3020” from Asahi Glass Co., Ltd.) (Number average molecular weight 3000, difunctional) 80 parts by mass of an isocyanate group-containing urethane prepolymer B was synthesized, 48.2 parts by mass of polypropylene glycol (number average molecular weight 6000, trifunctional) commercially available from Asahi Glass Co., Ltd.
  • a magnetic urethane resin foam was produced in the same manner as in Example 1 except that 43.7 parts by mass of the isocyanate group-containing urethane prepolymer A in the primary stirring was changed to 41.7 parts by mass of the isocyanate group-containing urethane prepolymer B.
  • the obtained magnetic urethane resin foam was measured or evaluated for JIS-C hardness change, specific gravity, average cell diameter, sensor sensitivity, bleed property, and restorability. The results are shown in Table 2. Each test method was as follows.
  • Average cell diameter A sample for measurement was prepared by cutting the produced magnetic urethane resin foam into a thickness of 1 mm with a razor blade. The cross section of the sample was observed using a scanning electron microscope (SEM) “S-3500N” manufactured by Hitachi Science Systems Co., Ltd. (magnification ⁇ 100), and the obtained image was analyzed using image analysis software manufactured by Mitani Corporation. Using “WinROOF”, the total cell diameter (diameter) of the cross section in an arbitrary range (2 ⁇ 2.4 mm) was measured, and the average cell diameter was calculated.
  • SEM scanning electron microscope
  • WinROOF the total cell diameter (diameter) of the cross section in an arbitrary range (2 ⁇ 2.4 mm) was measured, and the average cell diameter was calculated.
  • Tactile sensor sensitivity Hall element as a magnetic sensor on the substrate (A hall element commercially available from Asahi Kasei Electronics Co., Ltd. under the trade name “EQ-430L” is installed as shown in FIG. Install urethane resin foam, applying a load using a compression testing machine (Autograph “AG-X” manufactured by Shimadzu Corporation), and setting the output voltage of the Hall element to the data logger “XL121-M” (Yokogawa The characteristics of the tactile sensor were obtained by measuring with Meter & Instruments Co., Ltd. At this time, the load when the voltage value of the data logger was changed was evaluated as the tactile sensor sensitivity. It shows that a tactile sensor sensitivity is so favorable that the value of a tactile sensor sensitivity is small.
  • the tactile sensor and the bending sensor obtained by using the magnetic urethane resin foams of Examples 1 to 8 of the present invention having JIS-C hardness changes 0 to 10 are comparative examples. Compared with the tactile sensors 1 and 2 and the bending sensor, it can be seen that the resilience is good and the sensor sensitivity is very high.
  • the foam stabilizer was added not to the isocyanate group-containing urethane prepolymer side, but to the lower viscosity magnetic filler dispersion side, and primary stirring was performed to produce a magnetic urethane resin foam. Since the bubbles could not be retained in the reaction system, the change in JIS-C hardness was large and the restorability was poor.
  • the sensor of Comparative Example 2 uses a magnetic urethane resin foam obtained by changing the blending ratio of the two types of polypropylene glycol in the isocyanate group-containing urethane prepolymer, and the trifunctional component is reduced and the crosslink density is low. By decreasing, the JIS-C hardness change was large, the restoration property was poor, and the sensor sensitivity was very low.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

 本発明により、従来のセンサより更に軽量化、柔軟化され、かつ感度および精度が向上したセンサおよびその製造方法を提供する。本発明は、磁性フィラーを含む樹脂フォームと、該樹脂フォームの変形に起因する磁気変化を検出する磁気センサとから構成され、該樹脂フォームが、ポリイソシアネート成分、活性水素成分、触媒および整泡剤を含有するポリウレタン樹脂フォームであり、該樹脂フォームが、硬度計の加圧面を接触させてから1秒後のJIS-C硬度(H)および60秒後のJIS-C硬度(H60)の硬度変化(H-H60)0~10を有することを特徴とするセンサに関する。

