WO2014112202A1 - 山形ラーメン構造物 - Google Patents

山形ラーメン構造物 Download PDF

Info

Publication number
WO2014112202A1
WO2014112202A1 PCT/JP2013/081394 JP2013081394W WO2014112202A1 WO 2014112202 A1 WO2014112202 A1 WO 2014112202A1 JP 2013081394 W JP2013081394 W JP 2013081394W WO 2014112202 A1 WO2014112202 A1 WO 2014112202A1
Authority
WO
WIPO (PCT)
Prior art keywords
point
shaped
ramen structure
oblique beam
mountain
Prior art date
Application number
PCT/JP2013/081394
Other languages
English (en)
French (fr)
Inventor
恭則 山本
Original Assignee
株式会社山本工務店
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社山本工務店 filed Critical 株式会社山本工務店
Priority to US14/416,007 priority Critical patent/US20150184380A1/en
Publication of WO2014112202A1 publication Critical patent/WO2014112202A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B7/00Roofs; Roof construction with regard to insulation
    • E04B7/02Roofs; Roof construction with regard to insulation with plane sloping surfaces, e.g. saddle roofs
    • E04B7/022Roofs; Roof construction with regard to insulation with plane sloping surfaces, e.g. saddle roofs consisting of a plurality of parallel similar trusses or portal frames
    • E04B7/024Roofs; Roof construction with regard to insulation with plane sloping surfaces, e.g. saddle roofs consisting of a plurality of parallel similar trusses or portal frames the trusses or frames supporting load-bearing purlins, e.g. braced purlins
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/18Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
    • E04B1/24Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons the supporting parts consisting of metal
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/02Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/38Arched girders or portal frames
    • E04C3/40Arched girders or portal frames of metal
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/18Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
    • E04B1/24Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons the supporting parts consisting of metal
    • E04B1/2403Connection details of the elongated load-supporting parts
    • E04B2001/2415Brackets, gussets, joining plates
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/18Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
    • E04B1/24Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons the supporting parts consisting of metal
    • E04B2001/2466Details of the elongated load-supporting parts
    • E04B2001/2472Elongated load-supporting part formed from a number of parallel profiles
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/18Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
    • E04B1/24Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons the supporting parts consisting of metal
    • E04B2001/2487Portico type structures
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/18Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
    • E04B1/24Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons the supporting parts consisting of metal
    • E04B2001/249Structures with a sloping roof
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/02Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
    • E04C3/04Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal
    • E04C2003/0486Truss like structures composed of separate truss elements
    • E04C2003/0491Truss like structures composed of separate truss elements the truss elements being located in one single surface or in several parallel surfaces