Description

センサとその製造方法
 本発明は、磁性フィラーを含有する樹脂フォームである磁性フォームに接触することにより生じる変形を検知する触覚センサ、曲げセンサなどのセンサ、およびその製造方法に関する。
 ある物体が別の物体に接触することにより生じる変形を検知するセンサには、触覚センサ、曲げセンサなどがあり、様々な分野で広く利用されている。触覚センサは、接触の強さ、位置、方向などを検出するものであり、曲げセンサは曲げ変形を検知するものである。これらのセンサは例えばロボットの手や皮膚などに応用されて、センサから得られる接触の強さ、位置、方向などの情報は、ロボットの動きの制御や外からの圧力に対しての対応をするときに、ロボットの次の行動を決定する情報として利用される。そのようなセンサおよびその製造方法について、数多くの提案がなされている(特許文献1~3など)。
 特許文献1には、磁石を含み加減圧により変形する緩衝部と、緩衝部の変形に伴う磁場の変化を磁気センサにより検出するセンサ部とを備える圧力検出装置が記載されている。この圧力検出装置の緩衝部に存在する磁石は、大きな一つの磁石であってもよく(特許文献1図1)、小さな磁石が均一に分散していてもよい(特許文献1図7他)。大きな一つの磁石の場合は、触覚による変形を検出しにくく、触れたときに異物感が生じてしまうという問題がある。また、小さな磁石が均一に分散している場合には、例え磁力の向きが同じであっても、磁石粒子間で磁力が打ち消し合う現象が生じ、かつ、接触面付近の磁石は動くが内部の磁石は動きにくく、外力が小さくて変形が非常に小さい時に検出感度が悪化してしまうという問題がある。
 特許文献2には、磁石原料と粘弾性材料を混練成形した粘弾性磁石と、粘弾性磁石の変形による磁束密度ベクトルの変化を検出する磁束検出手段を備える検出装置が記載されている。この特許文献2の検出装置では、磁石原料が粘弾性材料中に混練されるので、磁石原料は均一に分散してしまうため、特許文献1で記載したように、磁石粒子間で磁力が打ち消し合う現象が生じ、かつ接触面付近の磁石の粒子は動くが内部の磁石粒子は動きにくく、外力が小さくて変形が非常に小さい時に検出感度が悪化してしまうという問題がある。
 特許文献3には、(a)磁界生成のための少なくとも1つの装置、および(b)強磁性粒子を含む多孔性ポリマーからなる少なくとも1つの成形部材、を有する磁歪素子が開示されている。特許文献3には、上記強磁性粒子を含む多孔性ポリマーの振動センサとしての使用が記載されているものの、センサ感度などの性能データが示されておらず、また、上記多孔性ポリマーの具体的な製造方法や特性も記載されていない。従って、上記多孔性ポリマーの製造方法や、セル径、比重などの特性を最適化することによって、まだまだ改良の余地がある。
特開2009‐229453号公報 特開2008‐39659号公報 特開2008‐507142号公報
 本発明は、上記のような従来のセンサおよびその製造方法の有する問題点を解決し、従来のセンサより更に軽量化、柔軟化され、かつ感度および精度が向上したセンサおよびその製造方法を提供することを目的とする。
 本発明者等は、上記目的を解決すべく鋭意研究を重ねた結果、磁性フィラーを含むポリウレタン樹脂フォームと、上記樹脂フォームの変形に起因する磁気変化を検出する磁気センサとから構成するセンサにおいて、上記樹脂フォームと硬度計の加圧面を接触させてから1秒後および60秒後のJIS-C硬度の変化を特定範囲内に限定することによって、従来のセンサより更に軽量化、柔軟化され、かつ感度および精度が向上したセンサおよびその製造方法を提供し得ることを見出し、本発明を完成するに至った。
 即ち、本発明は、磁性フィラーを含む樹脂フォームと、
 該樹脂フォームの変形に起因する磁気変化を検出する磁気センサと
から構成され、
 該樹脂フォームが、ポリイソシアネート成分、活性水素成分、触媒および整泡剤を含有するポリウレタン樹脂フォームであり、
 該樹脂フォームが、硬度計の加圧面を接触させてから1秒後のJIS-C硬度(H)および60秒後のJIS-C硬度(H60)の硬度変化(H-H60)0~10を有することを特徴とするセンサに関するものである。
 本発明を好適に実施するために、
 上記樹脂フォームが、比重0.3~1.0および平均セル径50~500μmを有し;
 上記整泡剤の配合量が、前記樹脂フォーム100質量部に対して、1~10質量部である;
ことが望ましい。
 また、本発明の別の態様として、磁性フィラーを含むポリウレタン樹脂フォームと磁気センサとから構成されるセンサの製造方法であって、
 (i)ポリイソシアネート成分および活性水素成分からイソシアネート基含有ウレタンプレポリマーを形成する工程、
 (ii)活性水素成分、触媒および磁性フィラーを予備撹拌して磁性フィラー分散液を形成する工程、
 (iii)該イソシアネート基含有ウレタンプレポリマーに整泡剤を加えて、非反応性気体雰囲気下で、気泡を取り込むように激しく撹拌する一次撹拌工程、
 (iv)更に該磁性フィラー分散液を加えて、二次撹拌して、磁性フィラーを含む気泡分散ウレタン組成物を調製する工程、
 (v)該気泡分散ウレタン組成物を所望の形状に成形し、硬化して、磁性フィラーを含むウレタン樹脂フォームを作製する工程、および
 (vi)該ウレタン樹脂フォームを着磁して磁性ウレタン樹脂フォームを形成する工程
を含むことを特徴とするセンサの製造方法
がある。
 本発明によれば、磁性フィラーを含むポリウレタン樹脂フォームと、上記樹脂フォームの変形に起因する磁気変化を検出する磁気センサとから構成するセンサにおいて、上記樹脂フォームと硬度計の加圧面を接触させてから1秒後および60秒後のJIS-C硬度の変化を特定範囲内に限定することによって、従来のセンサより更に軽量化、柔軟化され、かつ感度および精度が向上したセンサおよびその製造方法を提供することが可能となる。
 また、本発明のセンサの製造方法を用いることによって、整泡剤を磁性フィラー分散液側ではなく、それより高粘度であるイソシアネート基含有ウレタンプレポリマー側に加えて撹拌(一次撹拌)することによって、反応系内に取り込んだ気泡が抜けにくくなり、効率的な発泡を行うことができ、軽量化、柔軟化され、かつ感度および精度が向上したセンサを提供することが可能となる。
本発明のセンサとしての触覚センサの断面を表す模式図であって、圧力がない場合と圧力が加わった場合の変化を模式的に表している。 本発明のセンサとしての曲げセンサの断面を表す模式図であって、曲げ変形がない場合と曲げ変形がある場合を模式的に表しており、かつ実施例で用いた曲げセンサ特性評価方法での樹脂フォームと3つの磁気センサの位置関係を示す模式図である。
 本発明のセンサは、
 磁性フィラーを含む樹脂フォームと、 該樹脂フォームの変形に起因する磁気変化を検出する磁気センサとから構成され、
 該樹脂フォームが、ポリイソシアネート成分、活性水素成分、触媒および整泡剤を含有するポリウレタン樹脂フォームであり、
 該樹脂フォームが、硬度計の加圧面を接触させてから1秒後のJIS-C硬度(H)および60秒後のJIS-C硬度(H60)の硬度変化(H-H60)0~10を有することを要件とする。
 本発明に用いられる磁性フィラーとしては、磁化することにより磁力を有することが可能な金属粉、または金属酸化物粉であって、希土類系、鉄系、コバルト系、ニッケル系、酸化物系があるが、これらのいずれでもよい。好ましくは、高い磁力が得られる希土類系であるが、これに限られない。上記磁性フィラーの形状は、特に限定的ではなく、球状、扁平上、針状、柱状および不定形のいずれであってよい。上記磁性フィラーは、平均粒径0.02~500μm、好ましくは0.1~400μm、より好ましくは0.5~300μmである。平均粒径が0.02μmより小さいと、磁性フィラーの磁気特性が悪化してしまい、500μmを超えると磁性樹脂フォームの機械的特性が悪化してしまう(脆性)。
 上記磁性フィラーの配合量は、樹脂フォーム100質量部に対して、1~400質量部、好ましくは2~350質量部である。1質量部より少ないと、磁場の変化を検出することが難しくなる。また、400質量部を超えると、樹脂フォーム自体が脆くなるなど、所望の特性が得られなくなる。
 本発明の磁性樹脂フォームに用いられる樹脂フォームは、一般の樹脂フォームを用いることができるが、圧縮永久歪等の特性を考慮すると熱硬化性樹脂フォームが好ましい。本発明に用いられる熱硬化性樹脂フォームとしては、ポリウレタン樹脂フォーム、シリコーン樹脂フォームなどが挙げられ、好ましくはポリウレタン樹脂フォームが好適である。
 ここで、ポリウレタン樹脂フォームの場合、使用できるイソシアネート成分、活性水素含有化合物については下記のものが挙げられる。
 イソシアネート成分としては、ポリウレタンの分野において公知の化合物を特に限定なく使用できる。イソシアネート成分としては、2,4-トルエンジイソシアネート、2,6-トルエンジイソシアネート、2,2’-ジフェニルメタンジイソシアネート、2,4’-ジフェニルメタンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、1,5-ナフタレンジイソシアネート、p-フェニレンジイソシアネート、m-フェニレンジイソシアネート、p-キシリレンジイソシアネート、m-キシリレンジイソシアネート等の芳香族ジイソシアネート、エチレンジイソシアネート、2,2,4-トリメチルヘキサメチレンジイソシアネート、1,6-ヘキサメチレンジイソシアネート等の脂肪族ジイソシアネート、1,4-シクロヘキサンジイソシアネート、4,4’-ジシクロへキシルメタンジイソシアネート、イソホロンジイソシアネート、ノルボルナンジイソシアネート等の脂環式ジイソシアネートが挙げられる。これらは1種で用いても、2種以上を混合しても差し支えない。また、前記イソシアネートは、ウレタン変性、アロファネート変性、ビウレット変性、およびイソシアヌレート変性等の変性化したものであってもよい。前記イソシアネートは、後述するポリオールとのプレポリマーでもよい。
 活性水素含有化合物としては、ポリウレタンの技術分野において、通常用いられるものを挙げることができる。例えば、ポリテトラメチレンエーテルグリコール、ポリエチレングリコール等に代表されるポリエーテルポリオール、ポリブチレンアジペートに代表されるポリエステルポリオール、ポリカプロラクトンポリオール、ポリカプロラクトンのようなポリエステルグリコールとアルキレンカーボネートとの反応物などで例示されるポリエステルポリカーボネートポリオール、エチレンカーボネートを多価アルコールと反応させ、次いで得られた反応混合物を有機ジカルボン酸と反応させたポリエステルポリカーボネートポリオール、ポリヒドロキシル化合物とアリールカーボネートとのエステル交換反応により得られるポリカーボネートポリオールなどが挙げられる。これらは単独で用いてもよく、2種以上を併用してもよい。
 活性水素含有化合物として上述した高分子量ポリオール成分の他に、エチレングリコール、1,2-プロピレングリコール、1,3-プロピレングリコール、1,4-ブタンジオール、1,6-ヘキサンジオール、ネオペンチルグリコール、1,4-シクロヘキサンジメタノール、3-メチル-1,5-ペンタンジオール、ジエチレングリコール、トリエチレングリコール、1,4-ビス(2-ヒドロキシエトキシ)ベンゼン、トリメチロールプロパン、グリセリン、1,2,6-ヘキサントリオール、ペンタエリスリトール、テトラメチロールシクロヘキサン、メチルグルコシド、ソルビトール、マンニトール、ズルシトール、スクロース、2,2,6,6-テトラキス(ヒドロキシメチル)シクロヘキサノール、およびトリエタノールアミン等の低分子量ポリオール成分、エチレンジアミン、トリレンジアミン、ジフェニルメタンジアミン、ジエチレントリアミン等の低分子量ポリアミン成分を用いてもよい。これらは1種単独で用いてもよく、2種以上を併用してもよい。更に、4,4’-メチレンビス(o-クロロアニリン)(MOCA)、2,6-ジクロロ-p-フェニレンジアミン、4,4’-メチレンビス(2,3-ジクロロアニリン)、3,5-ビス(メチルチオ)-2,4-トルエンジアミン、3,5-ビス(メチルチオ)-2,6-トルエンジアミン、3,5-ジエチルトルエン-2,4-ジアミン、3,5-ジエチルトルエン-2,6-ジアミン、トリメチレングリコール-ジ-p-アミノベンゾエート、ポリテトラメチレンオキシド-ジ-p-アミノベンゾエート、1,2-ビス(2-アミノフェニルチオ)エタン、4,4’-ジアミノ-3,3’-ジエチル-5,5’-ジメチルジフェニルメタン、N,N’-ジ-sec-ブチル-4,4’-ジアミノジフェニルメタン、4,4’-ジアミノ-3,3’-ジエチルジフェニルメタン、4,4’-ジアミノ-3,3’-ジエチル-5,5’-ジメチルジフェニルメタン、4,4’-ジアミノ-3,3’-ジイソプロピル-5,5’-ジメチルジフェニルメタン、4,4’-ジアミノ-3,3’,5,5’-テトラエチルジフェニルメタン、4,4’-ジアミノ-3,3’,5,5’-テトライソプロピルジフェニルメタン、m-キシリレンジアミン、N,N’-ジ-sec-ブチル-p-フェニレンジアミン、m-フェニレンジアミン、およびp-キシリレンジアミン等に例示されるポリアミン類を混合することもできる。
 上記ポリウレタン樹脂フォームに用いられる触媒としては、公知の触媒を限定なく使用することができるが、トリエチレンジアミン(1,4-ジアザビシクロ[2,2,2]オクタン)、N,N,N',N'‐テトラメチルヘキサンジアミン、ビス(2-ジメチルアミノエチル)エーテル等の第3級アミン触媒の使用が好ましく、オクチル酸錫、オクチル酸鉛等の金属触媒を併用することも可能である。
 上記触媒の市販品として、東ソー株式会社製の「TEDA-L33」、モメンティブ・パフォーマンス・マテリアルズ社製の「NIAX CATALYST A1」、花王株式会社製の「カオーライザー NO.1」、「カオーライザー NO.30P」、エアプロダクツ社製の「DABCO T-9」、東栄化工株式会社製の「BTT-24」などが挙げられる。
 上記ポリウレタン樹脂フォームに用いられる整泡剤としては、例えば、シリコーン系整泡剤、フッ素系整泡剤など、通常のポリウレタン樹脂フォームの製造に用いられるものを使用することができる。上記シリコーン系整泡剤やフッ素系整泡剤として用いられるシリコーン系界面活性剤やフッ素系界面活性剤は、分子内に、ポリウレタン系に可溶な部分と、不溶な部分とが存在し、上記不溶な部分がポリウレタン系材料を均一に分散し、ポリウレタン系の表面張力を下げることによって、気泡を発生させやすく、割れにくくするものであり、もちろん、上記表面張力を下げ過ぎると気泡が発生しにくくなる。本発明の樹脂フォームにおいては、例えば、上記シリコーン系界面活性剤を用いる場合、上記不溶な部分としてのジメチルポリシロキサン構造によって、気泡径を小さくしたり、気泡数を多くしたりすることが可能となるのである。
 上記シリコーン系整泡剤の市販品としては、例えば、東レ・ダウコーニング社製の「SF-2962」、「SRX 274DL」、「SF-2965」、「SF-2904」、「SF-2908」、「SF-2904」、「L5340」、エボニック・デグサ社製の「テゴスターブ(Tegostab) B8017」などが挙げられる。また、上記フッ素系整泡剤の市販品としては、例えば、3M社製の「FC430」、「FC4430」、大日本インキ化学工業社製の「FC142D」、「F552」、「F554」、「F558」、「F561」、「R41」などが挙げられる。
 上記整泡剤の配合量は、上記樹脂フォーム100質量部に対して、1~10質量部、好ましくは1.5~9.5質量部であることが望ましい。上記整泡剤の配合量が、1質量部未満では発泡が十分ではなく、10質量部を超えるとブリードアウトする可能性がある。
 本発明の上記ポリウレタン樹脂フォームは、硬度計の加圧面を接触させてから1秒後のJIS-C硬度(H)および60秒後のJIS-C硬度(H60)の硬度変化(H-H60)0~10を有することを要件とするが、好ましくは0~9、より好ましくは0~8である。上記ポリウレタン樹脂フォームは、硬度計の加圧面を接触させてから1秒後のJIS-C硬度(H)10~50、好ましくは15~45、より好ましくは20~40を有する。
 ここで、JIS-C硬度は、JIS K-7312に準拠して測定したものであり、硬度計は、試験片の表面に、硬度計の加圧面を密着させたとき、加圧面の中心の孔からバネ圧力で突き出ている押針が、試験片によって押し戻される距離を硬さとして目盛に示す構造のスプリング硬さ試験機を用いる。従って、硬度計の加圧面を接触させてから1秒後のJIS-C硬度(H)および60秒後のJIS-C硬度(H60)の硬度変化(H-H60)が10より大きいと、試験片の復元性が乏しく、H測定後、H60測定までに硬度計の押針が押し戻されず、更に試験片に押し込まれていることを示す。上記硬度差が0の場合、HおよびH60が変化しないことを示すので、上記硬度変化(H-H60)の下限値は0となる。
 本発明の上記ポリウレタン樹脂フォームは、比重0.3~1.0、好ましくは0.35~0.95、より好ましくは0.4~0.9を有することが望ましい。上記比重が、0.3より低いと気泡体積が多く、相対的に磁性フィラー量が減少するためセンサー感度が悪化し、1.0より高いと重量が増加してしまう。ここで、比重とは、JIS Z-8807-1976に準拠して測定したものをいう。
 本発明のポリウレタン樹脂フォームは、平均セル径50~500μm、好ましくは55~450μm、より好ましくは60~400μmを有することが望ましい。上記平均セル径が、50μmより小さくする為に整泡剤を多量に使用するとブリードの原因となってしまい、500μmより大きいと気泡数が少なくなり比重が高く、復元性が悪化したものとなる。ここで、上記平均セル径の測定方法としては、上記ウレタン樹脂フォームを厚さ1mmに切り出したものを測定用サンプルとし、上記サンプルの断面を、走査型電子顕微鏡(SEM)を用いて観察し(倍率×100)、得られた画像について画像解析ソフトを用いて、上記断面の任意範囲(2×2.4mm)の全気泡径(直径)を計測し、平均セル径を算出したものである。
 本発明の上記センサの製造方法は、前述のように、
 (i)ポリイソシアネート成分および活性水素成分からイソシアネート基含有ウレタンプレポリマーを形成する工程、
 (ii)活性水素成分、触媒および磁性フィラーを予備撹拌して磁性フィラー分散液を形成する工程、
 (iii)該イソシアネート基含有ウレタンプレポリマーに整泡剤を加えて、非反応性気体雰囲気下で、気泡を取り込むように激しく撹拌する一次撹拌工程、
 (iv)更に該磁性フィラー分散液を加えて、二次撹拌して、磁性フィラーを含む気泡分散ウレタン組成物を調製する工程、
 (v)該気泡分散ウレタン組成物を所望の形状に成形し、硬化して、磁性フィラーを含むウレタン樹脂フォームを作製する工程、および
 (vi)該ウレタン樹脂フォームを着磁して磁性ウレタン樹脂フォームを形成する工程
を含むことを特徴とする。