Definitions

  • the present invention relates to an improved Yamagata ramen structure that makes the internal space larger than before.
  • a mountain-shaped ramen structure When constructing a large internal space, a mountain-shaped ramen structure is generally used in which angled beams extending from the stigma of each pair of struts are abutted to form a angled roof, and a horizontal tensile material is installed between the angled beams.
  • the Yamagata ramen structure can be enlarged by using a large standard member for the support and the oblique beam, and the internal space can be enlarged.
  • a material having a large standard increases the material cost accordingly.
  • the standard of the member is increased, if the interval between the columns (strictly speaking, the interval between the columns of the columns) becomes too large, the stress applied to the column will increase, and the bending moment applied to the oblique beam will increase too much. It is difficult to build a Yamagata ramen structure.
  • Patent Document 1 the angled beam extending from the stigma of each of the pair of struts is abutted to form a mountain roof, the lower end of the compressed material lowered from the top of the mountain roof, and from the stigma of the pillar to the top of the mountain roof.
  • An angled ramen structure in which an inclined tensile member is installed at a point on the inclined beam is disclosed (Patent Document 1 and Claim 1).
  • the inclined tensile material pulled outward by the bending moment of the oblique beam lifts the compression material, and the bending moment is offset by the reverse moment generated in the oblique beam.
  • Patent Document 1 [0012] it is possible to construct a support column and an oblique beam with a member with a reduced standard, thereby reducing material costs and construction costs (Patent Document 1 [0039]).
  • the Yamagata ramen structure disclosed in Patent Document 1 gives an example in which the interval (span) between the axes of the columns is up to 60 m. However, if the spacing (span) between the axes of the struts exceeds 60 m, even the mountain-shaped ramen structure disclosed in Patent Document 1 must use a large standard member, and the spacing between the struts (span) ) Exceeds 100m, the stress applied to the column is large, and the bending moment applied to the oblique beam is too large, making it difficult to construct. Since the Yamagata ramen structure is excellent in that there is no obstacle between the columns and a continuous internal space can be formed, the usefulness increases as the interval (span) between the columns of the columns increases. Then, in order to form a larger internal space than the Yamagata ramen structure which patent document 1 discloses, it examined.
  • a cane is erected at a point on the diagonal beam facing toward the lower end of the compression material lowered from the apex of the mountain roof, and a point on the oblique beam erected with the cane or on the oblique beam toward the apex from the point
  • This is a mountain-shaped ramen structure in which an inclined tensile material is installed at the point.
  • the lower end of the compression material may be higher than the point on the column on which the wand is constructed.
  • the oblique beam and the inclined tensile material may be asymmetrical.
  • the angle-shaped ramen structure with a large span (span) between the axes of the pillars has a large bending moment generated in the oblique beam.
  • the angle-shaped ramen structure of the present invention receives the vertical load at the apex of the angled roof that abuts the diagonal beam with the inclined tensile material via the compression material, and transmits the vertical force at the end of the inclined tensile material to the inclined beam instead of By transmitting the brace to the column, the outer end moment of the oblique beam (moment at the connection point with the stigma at the lower end of the oblique beam) and the central moment (moment at the apex of the mountain roof where the oblique beam is abutted) are reduced. .
  • the angle-shaped ramen structure of this invention can extend the space
  • the point on the support column where the cane is installed falls within 5 m from the intersection of the axis of the support column and the oblique beam (the intersection point is considered in consideration of the thickness of the oblique beam).
  • the point on the slanted beam that lays the cane is 3/40 to 4/40 from the stigma at a horizontal distance from the axis of the column and the distance between the axis of the pair of columns. It is the point that went to the top of the mountain roof.
  • the struts and the oblique beams have a truss structure to improve the rigidity of the struts or the oblique beams.
  • the truss structure is less expensive than the build H-shaped steel, and has the advantage of being lighter than the build H-shaped steel when achieving the same degree of rigidity as the build H-shaped steel.
  • the truss structure can be configured by using, for example, standard H-shaped steel as a main material (upper chord material and lower chord material) and lattice.
  • the Yamagata ramen structure of the present invention can form a larger internal space than the Yamagata ramen structure disclosed in Patent Document 1, and increases the usefulness as the Yamagata ramen structure.