 ウレタン樹脂フォームの製造方法として、従来、水などの反応型発泡剤を用いる化学的発泡法や、活性水素成分および触媒を含有する混合物と、ポリイソシアネート成分とを、非反応性気体雰囲気下で機械的撹拌する機械的発泡法があるが、上記機械的発泡法は、上記化学的発泡法に比べて、成形操作が簡便であり、発泡剤として水を用いないので、ウレア基が生成せず、物性低下がなく、強靱で反発弾性などが優れた成形体が得られることが知られている。しかしながら、上記機械的発泡法を用いて得られた成形体は、反応混合液での気泡保持が困難であり、得られる成形体の密度が高くなり過ぎ、柔軟性が低いという問題があった。
 そこで、本発明の製造方法では、水などの反応型発泡剤を用いる化学的発泡法ではなく、上記工程(iii)のように、機械的発泡法を用いる。これにより、化学的発泡法に比べて、成形操作が簡便であり、発泡剤として水を用いないので、ウレア基が生成せず、物性低下がなく、強靱で反発弾性(復元性)などが優れた成形体が得られるものである。
 まず、上記工程(i)のように、ポリイソシアネート成分および活性水素成分からイソシアネート基含有ウレタンプレポリマーを形成し、上記工程(ii)のように、活性水素成分、触媒および磁性フィラーを予備撹拌して磁性フィラー分散液を形成する。次に、上記一次撹拌工程(iii)のように、イソシアネート基含有ウレタンプレポリマーに整泡剤を加えて、非反応性気体雰囲気下で、気泡を取り込むように激しく撹拌し、上記二次撹拌工程(iv)のように、更に該磁性フィラー分散液を加えて激しく撹拌して、磁性フィラーを含む気泡分散ウレタン組成物を調製する。上記工程(i)~(iv)のように、ポリイソシアネート成分、活性水素成分および触媒を含有するポリウレタン樹脂フォームにおいて、予めイソシアネート基含有ウレタンプレポリマーを形成してからポリウレタン樹脂フォームを形成する方法は当業者に公知であり、製造条件は配合材料によって適宜選択することができるが、活性水素成分と過剰なポリイソシアネート成分を反応させて、分子末端にイソシアネート基を有するプレポリマーを形成するように選択する。
 上記工程(i)の形成条件としては、まず、ポリイソシアネート成分および活性水素成分の配合比率は、ポリイソシアネート成分中のイソシアネート基と活性水素成分中の活性水素基との比(イソシアネート基/活性水素基)が、1~6、好ましくは2~5となるように選択する。また、反応温度は60~120℃が好ましく、反応時間は3~8時間が好ましい。更に、従来公知のウレタン化触媒、有機触媒、例えば東栄化工株式会社から商品名「ヘキソエート鉛24%」で市販されているオクチル酸鉛、東ソー株式会社製の「TEDA-L33」、モメンティブ・パフォーマンス・マテリアルズ社製の「NIAX CATALYST A1」、花王株式会社製の「カオーライザー NO.1」、「エアプロダクツ社製の「DABCO T-9」、東栄化工株式会社製の「BTT-24」などを用いてもよい。上記工程(i)に用いられる装置としては、上記のような条件で上記材料を撹拌混合して反応させることができるものであれば使用でき、通常のポリウレタン製造に用いられるものを使用することができる。
 上記工程(ii)の予備撹拌を行う方法としては、液状樹脂とフィラーを混合することができる一般的な混合機を用いる方法が挙げられ、例えばホモジナイザー、ディゾルバー、プラネタリーミキサなどが挙げられる。
 本発明の製造方法の上記工程(iii)において、整泡剤を上記工程(ii)で形成した磁性フィラー分散液側ではなく、それより高粘度であるイソシアネート基含有ウレタンプレポリマー側に加えて撹拌(一次撹拌)し、上記工程(iv)において、更に上記磁性フィラー分散液を加えて二次撹拌することによって、反応系内に取り込んだ気泡が抜けにくくなり、効率的な発泡を行うことができ、軽量化、柔軟化され、かつ感度および精度が向上したセンサを提供することが可能となる。
 上記工程(iii)における非反応性気体としては可燃性でないものが好ましく、具体的には窒素、酸素、炭酸ガス、ヘリウム、アルゴンなどの希ガス、これらの混合気体が例示され、乾燥して水分を除去した空気の使用が最も好ましい。また、上記一次撹拌および二次撹拌、特に一次撹拌の条件についても、通常の機械的発泡法によるウレタンフォーム製造時の条件を用いることができ、特に限定されないが、撹拌翼または撹拌翼を備えた混合機を用いて、回転数1000~10000rpmで1~30分間激しく撹拌する。そのような装置として、例えばホモジナイザー、ディゾルバー、メカニカルフロス発泡機などが挙げられる。
 本発明の製造方法の上記工程(v)において、上記気泡分散ウレタン組成物をシート状など所望の形状に成形する方法も特に限定されず、例えば、上記混合液を離型処理したモールド内に注入し、硬化させるバッチ式成形方法、離型処理した面材上に上記気泡分散ウレタン組成物を連続的に供給し硬化させる連続成形方法を用いることができる。また、上記硬化条件も、特に限定されず、60~200℃で10分間~24時間が好ましく、硬化温度が高すぎると上記樹脂フォームが熱劣化してしまい機械的強度が悪化し、硬化温度が低すぎると上記樹脂フォームの硬化不良が生じてしまう。また、硬化時間が長すぎると上記樹脂フォームが熱劣化してしまい機械的強度が悪化し、硬化時間が短すぎると上記樹脂フォームの硬化不良が生じてしまう。
 本発明の製造方法の上記工程(vi)において、磁性フィラーの着磁方法は特に限定されず、通常用いられる着磁装置、例えば電子磁気工業株式会社製の「ES-10100-15SH」、株式会社玉川製作所製の「TM-YS4E」などを用いて行うことができる。通常、磁束密度1~3Tを有する磁場を印加する。磁性フィラーは、着磁後に磁性フィラー分散液を形成する上記工程(ii)において添加してもよいが、途中の工程での磁性フィラーの取り扱い作業性などの観点から、上記工程(vi)において着磁することが好ましい。
 本発明の製造方法の上記工程(i)~(vi)によって得られた磁性樹脂フォームと、磁気センサとから構成されるセンサとして、触覚センサおよび曲げセンサについて、それぞれ図1および2を参照して本発明を説明する。図1は、本発明の磁性樹脂フォームを用いたセンサとしての触覚センサの断面を表す模式図であって、圧力がない場合(図1左側)と圧力が加わった場合(図1右側)の変化を模式的に表している。図2は、本発明の磁性樹脂フォームを用いたセンサとしての曲げセンサの断面を表す模式図であって、曲げ変形がない場合(図2左側)と曲げ変形がある場合(図2右側)を模式的に表している。従って、これらの模式図は本発明を限定するものではない。
 本発明の磁性樹脂フォームを用いたセンサとしての触覚センサは、基本的には、磁性樹脂フォーム1と磁気センサ2とから構成されている。磁性樹脂フォーム1には、気泡3および磁性フィラー(表示なし)が多く含まれている。図1には、磁性樹脂フォーム1と磁気センサ2との間に基板4が存在している。基板4は無くてもよいが、磁性樹脂フォーム1を支持するために通常は必要である。また、基板4が無いと、圧力5が磁性樹脂フォーム1に印加された時に、磁性樹脂フォーム1全体が撓むことになり、正確に圧力5を検出できなくなる恐れがある。
 図1の左側では、圧力が印加されていない状態であるが、図1の右側では、圧力5が磁性樹脂フォーム1の上方から印加されると、気泡3が潰れるように変形し、磁性樹脂フォーム1が変形し、磁性フィラーの位置が圧力の印加された部分だけ下方に下がる。この磁性フィラーの下方への変化が磁性フィラーから出ている磁場が変化し、それが磁気センサ2で検出される。上記のように、気泡3が存在することによって、圧力5により気泡3が潰れるように変形するため、磁性樹脂フォーム1が変形しやすくなり、変形が大きくなって、センサ感度が向上する。更に、図1の左側のように、圧力5が印加されていない状態に戻した場合、気泡3が存在することによって、磁性樹脂フォーム1の変形が速やかに戻り、復元性が向上する。
 本発明の曲げセンサは、基本的には、磁性樹脂フォーム13と磁気センサ10、11、12とから構成されている。磁性樹脂フォーム13には、気泡19および磁性フィラー(表示なし)が多く含まれていて、図2には、3個の磁気センサ10、11、12が記載されているが、複数個であるので2個以上であればよく、3個以上あると検出精度が向上する。
 図2の左側では、磁性樹脂フォーム13が曲がっていない状態であるが、図2の右側では、磁性樹脂フォーム13の端部14を矢印15の方向に上げていき、磁性樹脂フォーム13が角度16まで曲げられている。磁性樹脂フォーム13が変形して、磁性フィラーの位置が大きく異なった配置になり、この磁性フィラーの変化が磁性フィラーから出ている磁場の変化をもたらし、それが磁気センサ10、11、12で検出される。上記のような曲げ変形によって、磁性樹脂フォーム13の内側は圧縮されることによって気泡17が収縮し、外側は引っ張られることによって気泡18が膨張する。気泡19が存在することによって、気泡の伸縮と共に磁性フィラーも変位しやすくなり、センサ感度が向上する。更に、更に、図1の左側のように、無変形状態に戻した場合、気泡19が存在することによって、磁性樹脂フォーム13の変形が速やかに戻り、復元性が向上する。
 磁気センサ2は、通常磁場の変化を検出するために用いられるセンサであればよく、磁気抵抗素子(例えば、半導体化合物磁気抵抗素子、異方性磁気抵抗素子(AMR)、巨大磁気抵抗素子(GMR)またはトンネル磁気抵抗素子(TMR))、ホール素子、インダクタ、MI素子、フラックスゲートセンサなどを例示することができる。感度の点から、ホール素子が好ましく使用される。
 以下、実施例を挙げて本発明を更に詳細に説明するが、本発明はこれらに限定されるものではない。
 (実施例1)
 反応容器に、旭硝子株式会社から商品名「プレミノール7001」で市販されているポリプロピレングリコール(数平均分子量6000、3官能性)40質量部、および旭硝子株式会社から商品名「エクセノール3020」で市販されているポリプロピレングリコール(数平均分子量3000、2官能性)60質量部を入れ、撹拌しながら減圧脱水を1時間行った。その後、反応容器内を窒素置換した。そして、反応容器に、日本ポリウレタン工業株式会社から商品名「ミリオネートMT」で市販されているジフェニルメタンジイソシアネート10質量部を添加して、反応容器内の温度を80℃に保持しながら5時間反応させてイソシアネート基含有ウレタンプレポリマーAを合成した。
 次に、以下の表1に示すように、旭硝子株式会社から商品名「プレミノール7001」で市販されているポリプロピレングリコール(数平均分子量6000、3官能性)46.2質量部、触媒として1,4-ジアザビシクロ[2,2,2]オクタン(花王株式会社)0.1質量部、磁性フィラー(住友金属鉱山株式会社から市販されているSm‐Fe‐N系合金微粉;平均粒径2.5μm)10質量部を添加し、超音波ホモジナイザーにて磁性フィラーの分散および予備撹拌を1分間行うことによって、磁性フィラー分散液を得た。
 そして、上記イソシアネート基含有ウレタンプレポリマーA43.7質量部に、東レ・ダウコーニング株式会社から商品名「L-5340」で市販されている整泡剤5質量部を添加し、撹拌翼を用いて回転数900rpmで、反応系内に気泡を取り込むように5分間激しく一次撹拌を行った。その後、上記磁性フィラー分散液56.3質量部を添加し、1分間二次撹拌して、磁性フィラーを含む気泡分散ウレタン組成物を調製した。上記気泡分散ウレタン組成物を、離型処理したモールド内に注型し、ニップロールにて厚さ1mmに調整した。その後、80℃で1時間硬化することによって、磁性フィラーを含むウレタン樹脂フォームを得た。得られた上記ウレタン樹脂フォームを着磁装置(電子磁気工業株式会社製)にて1.3Tで着磁することにより磁性ウレタン樹脂フォームを作製した。
 (実施例2)
 上記一次撹拌時間を20分間とした以外は実施例1と同様にして、磁性ウレタン樹脂フォームを作製した。
 (実施例3)
 上記一次撹拌時間を1分間とした以外は実施例1と同様にして、磁性ウレタン樹脂フォームを作製した。
 (実施例4)
 上記整泡剤の配合量を2質量部とした以外は実施例1と同様にして、磁性ウレタン樹脂フォームを作製した。
 (実施例5)
 上記整泡剤の配合量を9質量部とした以外は実施例1と同様にして、磁性ウレタン樹脂フォームを作製した。
 (実施例6)
 上記整泡剤の配合量を9質量部とし、上記一次撹拌時間を20分間とした以外は実施例1と同様にして、磁性ウレタン樹脂フォームを作製した。
 (実施例7)
 上記整泡剤の配合量を2質量部とし、上記一次撹拌時間を1分間とした以外は実施例1と同様にして、磁性ウレタン樹脂フォームを作製した。
 (実施例8)
 上記整泡剤の配合量を12質量部とした以外は実施例1と同様にして、磁性ウレタン樹脂フォームを作製した。
 (比較例1)
 上記整泡剤を、上記磁性フィラー分散液に添加して、一次撹拌とした以外は、実施例1と同様にして、磁性ウレタン樹脂フォームを作製した。
 (比較例2)
 旭硝子株式会社から商品名「プレミノール7001」で市販されているポリプロピレングリコール(数平均分子量6000、3官能性)20質量部、および旭硝子株式会社から商品名「エクセノール3020」で市販されているポリプロピレングリコール(数平均分子量3000、2官能性)80質量部を用いてイソシアネート基含有ウレタンプレポリマーBを合成し、
 上記磁性フィラー分散液作製時の旭硝子株式会社から商品名「プレミノール7001」で市販されているポリプロピレングリコール(数平均分子量6000、3官能性)を48.2質量部とし、
 一次撹拌する際の上記イソシアネート基含有ウレタンプレポリマーA43.7質量部を、イソシアネート基含有ウレタンプレポリマーB41.7質量部とした以外は実施例1と同様にして、磁性ウレタン樹脂フォームを作製した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 (注1)旭硝子株式会社から商品名「プレミノール7001」で市販されているポリプロピレングリコール(数平均分子量6000)
 (注2)住友金属鉱山株式会社から市販されているSm‐Fe‐N系合金微粉(平均粒径2.5μm)
 (注3)花王株式会社から市販されている1,4-ジアザビシクロ[2,2,2]オクタン(DABCO)
 (注4)東レ・ダウコーニング株式会社から商品名「L-5340」で市販されているシリコーン系界面活性剤
 得られた磁性ウレタン樹脂フォームについて、JIS-C硬度変化、比重、平均セル径、センサ感度、ブリード性および復元性を測定または評価した。その結果を、表2に示す。それぞれの試験方法は以下の通りとした。
 (試験方法)
 (1)JIS-C硬度変化
 JIS K-7312に準拠して行った。作製した磁性ウレタン樹脂フォームを5cm×5cm(厚さ:任意)の大きさに切り出したものを測定用サンプルとし、温度23℃±2℃、湿度50%±5%の環境で16時間静置した。測定時には、サンプルを重ね合わせ、厚み10mm以上とした。硬度計(高分子計器社製、アスカーC型硬度計、加圧面高さ:3mm)を用い、加圧面を接触させてから1秒後および60秒後の硬度(HおよびH60)を測定し、JIS-C硬度変化(H-H60)を計算により求めた。
 (2)比重
 JIS Z-8807-1976に準拠して行った。作製した磁性ウレタン樹脂フォームを、4cm×8.5cm(厚さ:任意)の大きさに切り出したものを測定用サンプルとし、温度23℃±2℃、湿度50%±5%の環境で16時間静置した後、ザルトリウス社製の比重計「LA230S」を用いて比重を測定した。
 (3)平均セル径
 作製した磁性ウレタン樹脂フォームをカミソリ刃で厚さ1mmに切り出したものを測定用サンプルとした。上記サンプルの断面を、日立サイエンスシステムズ株式会社製の走査型電子顕微鏡(SEM)「S-3500N」を用いて観察し(倍率×100)、得られた画像について三谷商事株式会社製の画像解析ソフト「WinROOF」を用いて、任意範囲(2×2.4mm)の断面の全気泡径(直径)を測定し、平均セル径を算出した。
 (4)触覚センサ感度
 基板に磁気センサとしてホール素子(旭化成エレクトロニクス株式会社から商品名「EQ-430L」で市販のホール素子を図1のように設置し、基板の磁気センサと反対の面に磁性ウレタン樹脂フォームを設置する。圧縮試験機(株式会社島津製作所製オートグラフ「AG-X」)を用いて荷重を印加していき、ホール素子の出力電圧をデータロガー「XL121-M」(横河メータ&インスツルメンツ株式会社)にて計測することによって、触覚センサの特性を得た。この時、データロガーの電圧値が変化した時の荷重を触覚センサ感度として評価した。従って、表3~4の触覚センサ感度の値が小さいほど、触覚センサ感度が良好であることを示す。
 (5)曲げセンサ特性
 基板に磁気センサとしてホール素子(旭化成エレクトロニクス社製EQ-430L)3個を図2のように、磁性ウレタン樹脂フォーム上に設置する。図2において、10が磁気センサAで、11が磁気センサBで、12が磁気センサCであり、磁性ウレタン樹脂フォーム13の端部14を矢印15の方向に上げていき、矢印の各角度16で磁気センサの出力電圧を読み取ることで曲げセンサの特性を得た。また、表3~4には、センサ感度の評価として、曲げ角度90°の時の各ホール素子の出力電圧変化率の値の和を出力和(ΔVout)として曲げセンサの特性を得た。この曲げ角度90°の時のセンサの出力和の値が高いほどセンサ感度が良好であることを示す。
 (6)ブリード性
 作製した磁性ウレタン樹脂フォームを、離型PETフィルム上に静置し、1週間経過後に離型PETフィルム上に付着物がなければ「○」、付着物は若干あるが問題なしであれば「△」、付着物が多い場合「×」と評価した
 (7)復元性
 触覚センサ感度の評価において、圧力100kPaを負荷した後、無負荷状態に戻した際に、即座(1秒以内)に、初期状態の出力電圧に戻れば「○」、戻らなければ「×」と評価した。
 (試験結果)
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 
 表3~4の結果から明らかなように、JIS-C硬度変化0~10を有する実施例1~8の本発明の磁性ウレタン樹脂フォームを用いて得られた触覚センサおよび曲げセンサは、比較例1~2の触覚センサおよび曲げセンサと比較すると、復元性が良好であり、センサ感度が非常に高いものであることがわかる。
 これに対して、比較例1のセンサは、整泡剤をイソシアネート基含有ウレタンプレポリマー側ではなく、より低粘度の磁性フィラー分散液側に加えて、一次撹拌して磁性ウレタン樹脂フォームを製造したため、気泡を反応系内に保持できなかったので、JIS-C硬度変化が大きく、復元性が悪いものとなった。
 比較例2のセンサは、イソシアネート基含有ウレタンプレポリマー中の2種のポリプロピレングリコールの配合比率を変えて得られた磁性ウレタン樹脂フォームを用いており、3官能性成分が少なくなっており架橋密度が低下することで、JIS-C硬度変化が大きく、復元性が悪いものとなり、センサ感度が非常に低いものとなった。
  1、13 …樹脂フォーム
  2、10、11、12 … 磁気センサ
  3、19 … 気泡
  4 … 基板
  5 … 圧力
  17… 収縮した気泡
  18… 膨張した気泡