  • the internal space is 3/40 to 4/40 from the point of the mountain roof to the point where it falls within 5m from the intersection of the axis of the column and the diagonal beam, and the horizontal distance from the axis of the column and the distance between the axis of the pair of columns. It can be enlarged by widening the interval (span) of the axis of the column with a wand connecting the point toward the apex.
  • the rigidity of the struts and the oblique beams is increased, and the axial distance (span) between the struts of the angle-shaped ramen structure of the present invention is increased to 120 m, while material costs and construction costs are increased. Can be reduced.
  • Yamagata ramen structure which is an example to which this invention is applied. It is the elements on larger scale showing the support
  • a mountain-shaped ramen structure 1 constructed by applying the present invention forms a mountain-shaped roof by abutting oblique beams 12, 12 extending from the stigmas 111, 111 of a pair of columns 11, 11.
  • a cane 13 is erected from the point 112 on the support pillar 11 descending from each stigma 111 and the point 121 on the oblique beam 12 from each stigma 111 to the vertex 125 of the mountain roof, and from the vertex 125 of the mountain roof
  • the inclined tension member 15 is constructed at a lower end 141 of the lowered compression member 14 and a point 121 on the oblique beam 12 on which the brace 13 is constructed.
  • the angle-shaped ramen structure 1 of the present invention has a size that constitutes an internal space in which the interval (span) S between the axes 113 of the struts is 120 m and the height (effective height) to the lower end 141 of the compressed material 14 is about 20 m. Assumed. Therefore, the present invention can be applied to a mountain-shaped ramen structure 1 smaller than the above-described size, for example, one having an interval S between the axes 113 of the columns 11 of 80 m and an effective height of about 10 m.
  • the Yamagata ramen structure to which the present invention is applied reduces the standard of the material to be used and is reduced in weight. be able to.
  • each of the angle-shaped ramen structures 1 has a truss as shown in FIG. 2 so that the long oblique beam 12 does not bend and the column 11 is not horizontally deformed by the axial force of the wand 13. It should be structured.
  • the truss structure column 11 is configured by, for example, an H-shaped steel 115 serving as a lattice being obliquely bridged between H-shaped steels 114 and 114 serving as left and right main materials, and an intermediate line between the H-shaped steels 114 and 114 serving as a main material is This is the axis 113.
  • the truss-structured oblique beam 12 is configured by, for example, an H-shaped steel 124, which is a lattice, bridged diagonally between H-shaped steels 123, 123, which are upper and lower main materials, and an intermediate line between the H-shaped steels 123, 123, which are the main materials. This is the axis 122 of the oblique beam 12.
  • the support column 11 and the oblique beam 12 of the truss structure can be configured using H-shaped steel, which is a standard product that is easily available, and therefore has an advantage that it is easy to design and can be manufactured at low cost.
  • H-shaped steel which is a standard product that is easily available, and therefore has an advantage that it is easy to design and can be manufactured at low cost.
  • the use of the build H-shaped steel which is a so-called non-standard product, increases the material cost. There is.
  • the angle-shaped ramen structure 1 of the present invention has the same type of angle-shaped ramen structure as long as the distance S is the same because of the effect of increasing the distance S between the axes 113 and 113 of the columns 11 and 11 by reducing the outer end moment and the center moment of the oblique beam.
  • the material cost can be reduced by lowering the standard than the one (see Fig. 3 below). From this, it can be seen that the column 11 and the oblique beam 12 having the truss structure are preferable to the build H-shaped steel which increases the material cost.
  • the point 112 on the support column on which the cane 13 is erected is a point that falls by ⁇ H set within a range of 5 m or less from the intersection of the axis line 113 of the support column 11 and the axis line 122 of the oblique beam 12.
  • ⁇ H is set such that the effective height (the height of the lower end 141 of the compression member 14) as the angle-shaped ramen structure 1 is higher than the point 112 on the support column on which the wand 13 is constructed.
  • the point 121 on the oblique beam 12 on which the cane 13 is installed is set within a range of 3/40 to 4/40 of the distance S between the axis 113, 113 of the pair of columns 11, 11 at a horizontal distance from the axis 113 of the column 11. It is the point that headed from the stigma 111 to the apex 125 of the mountain-shaped roof with ⁇ S.
  • the point 121 on the oblique beam 12 on which the cane 13 is constructed and the point on the oblique beam 12 on which the inclined tension member 15 is constructed coincide with each other.
  • a mountain-shaped ramen structure 1 to which the present invention is applied (Examples 1 to 3, see FIG. 1), and a mountain-shaped ramen structure to which the conventional invention (the invention described in Japanese Patent Laid-Open No. 08-189081) is applied.
  • 2 Comparative Example 1 to Comparative Example 3, see FIG. 3
  • the conventional basic angle-shaped ramen structure 3 Comparative Example 4 to Comparative Example 6 see FIG. 4
  • each vertical roof has a vertical load of 10 kN / m. The stresses in the columns 11, 21, and 31 and the oblique beams 12, 22, and 32 were calculated and compared.