Claims (4)

  1.  磁性フィラーを含む樹脂フォームと、
     該樹脂フォームの変形に起因する磁気変化を検出する磁気センサと
    から構成され、
     該樹脂フォームが、ポリイソシアネート成分、活性水素成分、触媒および整泡剤を含有するポリウレタン樹脂フォームであり、
     該樹脂フォームが、硬度計の加圧面を接触させてから1秒後のJIS-C硬度(H)および60秒後のJIS-C硬度(H60)の硬度変化(H-H60)0~10を有することを特徴とするセンサ。
  2.  前記樹脂フォームが、比重0.3~1.0および平均セル径50~500μmを有する請求項1記載のセンサ。
  3.  前記整泡剤の配合量が、前記樹脂フォーム100質量部に対して、1~10質量部である請求項1または2記載のセンサ。
  4.  磁性フィラーを含むポリウレタン樹脂フォームと磁気センサとから構成されるセンサの製造方法であって、
     (i)ポリイソシアネート成分および活性水素成分からイソシアネート基含有ウレタンプレポリマーを形成する工程、
     (ii)活性水素成分、触媒および磁性フィラーを予備撹拌して磁性フィラー分散液を形成する工程、
     (iii)該イソシアネート基含有ウレタンプレポリマーに整泡剤を加えて、非反応性気体雰囲気下で、気泡を取り込むように激しく撹拌する一次撹拌工程、
     (iv)更に該磁性フィラー分散液を加えて、二次撹拌して、磁性フィラーを含む気泡分散ウレタン組成物を調製する工程、
     (v)該気泡分散ウレタン組成物を所望の形状に成形し、硬化して、磁性フィラーを含むウレタン樹脂フォームを作製する工程、および
     (vi)該ウレタン樹脂フォームを着磁して磁性ウレタン樹脂フォームを形成する工程
    を含むことを特徴とするセンサの製造方法。
PCT/JP2013/081874 2013-01-15 2013-11-27 センサとその製造方法 WO2014112216A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/653,117 US9745436B2 (en) 2013-01-15 2013-11-27 Sensor and a method of making the same
KR1020157017880A KR20150091404A (ko) 2013-01-15 2013-11-27 센서와 그의 제조 방법
KR1020167021825A KR20160098534A (ko) 2013-01-15 2013-11-27 센서와 그의 제조 방법
EP13871678.2A EP2947416B1 (en) 2013-01-15 2013-11-27 Sensor and method for producing same
CN201380070432.3A CN104919271B (zh) 2013-01-15 2013-11-27 传感器及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013004662A JP6097081B2 (ja) 2013-01-15 2013-01-15 センサとその製造方法
JP2013-004662 2013-01-15

Publications (1)

Publication Number Publication Date
WO2014112216A1 true WO2014112216A1 (ja) 2014-07-24

Family

ID=51209326

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/081874 WO2014112216A1 (ja) 2013-01-15 2013-11-27 センサとその製造方法

Country Status (6)

Country Link
US (1) US9745436B2 (ja)
EP (1) EP2947416B1 (ja)
JP (1) JP6097081B2 (ja)
KR (2) KR20150091404A (ja)
CN (1) CN104919271B (ja)
WO (1) WO2014112216A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111493973A (zh) * 2020-04-26 2020-08-07 北京纳米能源与系统研究所 一种微型磁控机器人、内芯及薄膜的制备方法、组装方法
WO2024014100A1 (ja) * 2022-07-12 2024-01-18 株式会社村田製作所 磁気粘弾性エラストマー組成物およびその製造方法

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016014637A (ja) * 2014-07-03 2016-01-28 東洋ゴム工業株式会社 クッションパッドの変形を検出するシステムおよびその製造方法
JP6356583B2 (ja) * 2014-11-26 2018-07-11 東洋ゴム工業株式会社 密閉型二次電池の監視センサ、密閉型二次電池、及び、密閉型二次電池の監視方法
US9766142B1 (en) * 2015-03-20 2017-09-19 Cory S. Hague Magnetic force sensor systems and methods
JP2016205923A (ja) * 2015-04-20 2016-12-08 東洋ゴム工業株式会社 変形検出センサおよびその製造方法
JP2016203741A (ja) 2015-04-20 2016-12-08 東洋ゴム工業株式会社 変形検出センサおよびその製造方法
CN105282464B (zh) * 2015-11-26 2018-10-16 上海集成电路研发中心有限公司 曲面堆叠式图像传感器
CN107053254B (zh) * 2017-01-24 2019-07-12 重庆大学 基于多层气囊的可穿戴机器人皮肤
WO2018189088A1 (en) * 2017-04-10 2018-10-18 Basf Se Dispersion of magnetizable particles in polyol, its preparation and use
CN107560765A (zh) * 2017-09-21 2018-01-09 南京阿凡达机器人科技有限公司 一种机器人皮肤触感检测系统及方法
WO2020110237A1 (ja) * 2018-11-28 2020-06-04 三菱電機株式会社 接触状態認識装置及びロボットシステム
WO2021061240A2 (en) 2019-06-21 2021-04-01 Carnegie Mellon University Systems and methods for sensing deformation of a magnetic material and fabrication methods thereof
CN110388869B (zh) * 2019-08-23 2021-01-05 任干支 一种仿生皮肤用传感器、线圈阵列、定位法及触觉采集器
CN111409284B (zh) * 2020-03-09 2021-07-27 华中科技大学 一种基于4d打印的柔性压电传感器及其制备方法
CN111993446A (zh) * 2020-07-03 2020-11-27 北京大学 基于磁场的柔性触觉传感器
CN113514171B (zh) * 2021-05-31 2022-09-06 中国科学院自动化研究所 基于仿生结构的力信息采集装置、系统及方法
WO2023249800A1 (en) * 2022-06-21 2023-12-28 Basf Se Polyurethane products with digital functionality through use of embedded sensor devices
EP4303551A1 (en) * 2022-07-06 2024-01-10 Melexis Technologies SA A sensor array comprising soft force sensors