  • the angle-shaped ramen structure 2 to which the conventional invention is applied includes a lower end 241 of a compression member 24 lowered from an apex 225 of a mountain-shaped roof where diagonal beams 22 and 22 extending from the column heads 211 and 211 of the pair of columns 21 and 21 respectively, An inclined tension member 25 is constructed at a point 221 on the oblique beam 22 from 211 to the vertex 225.
  • the conventional basic mountain-shaped ramen structure 3 constitutes a mountain-shaped roof by abutting oblique beams 32, 32 extending from the stigmas 311, 311 of the pair of columns 31, 31 respectively.
  • the height of the lower end 141 of the compression materials 14 and 24 used in the embodiment is 20 m, the horizontal distance ⁇ S of the wand 13 used in the first embodiment is 12 m, and the vertical distance ⁇ H is 5 m.
  • the lower end of the material 14 and the point 112 on the column 11 on which the wand 13 is laid were set to the same height.
  • the height of the lower end 141 of the compression members 14 and 24 used in 2 effective height is 20 m, the horizontal distance ⁇ S of the wand 13 used in the second embodiment is 10 m, and the vertical distance ⁇ H is 5 m.
  • the lower end of the compression material 14 and the point 112 on the support column 11 on which the wand 13 is installed were set to the same height.
  • the height of the lower end 141 of the compression members 14 and 24 used in the embodiment is 20 m
  • the horizontal distance ⁇ S of the wand 13 used in the third embodiment is 8 m
  • the vertical distance ⁇ H is 5 m
  • the lower end of the material 14 and the point 112 on the column 11 on which the wand 13 is laid were set to the same height.
  • Example 1 The calculation results are shown in Table 1.
  • Table 1 the values in parentheses are the values of Examples 1 to 3 or Comparative Examples 1 to Comparative Example 4 to Comparative Example 4 to Comparative Example 6 (the conventional basic Yamagata ramen structure 3) as a reference (100%). It is the ratio (percentage display) of Example 3.
  • the angle-shaped ramen structure 2 to which the conventional invention is applied also has a smaller moment M and axial force N applied to the support column 21 and the oblique beam 22 than the conventional basic angle-shaped ramen structure 3, but the present invention is applied. It can be seen that the angle-shaped ramen structure 1 has the moment M and the axial force N equal to or smaller than the angle-shaped ramen structure 2 to which the conventional invention is applied. Thereby, if the present invention is used, it can be understood that a mountain-shaped ramen structure that forms a vast indoor space can be constructed.
  • the specific material configurations of Examples 1 to 3 and Comparative Examples 1 to 6 are selected, and the steel frame weight of only the Yamagata ramen structures 1, 2, 3 is selected.
  • the struts 11, 21, 31 and the oblique beams 12, 22, 32 of Examples 1 to 3 and Comparative Examples 1 to 6 all have a truss structure in which H-shaped steels are combined.
  • the truss structure of Example 1, Example 2, Comparative Example 1, Comparative Example 2, Comparative Example 4 and Comparative Example 5 has the main material web spacing of 3.0 m, and the trusses of Example 3, Comparative Example 3 and Comparative Example 6 In the structure, the web interval of the main material is 2.0 m.
  • the cane 13, the compression members 14, 24 and the inclined tension members 15, 25 of Examples 1 to 3 and Comparative Examples 4 to 6 are all round steel pipes.
  • the Yamagata ramen structure 2 to which the conventional invention is applied has a required steel weight of 92% (Comparative Example 1), 80% (compared to the conventional basic Yamagata ramen structure 3). It can be seen that Comparative Example 2) or 87% (Comparative Example 3) is suppressed and only 8% to 20% is required. This is because when the struts 21 and 31 and the oblique beams 22 and 32 have the same truss structure, the conventional invention is applied while reducing the material cost by 8% to 20% compared to the conventional basic angle-shaped ramen structure 3. This means that the Yamagata ramen structure 2 can be constructed.
  • the Yamagata ramen structure 1 to which the present invention is applied has a required steel frame weight of 76% (Comparative Example 1), 70% (Comparative Example 2) or 65%, compared with the conventional basic Yamagata ramen structure 3. It can be seen that it is suppressed to (Comparative Example 3), and it can be reduced by 24% to 35%. This is because when the struts 11 and 31 and the oblique beams 12 and 32 have the same truss structure, the present invention is applied while reducing the material cost by 24% to 35% compared with the conventional basic angle-shaped ramen structure 3. This means that the Yamagata ramen structure 1 can be constructed.
  • the Yamagata ramen structure 1 to which the present invention is applied requires an average of about 15% less steel weight than the Yamagata ramen structure 2 to which the conventional invention is applied.
  • the Yamagata ramen structure 1 to which the present invention is applied requires the smallest steel frame weight as compared with the conventional invention and the conventional structure, and can be constructed at a low cost by reducing the material cost. Thereby, it turns out that this invention has the effect which can enlarge the indoor space of the Yamagata ramen structure 1, or if the indoor space of the same magnitude

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Rod-Shaped Construction Members (AREA)

Abstract

内部空間を従来よりも大きくする改良された山形ラーメン構造物であって、一対の支柱11,11それぞれの柱頭111,111から延ばした斜梁12,12を突き合わせて山形屋根を構成し、各柱頭111から下った支柱11上の点112と、前記各柱頭111から山形屋根の頂点125に向かった斜梁12上の点121とに方杖13を架設し、山形屋根の頂点125から降ろした圧縮材14の下端141と、方杖13を架設した斜梁12上の点121とに傾斜引張材15を架設して構成される山形ラーメン構造物1である。

Description

山形ラーメン構造物
 本発明は、内部空間を従来よりも大きくする改良された山形ラーメン構造物に関する。
 大きな内部空間を構築する場合、通常、一対の支柱それぞれの柱頭から延ばした斜梁を突き合わせて山形屋根を構成し、前記斜梁間に水平引張り材を架設した山形ラーメン構造物が用いられる。山形ラーメン構造物は、支柱や斜梁に規格の大きな部材を用いて大型化し、内部空間を大きくすることもできる。しかし、規格の大きな部材はそれだけ材料コストを高くする。また、部材の規格を大きくしても、支柱の間隔(厳密には支柱の軸線の間隔)が大きくなりすぎれば前記支柱に掛かる応力が大きくなるし、斜梁に掛かる曲げモーメントも大きくなり過ぎて、山形ラーメン構造物を構築しにくい。
 そこで、特許文献1は、一対の支柱それぞれの柱頭から延ばした斜梁を突き合わせて山形屋根を構成し、山形屋根の頂点から降ろした圧縮材の下端と、支柱の柱頭から山形屋根の頂点に向かった斜梁上の点とに傾斜引張材を架設した山形ラーメン構造物を開示する(特許文献1・請求項1)。特許文献1が開示する山形ラーメン構造物は、斜梁の曲げモーメントにより外向きへ引っ張られる傾斜引張材が圧縮材を持上げ、斜梁に発生させた逆モーメントにより前記曲げモーメントを相殺し、構造強度を向上させることにより(特許文献1・[0012])、規格を抑えた部材で支柱や斜梁を構成でき、材料コストや施工コストを低減させている(特許文献1・[0039])。
特開平08-189081号公報
 特許文献1が開示する山形ラーメン構造物は、支柱の軸線の間隔(スパン)が60mまでの例を挙げている。しかし、支柱の軸線の間隔(スパン)が60mを超えると、特許文献1が開示する山形ラーメン構造物であっても、やはり規格の大きな部材を使わざるを得なくなり、支柱の軸線の間隔(スパン)が100mを超えると、支柱に掛かる応力が大きく、斜梁に掛かる曲げモーメントも大きくなり過ぎて、構築が難しくなる。山形ラーメン構造物は、支柱間に障害物がなく、連続した内部空間を形成できる点で優れていることから、支柱の軸線の間隔(スパン)が大きくなればなるほど、有用性が向上する。そこで、特許文献1が開示する山形ラーメン構造物より大きな内部空間を形成するため、検討した。
 検討の結果開発したものが、トラス構造である一対の支柱の軸線の間隔が80m~120mで、前記支柱それぞれの柱頭からトラス構造である斜梁を延ばして突き合わせた山形屋根を構成し、支柱及び斜梁の軸線の交点から5m以内で下った支柱上の点と、支柱の軸線からの水平距離が一対の支柱の軸線の間隔の3/40~4/40で前記各柱頭から山形屋根の頂点に向かった斜梁上の点とに方杖を架設し、山形屋根の頂点から降ろした圧縮材の下端と、方杖を架設した斜梁上の点又は前記点から頂点に向かった斜梁上の点とに傾斜引張材を架設してなる山形ラーメン構造物である。圧縮材の下端は、方杖を架設する支柱上の点以上の高さとするとよい。斜梁や傾斜引張材は、左右非対称であってもよい。
 支柱の軸線の間隔(スパン)が大きな山形ラーメン構造物は、斜梁に発生する曲げモーメントが大きくなる。本発明の山形ラーメン構造物は、斜梁を突き合わせた山形屋根の頂点の鉛直荷重を、圧縮材を介して傾斜引張材で受け、前記傾斜引張材端部の鉛直力を斜梁に伝える代わりに方杖が支柱に伝えることにより、斜梁の外端モーメント(斜梁の下端となる柱頭との連結点におけるモーメント)と中央モーメント(斜梁を突き合わせた山形屋根の頂点におけるモーメント)とを小さくする。これにより、本発明の山形ラーメン構造物は、特許文献1が開示する山形ラーメン構造物を超えて、支柱の軸線の間隔(スパン)を広げることができる。
 支柱の軸線の間隔(スパン)を広げるため、方杖を架設する支柱上の点は、支柱及び斜梁の軸線の交点から5m以内で下った点(斜梁の厚みを考慮して前記交点が5mを少し超えて下ってもよい)であり、方杖を架設する斜梁上の点は、支柱の軸線から水平距離で一対の支柱の軸線の間隔の3/40~4/40で柱頭から山形屋根の頂点に向かった点である。これにより、斜梁の外端モーメント(斜梁の下端となる柱頭との連結点におけるモーメント)と中央モーメント(斜梁を突き合わせた山形屋根の頂点におけるモーメント)とを小さくでき、支柱の軸線の間隔(スパン)を拡げることができる。
 支柱の軸線の間隔(スパン)を広げると、斜梁が撓んだり、方杖の軸力が加わる支柱に曲げ応力が加わって前記支柱を水平変形させたりする可能性がある。そこで、支柱及び斜梁は、トラス構造として、支柱又は斜梁の剛性を向上させる。トラス構造は、ビルドH型鋼より低廉で、ビルドH型鋼と同程度の剛性を実現した場合、ビルドH型鋼より軽量である利点がある。トラス構造は、例えば規格品であるH型鋼を主材(上弦材及び下弦材)やラチスに使用して構成できる。
 本発明の山形ラーメン構造物は、特許文献1が開示する山形ラーメン構造物に比べて、より大きな内部空間を形成でき、山形ラーメン構造物としての有用性を高める。前記内部空間は、支柱及び斜梁の軸線の交点から5m以内で下った点と、支柱の軸線から水平距離で一対の支柱の軸線の間隔の3/40~4/40で柱頭から山形屋根の頂点に向かった点とを結ぶ方杖により、支柱の軸線の間隔(スパン)を広くすることで、大きくできる。また、支柱及び斜梁をトラス構造とすることにより、支柱や斜梁の剛性を高め、本発明の山形ラーメン構造物の支柱の軸線の間隔(スパン)を120mまで広げながら、材料コストや施工コストを低減させることができる。
本発明を適用した一例である山形ラーメン構造物の模式図である。 本例の山形ラーメン構造物に用いるトラス構造の支柱及び斜梁を表す部分拡大図である。 従来発明を適用した一例である山形ラーメン構造物の模式図である。 基本的な山形ラーメン構造物の模式図である。
 以下、本発明を実施するための形態について図を参照しながら説明する。本発明を適用して構成される山形ラーメン構造物1は、図1に見られるように、一対の支柱11,11それぞれの柱頭111,111から延ばした斜梁12,12を突き合わせて山形屋根を構成し、各柱頭111から下った支柱11上の点112と、前記各柱頭111から山形屋根の頂点125に向かった斜梁12上の点121とに方杖13を架設し、山形屋根の頂点125から降ろした圧縮材14の下端141と、方杖13を架設した斜梁12上の点121とに傾斜引張材15を架設して構成される。
 本発明の山形ラーメン構造物1は、支柱の軸線113の間隔(スパン)Sが120m、圧縮材14の下端141までの高さ(有効高さ)が20m程度の内部空間を構成する大きさを想定している。これから、本発明は、前記大きさよりも小さな山形ラーメン構造物1、例えば支柱11の軸線113の間隔Sが80mで、有効高さが10m程度のものにも適用できる。このように、支柱11の軸線113の間隔Sが小さくなったり、有効高さが低くなったりする場合、本発明を適用した山形ラーメン構造物は、使用する材料の規格を落とし、軽量化を図ることができる。
 本発明の山形ラーメン構造物1は、長尺となる斜梁12が撓んだり、方杖13の軸力により支柱11が水平変形したりしないように、図2に見られるように、それぞれトラス構造にするとよい。トラス構造の支柱11は、例えば左右の主材となるH型鋼114,114の間に、ラチスとなるH型鋼115を斜めに架け渡して構成され、主材となるH型鋼114,114の中間線が支柱11の軸線113となる。また、トラス構造の斜梁12は、例えば上下の主材となるH型鋼123,123の間に、ラチスとなるH型鋼124を斜めに架け渡して構成され、主材となるH型鋼123,123の中間線が斜梁12の軸線122となる。
 トラス構造の支柱11及び斜梁12は、規格品で入手が容易なH型鋼を用いて構成できるため、設計が容易で、低廉で製造できる利点がある。本例のトラス構造の支柱11及び斜梁12に代えて、ビルドH型鋼を利用することも考えられるが、いわゆる規格外品となる前記ビルドH型鋼を利用することは、材料コストを高くする問題がある。本発明の山形ラーメン構造物1は、斜梁の外端モーメントや中央モーメントを小さくして支柱11,11の軸線113,113の間隔Sを拡げる効果により、同じ間隔Sであれば従来同種の山形ラーメン構造物(例えば後掲図3参照)より規格を下げて、材料コストを低廉にできる利点がある。これから、材料コストを高くするビルドH型鋼より、トラス構造の支柱11及び斜梁12が好ましいことが分かる。
 方杖13を架設する支柱上の点112は、上記支柱11の軸線113と斜梁12の軸線122との交点から5m以下の範囲で設定されたΔH下った点である。ΔHは、前記山形ラーメン構造物1としての有効高さ(圧縮材14の下端141の高さ)が、方杖13を架設する支柱上の点112より高くなるように設定している。また、方杖13を架設する斜梁12上の点121は、支柱11の軸線113から水平距離で一対の支柱11,11の軸線113,113の間隔Sの3/40~4/40の範囲で設定されたΔSで柱頭111から山形屋根の頂点125に向かった点である。本例は、方杖13を架設する斜梁12上の点121と、傾斜引張材15を架設する斜梁12上の点と一致させている。
 本発明を適用した山形ラーメン構造物1(実施例1~実施例3、図1参照)、従来発明(特許文献1(特開平08-189081号公報)記載の発明)を適用した山形ラーメン構造物2(比較例1~比較例3、図3参照)、旧来の基本的な山形ラーメン構造物3(比較例4~比較例6図4参照)それぞれについて、それぞれの山形屋根に鉛直荷重10kN/mを加えた場合における支柱11,21,31及び斜梁12,22,32における応力を数値計算し、比較した。
 従来発明を適用した山形ラーメン構造物2は、一対の支柱21,21それぞれの柱頭211,211から延ばした斜梁22,22を突き合わせた山形屋根の頂点225から降ろした圧縮材24の下端241と、柱頭211から頂点225に向かった斜梁22上の点221とに傾斜引張材25を架設して構成される。また、旧来の基本的な山形ラーメン構造物3は、一対の支柱31,31それぞれの柱頭311,311から延ばした斜梁32,32を突き合わせて山形屋根を構成する。
 実施例1、比較例1及び比較例4は、間隔S=120mで、支柱11,21,31の高さは25m、山形屋根の頂点125,225,325の高さは34mで、実施例1及び比較例1に用いられる圧縮材14,24の下端141の高さ=有効高さは20mとし、実施例1に用いられる方杖13の水平距離ΔSは12m、垂直距離ΔHは5mとし、実施例1における圧縮材14の下端と、方杖13を架設する支柱11上の点112とを同じ高さとした。
 実施例2、比較例2及び比較例4は、間隔S=100mで、支柱11,21,31の高さは25m、山形屋根の頂点125,225,325の高さは32.5mで、実施例2及び比較例2に用いられる圧縮材14,24の下端141の高さ=有効高さは20mとし、実施例2に用いられる方杖13の水平距離ΔSは10m、垂直距離ΔHは5mとし、実施例2における圧縮材14の下端と、方杖13を架設する支柱11上の点112とを同じ高さとした。
 実施例3、比較例3及び比較例6は、間隔S=80mで、支柱11,21,31の高さは25m、山形屋根の頂点125,225,325の高さは31mで、実施例3及び比較例3に用いられる圧縮材14,24の下端141の高さ=有効高さは20mとし、実施例3に用いられる方杖13の水平距離ΔSは8m、垂直距離ΔHは5mとし、実施例3における圧縮材14の下端と、方杖13を架設する支柱11上の点112とを同じ高さとした。
Figure JPOXMLDOC01-appb-T000001
 計算結果を表1に示す。表1中、括弧内の数値は、比較例4~比較例6(旧来の基本的な山形ラーメン構造物3)を基準(100%)とする実施例1~実施例3又は比較例1~比較例3の割合(パーセント表示)である。従来発明を適用した山形ラーメン構造物2も、旧来の基本的な山形ラーメン構造物3に比べて支柱21や斜梁22に掛かるモーメントMや軸力Nが小さくなっているが、本発明を適用した山形ラーメン構造物1は、前記モーメントMや軸力Nが従来発明を適用した山形ラーメン構造物2同等又は更に小さくなっていることが分かる。これにより、本発明を利用すれば、広大な室内空間を形成する山形ラーメン構造物の構築できることが理解できる。
 次に、表1の応力を前提に、実施例1~実施例3及び比較例1~比較例6の具体的な材料構成を選択し、山形ラーメン構造物1,2,3だけの鉄骨重量を比較した。比較のため、実施例1~実施例3及び比較例1~比較例6の支柱11,21,31及び斜梁12,22,32は、すべてH型鋼を組み合わせたトラス構造としている。実施例1、実施例2、比較例1、比較例2、比較例4及び比較例5のトラス構造は、主材のウェブ間隔が3.0m、実施例3、比較例3及び比較例6のトラス構造は、主材のウェブ間隔が2.0mである。また、実施例1~実施例3、比較例4~比較例6の方杖13、圧縮材14,24及び傾斜引張材15,25は、いずれも丸鋼管である。
Figure JPOXMLDOC01-appb-T000002
 表2から明らかなように、従来発明を適用した山形ラーメン構造物2は、旧来の基本的な山形ラーメン構造物3に比べて、必要な鉄骨重量が92%(比較例1)、80%(比較例2)又は87%(比較例3)に抑えられ、8%~20%ほど少なくて済むことが見て取れる。これは、支柱21,31及び斜梁22,32を同じトラス構造とした場合、旧来の基本的な山形ラーメン構造物3に比べて材料コストを8%~20%低減しながら、従来発明を適用した山形ラーメン構造物2を構築できることを意味する。
 本発明を適用した山形ラーメン構造物1は、前記旧来の基本的な山形ラーメン構造物3に比べて、必要な鉄骨重量が76%(比較例1)、70%(比較例2)又は65%(比較例3)に抑えられ、24%~35%ほど少なくて済むことが見て取れる。これは、支柱11,31及び斜梁12,32を同じトラス構造とした場合、旧来の基本的な山形ラーメン構造物3に比べて材料コストを24%~35%低減しながら、本発明を適用した山形ラーメン構造物1を構築できることを意味する。
 更に、本発明を適用した山形ラーメン構造物1は、従来発明を適用した山形ラーメン構造物2に比べても、必要な鉄骨重量が平均して15%ほど少なくて済むことが見て取れる。このように、本発明を適用した山形ラーメン構造物1は、従来発明や旧来に比べて、必要となる鉄骨重量が最も少なくて済み、それだけ材料コストを抑えて低廉に構築できる。これにより、本発明は山形ラーメン構造物1の室内空間を大きくしたり、同じ大きさの室内空間であれば従来より安価に山形ラーメン構造物1を構築したりできる効果のあることが分かる。
 1 山形ラーメン構造物
 11 支柱
 111 柱頭
 112 支柱上の点
 113 支柱の軸線
 114 主材のH型鋼
 115 ラチスのH型鋼
 12 斜梁
 121 斜梁上の点
 122 斜梁の軸線
 123 主材のH型鋼
 124 ラチスのH型鋼
 125 山形屋根の頂点
 13 方杖
 14 圧縮材
 141 圧縮材の下端
 15 傾斜引張材
 2 山形ラーメン構造物
 21 支柱
 211 柱頭
 22 斜梁
 221 斜梁上の点
 225 山形屋根の頂点
 24 圧縮材
 241 圧縮材の下端
 25 傾斜引張材
 3 山形ラーメン構造物
 31 支柱
 311 柱頭
 32 斜梁
 325 山形屋根の頂点
 S 支柱の軸線の間隔
 ΔS 支柱の軸線からの水平距離
 ΔH 支柱及び斜梁の軸線の交点からの垂直距離

Claims (1)

  1. トラス構造である一対の支柱の軸線の間隔が80m~120mで、前記支柱それぞれの柱頭からトラス構造である斜梁を延ばして突き合わせた山形屋根を構成し、
    支柱及び斜梁の軸線の交点から5m以内で下った支柱上の点と、支柱の軸線からの水平距離が一対の支柱の軸線の間隔の3/40~4/40で前記各柱頭から山形屋根の頂点に向かった斜梁上の点とに方杖を架設し、
    山形屋根の頂点から降ろした圧縮材の下端と、方杖を架設した斜梁上の点又は前記点から頂点に向かった斜梁上の点とに傾斜引張材を架設してなる山形ラーメン構造物。
PCT/JP2013/081394 2013-01-21 2013-11-21 山形ラーメン構造物 WO2014112202A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/416,007 US20150184380A1 (en) 2013-01-21 2013-11-21 Pitched rigid frame structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013008184A JP5301741B1 (ja) 2013-01-21 2013-01-21 山形ラーメン構造物
JP2013-008184 2013-01-21

Publications (1)

Publication Number Publication Date
WO2014112202A1 true WO2014112202A1 (ja) 2014-07-24

Family

ID=49396870

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/081394 WO2014112202A1 (ja) 2013-01-21 2013-11-21 山形ラーメン構造物

Country Status (3)

Country Link
US (1) US20150184380A1 (ja)
JP (1) JP5301741B1 (ja)
WO (1) WO2014112202A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106919134A (zh) * 2017-02-24 2017-07-04 黑龙江鼎和投资管理集团有限公司 一种自平衡预应力门式刚架新型结构装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9988805B1 (en) * 2015-03-24 2018-06-05 Mahaffey Fabric Structures LLC Clearspan fabric structure
CN108277924A (zh) * 2018-03-14 2018-07-13 江苏恒久钢构有限公司 张弦桁架的拉索张拉方法
ES2690204A1 (es) * 2018-06-19 2018-11-19 Universitat Politècnica De València Estructura de pórtico con dintel a dos aguas
JP7188094B2 (ja) * 2019-01-09 2022-12-13 積水ハウス株式会社 小屋組み構造

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03117291U (ja) * 1990-03-16 1991-12-04
JP2001090391A (ja) * 1999-09-27 2001-04-03 Taiyo Kogyo Corp 蛇腹式テント構造物およびこれを用いた簡易建屋構造

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3117291U (ja) * 2005-09-30 2006-01-05 正尚 磯▲崎▼ テンション導入装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03117291U (ja) * 1990-03-16 1991-12-04
JP2001090391A (ja) * 1999-09-27 2001-04-03 Taiyo Kogyo Corp 蛇腹式テント構造物およびこれを用いた簡易建屋構造

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106919134A (zh) * 2017-02-24 2017-07-04 黑龙江鼎和投资管理集团有限公司 一种自平衡预应力门式刚架新型结构装置

Also Published As

Publication number Publication date
JP2014139372A (ja) 2014-07-31
JP5301741B1 (ja) 2013-09-25
US20150184380A1 (en) 2015-07-02

Similar Documents

Publication Publication Date Title
WO2014112202A1 (ja) 山形ラーメン構造物
CN204530999U (zh) 一种预应力混凝土大悬挑空腹桁架结构
CN102454217A (zh) 混凝土核心筒与装配整体式空间钢网格的成束筒体结构
US20180187406A1 (en) Building structure, building, and building construction method
JP2014509356A (ja) 円形ブレース及びその施工方法
CN202338025U (zh) 混凝土核心筒与装配整体式空间钢网格的成束筒体结构
CN111519762A (zh) 一种悬挑桁架结构体系
CN201433490Y (zh) 一种长方形平面超大跨度预应力空间管桁架屋盖
CN205330202U (zh) 一种抽柱悬索加固结构
JP6476367B1 (ja) 五角形ラーメン構造物
CN101942883B (zh) 一种长方形平面超大跨度预应力空间管桁架屋盖及制作方法
JP2005068821A (ja) 屋根架構
CN210263361U (zh) 一种减小扭转变形的框架结构
JP6451383B2 (ja) 横架構造体
CN103243816A (zh) 能开门洞口的钢桁架支撑及含此支撑的钢桁架筒体结构
CN108104349B (zh) 一种斜压杆桁架张弦梁组合结构和实施方法
JP5902343B1 (ja) 張弦梁構造体
CN112392141A (zh) 一种用于平衡端压重不足的大悬挑结构及其施工方法
CN205475942U (zh) 一种预应力叠合板构件
CN207110118U (zh) 冷弯薄壁钢建筑上下层墙体的连接结构
CN205476059U (zh) 一种混凝土肋叠合板构件
CN105275113A (zh) 菱形钢网格剪力墙结构
CN205276610U (zh) 一种开放式铝板幕墙
CN103233601B (zh) 一种具有空间结构的大悬挑看台
CN219240860U (zh) 一种密肋梁结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13871438

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14416007

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13871438

Country of ref document: EP

Kind code of ref document: A1