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02116719A (ja) * 1988-10-26 1990-05-01 Ishikawa Tekko Kk 磁気センサ
JP2008039659A (ja) 2006-08-09 2008-02-21 Sony Corp 検出装置およびその検出方法
JP2008507142A (ja) 2004-07-17 2008-03-06 カール・フロイデンベルク・カーゲー 磁歪素子およびその使用
JP2009229453A (ja) 2008-02-28 2009-10-08 Seiko Epson Corp 圧力検出装置及び圧力検出方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5318699A (en) * 1976-08-05 1978-02-21 Matsushita Refrigeration Foamed thermal insulator and process for producing same
JP2691458B2 (ja) * 1989-10-31 1997-12-17 難波プレス工業株式会社 シートのクッション材用ファスナアセンブリ
US6924076B2 (en) * 2001-08-20 2005-08-02 Canon Kabushiki Kaisha Developing assembly, process cartridge and image-forming method
US20040265150A1 (en) * 2003-05-30 2004-12-30 The Regents Of The University Of California Magnetic membrane system
US7117732B2 (en) * 2003-12-01 2006-10-10 Societe Bic Fuel gauge for fuel cartridges
KR20090116712A (ko) 2006-12-20 2009-11-11 바스프 에스이 이방성 셀형 엘라스토머
DE102007032821A1 (de) * 2007-07-12 2009-01-15 Nora Systems Gmbh Schuh für medizinische Anwendungen
JP5026892B2 (ja) 2007-08-28 2012-09-19 東海ゴム工業株式会社 ウレタン発泡成形体およびその製造方法
JP5049844B2 (ja) * 2008-03-31 2012-10-17 東洋ゴム工業株式会社 積層シート
EP2280035A4 (en) * 2008-05-20 2013-01-23 Asahi Glass Co Ltd METHOD FOR MANUFACTURING HARD POLYURETHANE FOAM
JP2010230114A (ja) 2009-03-27 2010-10-14 Toyo Tire & Rubber Co Ltd 防振部材及び防振装置
JP5187856B2 (ja) 2009-11-20 2013-04-24 ビー・エル・オートテック株式会社 触覚センサ
JP5551011B2 (ja) 2010-07-29 2014-07-16 東海ゴム工業株式会社 ウレタン発泡成形体の製造方法
NL2005226C2 (en) * 2010-08-13 2012-02-14 Sara Lee De Nv Insole pad for footwear.
KR101487212B1 (ko) 2011-04-25 2015-01-28 도요 고무 고교 가부시키가이샤 탱크, 상기 탱크를 사용한 연마 패드의 제조 방법
JP5810624B2 (ja) 2011-05-20 2015-11-11 東ソー株式会社 熱硬化性ポリウレタンエラストマー形成性組成物および、熱硬化性ポリウレタンエラストマーの製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02116719A (ja) * 1988-10-26 1990-05-01 Ishikawa Tekko Kk 磁気センサ
JP2008507142A (ja) 2004-07-17 2008-03-06 カール・フロイデンベルク・カーゲー 磁歪素子およびその使用
JP2008039659A (ja) 2006-08-09 2008-02-21 Sony Corp 検出装置およびその検出方法
JP2009229453A (ja) 2008-02-28 2009-10-08 Seiko Epson Corp 圧力検出装置及び圧力検出方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2947416A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111493973A (zh) * 2020-04-26 2020-08-07 北京纳米能源与系统研究所 一种微型磁控机器人、内芯及薄膜的制备方法、组装方法
WO2024014100A1 (ja) * 2022-07-12 2024-01-18 株式会社村田製作所 磁気粘弾性エラストマー組成物およびその製造方法

Also Published As

Publication number Publication date
JP2014137236A (ja) 2014-07-28
EP2947416A4 (en) 2016-08-03
EP2947416A1 (en) 2015-11-25
CN104919271A (zh) 2015-09-16
KR20150091404A (ko) 2015-08-10
CN104919271B (zh) 2017-08-15
US20150338291A1 (en) 2015-11-26
EP2947416B1 (en) 2018-07-11
US9745436B2 (en) 2017-08-29
KR20160098534A (ko) 2016-08-18
JP6097081B2 (ja) 2017-03-15

Similar Documents

Publication Publication Date Title
JP6097081B2 (ja) センサとその製造方法
US9804040B2 (en) Sensor and a method of making the same
JP6141721B2 (ja) センサーの製造方法
JP6141720B2 (ja) 触覚センサー
JP6186339B2 (ja) 密閉型二次電池の監視センサ、密閉型二次電池、及び、密閉型二次電池の監視方法
WO2016002491A1 (ja) クッションパッドの変形を検出するシステムおよびその製造方法
JP6265847B2 (ja) 密閉型二次電池の変形検出センサ、密閉型二次電池、及び、密閉型二次電池の変形検出方法
JP6296670B2 (ja) 密閉型二次電池の変形検出センサ、密閉型二次電池、及び、密閉型二次電池の変形検出方法
JP6339439B2 (ja) 密閉型二次電池の変形検出センサ、密閉型二次電池、及び、密閉型二次電池の変形検出方法
JP6315824B2 (ja) 密閉型二次電池の変形検出センサ
WO2015159860A1 (ja) クッションパッドの変形を検出するシステムおよびその製造方法
JP2014098688A (ja) 曲げセンサー
JP2016205923A (ja) 変形検出センサおよびその製造方法
JP6290727B2 (ja) 密閉型二次電池の変形検出センサ、密閉型二次電池、及び、密閉型二次電池の変形検出方法
JP6222930B2 (ja) センサ
WO2015159857A1 (ja) クッションパッドの変形を検出するシステムおよびその製造方法
JP6310805B2 (ja) 密閉型二次電池の変形検出センサおよびその製造方法、密閉型二次電池、ならびに密閉型二次電池の変形検出方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13871678

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14653117

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2013871678

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20157017880

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE