WO2014110867A1 - 一种单一官能化的支化聚乙二醇及其修饰的生物相关物质 - Google Patents

一种单一官能化的支化聚乙二醇及其修饰的生物相关物质 Download PDF

Info

Publication number
WO2014110867A1
WO2014110867A1 PCT/CN2013/073463 CN2013073463W WO2014110867A1 WO 2014110867 A1 WO2014110867 A1 WO 2014110867A1 CN 2013073463 W CN2013073463 W CN 2013073463W WO 2014110867 A1 WO2014110867 A1 WO 2014110867A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
polyethylene glycol
reaction
compound
hours
Prior art date
Application number
PCT/CN2013/073463
Other languages
English (en)
French (fr)
Inventor
翁文桂
刘超
廖金城
袁金春
Original Assignee
厦门赛诺邦格生物科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201310017350.4A external-priority patent/CN103044676B/zh
Priority claimed from CN201310020124.1A external-priority patent/CN103044675B/zh
Application filed by 厦门赛诺邦格生物科技有限公司 filed Critical 厦门赛诺邦格生物科技有限公司
Priority to EP13871951.3A priority Critical patent/EP2947111B1/en
Priority to DK13871951.3T priority patent/DK2947111T3/en
Publication of WO2014110867A1 publication Critical patent/WO2014110867A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • A61K47/59Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes
    • A61K47/60Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes the organic macromolecular compound being a polyoxyalkylene oligomer, polymer or dendrimer, e.g. PEG, PPG, PEO or polyglycerol
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/04Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers only
    • C08G65/06Cyclic ethers having no atoms other than carbon and hydrogen outside the ring
    • C08G65/08Saturated oxiranes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/26Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds
    • C08G65/2603Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds the other compounds containing oxygen
    • C08G65/2606Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds the other compounds containing oxygen containing hydroxyl groups
    • C08G65/2609Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds the other compounds containing oxygen containing hydroxyl groups containing aliphatic hydroxyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/331Polymers modified by chemical after-treatment with organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2650/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G2650/22Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the initiator used in polymerisation
    • C08G2650/24Polymeric initiators
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2650/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G2650/28Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type
    • C08G2650/30Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type branched
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/02Applications for biomedical use

Definitions

  • the invention relates to the field of polymer synthesis, in particular to a monofunctionalized branched polyethylene glycol and a modified biologically related substance thereof. Background technique
  • PEGylation is one of the important means of drug modification.
  • functionalized polyethylene glycol can utilize reactive groups and drug molecules (including protein drugs and small organic drugs), peptides, carbohydrates, lipids, oligonucleotides, and affinity groups.
  • Ligands, cofactors, liposomes, and biomaterials are coupled by covalent bonds to achieve polyethylene glycol modification of drugs and other biologically relevant substances.
  • the modified drug molecule will possess many of the superior properties of polyethylene glycol (e.g., hydrophilic, flexible, anticoagulant, etc.).
  • the polyethylene glycol modified drug avoids the filtering reaction of the kidney and the ball, such as the immune response, which has a longer half-life in the blood than the unmodified drug.
  • Greenwald et al. J. Org. Chem. 1995, 331-336 modified paclitaxel by means of coupling with polyethylene glycol to increase its water solubility.
  • a polyethylene glycol having a sufficiently large molecular weight is required to sufficiently improve the state of the drug in the body, enhance the hydrophilicity, prolong the half-life, and enhance the anti-immunity, etc., in proteins and other biomolecules.
  • the reactive functional groups which can be used for modification are relatively small, and in order to obtain a polyethylene glycol having a sufficiently large molecular weight, the connection of the protein to the polyethylene glycol is particularly important.
  • linear polyethylene glycol of the same molecular weight with a special molecular morphology, branched polyethylene glycol can form an umbrella-shaped protective layer on the surface of the drug, increasing the steric hindrance around the drug molecule.
  • linear polyethylene glycol it can effectively prevent other macromolecular substances in the body from attacking the drug, reducing the degree of inactivation or enzymatic hydrolysis of the drug in the organism, and prolonging the action time of the drug in the body.
  • Monfardini Since 1995, Monfardini has two linear methoxy polyethylene glycols attached to the two amino groups of lysine to obtain a bifurcated (V-type) polyethylene glycol and a carboxyl group of lysine. After activation into succinimide active esters and used in protein modification studies (Bioconjugate Chem. 1995, 6, 62-69), this method has been extended to the most prevalent preparation of monofunctionalized branched polyethylene glycols and their The method of drug derivatives has been applied in three commercial drugs. However, this method has the disadvantages of long synthesis cycle, low synthesis efficiency, and instability of the product under alkaline conditions.
  • interferon alpha and polyethylene glycol are combined by three urethane and amide bonds, and these bonds are easily hydrolyzed under alkaline conditions or during storage, possibly resulting in partial branching.
  • the chain is hydrolyzed, affecting the nature and application of the drug.
  • multi-arm star polyethylene glycol reported in the literature can also be obtained by simultaneous initiation of small molecules with multiple reactive functional groups.
  • the structures of these polymers have good regularity and low monodispersity of molecular weight.
  • a polyhedral small molecule such as 2-hydroxymethyl-1,3 propanediol or pentaerythritol can be used as an initiator to obtain a multi-arm star PEG (Macromolecules 2000, 33, 5418-5426), and Gnanou et al. have prepared a Dendrimer structure.
  • Polyethylene glycol Polymer 2003, 44, 5067-5074.
  • the end groups of each of these multi-armed polyethylene glycols often contain the same hydroxyl functional groups and are not capable of specific reactions.
  • the present invention also provides a bio-related substance modified by the above polyethylene glycol.
  • a single functionalized branched polyethylene glycol is represented by the formula (1):
  • Xi and X 2 are each independently a hydrocarbon group having 1 to 20 carbon atoms; and n 2 are each independently an integer of 1 to 1000; n 3 is an integer of 11 to 1000; and L 2 is in light, enzyme, a linking group which is stably present under acidic or basic conditions; p is 0 or 1; is a hydrogen atom or a hydrocarbon group having at least 1 to 20 carbons; R is a functional group.
  • the monofunctionalized branched polyethylene glycol of the general formula (1) is reacted with a reactive group on a biologically related substance by a functional group R to form a polyethylene glycol modified biological correlation having the structure of the general formula (2) substance.
  • X 2 are each independently a hydrocarbon group having 1 to 20 carbon atoms; and n 2 are each independently an integer of 1 to 1000; n 3 is an integer of 11 to 1000; and L 2 is in light, enzyme, acid Or a linking group stably present under basic conditions; p is 0 or 1, q is 0 or 1; R1 is a hydrogen atom or a hydrocarbon group having 1 to 20 carbons; D is a biologically relevant substance; Z is a linking group, A functional group capable of reacting with a biologically relevant substance is attached to the axis of symmetry polyethylene glycol via the linking group Z and chemically reacts with a biologically relevant substance to form a residue L 3 .
  • a method for preparing the monofunctionalized branched polyethylene glycol comprises the following steps:
  • step d) polymerizing ethylene oxide on the symmetrical axial terminal hydroxyl group of the obtained intermediate (7) in step c) to form a symmetrical axis main chain, and protonating to obtain an intermediate (3);
  • step d) functionalizing the intermediate (3) obtained in step d) with a functionalized end of the symmetry axis, to obtain a monofunctionalized branched polyethylene glycol of the formula (1);
  • PG is a hydroxy protecting group and may be a silyl ether, a benzyl group, an acetal, a ketal or a tert-butyl group; and the definition and formula of X 2 , ⁇ , n 2 , n 3 , Li, L 2 , p, The same in (1).
  • the monofunctionalized branched polyethylene glycol can be applied to the modification of biologically relevant substances.
  • the present invention has the following beneficial effects:
  • the reactive functional group is disposed at the end of the symmetrical axis chain.
  • the monofunctionalized branched polyethylene glycol has a small steric hindrance, which is convenient for functional group conversion and bio-related substance modification, and can be reacted under milder conditions. , improve the rate of modification, reduce by-products and better maintain the activity of biologically relevant substances.
  • the two hydroxyl groups of the symmetric structure in the small molecule initiator have the same reactivity, and in the polymerization reaction, the chain growth rate is close to obtain two branch chains whose polymerization degree is close to or the same, and the poly branch B is reduced.
  • the diol branching difference enhances the repeatability of the bio-related substance modification and the stability of the activity.
  • the molecular weight and the structure of the main axis and the branched chain of the symmetry axis can be controlled simply and accurately, saving synthesis time and reducing the difficulty of purification. .
  • the single functionalized polyethylene glycol modified bio-related substance has good biological activity, and has better solubility and longer metabolic half-life in vivo.
  • the single functionalized polyethylene glycol modified bio-related substance has a small steric hindrance of the single functionalized branched polyethylene glycol active group used in the preparation process, and is convenient for functional group transformation and bio-related substance modification,
  • the reaction is carried out under milder conditions, increasing the rate of modification, reducing by-products and better maintaining the activity of the biologically relevant substance.
  • Xi and X 2 are a hydrocarbon group having 1 to 20 carbon atoms; n 2 is an integer of 1 to 1000; n 3 is an integer of 11 to 1000; and Li, L 2 is in light, enzyme, acid or alkaline a linking group which is stably present under the conditions; p is 0 or 1; is a hydrogen atom or a hydrocarbon group having at least 1 to 20 carbons; R is a functional group.
  • XX 2 may be the same or different.
  • the X 2 is preferably a hydrocarbon group having 1 to 10 carbon atoms.
  • the Xi, X 2 is preferably a hydrocarbon group having 1 to 5 carbon atoms.
  • the X 2 is preferably methyl, ethyl, propyl, propenyl, propyl, isopropyl, butyl, tert-butyl, pentyl, heptyl, 2-ethylhexyl, octyl, decyl , mercapto, undecyl, dodecyl, tridecyl, tetradecyl, pentadecyl, hexadecyl, heptadecyl, octadecyl, nonadecyl, two Decylene, benzyl or butylphenyl.
  • the X 2 is a methyl group.
  • L 2 is a group of a symmetric bifurcation point connecting branch chain, a symmetric axis main chain polyethylene glycol, and may be a linear or branched group, wherein the L 2 preferably has 1 to 20 carbons.
  • a divalent hydrocarbon group of an atom is a group of a symmetric bifurcation point connecting branch chain, a symmetric axis main chain polyethylene glycol, and may be a linear or branched group, wherein the L 2 preferably has 1 to 20 carbons.
  • a divalent hydrocarbon group of an atom is a group of a symmetric bifurcation point connecting branch chain, a symmetric axis main chain polyethylene glycol, and may be a linear or branched group, wherein the L 2 preferably has 1 to 20 carbons.
  • a divalent hydrocarbon group of an atom is a group of a symmetric bifurcation point connecting branch chain, a symmetric axis main chain polyethylene glycol, and may be a linear or branched
  • the L 2 preferably has 1 to 20 carbon atoms containing an ether group, a thioether group, an amide group, a double bond, a triple bond or a secondary amino group which are stably present under light, enzyme, acidic or basic conditions.
  • Divalent hydrocarbon group preferably 1 to 20 carbon atoms containing an ether group, a thioether group, an amide group, a double bond, a triple bond or a secondary amino group which are stably present under light, enzyme, acidic or basic conditions.
  • Divalent hydrocarbon group preferably has 1 to 20 carbon atoms containing an ether group, a thioether group, an amide group, a double bond, a triple bond or a secondary amino group which are stably present under light, enzyme, acidic or basic conditions. Divalent hydrocarbon group.
  • the L 2 is preferably a hydrocarbon group or a hydrocarbon group having 1 to 20 carbon atoms containing an ether bond or an amide bond.
  • said! ⁇ is preferably a hydrogen atom, a hydrocarbon group having 1 to 20 carbons or a hydrocarbon group having 1 to 20 carbons containing a modifying group stably present under anionic polymerization conditions.
  • the modifying group stably present under anionic polymerization conditions is an ester group, a urethane group, an amide group, an ether group, a double bond, a triple bond, a carbonate group or a tertiary amine group.
  • the preferred one is a hydrogen atom or a hydrocarbon group having 1 to 20 carbons.
  • the hydrocarbon group is preferably a methyl group, an ethyl group, a 1-propyl group, an isopropyl group, a butyl group, a pentyl group, a hexyl group, a propyl group or a benzyl group.
  • R is a functional group, preferably a functional group capable of interacting with a biologically relevant substance.
  • the biologically relevant substance includes a biologically relevant substance and a modified biologically relevant substance.
  • R includes but is not limited to the following categories:
  • hydrazine is a covalent bond linking group between the polyethylene glycol and the functional group, and is not particularly limited; q is 0 or 1.
  • Z may be an alkylene group or an ester group, a urethane group, an amide group, an ether group, a double bond, a triple bond, a carbonate group or a secondary amine group, and is stably present under light, enzyme, acid, and alkaline conditions.
  • the alkylene group of the group is preferably an alkylene group or an alkylene group having an ether bond, an amide bond or a secondary amino group.
  • the alkylene group is preferably a methylene group, a 1,2-ethylene group, a 1,3-propylene group, a 1,2-propylene group, an isopropylidene group, a butylene group, a pentylene group, and a hexylene group.
  • Y is a hydrocarbon group having 1 to 10 carbon atoms or a hydrocarbon group having 1 to 10 carbon atoms including a fluorine atom.
  • Y is preferably methyl, ethyl, propyl, isopropyl, butyl, tert-butyl, pentyl, hexyl, heptyl, octyl, decyl, decyl, vinyl, phenyl, Benzyl, p-methylphenyl, trifluoromethyl, 2,2,2-trifluoroethyl, 4-(trifluoromethoxy)phenyl.
  • the Y is preferably a methyl group, a p-methylphenyl group, a 2,2,2-trifluoroethyl group, a trifluoromethyl group or a vinyl group.
  • the W is (3 ⁇ 4 atom), and the W is preferably Br or Cl.
  • the Q is not particularly limited as long as it contributes to the induction of the unsaturated bond electrons and the conjugation effect.
  • Q When Q is on the ring, it can be one or more.
  • the Q is preferably a hydrogen atom, a halogen, an alkyl halide, an alkoxy group, a thiol compound, or a nitro compound.
  • the Q is preferably a hydrogen atom, a fluorine atom, a trifluoromethyl group or a methoxy group.
  • the M is an atom to which Z is bonded, and the M may be a carbon atom or a nitrogen atom.
  • the ⁇ and n 2 represent the degree of polymerization of the two branched chains, wherein the ⁇ and n 2 are preferably integers of 10 to 800.
  • the n 2 is more preferably an integer of 25 to 800.
  • the ⁇ and n 2 are more preferably an integer of 50 to 500.
  • the n 3 represents a degree of polymerization of the symmetry axis main chain, and the n 3 is preferably an integer of 11 to 800.
  • the n 3 is more preferably an integer of 11 to 500.
  • n 3 is more preferably an integer of 11 to 200.
  • the monofunctionalized branched polyethylene glycol of the general formula (1) is reacted with a reactive group on a biologically related substance by a functional group R to form a polyethylene glycol modified biological correlation having the structure of the general formula (2) substance.
  • the reactive group on the biologically relevant substance may be an amino group, an S group, an unsaturated bond, a carboxyl group or the like.
  • the L 3 is a covalent bond group linking the bio-related substance and the polyethylene glycol, and the L 3 is a functional group capable of reacting with the biologically-related substance in the main axis of the symmetric axis polyethylene glycol to react with the biologically relevant substance Subsequent residues, the linking group is not particularly limited.
  • the L 3 may be triazole, isoxazole, ether group, amide group, imido group, imido group, secondary amino group, tertiary amino group, thioester group, thioether group, disulfide group, urine
  • D represents a biologically relevant substance, including but not limited to the following: polypeptide, protein, enzyme, small molecule drug, dye, liposome, nucleoside, nucleotide, oligonucleotide, polynucleotide, nucleic acid , polysaccharides, body compounds, lipid compounds, phospholipids, glycolipids, glycoproteins, steroids, cells, viruses, micelles.
  • D is preferably a biologically relevant substance and a modified biologically relevant substance.
  • the small molecule drug is not particularly limited, and is preferably an anticancer drug and an antifungal drug.
  • X 2 , ni , n 2 , n 3 , Li, L 2 , p, q, and Z have the same definitions as in the formula (1).
  • Xi, X 2 is a hydrocarbon group having 1 to 20 carbon atoms; n ⁇ n 2 is an integer of 1 to 1000; n 3 is an integer of 11 to 1000; L 2 is stable under light, enzyme, acid or alkaline conditions a linking group present; p, q are independently 0 or 1; a hydrogen atom or a hydrocarbon group having 1 to 20 carbons; Z is a covalent bond between the symmetrical axis polyethylene glycol backbone and the L 3 group
  • the linking group a functional group capable of reacting with a biologically relevant substance, is attached to the symmetric spindle main chain through the linking group, and is not particularly limited.
  • the monofunctionalized branched polyethylene glycol (1) can be obtained from the intermediate compound (3) by one or more steps.
  • X 2 , n 2 , n 3 , Li, L 2 , p have the same meanings as in the formula (1).
  • a method for preparing the monofunctionalized branched polyethylene glycol comprises the following steps:
  • step d) functionalizing the intermediate (3) obtained in step d) with a functionalized end of the symmetry axis, to obtain a monofunctionalized branched polyethylene glycol of the formula (1);
  • the intermediate compound (3) of the present invention can be produced as described below. After polymerization of 2 to 2000 times the molar amount of ethylene oxide of the initiator (4) with the symmetric carboxylic acid-protected symmetric diol, an excess of deprotonating reagent is added to form a polyethylene with two branched chains. Glycol anion intermediate (5); terminal oxygen anion is etherified with hydrocarbon group Xi, X 2 to give intermediate (6); symmetry axis terminal hydroxyl group deprotection; newly formed symmetric axis terminal hydroxyl group initiates ethylene oxide polymerization Thereafter, a proton source is added to obtain an intermediate compound (3). (ie the above steps a ⁇ d).
  • the preparation of the intermediate (5) comprises two steps: polymerization of a small molecule initiator with ethylene oxide and deprotonation of a polymerization product.
  • the polymerization of the small molecule initiator with ethylene oxide can be accomplished in two steps: A: deprotonation of the compound (4) under base catalysis; B: polymerization with ethylene oxide.
  • These two steps can be carried out in a solvent or without a solvent, and the solvent is not particularly limited, but an aprotic solvent such as toluene, benzene, xylene, acetonitrile, ethyl acetate, tetrahydrofuran, chloroform, dichloromethane, or the like is preferable.
  • Step A Small molecule initiator deprotonation
  • the base to be used for deprotonation of the compound (4) is not particularly limited, but is preferably sodium metal, potassium, sodium hydride, potassium hydride, sodium methoxide, potassium methoxide, potassium t-butoxide or diphenylmethyl potassium, more preferably metal. Sodium, potassium or potassium diphenylmethyl, most preferred is potassium diphenylmethyl.
  • the amount of the catalyst used is from 5 to 80 mol%. If the amount of the catalyst is less than 5 mol, the polymerization rate is slow and the cumulative heat is increased, resulting in the formation of by-products, such as elimination of terminal hydroxyl groups to form vinyl ether compounds.
  • the amount of the catalyst exceeding 50 mol% may cause an increase in the viscosity of the reaction solution or precipitation of solids, resulting in an unbalanced reaction and giving Purification brings difficulties.
  • toluene or tetrahydrofuran is used as a solvent, the viscosity of the reaction liquid or the problem of solid precipitation can be solved, and the amount of the catalyst can be correspondingly increased to 80 mol%.
  • Deprotonation is generally carried out at 10 to 50 ° C, preferably 25 to 50 ° C.
  • the temperature is less than 10 °C, the deprotonation is incomplete, and the base participates in the anionic polymerization as a nucleophilic reagent to obtain a low molecular weight impurity having a target molecular weight of 0.5 times.
  • These impurities may react with biologically relevant substances and alter their physical properties.
  • the temperature is higher than 50 °C, partial deprotection of the protecting group is caused, and high molecular weight impurities having a target molecular weight of 1.5 times are obtained, and such impurities have no reactive functional groups after being blocked by the next step of etherification.
  • the drug is modified in a state containing such an impurity, the pharmaceutical preparation is inevitably uneven, the quality is unstable, and the modification of the high-purity drug cannot be satisfied.
  • the protonation time is preferably 10 minutes to 24 hours, and the control of the time varies depending on the base.
  • strong bases that are weakly alkaline or have relatively low solubility in organic solvents (eg, sodium methoxide, potassium methoxide, sodium hydride, potassium hydride, etc.) require longer deprotonation times, typically from 1 hour to 24 hours.
  • a base which is strong in alkali and has good solubility in an organic solvent for example, potassium diphenylmethyl, n-butyllithium, t-butyllithium, etc.
  • an organic solvent for example, potassium diphenylmethyl, n-butyllithium, t-butyllithium, etc.
  • potassium methoxide potassium t-butoxide or sodium methoxide is used as the catalyst
  • potassium methoxide is preferably used in an amount of 5 to 80 mol%, and is carried out under conditions of 25 to 80, preferably 50 to 60 ° C, in addition, Operate under reduced pressure to promote proton exchange.
  • potassium methoxide, potassium t-butoxide or sodium methoxide itself is polymerized under polymerization conditions, it is also polymerized with ethylene oxide to obtain an etherified polyethylene glycol having a molecular weight of 0.5 times the target molecular weight, and such polyethylene glycol
  • the alcohol will be etherified in the next step to obtain a polyethylene glycol which has a double-end etherification and no reactive functional group; and the deprotonated product (methanol, tert-butanol) is not only a proton source, but also quenches the reaction, and Under the polymerization conditions, it also participates in the polymerization of ethylene oxide to obtain the polyethylene glycol which is etherified at the above end. Therefore, such a reaction needs to ensure complete protonation at a higher temperature (preferably 50 to 60 Torr).
  • the lower alcohol is removed by a press operation.
  • Step B Polymerization of ethylene oxide
  • the polymerization is carried out under an aprotic solvent condition, preferably at 50 to 70 °C.
  • an aprotic solvent condition preferably at 50 to 70 °C.
  • the temperature is lower than 50 °C, as the polymerization progresses, the molecular weight gradually increases, the viscosity of the reaction liquid increases or solid precipitates, resulting in uneven reaction system, and the obtained target product is widely distributed, which is not suitable for high purity.
  • the modification of the drug and when the temperature is higher than 70 ° C, the reaction system is prone to explosion or prone to side reactions, such as the elimination of terminal alcohol to obtain ethylglycosyl ether.
  • the polymerization When solvent-free conditions are employed, it is preferred to carry out the polymerization at 50 to 130 ° C, more preferably at 80 to 110 ° C.
  • the temperature is lower than 50 °C, the polymerization rate is lower and the cumulative heat is increased to lower the quality of the target product; in addition, when the temperature is higher than 130 °C, side reactions such as terminal alcohol elimination are prone to be obtained.
  • the molecular weight gradually increases, the viscosity of the reaction liquid increases or solidifies, and the reaction is uneven, and the obtained target product is widely distributed, and it is generally preferred to carry out the reaction under an aprotic solvent.
  • the solvent is preferably tetrahydrofuran. Or toluene.
  • the obtained polymerization product is a mixture of an alcohol and an oxygen anion, and the complete deblocking of the branch end is required for the complete capping thereof.
  • the base for deprotonation at the branch chain end is not particularly limited, and is preferably sodium metal, potassium, sodium hydride, potassium hydride, sodium methoxide, potassium methoxide, potassium t-butoxide or diphenylmethyl potassium, more preferably sodium metal, Potassium or potassium diphenylmethyl, most preferred is potassium diphenylmethyl.
  • the amount of the base is 5 to 20 times, preferably 8 to 15 times the molar equivalent of the initiator.
  • the amount of the base is less than 5 times the molar equivalent of the initiator, the deprotonation of the branch chain ends is incomplete and cannot be completely blocked; the active hydroxyl group at the end of the branch chain participates in the subsequent polymerization reaction to obtain impurities having a molecular weight larger than the target molecular weight, resulting in The molecular weight distribution is broad and contains a plurality of reactive functional groups, which may result in a decrease or complete loss of drug activity when the drug is modified.
  • the amount of the base is more than 20 times the molar equivalent of the initiator, an excessive amount of the reagent or compound causes trouble in the purification, and is mixed into the subsequent step to cause a side reaction.
  • Deprotonation at the branch end is generally carried out at 10 to 50 ° C, preferably 25 to 50 ° C. When the temperature is less than 10. At C, the deprotonation is incomplete and cannot be completely blocked.
  • the active hydroxyl group at the end of the branch chain participates in the subsequent polymerization reaction to obtain impurities having a molecular weight larger than the target molecular weight, resulting in a broad molecular weight distribution and containing a plurality of reactive functional groups; , It may result in a decrease or complete loss of drug activity.
  • the protective group is partially deprotected, and in the next step, the etherification is blocked, and there is no reactive functional group; when the drug is contained in the state containing such impurities, the drug preparation is uneven.
  • the quality is unstable and cannot satisfy the modification of high-purity drugs.
  • the protonation time at the branch end is preferably from 10 minutes to 24 hours, and the control of the time varies with the base.
  • strong bases with weak alkalinity or relatively low solubility in organic solvents eg sodium methoxide, potassium methoxide, sodium hydride, potassium hydride, etc.
  • a base which is strong in alkali and has good solubility in an organic solvent eg, diphenylmethyl potassium, n-butyllithium, t-butyllithium, etc.
  • the alkyl etherification end of the terminal of the polyethylene glycol anion intermediate (5) can be achieved by any of the following methods (1) or (2):
  • the polyethylene glycol anion intermediate (5) is reacted with a leaving group-containing compound (8) such as an alkyl halide or an alkyl cross-acid ester.
  • a leaving group-containing compound (8) such as an alkyl halide or an alkyl cross-acid ester.
  • X is a hydrocarbon group having 1 to 20 carbon atoms, including methyl, ethyl, propyl, propyl, propyl, isopropyl, butyl, t-butyl, pentyl, heptyl, 2-ethyl Hexyl, octyl, decyl, decyl, undecyl, dodecyl, tridecyl, tetradecyl, pentadecyl, hexadecyl, heptadecyl, octadecane a group, a nonadecyl group, an eicosyl group, a benzyl group, a butylphenyl group, the hydrocarbon group preferably having a hydrocarbon group of 1 to 10 carbon atoms, most preferably a methyl group; and Ld is a leaving group, including chlorine, Bromine, iodine, mesylate, p-tol
  • the terminal group-containing compound (8) such as an alkyl halide or an alkyl cross-acid ester is used in an amount of 5 to 20 moles, preferably 8 to 15 times, based on the initiator. If the amount of the capping reagent is less than 5 times the molar equivalent of the initiator, resulting in incomplete capping, the oxygen anion at the terminal will participate in the subsequent polymerization reaction to obtain an impurity having a molecular weight larger than the target molecular weight, resulting in a broad molecular weight distribution and containing a plurality of reactive functional groups. When the drug is modified, it may result in a decrease or complete loss of drug activity. When the amount of the capping reagent is more than 20 times the molar equivalent of the initiator, the excess reagent causes trouble for purification, and may be mixed into the subsequent step to cause a side reaction.
  • the amount of the capping reagent is more than 20 times the molar equivalent of the initiator, the excess reagent causes trouble for purification
  • the temperature of the capping reaction is not particularly limited, and it is preferably carried out at 25 to 50 °C.
  • activator is added to the polyethylene glycol anion intermediate (5) to obtain a corresponding polyethylene glycol sulfonate, which is then substituted with a deprotonated alcohol (X-OH) to obtain a compound (6).
  • activators are methanesulfonyl chloride, p-toluene cross-acid, 2,2,2-trifluoroacetic acid cross-acid chloride.
  • Both the method (1) and the method (2) can be completely capped, since the method (1) can be carried out in the same reaction vessel as the polymerization reaction, and the production process is relatively simple, and the preferred method (1).
  • the above product can be purified by purification methods such as extraction, recrystallization, adsorption treatment, precipitation, precipitation, membrane dialysis or supercritical extraction to obtain an intermediate compound (6).
  • the deprotection method has the following methods:
  • the benzyl deprotection can be achieved by hydrogenation of a hydrogenating reducing agent and a hydrogen donor.
  • the water content in this reaction system should be less than 1% for the reaction to proceed smoothly.
  • the breakage of the polyethylene glycol chain occurs, resulting in a low molecular weight polyethylene glycol with hydroxyl groups, which will participate in subsequent polymerization or functional group modification, and introduce impurities into the target product, even Reacts with biologically relevant substances, altering the properties of the formulation.
  • the hydrogenation reduction catalyst is preferably palladium, but does not limit the carrier, but is preferably alumina or carbon, more preferably carbon.
  • the amount is 1 to 100 wt of the intermediate compound (6), preferably 1 to 20% by weight of the intermediate compound (6).
  • the amount of palladium is less than 1 wt%, the rate of deprotection and the conversion rate are lowered, and the undeprotected portion cannot undergo subsequent polymerization or functional grouping, resulting in a low functional group ratio of the final product.
  • the amount of palladium is more than 100% by weight, the polyethylene glycol chain is broken.
  • the reaction solvent is not particularly limited as long as the starting material and the product are both solvent, but methanol, ethanol, ethyl acetate or tetrahydrofuran is preferred, and methanol is more preferred.
  • the hydrogen donor is not particularly limited, but hydrogen, cyclohexene, 2-propanol or the like is preferable.
  • the reaction temperature is preferably 25 to 40 V. When the temperature is higher than 40 °C, the chain breakage of the polyethylene glycol chain is liable to occur.
  • the reaction time is not particularly limited, and the reaction time is negatively correlated with the amount of the catalyst, preferably 1 to 5 hours. When the reaction time is less than 1 hour, the conversion rate is low. When the reaction time is more than 5 hours, polyethylene glycol is easily generated. Broken chain of chains.
  • the acetal or ketal compound used for such hydroxy protection is preferably ethylmentyl ether, tetrahydropyran, acetone, 2,2-dimethoxypropane, benzaldehyde or the like.
  • the deprotection of such acetals and ketals is achieved under acidic conditions, and the pH of the solution is preferably from 0 to 4.
  • the pH value is greater than 4, the acidity is too weak to completely remove the protecting group; when the pH value is less than 0, the acidity is too strong, and the chain scission of the polyethylene glycol chain is liable to occur.
  • the acid is not particularly limited, but acetic acid, phosphoric acid, sulfuric acid, hydrochloric acid, nitric acid is preferred, and hydrochloric acid is more preferred.
  • the reaction solvent is not particularly limited as long as it can dissolve the reactants and products, and water is preferred.
  • the reaction temperature is preferably 0 to 30 °C. When the temperature is lower than 0 °C, the reaction rate is slow, and the protective group cannot be completely removed. When the temperature is high at 30 °C, under the acidic condition, the chain breakage of the polyethylene glycol chain is liable to occur.
  • hydroxy protection examples include trimethylsilyl ether, triethylsilyl ether, dimethyl tert-butylsiloxane, tert-butyldiphenylsiloxane, and the like.
  • silyl ether is deprotected by a fluorine-containing ion compound, preferably tetrabutylammonium fluoride, tetraethylammonium fluoride, HF acid, potassium fluoride, more preferably tetrabutylammonium fluoride or potassium fluoride.
  • the amount of the fluorine-containing reagent is 5 to 20 times, preferably 8 to 15 times, the initiator of the initiator.
  • the reaction solvent is not particularly limited as long as it can dissolve the reactants and the product, and is preferably an aprotic solvent, more preferably tetrahydrofuran or dichloromethane.
  • the reaction temperature is preferably 0 to 30 ° C. When the temperature is lower than 0 ° C, the reaction rate is slow, and the protecting group cannot be completely removed.
  • the deprotection of the tert-butyl group is carried out under acidic conditions, and the pH of the solution is preferably from 0 to 4.
  • the pH value is greater than 4, the acidity is too weak to completely remove the protecting group; when the pH value is less than 0, the acidity is too strong, and the chain scission of the polyethylene glycol chain is liable to occur.
  • the acid is not particularly limited, but acetic acid, phosphoric acid, sulfuric acid, hydrochloric acid, nitric acid is preferred, and hydrochloric acid is more preferred.
  • the reaction solvent is not particularly limited as long as it can dissolve the reactants and products, and water is preferred.
  • the reaction temperature is preferably 0 to 30 °C. When the temperature is lower than 0 °C, the reaction rate is slow, and the protective group cannot be completely removed. When the temperature is high at 30 °C, under the acidic condition, the chain breakage of the polyethylene glycol chain is liable to occur.
  • the above steps can be purified by extraction, recrystallization, adsorption treatment, precipitation, precipitation, membrane dialysis or supercritical extraction to obtain the intermediate compound (7).
  • This step polymerization is similar to the polymerization in 1.1 and requires two steps: A: deprotonation of the terminal hydroxyl group at the end of the symmetry axis under base catalysis; B: polymerization with ethylene oxide.
  • A deprotonation of the terminal hydroxyl group at the end of the symmetry axis under base catalysis
  • B polymerization with ethylene oxide.
  • These two steps can be carried out in a solvent or without a solvent, and the solvent is not particularly limited, and an aprotic solvent such as toluene, benzene, xylene, acetonitrile, ethyl acetate, tetrahydrofuran, chloroform, dichloromethane, and dimethyl is preferable.
  • the sulfoxide, dimethylformamide or dimethylacetamide is more preferably toluene or tetrahydrofuran.
  • Step A Deprotonation of hydroxyl groups at the end of the symmetry axis
  • the base to be used for the deprotonation of the terminal hydroxyl group of the symmetrical axis of the intermediate compound (7) is not particularly limited, and is preferably sodium, potassium, sodium hydride, potassium hydride, sodium methoxide, potassium methoxide, potassium t-butoxide or diphenylmethyl. Potassium, more preferably sodium metal, potassium or diphenylmethyl potassium, most preferably diphenylmethyl potassium.
  • the amount of the catalyst used is from 5 to 80 mol%. If the amount of the catalyst is less than 5 mol, the polymerization rate is slow and the cumulative heat is increased, resulting in the production of by-products, such as elimination of terminal hydroxyl groups to form vinyl ether compounds.
  • the amount of the catalyst exceeding 50 mol% may cause an increase in the viscosity of the reaction solution or a solid precipitation. This leads to an unbalanced reaction and makes purification difficult.
  • toluene or tetrahydrofuran is used as a solvent, the viscosity of the reaction liquid or the problem of solid precipitation can be solved, and the amount of the catalyst can be correspondingly increased to 80 mol%.
  • the deprotonation of the terminal hydroxyl group at the axis of the symmetry is generally carried out at 10 to 50 ° C, preferably 25 to 50 ° C.
  • the temperature is less than 10 °C, the deprotonation is incomplete, and the base participates in the anionic polymerization as a nucleophilic reagent to obtain a low molecular weight impurity having a small target molecular weight, which may react with the biologically relevant substance and change its physical properties.
  • the deprotonation time of the terminal hydroxyl group at the axis of symmetry is preferably from 10 minutes to 24 hours, and the control of time varies depending on the base.
  • strong bases with weak alkalinity or relatively low solubility in organic solvents eg sodium methoxide, potassium methoxide, sodium hydride, potassium hydride, etc.
  • a base which is strong in alkali and has good solubility in an organic solvent eg, diphenylmethyl potassium, n-butyllithium, t-butyllithium, etc.
  • potassium methoxide potassium t-butoxide or sodium methoxide is used as the catalyst
  • potassium methoxide is preferably used in an amount of 5 to 80 mol%, and is carried out at 25 to 80, preferably 50 to 60 ° C; Promote proton exchange under reduced pressure.
  • potassium methoxide, potassium t-butoxide or sodium methoxide itself is polymerized under polymerization conditions, it is also polymerized with ethylene oxide to obtain an etherified polyethylene glycol having a molecular weight smaller than the target molecular weight; and the product after deprotonation ( Methanol, tert-butanol), not only a proton source, but also quenches the reaction, and also participates in the polymerization of ethylene oxide under the polymerization conditions to obtain the polyethylene glycol which is etherified at the above end. Therefore, such a reaction requires a reduced pressure to remove the lower alcohol while maintaining a higher temperature (preferably 50 to 60 Torr) to ensure complete protonation.
  • Step B Polymerization of ethylene oxide at the end of the symmetry axis
  • the polymerization is carried out at a temperature of from 50 to 130.
  • the temperature is lower than 50 °C, as the polymerization progresses, the molecular weight gradually increases, the viscosity of the reaction liquid increases or solid precipitates, resulting in uneven reaction system, and the obtained target product is widely distributed, which is not suitable for high purity.
  • the modification of the drug and when the temperature is higher than 80 °C, the reaction system is prone to bursting or prone to side reactions such as terminal alcohol elimination to obtain ethylglycosyl ether.
  • the solvent is preferably 80 to 110 °C.
  • the temperature is lower than 50 °C, the polymerization rate is lower and the cumulative heat is increased to lower the quality of the target product; in addition, when the temperature is higher than 130 °C, side reactions such as terminal alcohol elimination are easily obtained to obtain vinyl ether.
  • the solvent is preferably tetrahydrofuran or toluene.
  • a proton source is added to obtain an intermediate compound (3) having a symmetry axis backbone having a specific degree of polymerization.
  • the proton source is not particularly limited as long as it can increase the active hydrogen, and methanol, ethanol and water are preferred.
  • the intermediate compound (3) can be modified according to various needs to obtain a monofunctionalized branched polyethylene glycol of the formula (1).
  • 2.1 R is a class A Preparation of a single functionalized branched polyethylene glycol
  • the corresponding active ester can be obtained by the intermediate intermediate compound (3) in the presence of a base with the corresponding carbonate ((Al l ), (A51 ) ), haloformate ((A21 ), (A31) )), the reaction of ruthenium diimidazole (A41).
  • W is Cl, Br, I, preferably Cl.
  • the amount of carbonate ((All), (A51)), haloformate ((A21), (A31)), thiodiimidazole (A41) is 1 to 50 times, preferably 1 to 20, of the molar equivalent of the compound. Multiplier, more preferably 5 to 10 times.
  • the solvent may be a solventless or aprotic solvent
  • the aprotic solvent includes toluene, benzene, xylene, acetonitrile, ethyl acetate, diethyl ether, methyl tert-butyl ether, tetrahydrofuran, chloroform, dichloromethane, dimethyl Sulfone, dimethylformamide or dimethylacetamide, preferably tetrahydrofuran, dichloromethane, dimethyl sulfoxide, dimethylformamide.
  • the base includes an organic base (such as triethylamine, pyridine, 4-dimethylaminopyridine, imidazole or diisopropylethylamine) or an inorganic base (such as sodium carbonate, sodium hydroxide, sodium hydrogencarbonate, sodium acetate, carbonic acid). Potassium or potassium hydroxide), preferably an organic base, more preferably triethylamine or pyridine.
  • the molar amount of the base is 1 to 50 times the molar equivalent of the corresponding carbonate ((All ), (A51)), haloformate ((A21), (A31)), thiodiimidazole (A41), preferably 1 to 10 times, more preferably 3 to 5 times.
  • the reaction temperature is from 0 to 200.
  • C is preferably 0 to 100.
  • C is more preferably 25 to 80 ° C, and the reaction time is preferably 10 minutes to 48 hours, more preferably 30 minutes to 24 hours.
  • the obtained product can be purified by purification methods such as extraction, recrystallization, adsorption treatment, precipitation, precipitation, membrane dialysis or supercritical extraction.
  • the ester compound can also be obtained by a condensation reaction.
  • the intermediate compound (3) is obtained by one or more steps to obtain a carboxylic acid compound (D4); and then the carboxylic acid compound (D4) is reacted with a corresponding alcohol and an amine in the presence of a condensing agent to obtain a corresponding active ester and
  • Xi, X 2 , Ri ⁇ ni, n 2 , n 3 , Z, Li, L 2 , p, q are the same as described above.
  • the amount of N-hydroxysuccinimide (A12), phenol ((A22), (A32)), N-hydroxytriazole (A52) is 1 to 50 times, preferably 1 to 20, the molar equivalent of the compound (D4). Multiplier, more preferably 5 to 10 times.
  • the condensing agent is not particularly limited, but hydrazine, ⁇ '-dicyclohexyl stilbene (DCC), 1-ethyl-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDC) is preferred.
  • .HC1 2-(7-azobenzotriazole)- ⁇ , ⁇ , ⁇ ', ⁇ '-tetramethylurea hexafluorophosphate (HATU), benzotriazole-oxime, oxime, ⁇ ', ⁇ '-tetramethylurea hexafluorophosphate (HBTU), most preferably DCC.
  • HATU 2-(7-azobenzotriazole)- ⁇ , ⁇ , ⁇ ', ⁇ '-tetramethylurea hexafluorophosphate
  • HBTU benzotriazole-oxime, oxime, ⁇ ', ⁇ '-tetramethylurea hexafluorophosphate
  • D4 2-(7-
  • the solvent may be a solventless or aprotic solvent
  • the aprotic solvent includes toluene, benzene, xylene, acetonitrile, ethyl acetate, diethyl ether, methyl tert-butyl ether, tetrahydrofuran, chloroform, dichloromethane, dimethyl Sulfone, dimethylformamide or dimethylacetamide, preferably tetrahydrofuran, dichloromethane, dimethyl sulfoxide, dimethylformamide.
  • the base includes generally an organic base (e.g., triethylamine, pyridine, 4-dimethylaminopyridine, imidazole or diisopropylethylamine), preferably triethylamine, pyridine.
  • the base is used in an amount of from 1 to 50 times, preferably from 1 to 10 times, more preferably from 2 to 3 times the molar equivalent of N-hydroxysuccinimide (A12), phenol (A22) (A32), and imidazole (A52). .
  • the reaction temperature is from 0 to 200.
  • C is preferably 0 to 100.
  • C is more preferably 25 to 80 ° C, and the reaction time is preferably 10 minutes to 48 hours, more preferably 30 minutes to 24 hours.
  • the obtained product can be purified by purification methods such as extraction, recrystallization, adsorption treatment, precipitation, precipitation, membrane dialysis or supercritical extraction.
  • 2.2 R is a class B Preparation of a single functionalized branched polyethylene glycol
  • the sulfonate derivative (B1 wherein q is 0) can be obtained by esterifying the intermediate compound (3) with a sulfonyl chloride (B11) in the presence of a base.
  • W is Cl, Br, I, preferably CI
  • Y is a hydrocarbon group having 1 to 10 carbon atoms, which may include a fluorine atom, preferably a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, a t-butyl group, Pentyl, hexyl, heptyl, octyl, decyl, decyl, vinyl, phenyl, benzyl, p-methylphenyl, trifluoromethyl, 2,2,2-trifluoroethyl, 4- (Trifluoromethoxy)phenyl, more preferably methyl, p-methylphenyl, 2,2,2-trifluoroethyl, trifluoromethyl, vinyl.
  • the amount of the sulfonyl chloride (B11) is 1 to 50 times, preferably 1 to 20 times, more preferably 5 to 10 times the molar equivalent of the intermediate compound (3).
  • the solvent may be a solventless or aprotic solvent
  • the aprotic solvent includes toluene, benzene, xylene, acetonitrile, ethyl acetate, diethyl ether, methyl tert-butyl ether, tetrahydrofuran, chloroform, dichloromethane, dimethyl Sulfone, dimethylformamide or dimethylacetamide, preferably tetrahydrofuran, dichloromethane, dimethyl sulfoxide, dimethylformamide.
  • the base includes an organic base (such as triethylamine, pyridine, 4-dimethylaminopyridine, imidazole or diisopropylethylamine) or an inorganic base (such as sodium carbonate, sodium hydroxide, sodium hydrogencarbonate, sodium acetate, carbonic acid). Potassium or potassium hydroxide), preferably an organic base, more preferably triethylamine or pyridine.
  • the base is used in an amount of from 1 to 50 times, preferably from 1 to 10 times, more preferably from 10 to 15 times the molar equivalent of the sulfonyl chloride (B11).
  • the reaction temperature is from 0 to 200.
  • C is preferably 0 to 100.
  • C is more preferably 25 to 80 ° C, and the reaction time is preferably 10 minutes to 48 hours, more preferably 30 minutes to 24 hours.
  • the obtained product can be purified by purification methods such as extraction, recrystallization, adsorption treatment, precipitation, precipitation, membrane dialysis or supercritical extraction.
  • R is a class B derivative preferably q is 0.
  • q is 1, it is preferably prepared in a similar manner to when q is 0.
  • Those skilled in the art are familiar with the methods and will not be described here.
  • R is a class of C.
  • the S-based derivative (C2) can be obtained by reacting the intermediate compound (3) with thiourea.
  • the reaction can be carried out in a solvent or in the absence of a solvent, and the solvent is not limited, and is preferably water, toluene, benzene, xylene, acetonitrile, ethyl acetate, diethyl ether, methyl t-butyl ether, tetrahydrofuran, chloroform, dichloro Methane, dimethyl sulfoxide, dimethylformamide or dimethylacetamide, preferably water, tetrahydrofuran, dichloromethane, acetonitrile.
  • the thiourea is used in an amount of from 1 to 50 times, preferably from 1 to 10 times, more preferably from 5 to 8 times the molar equivalent of the intermediate compound (3).
  • the reaction temperature is preferably from 0 to 150 ° C, preferably from 20 to 100 ° C, more preferably from 25 to 80 ° C.
  • the reaction time is preferably from 10 minutes to 48 hours, more preferably from 30 minutes to 24 hours.
  • a sulfhydryl compound (C2) is obtained by base hydrolysis.
  • the obtained product can be purified by a purification method such as extraction, recrystallization, adsorption treatment, precipitation, or supercritical extraction.
  • the S-based compound (C2) can also be obtained by reacting the intermediate compound (3) with the compound (C21), followed by decomposition with a primary amine.
  • This reaction can be carried out in the absence of a solvent or a solvent, and the solvent is not limited, and an aprotic solvent is preferred, including toluene, benzene, xylene, acetonitrile, ethyl acetate, diethyl ether, methyl tert-butyl ether, tetrahydrofuran, chloroform, Methylene chloride, dimethyl sulfoxide, dimethylformamide or dimethylacetamide, more preferably tetrahydrofuran, dichloromethane, dimethyl sulfoxide, dimethylformamide.
  • the amount of the compound (C21) is from 1 to 50 times, preferably from 1 to 20 times, more preferably from 5 to 10 times the molar equivalent of the intermediate compound (3).
  • the reaction temperature is preferably from 0 to 150.
  • C is preferably 20 to 100.
  • C is more preferably 25 to 80 ° C, and the reaction time is preferably from 10 minutes to 48 hours, more preferably from 30 minutes to 24 hours.
  • alkali decomposition with a primary amine is carried out in the above aprotic solvent, and the primary amine used is preferably ammonia, methylamine, ethylamine, propylamine, butylamine, pentylamine, hexylamine, cyclohexylamine, ethanolamine, propanol.
  • the amine derivative (C3) can be synthesized by the following method: under the base catalysis, the intermediate compound (3) is coupled with acrylonitrile or the like, and then the cyanide is reduced in the autoclave under palladium or nickel catalysis.
  • the base gives the corresponding amine.
  • This reaction can be carried out in the absence of a solvent or a solvent, and the solvent is not limited, and water or 1,4-dioxane and a combination thereof are preferred.
  • the base includes an organic base (such as triethylamine, pyridine, 4-dimethylaminopyridine, imidazole or diisopropylethylamine) or an inorganic base (such as sodium carbonate, sodium hydroxide, sodium hydrogencarbonate, sodium acetate, carbonic acid).
  • Potassium or potassium hydroxide is preferably an inorganic base, more preferably sodium hydroxide or potassium hydroxide.
  • the amount of the base to be used is not limited, and it is preferably 5 to 10 times the molar equivalent of the intermediate compound (3); the amount of the potassium thiocyanate and the analog thereof is preferably from 1 to 20 times, more preferably 5, based on the molar equivalent of the intermediate compound (3).
  • a solvent of cyanyl cyanide as a reaction temperature of -50 to 100.
  • C is more preferably 20 to 60 ° C; and the reaction time is 10 minutes to 48 hours, preferably 30 minutes to 24 hours.
  • the solvent is not limited, but is preferably toluene, methanol or ethanol.
  • the use ratio of the nickel and palladium catalyst is not limited, but is preferably 0.05 to 30 wt, more preferably 0.5 to 20 wt, of cyanide, and the reaction temperature is preferably 20 to 200 V, more preferably 50 to 150 V, and hydrogen pressure. Preferably it is 2 to 10 MPa, more preferably 3 to 8 MPa;
  • the reaction time is preferably from 10 minutes to 48 hours, more preferably from 30 minutes to 24 hours.
  • the amine pressure to be added is preferably from 0.1 to 3 MPa, more preferably from 0.3 to 2 MPa.
  • the obtained product can be purified by extraction, recrystallization, adsorption treatment, precipitation, precipitation, membrane dialysis or supercritical extraction.
  • the amine derivative (C3, q is 0) can be obtained by reacting the compound (B1) with aqueous ammonia. This reaction is carried out in ammonia water.
  • the concentration of ammonia is from 1% to 40%, preferably from 10 to 40%.
  • the amount of the ammonia water is from 1 to 300 times, preferably from 100 to 200 times the mass of the compound (B).
  • the reaction temperature is 25 to 300.
  • C is preferably from 60 to 100.
  • the reaction time is preferably from 10 minutes to 48 hours, more preferably from 30 minutes to 24 hours.
  • the obtained product can be purified by purification methods such as extraction, recrystallization, adsorption treatment, precipitation, reverse precipitation membrane dialysis or supercritical extraction.
  • Xi, x 2 , Ri, n ⁇ n 2 , n 3 , Z, L 2 , p, q are the same as described above.
  • the compound (C4) (C5) can also be obtained by reacting the compound (B1) with the corresponding azide salt or bromide salt.
  • the azide salt is not limited, and only a free azide ion may be formed in the solvent, and sodium azide or potassium azide is preferred.
  • the bromine salt is not limited, and only free bromide ions are formed in the solvent, and sodium bromide or potassium bromide is preferred.
  • the solvent of the reaction is not limited, and is preferably carried out in water, ethanol, acetonitrile, dimethyl sulfoxide, dimethylformamide or dimethylacetamide solvent, preferably water and dimethylformamide.
  • the azide salt and the bromine salt are used in an amount of from 1 to 50 times, preferably from 5 to 20 times, more preferably from 10 to 15 times the molar equivalent of the compound (B1).
  • the reaction temperature is preferably from 10 to 300.
  • C is more preferably from 100 to 150 V.
  • the reaction time is preferably from 10 minutes to 48 hours, more preferably from 30 minutes to 24 hours.
  • the obtained product can be purified by purification methods such as extraction, recrystallization, adsorption treatment, precipitation, precipitation, membrane dialysis or supercritical extraction.
  • 2.4 R is a preparation of D-functionalized branched polyethylene glycol
  • Xi, X 2 , Ri ⁇ ni , n 2 , n 3 , Z, Li , L 2 , p, q are the same as described above.
  • the polyethylene glycol derivative (Dl) (D2) (D4) is prepared by the following method: after deprotonating the intermediate (3), after substitution reaction with the ⁇ -haloacetate, and corresponding nucleophilic The reagent undergoes hydrolysis or amine hydrolysis.
  • the base to be used for protonation is not limited, and is preferably sodium metal, potassium, sodium hydride, potassium hydride, sodium methoxide, potassium methoxide, potassium t-butoxide or diphenylmethyl potassium, more preferably sodium hydride or diphenylmethyl. Potassium.
  • the amount of the base is 5 to 20 times, preferably 8 to 15 times the molar equivalent of the intermediate compound (3).
  • the deprotonation temperature is preferably carried out at 10 to 50. When the temperature is less than 10 V, the deprotonation is incomplete, resulting in a low functionalization rate.
  • the protonation time is preferably 10 minutes to 24 hours, and the control of the time varies depending on the base.
  • strong bases that are weakly alkaline or have relatively low solubility in organic solvents (eg, sodium methoxide, potassium methoxide, sodium hydride, potassium hydride, etc.) require longer deprotonation times, typically from 1 hour to 24 hours.
  • a base which is strong in alkali and has good solubility in an organic solvent for example, potassium diphenylmethyl, n-butyllithium, t-butyllithium, etc.
  • mutual solubility, fast deprotonation usually from 10 minutes to 24 hours, preferably from 20 minutes to 1 hour.
  • Step B Adding ⁇ -haloacetate (9) to the intermediate (10).
  • W is Cl, Br, I, preferably Br, I
  • Y is a hydrocarbon group having from 1 to 10 carbon atoms, which may include a fluorine atom, preferably a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, Tert-butyl, pentyl, hexyl, heptyl, octyl, decyl, decyl, vinyl, phenyl, benzyl, p-methylphenyl, trifluoromethyl, 2,2,2-trifluoroethyl Further, 4-(trifluoromethoxy)phenyl, more preferably methyl, p-methylphenyl, 2,2,2-trifluoroethyl, trifluoromethyl, ethyl.
  • the amide (Dl), the hydrazide (D2), and the carboxylic acid (D4) can be obtained by reacting the compound (10) with ammonia water, hydrazine hydrate or an alkali solution, respectively.
  • the concentration of ammonia is from 1% to 40%, preferably from 25% to 35%.
  • the amount of the ammonia water is from 1 to 300 times, preferably from 100 to 200 times the mass of the compound (B1).
  • the reaction temperature is 25 to 100.
  • C is preferably from 25 to 60 °C.
  • the reaction time is preferably from 10 minutes to 48 hours, more preferably from 30 minutes to 24 hours.
  • the concentration of hydrazine hydrate is from 1% to 80%, preferably from 50% to 80%.
  • the hydrazine hydrate is used in an amount of from 1 to 300 times, preferably from 50 to 100 times, the mass of the compound (B1).
  • the reaction temperature is 25 to 100.
  • C is preferably from 25 to 60 °C.
  • the reaction time is preferably from 10 minutes to 48 hours, more preferably from 30 minutes to 24 hours.
  • the base is an inorganic base (such as sodium hydroxide, potassium hydroxide or barium hydroxide) and has a solubility of 0.1 mol/L to 10 mol/L, preferably 1 mol/L to 5 mol/ L, the reaction temperature is 0 to 100. C is preferably from 40 to 80 °C. The reaction time is preferably from 10 minutes to 48 hours, more preferably from 30 minutes to 24 hours.
  • inorganic base such as sodium hydroxide, potassium hydroxide or barium hydroxide
  • the products obtained above can be purified by purification methods such as extraction, recrystallization, adsorption treatment, precipitation, precipitation, membrane dialysis or supercritical extraction.
  • 2.4 R is a class of preparation of a functionalized branched polyethylene glycol
  • Xi, X 2 , Ri ⁇ ni , n 2 , n 3 , Z, Li, L 2 , p, q are the same as above; W is Cl, Br, I, preferably Cl, Br.
  • Such compounds can be deprotonated by the polyethylene glycol intermediate (3) and reacted with the corresponding (3 ⁇ 4) (E21), (E31).
  • Polyethylene glycol intermediate (3) deprotonated, base Without limitation, sodium, potassium, sodium hydride, potassium hydride, sodium methoxide, potassium t-butoxide or diphenylmethyl potassium is preferred, and sodium hydride or potassium diphenylmethylate is more preferred, and the amount of the base is used in the intermediate compound ( 3) 5 to 20 times, preferably 8 to 15 times the molar equivalent, if the amount of the base is less than 5 times the molar equivalent, the deprotonation is incomplete and cannot be completely substituted.
  • the deprotonation temperature is preferably carried out at 10 to 50 ° C, When the temperature is less than 10 °C, the deprotonation is incomplete, resulting in a low functionalization rate.
  • the reaction solvent is not limited, and an aprotic solvent such as toluene, benzene, xylene, acetonitrile, ethyl acetate, tetrahydrofuran, chloroform, dichloromethane, dimethyl sulfoxide, dimethylformamide or dimethylacetamide is preferred. More preferred is toluene or tetrahydrofuran.
  • the protonation time is preferably 10 minutes to 24 hours, and the control of the time varies depending on the base.
  • strong bases that are weakly alkaline or have relatively low solubility in organic solvents (eg, sodium methoxide, potassium methoxide, sodium hydride, potassium hydride, etc.) require longer deprotonation times, typically from 1 hour to 24 hours.
  • a base which is strong in alkali and has good solubility in an organic solvent for example, potassium diphenylmethyl, n-butyllithium, t-butyllithium, etc.
  • mutual solubility, fast deprotonation usually from 10 minutes to 24 hours, preferably from 20 minutes to 1 hour.
  • the amount of the halogenated substance (E21), (E31) to be added is 1 to 50 times, preferably 5 to 10 times, the molar equivalent of the intermediate compound (3).
  • the reaction temperature is 25 to 100.
  • C is preferably 25 to 60 V.
  • the reaction time is preferably from 10 minutes to 48 hours, more preferably from 30 minutes to 24 hours.
  • the products obtained above can be purified by purification methods such as extraction, recrystallization, adsorption treatment, precipitation, precipitation, membrane dialysis or supercritical extraction.
  • 2.5 R is a preparation of a functionalized branched polyethylene glycol
  • W-CH 2 CH CH 2 W-CH 2 C ⁇ CH W-CH 2 CH-CH
  • X 2 , Ri ⁇ ni, n 2 , n 3 , Z, Li, L 2 , p, q are the same as above; W is Cl, Br, I, preferably Cl, Br.
  • Such compounds can be deprotonated by the polyethylene glycol intermediate compound (3) and then substituted with the corresponding (3 ⁇ 4 (F11), (F21), (F31) intermediate compound (3) deprotonated.
  • the base is not limited, and is preferably sodium, potassium, sodium hydride, potassium hydride, sodium methoxide, potassium t-butoxide or diphenylmethyl potassium, more preferably sodium hydride or potassium diphenylmethyl.
  • the compound (3) is 5 to 20 times, preferably 8 to 15 times the molar equivalent. If the amount of the base is less than 5 times the initiator, the deprotonation is incomplete and cannot be completely substituted, resulting in a decrease in the functionalization rate.
  • the temperature is preferably carried out at 10 to 50 ° C. When the temperature is less than 10 ° C, the deprotonation is incomplete and cannot be completely replaced.
  • the reaction solvent is not particularly limited, and is preferably an aprotic solvent such as toluene, benzene, xylene, acetonitrile, ethyl acetate, tetrahydrofuran, chloroform, dichloromethane, dimethyl sulfoxide, dimethylformamide or dimethylamine.
  • Amide more preferably toluene or tetrahydrofuran
  • the protonation time is preferably 10 minutes to 24 hours, and the control of the time varies depending on the base.
  • strong bases that are weakly alkaline or have relatively low solubility in organic solvents (eg, sodium methoxide, potassium methoxide, sodium hydride, potassium hydride, etc.) require longer deprotonation times, typically from 1 hour to 24 hours.
  • a base which is strong in alkali and has good solubility in an organic solvent for example, potassium diphenylmethyl, n-butyllithium, t-butyllithium, etc.
  • mutual solubility, fast deprotonation usually from 10 minutes to 24 hours, preferably from 20 minutes to 1 hour.
  • the amount of the halogenated substance (Fll), (F21), (F31) to be added is 1 to 50 times, preferably 5 to 10 times the molar equivalent of the intermediate compound (3).
  • the reaction temperature is 25 to 100 ° C, preferably 25 to 60 ° C, and the reaction time is preferably 10 minutes to 48 hours, more preferably 30 minutes to 24 hours.
  • the products obtained above can be purified by purification methods such as extraction, recrystallization, adsorption treatment, precipitation, precipitation, membrane dialysis or supercritical extraction.
  • such a compound can be obtained by condensation reaction of a polyglycolic acid derivative (D4) with an alcohol (G21).
  • the amount of the alcohol (G21) is from 1 to 50 times, preferably from 1 to 20 times, more preferably from 5 to 10 times the molar equivalent of the compound (D4).
  • the condensing agent is not particularly limited, but DCC, EDC, HATU, HBTU, and most preferably DCC, HATU are preferred.
  • the general condensing agent is used in an amount of from 1 to 20 times, preferably from 5 to 10 times, the molar equivalent of the substrate. This reaction can be carried out by adding a suitable catalyst such as 4-dimethylaminopyridine.
  • the solvent may be a solventless or aprotic solvent
  • the aprotic solvent includes toluene, benzene, xylene, acetonitrile, ethyl acetate, diethyl ether, methyl tert-butyl ether, tetrahydrofuran, chloroform, dichloromethane, dimethyl Sulfone, dimethylformamide or dimethylacetamide, preferably tetrahydrofuran, dichloromethane, dimethyl sulfoxide, dimethylformamide.
  • the base includes generally an organic base (e.g., triethylamine, pyridine, 4-dimethylaminopyridine, imidazole or diisopropylethylamine), preferably triethylamine, pyridine.
  • the base is used in an amount of from 1 to 50 times, preferably from 1 to 10 times, more preferably from 2 to 3 times the molar equivalent of the condensing agent.
  • the reaction temperature is from 0 to 200.
  • C is preferably 0 to 100.
  • C is more preferably 25 to 80 °C.
  • the reaction time is preferably from 10 minutes to 48 hours, more preferably from 30 minutes to 24 hours.
  • the obtained product can be purified by extraction, recrystallization, adsorption treatment, precipitation, precipitation, membrane dialysis or supercritical extraction.
  • the polyethylene glycol acetaldehyde can be directly oxidized from the intermediate compound (3), and the oxidizing agent is not particularly limited, and is preferably PDC, PCC, DCC + DMSO, Mn0 2 , preferably DCC + DMSO.
  • the amount of DCC used is 1 to 50 times, preferably 5 to 25 times, more preferably 10 to 20 times the amount of the substance of the intermediate compound (3), and the reaction solvent is not particularly limited, and an aprotic solvent such as toluene, benzene, or a second is preferable.
  • the reaction temperature is preferably -78 ° C to 100 ° C, preferably 0 ° ⁇ to 50 ° C, more preferably 25 ° ⁇ to 30 V.
  • the reaction time is preferably from 10 minutes to 48 hours, more preferably from 30 minutes to 24 hours.
  • a weakly acidic salt should be added to the reaction, and is not particularly limited, and pyridine trifluoroacetate, triethylamine trifluoroacetate, pyridine hydrochloride, triethylamine hydrochloride, and pyridine are preferred.
  • An acid salt, a triethylamine salt or the like is more preferred, and a pyridine trifluoroacetate salt is more preferred.
  • Xi, X 2 , Ri ⁇ ni , n 2 , n 3 , Li , L 2 are the same as above; an alkylene group having a carbon chain of more than 2; and W is Cl, Br, I, preferably Br, I.
  • Propionaldehyde and other aldehyde derivatives can be deprotonated by the intermediate compound (3), and reacted with (3) (D51) to obtain an acetal intermediate (11).
  • the compound (11) is hydrolyzed under acidic conditions to obtain a corresponding Aldehyde.
  • the intermediate compound (3) is deprotonated, and the base to be used is not particularly limited, and is preferably sodium metal, potassium, sodium hydride, potassium hydride, sodium methoxide, potassium t-butoxide or potassium diphenylmethyl, more preferably sodium hydride or Potassium diphenylmethyl.
  • the amount of the base is 5 to 20 times, preferably 8 to 15 times the molar equivalent of the compound (3). If the amount of the base is less than 5 times, the deprotonation is incomplete and cannot be completely substituted, resulting in a decrease in the functionalization rate.
  • the deprotonation temperature is preferably carried out at 10 to 50 ° C. When the temperature is less than 10 ° C, deprotonation is incomplete and the functional group substitution rate is low.
  • the reaction solvent is not particularly limited, and an aprotic solvent such as toluene, benzene, xylene, acetonitrile, ethyl acetate, tetrahydrofuran, chloroform, dichloromethane, dimethyl sulfoxide, dimethylformamide or dimethyl is preferable.
  • Acetamide is more preferably toluene or tetrahydrofuran.
  • the deprotonation time is preferably from 10 minutes to 24 hours, and the control of the time varies with the base.
  • strong bases that are weakly alkaline or have relatively low solubility in organic solvents (eg, sodium methoxide, potassium methoxide, sodium hydride, potassium hydride, etc.) require longer deprotonation times, typically from 1 hour to 24 hours.
  • a base which is strong in alkali and has good solubility in an organic solvent such as potassium diphenylmethyl, n-butyllithium, t-butyllithium, etc.
  • Mutual solubility, fast deprotonation usually from 10 minutes to 24 hours, preferably from 20 minutes to 1 hour.
  • the amount of the 13 ⁇ 4 substitute (D51) to be added is 1 to 50 times, preferably 5 to 10 times, the molar equivalent of the intermediate compound (3).
  • the reaction temperature is 25 to 100 ° C, preferably 25 to 60 ° C, and the reaction time is preferably 10 minutes to 48 hours, more preferably 30 minutes to 24 hours.
  • the acetal deprotection is carried out under acidic conditions, and the pH of the solution is preferably from 1 to 4.
  • the pH value is greater than 4, the acidity is too weak to completely remove the protecting group; when the pH value is less than 1, the acidity is too strong, and the chain scission of the polyethylene glycol chain is liable to occur.
  • the acid is not particularly limited, and is preferably acetic acid, phosphoric acid, sulfuric acid, hydrochloric acid or nitric acid, more preferably hydrochloric acid.
  • the reaction solvent is not particularly limited as long as it can dissolve the reactants and products, and water is preferred.
  • the reaction temperature is preferably 0 to 30 °C. When the temperature is lower than 0 °C, the reaction rate is slow, and the protective group cannot be completely removed. When the temperature is higher than 30 °C, under the acidic condition, the chain breakage of the polyethylene glycol chain is liable to occur.
  • the products obtained above can be purified by purification methods such as extraction, recrystallization, adsorption treatment, precipitation, precipitation, membrane dialysis or supercritical extraction.
  • the maleimide derivative (E1) can be produced by any one of the methods (1) and (2):
  • Xi, X 2 , Ri ⁇ ni , n 2 , n 3 , Z, Li , L 2 , p, q are the same as described above.
  • the reaction solvent is not particularly limited, and is preferably an aprotic solvent such as toluene, benzene, xylene, acetonitrile, ethyl acetate, tetrahydrofuran, chloroform, dichloromethane, dimethyl sulfoxide, dimethylformamide or dimethylamine.
  • the amide is more preferably dichloromethane, toluene or tetrahydrofuran.
  • the amount of the maleic anhydride is preferably from 1 to 100 times, more preferably from 5 to 10 times the amount of the amine compound (C3) substance.
  • the reaction temperature is preferably from 0 to 200 ° C, more preferably from 25 to 150 V.
  • the reaction time is preferably from 10 minutes to 48 hours, more preferably from 30 minutes to 24 hours.
  • the product can be purified by purification methods such as extraction, recrystallization, adsorption treatment, precipitation, precipitation, membrane dialysis or supercritical extraction.
  • the solvent is not limited, and the above aprotic solvent or acetic anhydride is preferred.
  • the amount of sodium acetate used is 0.1 to 100 times, preferably 1 to 50 times, the amount of the intermediate compound (3).
  • the reaction temperature is preferably from 0 to 200 ° C, more preferably from 25 to 150 V.
  • the reaction time is preferably from 10 minutes to 48 hours, more preferably from 30 minutes to 24 hours.
  • the obtained product can be purified by purification methods such as extraction, recrystallization, adsorption treatment, precipitation, precipitation, membrane dialysis or supercritical extraction.
  • z 2 is an alkylene group or contains an ester group, a urethane group, an amide group, an ether group, a double bond, a triple bond, a carbonate group or a secondary amine group, and is stably present under light, enzyme, acid, and alkaline conditions.
  • the alkylene group of the group more preferably an alkylene group or an alkylene group having an ether bond, an amide bond or a secondary amino group, wherein the alkylene group is preferably a methylene group, a 1,2-ethylene group, or a 1,3-arylene group.
  • the condensing agent is not particularly limited, and is preferably DCC, EDC, HATU, HBTU, and more preferably DCC.
  • the general amount of the condensing agent is from 1 to 20 times, preferably from 5 to 10 times, the molar equivalent of the substrate.
  • This reaction can be carried out by adding a suitable catalyst such as 4-dimethylaminopyridine.
  • the reaction solvent is not particularly limited, and an aprotic solvent is preferred, including toluene, benzene, xylene, acetonitrile, ethyl acetate, Ethyl ether, methyl tert-butyl ether, tetrahydrofuran, chloroform, dichloromethane, dimethyl sulfoxide, dimethylformamide or dimethylacetamide, more preferably tetrahydrofuran, dichloromethane, dimethyl sulfoxide, two Methylformamide.
  • an aprotic solvent including toluene, benzene, xylene, acetonitrile, ethyl acetate, Ethyl ether, methyl tert-butyl ether, tetrahydrofuran, chloroform, dichloromethane, dimethyl sulfoxide, dimethylformamide or dimethylacetamide, more preferably tetrahydrofuran, dichlor
  • the base is an organic base (e.g., triethylamine, pyridine, 4-dimethylaminopyridine, imidazole or diisopropylethylamine), preferably triethylamine, pyridine.
  • the molar amount of the base is from 1 to 50 times, preferably from 1 to 10 times, more preferably from 2 to 3 times the molar equivalent of the condensing agent.
  • the reaction temperature is from 0 to 200 V, preferably from 0 to 100 V, more preferably from 25 to 80 °C.
  • the reaction time is preferably from 10 minutes to 48 hours, more preferably from 30 minutes to 24 hours.
  • the product can be purified by extraction, recrystallization, adsorption treatment, precipitation, precipitation, membrane dialysis or supercritical extraction.
  • Bioly relevant substances including biologically active substances and modified biologically active substances, including but not limited to the following: polypeptides, proteins, enzymes, small molecule drugs, dyes, liposomes, nucleosides, nucleotides, oligonucleosides Acids, polynucleotides, nucleic acids, polysaccharides, body compounds, lipid compounds, phospholipids, glycolipids, glycoproteins, viruses, cells, micelles. Can be classified as:
  • the saccharide is a main component constituting cells and organs, and is not particularly limited, and mainly includes glycolipids, glycoproteins, glycogens and the like.
  • Glycolipids are widely distributed in organisms, mainly including glycosylglycerols and glycosphingolipids, including ceramides, cerebrosides, sphingosine, gangliosides, and glyceryl glycolipids;
  • glycoproteins are A complex carbohydrate composed of a branched oligosaccharide chain covalently linked to a polypeptide, usually secreted into a body fluid or a component of a membrane protein, specifically including transferrin, ceruloplasmin, membrane-bound protein, histocompatibility antigen, Hormones, vectors, lectins, and antibodies.
  • Lipids mainly include oils and lipids.
  • the component of the fatty acid is not particularly limited, but a fatty acid having 12 to 22 carbon atoms is preferable, and the fatty acid may be a saturated fatty acid or an unsaturated fatty acid.
  • the lipid includes glycolipids, phospholipids, cholesterol esters, wherein the phospholipids may be natural phospholipid materials such as egg yolk, soybean, etc., or may be synthetic phosphate compounds, preferably phosphatidic acid, phosphatidylcholine, phosphatidylethanolamine, cardiolipin , phosphatidylserine, phosphatidylinositol, and lysophospholipid isomers.
  • Cholesterol and other compounds (steroids) play an important role in regulating the normal metabolism and reproductive processes of the organism, including cholesterol, bile acids, sex hormones and vitamin D.
  • nucleic acids A biomacromolecular compound that is polymerized from many nucleotides and is one of the most basic substances in life. Nucleic acids are widely present in all animals, plant cells, ⁇ : organisms, and nucleic acids often bind to proteins to form nuclear proteins. Depending on the chemical composition, nucleic acids can be divided into ribonucleic acid and deoxyribonucleic acid.
  • Protein is the basis of life. More specific proteins and peptides include: hormones such as pituitary hormones, thyroid hormones, androgens, estrogens and epinephrine; serum proteins such as hemoglobin and blood factors; immunoglobulins such as IgG , IgE, IgM, IgA, IgD, etc.; cytokines, such as interleukins, interferons, granulocyte colony-stimulating factor, macrophage colony-stimulating factor, granulocyte-macrophage colony-stimulating factor, platelet-derived growth factor, phospholipase activation Protein, insulin, glucagon, lectin, ricin, tumor necrosis factor, epidermal growth factor, vascular endothelial growth factor, nerve growth factor, bone growth factor, insulin-like growth factor, heparin-binding growth factor, tumor growth Factor, glial cell line-derived neurotrophic factor, macrophage differentiation factor, differentiation-inducing
  • Vitamins are a class of organic substances that humans and animals must obtain from foods to maintain normal physiological functions. They play an important role in human growth, metabolism, and development. More specific vitamins include vitamin A, vitamin B, vitamin C, vitamin E, and vitamin K.
  • Small molecule drugs are not limited, and anticancer drugs and antifungal drugs are preferred. More specific anticancer drugs are preferably paclitaxel, doxorubicin, doxorubicin, cisplatin, daunorubicin, mitomycin, vincristine, epirubicin, methotrexate, 5-fluorouracil, Clarithromycin, Idamycin, Bleomycin, pirarubicin, Pilomycin, Vancomycin, and Camptothecin. More specific antifungal drugs are amphotericin B, nystatin, fluorocytosine, miconazole, fluconazole, itraconazole, ketoconazole, and peptide antifungal drugs.
  • the reaction bio-related substance and a single functional group reactive group of a branched polyethylene glycol, residues form a covalent group L 3, is connected to the bio-related substance and branched polyethylene glycol.
  • the residue L 3 is preferably triazole, isoxazole, ether group, amide group, imido group, imido group, secondary amino group, tertiary amino group, thioester group, thioether group, disulfide group, urethane A thiocarbonate group, a sulfonate group, a sulfonamide group, a carbamate group, a tyrosine group, a cysteine group, a histidine group, and combinations thereof.
  • the structure of the residue L 3 is related to the reactive group of the bio-related substance and the functional group of the polyethylene glycol.
  • a bio-related substance containing an amino group is reacted with a polyethylene glycol containing an active ester, an acid ester active ester, a sulfonate, an aldehyde, an ⁇ , ⁇ -unsaturated bond, or a carboxylic acid group to obtain an amide group or a urethane group.
  • Example 1 Preparation of a single functionalized branched polyethylene glycol when R is H
  • the protection base PG TBS.
  • the hydrogen language data of the intermediate 6-1 described in this example is as follows:
  • the protection base PG EE.
  • the designed total molecular weight is about 30,000, wherein the two branched chains have a molecular weight of about 0, i.e., n3 - 227.
  • step d Add the V-type polyethylene glycol (azeotropic water removal) prepared in step c and an equal mass of 5% Pd/C in a dry and clean container, nitrogen protection, add cyclohexene, 40 °C The reaction was carried out for 4 hours, suction filtered, ethyl acetate washed, concentrated, and diethyl ether.
  • V-type polyethylene glycol azeotropic water removal
  • the hydrogen language data of the active ester A1-1 is as follows:
  • A2-1 In a 1 L round bottom flask equipped with a condenser, 40 g of branched polyethylene glycol (H1-1, azeotropically removed by toluene) prepared in Example 1, 500 mL of toluene, 40 mL were placed. Triethylamine and 10 g of p-nitrophenyl chloroformate were reacted at 80 ° C for 24 hours, filtered, concentrated, and recrystallized from isopropanol to give p-nitrophenyl carbonate compound (A2-1).
  • the hydrogen language data of the active ester A1-2 is as follows:
  • the hydrogen spectrum data of the sulfonate B1-1 is as follows:
  • the hydrogen language data for the intermediate C2- 1 is as follows:
  • Step B After adding 20 g of the branched polyethylene glycol sulfate derivative (C2-1) obtained in Step A to a dry clean 400 mL round bottom flask, nitrogen was added, and 200 mL of tetrahydrofuran was added thereto, and stirred until completely dissolved. After adding 10 mL of n-propylamine and reacting at room temperature for 24 hours, it was concentrated, and the oxidized isopropanol was recrystallized to give a white or pale yellow solid base derivative (C2-2).
  • the hydrogen language data of the amine derivative C3-1 is as follows:
  • the hydrogen spectrum data of the intermediate F1-1 is as follows:
  • the hydrogen language data of the white amine derivative C3-2 is as follows:
  • the hydrogen spectrum data of the intermediate D2 is as follows:
  • step B Add 40 g of step A to prepare a branched polyethylene glycol ester intermediate (D2, ) in a dry clean 500 mL round bottom flask, add 200 mL of 80% hydrazine hydrate, stir until completely dissolved, at room temperature. After the reaction for 24 hours, 200 mL of deionized water was added, and the mixture was extracted with dichloromethane (3 * 100 mL). The organic phase was combined, washed with brine, dried, filtered, concentrated, and recrystallized to give hydrazide compound (D2) -1 ).
  • Z is OCH 2 CH 2
  • the molecular weight is about 30,000
  • the values of n 2 , n 3 are related to the compound Hl-3
  • Example 2 In a dry and clean 1 L round bottom flask, 40 g of the branched polyethylene glycol (H1-3, azepine azeotropic water removal) prepared in Example 1 was added, and then protected with nitrogen, and anhydrous anhydrous oxygen was added to 600 mL. Tetrahydrofuran, stir to room temperature, dissolve in water bath, add 10 mL of triethylamine and 2 mL of acryloyl chloride in sequence, react at room temperature for 24 h, concentrate, add 200 mL of deionized water, extract with dichloromethane (3*75 mL), combine organic The mixture was washed with brine (3 ⁇ 50 mL).
  • H1-3 azepine azeotropic water removal
  • Ri H
  • Z is OCH 2 CH 2
  • p 1
  • q 1
  • the molecular weight is about 30,000, wherein the values of n 2 and n 3 are the same as those of the compound m-3.
  • the hydrogen language data of the glycidyl ether derivative F4-1 is as follows:
  • the hydrogen language data of the active acetylene compound G2-1 is as follows:
  • Methyl chloride 100 mL dimethyl sulfoxide and 1 mL pyridine were added dropwise with 0.88 mL of trifluoroacetic acid in a water bath. After stirring for 1 hour in a water bath, 5 g of dicyclohexane carbodiimide (DCC) dichloride was added dropwise. Methane solution, stir at room temperature for 24 hours, remove insoluble matter by filtration, add 200 mL of dichloromethane, wash with deionized water (3 * 100 mL), saturated brine, and combine the organic phase with saturated brine (3 * 100 mL) The organic product was washed, dried, concentrated, and recrystallized to give an acetaldehyde derivative (D5-1).
  • DCC dicyclohexane carbodiimide
  • Step A Add 40 g of Step A to make a branched polyethylene glycol acetal intermediate in a dry clean 1 L round bottom flask, add 400 mL of deionized water, stir until completely dissolved, and use 1 mol/ under water bath.
  • the hydrogen language data of the polyethylene glycol aldehyde derivative D5-2 is as follows:
  • Ri H
  • Z is NHCOCH 2 CH 2
  • p 1
  • q 1
  • the molecular weight is about 20,000
  • the values of n 2 and n 3 are the same as those of the compound C3-1.
  • the hydrogen language data of the maleimide derivative E1-1 is as follows:
  • Example 10 Polyethylene glycol succinimide derivative (A1-2) modification; ⁇ Preparation method of interferon
  • Example 11 Preparation method of polyethylene glycol maleimide derivative (E1-1) modified lysozyme

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Epidemiology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Preparation (AREA)
  • Polyethers (AREA)

Abstract

本发明公开一种单一官能化的支化聚乙二醇及其修饰的生物相关物质。所述单一官能化的支化聚乙二醇的通式如式(1)所示,所述聚乙二醇修饰的生物相关物质的通式如式(2)所示,其中,X1、X2为具有1至20个碳原子的烃基;n1、n2为1~1000的整数;n3为11~1000的整数;L1、L2为在光照、酶、酸性或碱性条件下稳定存在的连接基团;p为0或1、q为0或1;R1为氢原子或具有1至20个碳的烃基;D为生物相关物质;Z为连接基团,能与生物相关物质反应的官能团通过该连接基团连接于对称轴聚乙二醇主链上。所述聚乙二醇修饰的生物相关物质保持了良好的生物活性,且具有更好的溶解性、更长的生物体内代谢半衰期。

Description

一种单一官能化的支化聚乙二醇及其修饰的生物相关物质
技术领域
本发明涉及高分子合成领域, 特别涉及一种单一官能化的支化聚乙二醇及其修饰的生物 相关物质。 背景技术
聚乙二醇化(PEGylation )是药物修饰的重要手段之一。 其中, 官能化聚乙二醇(PEG ) 可以利用其含有的活性基团与药物分子(说包括蛋白药物和有机小分子药物)、 肽类、 糖类、 脂 类、 寡核苷酸、 亲和配体、 辅因子、 脂质体以及生物材料等通过共价键进行偶联, 实现对药 物和其他生物相关物质的聚乙二醇修饰。 经修饰后的药物分子将具备聚乙二醇的许多优良性 质(如亲水性、 柔性、 抗凝血性等)。 同时, 由于聚书乙二醇的空间排斥效应, 聚乙二醇修饰后 的药物避免肾 、球的过滤生物反应如免疫反应, 使其比未修饰的药物在血液中有着更长的半 衰期。 例如: Greenwald等人( J. Org. Chem. 1995, 331-336 )通过与聚乙二醇偶联的手段修饰 紫杉醇, 增加其水溶性。
但是在不减少药物活性的前提下, 需要足够大分子量的聚乙二醇来充分改善药物在体内 的状态, 增强亲水性、 延长半衰期、 提高抗免疫性等, 而在蛋白质和其他生物分子中, 可用 于修饰的活性官能团比较少, 为了获得足够大分子量的聚乙二醇, 蛋白质与聚乙二醇的连接 就显得特别的重要。 相对于相同分子量的线性聚乙二醇, 由于具有特殊的分子形态, 带支链 的聚乙二醇可以在药物的表层形成一层伞形的保护层, 增大了药物分子周围的空间位阻, 比 线性聚乙二醇能更有效地阻止体内其它大分子物质对药物的进攻, 减少了药物在生物体内失 活或被酶水解的程度, 延长了药物在体内的作用时间。
自 1995年, Monfardini将两根线性甲氧基聚乙二醇分别接到赖氨酸的两个氨基上得到两 臂的分叉型 (V型) 聚乙二醇, 再将赖氨酸的羧基活化成琥珀酰亚胺活性酯, 并用于蛋白质 修饰研究( Bioconjugate Chem. 1995, 6, 62-69 )以后, 这种方法被推广为最普遍的制备单一官 能化的支化聚乙二醇及其药物衍生物的方法, 并已经在三种商业化的药物中得到应用。 但是 这个方法存在合成周期长、 合成效率低、 产物在碱性条件下不稳定的缺点。 除此以外, 由于 赖氨酸中两个氨基的不对称性, 必然导致在修饰过程中产生差异性, 导致部分单修饰副产物 或加入大过量的聚乙二醇, 增加了纯化的困难和成本。
并且, 在聚乙二醇修饰干扰素 α中, 干扰素 α与聚乙二醇通过三个尿烷和酰胺键进行结 合, 而这些键在碱性条件下或贮存期间易于水解, 可能导致部分支链被水解, 影响药物的性 质和应用。
此外, 文献报道的多臂星型聚乙二醇(PEG ) 的合成也可由多活性官能团小分子同时引 发制备得到, 这些聚合物的结构都具有良好的规整性, 较低的分子量单分散性。 例如, 以 2- 羟甲基 -1,3 丙二醇、 季戊四醇等多羟基小分子都可以作为引发剂得到多臂星型 PEG ( Macromolecules 2000, 33, 5418-5426 ), Gnanou 等则制备了 Dendrimer 结构的聚乙二醇 ( Polymer 2003, 44, 5067-5074 )。 然而, 这些多臂聚乙二醇中每条臂的端基往往含有相同的羟 基官能团, 不能进行特异性反应。
因此, 有必要开发易于制备的单一官能化且产品参数易控的聚乙二醇及其制备方法, 以 便获得单一官能化的聚乙二醇修饰的生物相关物质。 发明内容 本发明的发明目的, 是为了克服现有技术的不足, 提供单一官能化的支化聚乙二醇。 该 单一官能化的支化聚乙二醇解决传统多臂聚乙二醇在药物修饰应用中的缺陷, 并且可以在较 温和的条件下对生物相关物质进行修饰, 修饰率高、 副产物少、 活性保持度高等优点。
进一步的, 本发明还提供一种上述聚乙二醇修饰的生物相关物质。
本发明的上述目的通过如下技术方案予以实现:
一种单一官能化的支化聚乙二醇 式如式( 1 )所示:
CH2-CH2
Figure imgf000004_0001
其中, Xi、 X2各自独立地为具有 1至 20个碳原子的烃基; 、 n2各自独立地为 1~1000 的整数; n3为 11~1000的整数; L2为在光照、 酶、 酸性或碱性条件下稳定存在的连接基 团; p为 0或 1; 为氢原子或至少具有 1至 20个碳的烃基; R为功能性基团。
一种聚乙二醇修_饰的生物相关物质, 所述聚乙二醇修_饰的生物相关物质具有如通式(2 ) 所示的化学结构:
Figure imgf000004_0002
由通式(1 ) 的单一官能化的支化聚乙二醇通过官能团 R 与生物相关物质上的反应基团 反应, 生成具有通式 (2 )所述结构的聚乙二醇修饰的生物相关物质。 其中, 、 X2各自独 立地为具有 1至 20个碳原子的烃基; 、 n2各自独立地为 1~1000的整数; n3为 11~1000的 整数; L2为在光照、 酶、 酸性或碱性条件下稳定存在的连接基团; p为 0或 1 , q为 0或 1; R1为氢原子或具有 1至 20个碳的烃基; D为生物相关物质; Z为连接基团, 能与生物相 关物质反应的官能团通过该连接基团 Z连接于对称轴聚乙二醇主链上并与生物相关物质发生 化学反应, 形成残基 L3
一种所述单一官能化的支化聚乙二醇的制备方法, 包括如下步骤:
a ) 以含有对称羟基的小分子引发剂 (4 ) 与碱组成共引发体系, 引发环氧乙烷聚合, 生 成两条分支链, 并进行分支链末端去质子化, 得到中间体(5 );
b )对步骤 a )所得中间体(5 ) 的两条分支链进行封端, 得到中间体(6 );
c )对步骤 b )所得中间体( 6 ) 的对称轴末端羟基的脱保护, 得到中间体( 7 );
d )在步骤 c )所得中间体(7 ) 的对称轴端羟基上聚合环氧乙烷, 生成对称轴主链, 质 子化后得到中间体(3 );
e )对步骤 d )所得中间体(3 )进行对称轴主链末端的官能化修饰, 得到式(1 )所述单 一官能化的支化聚乙二醇;
Figure imgf000005_0001
1
其中, PG为羟基保护基团, 可以为硅醚、 苄基、 缩醛、 缩酮或叔丁基; X2ηι、 n2、 n3、 Li, L2、 p、 的定义与通式(1 ) 中相同。
所述单一官能化的支化聚乙二醇可以应用于生物相关物质的修饰。
与现有技术相比, 本发明具有如下有益效果:
本发明所述单一官能化的支化聚乙二醇中, 活性官能团设置在对称轴链的端点。 相对于 现有的聚乙二醇衍生物, 所述单一官能化的支化聚乙二醇的活性基团的位阻小, 便于官能团 转化和生物相关物质修饰, 可以在更温和的条件下反应, 提高修饰率、 减少副产物和使生物 相关物质的活性得到更好的保持。 同时本发明所提供的制备方法中, 小分子引发剂中对称结 构两个羟基的反应活性相同, 聚合反应中, 链增长的速度接近, 得到聚合度接近或相同的两 条分支链, 减少聚乙二醇支链差异性, 增强生物相关物质修饰的可重复性和活性的稳定性, 此外, 可简单并精确地控制对称轴主链和分支链的分子量和调节结构, 节约合成时间、 降低 纯化难度。
所述单一官能化的聚乙二醇修饰的生物相关物质, 具有良好的生物活性, 且具有更好的 溶解性、 更长的生物体内代谢半衰期。 所述单一官能化的聚乙二醇修饰的生物相关物质在制 备过程中釆用的单一官能化的支化聚乙二醇活性基团的位阻小, 便于官能团转化和生物相关 物质修饰, 可以在更温和的条件下反应, 提高修饰率、 减少副产物和使生物相关物质的活性 得到更好的保持。 具体实施方式
一种单一官能化的支化聚乙二醇,所述单一官能化的支化聚乙二醇的通式如式( 1 )所示:
Figure imgf000006_0001
1
其中, Xi、 X2为具有 1至 20个碳原子的烃基; 、 n2为 1~1000的整数; n3为 11~1000 的整数; Li , L2为在光照、 酶、 酸性或碱性条件下稳定存在的连接基团; p为 0或 1 ; 为 氢原子或至少具有 1至 20个碳的烃基; R为功能性基团。
其中, X X2可以是相同或不同。 所述 X2优选为具有 1至 10个碳原子的烃基。 所 述 Xi、 X2优选为具有 1至 5个碳原子的烃基。 所述 X2优选为甲基、 乙基、 丙基、 丙烯 基、 丙块基、 异丙基、 丁基、 叔丁基、 戊基、 庚基、 2-乙基己基、 辛基、 壬基、 癸基、 十一 烷基、 十二烷基、 十三烷基、 十四烷基、 十五烷基、 十六烷基、 十七烷基、 十八烷基、 十九 烷基、 二十烷基、 苄基或丁基苯基。 所述 X2所述最优选为甲基。
, L2分别是对称分叉点连接分支链、 对称轴主链聚乙二醇的基团, 可以是直链或带支 链基团, 其中, 所述 L2优选为具有 1至 20个碳原子的二价烃基。
其中, 所述 L2优选为含有在光照、 酶、 酸性或碱性条件下稳定存在的醚基、硫醚基、 酰胺基、 双键、 三键或二级氨基的具有 1至 20个碳原子的二价烃基。
其中, 所述 L2优选为为烃基或含醚键或酰胺键的具有 1至 20个碳原子的烃基。 其中, 所述!^优选为氢原子、 具有 1至 20个碳的烃基或含在阴离子聚合条件下稳定存 在的修饰基团的具有 1至 20个碳的烃基。
其中, 所述在阴离子聚合条件下稳定存在的修饰基团为酯基、 尿烷基、 酰胺基、 醚基、 双键、 三键、 碳酸酯基或叔胺基。
其中, 所述 优选为氢原子或具有 1至 20个碳的烃基。
中, 所述烃基优选为甲基、 乙基、 1-丙基、 异丙基、 丁基、 戊基、 己基、 丙婦基或苄 基。
其中所述 R为功能性基团, 优选能与生物相关物质相互反应的功能性基团。 所述生物相 关物质包括生物相关物质及改性的生物相关物质。 其中, R包括但不仅限于以下几类:
Figure imgf000006_0002
B1
类 C:
Figure imgf000007_0001
Figure imgf000008_0001
上述类 A〜类 H中, Ζ为聚乙二醇和功能性基团之间的共价键连接基团, 没有特别限制; q为 0或 1。 其中, Z可以为亚烷基或含有酯基、 尿烷基、 酰胺基、 醚基、 双键、 三键、 碳酸 酯基或仲胺基等在光照、 酶、 酸性、 碱性条件下稳定存在基团的亚烷基。 其中, Z优选为亚 烷基或含醚键、 酰胺键、 仲氨基的亚烷基。 所述亚烷基优选为亚甲基、 1,2-亚乙基、 1,3-亚丙 基、 1,2-亚丙基、 异亚丙基、 亚丁基、 亚戊基以及亚己基。
上述类 B中, Y为具有 1至 10个碳原子的烃基或包括氟原子的具有 1至 10个碳原子的 烃基。 其中, 所述 Y优选为甲基、 乙基、 丙基、 异丙基、 丁基、 叔丁基、 戊基、 己基、 庚基、 辛基、 壬基、 癸基、 乙烯基、 苯基、 苄基、 对甲基苯基、 三氟甲基、 2,2,2-三氟乙基、 4- (三 氟甲氧基)苯基。 其中, 所述 Y优选为甲基、 对甲基苯基、 2,2,2-三氟乙基、 三氟甲基、 乙烯 基。
上述类 D中, 所述 W为 (¾原子。 所述 W优选为 Br或 Cl。
上述类 G中, 所述 Q没有特别限制, 只要有助于不饱和键电子的诱导、 共轭效应即可。 当 Q处于环上时, 可以是一个或多个。 所述 Q优选为氢原子、 卤素、 卤代烷、 烷氧基、 叛基 化合物、 硝基化合物。 所述 Q优选为氢原子、 氟原子、 三氟甲基或甲氧基。
上述类 G中, 所述 M是环上连接 Z的原子, 所述 M可以是碳原子或氮原子。
所述 ηι、 n2表示两个分支链的聚合度, 其中, 所述 ηι、 n2优选为 10~800的整数。 所述 、 n2更优选为 25~800的整数。 所述 ηι、 n2更优选为 50~500的整数。
所述 n3表示对称轴主链的聚合度, 其中, 所述 n3优选为 11~800的整数。 所述 n3更优选 为 11~500的整数。 其中, 所述 n3更优选为 11~200的整数。
一种聚乙二醇修_饰的生物相关物质, 所述聚乙二醇修_饰的生物相关物质具有如通式(2 ) 所示的化学结构:
Figure imgf000008_0002
由通式(1 ) 的单一官能化的支化聚乙二醇通过官能团 R 与生物相关物质上的反应基团 反应, 生成具有通式(2 )所述结构的聚乙二醇修饰的生物相关物质。
所述生物相关物质上的反应基团可以为氨基、 S基、 不饱和键、 羧基等。
其中, 所述 L3为连接生物相关物质以及聚乙二醇的共价键基团, L3为对称轴聚乙二醇主 链所带能与生物相关物质反应的官能团在与生物相关物质反应后的残基, 该连接基团没有特 别限制。
其中, 所述 L3可以为三氮唑、 异恶唑、 醚基、 酰胺基、 亚酰胺基、 亚胺基、 仲氨基、 叔 胺基、 硫酯基、 硫醚基、 二硫基、 尿烷基、 硫代碳酸酯基、 磺酸酯基、 磺酰胺基、 氨基甲酸 酯基、 酪氨酸基、 半胱氨酸基、 组氨酸基或其组合。
其中, 所述 D代表生物相关物质, 包括但不仅限于以下物质: 多肽、 蛋白质、 酶、 小分 子药物、 染料、 脂质体、 核苷、 核苷酸、 寡核苷酸、 多核苷酸、 核酸、 多糖、 体化合物、 脂类化合物、 磷脂、 糖脂、 糖蛋白、 类固醇、 细胞、 病毒、 胶束。 其中, 所述 D优选为生物 相关物质及改性的生物相关物质。 所述小分子药物没有特别限制, 优选为抗癌药物和抗真菌 药物。 其中, 通式(2) 中, X2、 ni, n2、 n3、 Li, L2、 p、 q、 、 Z的定义与通式(1 ) 中 相同。 Xi、 X2为具有 1至 20个碳原子的烃基; n^ n2为 1~1000的整数; n3为 11~1000的整 数; L2为在光照、 酶、 酸性或碱性条件下稳定存在的连接基团; p、 q独立地为 0或 1; 为氢原子或具有 1至 20个碳的烃基; Z为对称轴聚乙二醇主链和 L3基团之间的共价键连 接基团, 能与生物相关物质反应的官能团通过该连接基团连接于对称主轴主链上, 没有特别 限制。
所述单一官能化的支化聚乙二醇 (1 )可以由中间体化合物 (3 )经过一步或多步反应得
Figure imgf000009_0001
其中, X2、 、 n2、 n3、 Li, L2、 p、 的定义与通式(1 ) 中相同。
一种所述单一官能化的支化聚乙二醇的制备方法, 包括如下步骤:
a) 以含有对称羟基的小分子引发剂 (4) 与碱组成共引发体系, 引发环氧乙烷聚合, 生 成两条分支链, 并进行分支链末端去质子化, 得到中间体(5 );
b)对步骤 a)所得中间体(5 ) 的两条分支链进行封端, 得到中间体(6);
c )对步骤 b )所得中间体( 6 ) 的对称轴末端羟基的脱保护, 得到中间体( 7 );
d)在步骤 c)所得中间体(7 ) 的对称轴端羟基上聚合环氧乙烷, 生成对称轴主链, 质 子化后得到中间体(3 );
e)对步骤 d)所得中间体(3 )进行对称轴主链末端的官能化修饰, 得到式(1 )所述单 一官能化的支化聚乙二醇;
Figure imgf000010_0001
1
其中, 所述 PG为羟基保护基团, 可以为硅醚、 苄基、 缩醛、 缩酮或叔丁基; X2、 、 n2、 n3、 Li, L2、 p、 的定义与上述相同; 除 R = OH外, R的定义与上述相同。
1. 中间体化合物 (3 ) 的制备
本发明的中间体化合物 ( 3 )可以按以下所述进行制备。 用引发剂 ( 4 ) 的 2至 2000倍摩 尔量的环氧乙烷与对称轴末端羟基保护的对称二醇进行聚合后, 加入过量的去质子化试剂, 生成带有两个分支链的聚乙二醇负离子中间体(5 ); 末端氧负离子用烃基 Xi、 X2进行醚化封 端得到中间体(6 ); 对称轴末端羟基脱保护; 新形成的对称轴末端羟基引发环氧乙烷聚合后, 加入质子源, 即可得到中间体化合物 ( 3 )。 (即上述步骤 a~d )。
1.1聚乙二醇负离子中间体(5 ) 的制备(步骤 a ) )
中间体(5 )的制备包含两个步骤: 小分子引发剂与环氧乙烷的聚合反应和聚合产物的去 质子化。
小分子引发剂与环氧乙烷的聚合反应可以经过两个步骤完成: A: 在碱催化下进行化合 物(4 ) 的去质子化; B: 与环氧乙烷发生聚合。 这两个步骤可以在溶剂或没有溶剂条件下进 行, 溶剂并没有特别限制, 但优选非质子性溶剂, 如甲苯、 苯、 二甲苯、 乙腈、 乙酸乙酯、 四氢呋喃、 氯仿、 二氯甲烷、 二甲基亚砜、 二甲基甲酰胺或二甲基乙酰胺, 更优选甲苯或四 氢呋喃。
步骤 A: 小分子引发剂去质子化
用于化合物(4 )去质子化的碱没有特别限制, 但优选金属钠、 钾、 氢化钠、 氢化钾、 甲 醇钠、 甲醇钾、 叔丁醇钾或二苯基甲基钾, 更优选用金属钠、 钾或二苯基甲基钾, 最优选二 苯基甲基钾。 催化剂的用量在 5至 80 mol%。 如果催化剂的用量小于 5 mol , 聚合速率慢而 累计热增加, 导致副产物生成, 如末端羟基发生消除生成乙烯醚化合物。 在无溶剂条件下反 应, 催化剂的量超过 50 mol%会导致反应溶液粘度增加或有固体析出, 导致反应不均衡且给 纯化带来困难。 而在甲苯或四氢呋喃做溶剂时, 反应液粘度增加或有固体析出的问题可以得 到解决, 催化剂量可以相应的增加到 80 mol%。
去质子化一般在 10至 50 °〇的条件下进行, 优选 25至 50 °C。 当温度小于 10 °C时, 去质 子化不完全, 碱作为亲核试剂参与阴离子聚合, 得到目标分子量 0.5倍的低分子量杂质。 这 类杂质可能与生物相关物质发生反应并改变其物理性能。 而当温度高于 50 °C ,会导致保护基 的部分分解脱保护, 得到目标分子量 1.5倍的高分子量杂质, 而这类杂质经过下一步封端醚 化后, 没有活性官能团。 当含有这类杂质的状态下修饰药物, 必然导致药物制剂不均匀, 质 量不稳定, 不能满足高纯度药物的修饰。
去质子化时间, 优选 10 分钟至 24小时, 时间的控制随着碱的不同而不同。 一般的, 碱 性弱或在有机溶剂中溶解度比较小的强碱(如: 甲醇钠、 甲醇钾、 氢化钠、 氢化钾等), 需要 较长的去质子化时间,一般在 1小时至 24小时;而碱性强且在有机溶剂中溶解度良好的碱(如: 二苯基甲基钾、 正丁基锂、叔丁基锂等), 即使在无溶剂条件下也可以与小分子引发剂充分互 溶, 去质子速度快, 一般在 10 分钟至 24小时, 优选 20 分钟至 1小时。 当去质子化时间较 短, 去质子化不完全, 碱作为亲核试剂参与阴离子聚合, 得到目标分子量 0.5倍的低分子量 杂质; 而当去质子化时间大于 24 小时, 会导致保护基的部分分解脱保护, 得到目标分子量 1.5倍的高分子量杂质, 不能满足高纯度药物的修饰。
当使用甲醇钾、 叔丁醇钾、 甲醇钠作为催化剂时, 优选甲醇钾, 其用量为 5至 80 mol% , 在 25至 80 的条件下进行, 优选 50至 60 °C , 除此外, 应该在减压条件下操作以促进质子 交换。 由于甲醇钾、 叔丁醇钾或甲醇钠自身在聚合条件下, 也会与环氧乙烷发生聚合, 得到 分子量为目标分子量 0.5倍的一端醚化聚乙二醇, 而这类的聚乙二醇会在下一步封端醚化, 得到了双端醚化没有活性官能团的聚乙二醇; 而去质子化后的产物(甲醇、 叔丁醇), 不仅是 质子源, 会淬灭反应, 而且在聚合条件下也会参与环氧乙烷的聚合, 得到上述一端醚化的聚 乙二醇, 所以这类反应需要在较高的温度(优选 50至 60 Ό )保证完全质子化的同时, 减压 操作除去低级醇。
步骤 B: 环氧乙烷的聚合
当在非质子性溶剂条件下, 优选在 50至 70 °C进行聚合。 当温度低于 50 °C时, 随着聚合 的进行, 分子量逐步增加, 反应液体的粘度会增加或有固体析出, 导致反应体系不均匀, 得 到的目标产物分布较宽, 不适合用于高纯度药物的修饰; 而当温度高于 70 °C , 反应体系容易 发生爆聚或易发生副反应, 如末端醇消除得到乙婦基醚。
当无溶剂条件下, 优选在 50至 130 °C进行聚合, 更优选在 80至 110 °C进行聚合。 当温 度低于 50 °C时, 聚合速率较低其累计热增加从而降低了目标产物的质量; 此外, 当温度高于 130 °C , 容易发生副反应如末端醇消除得到乙婦基醚。 同样的, 随着聚合的进行, 分子量逐 步增加, 反应液体的粘度会增加或会产生固化, 使得反应不均匀, 得到的目标产物分布较宽, 一般优选在非质子性溶剂下进行, 溶剂优选四氢呋喃或甲苯。
此时, 得到的聚合产物是醇与氧负离子的混合物, 对其完全的封端需要先进行分支链端 的完全去质子化。
用于分支链端去质子化的碱没有特别限制, 优选金属钠、 钾、 氢化钠、 氢化钾、 甲醇钠、 甲醇钾、 叔丁醇钾或二苯基甲基钾, 更优选用金属钠、 钾或二苯基甲基钾, 最优选二苯基甲 基钾。 一般, 碱用量在引发剂摩尔当量的 5至 20倍, 优选 8至 15倍。 如果碱的用量小于引 发剂 5倍摩尔当量, 会导致分支链端去质子化不完全, 不能完全封端; 分支链末端的活泼羟 基会参与后续的聚合反应, 得到分子量大于目标分子量的杂质, 导致分子量分布较宽且含有 多个活性官能团, 修饰药物时, 可能导致药物活性的减小或完全失去。 当碱的用量大于引发 剂 20倍摩尔当量, 过量的试剂或化合物给纯化带来麻烦, 混入后续步骤, 引起副反应。
分支链端去质子化一般在 10至 50 °〇的条件下进行,优选 25至 50 °C。 当温度小于 10 。C 时, 去质子化不完全, 不能完全封端, 分支链末端的活泼羟基会参与后续的聚合反应, 得到 分子量大于目标分子量的杂质, 导致分子量分布较宽且含有多个活性官能团; 修饰药物时, 可能导致药物活性的减小或完全失去。 而当温度高于 50 °C , 会导致保护基的部分脱保护, 而 在下一步发生封端醚化, 没有活性官能团; 当在含有这类杂质的状态下与修饰药物时, 导致 药物制剂不均匀, 质量不稳定, 不能满足高纯度药物的修饰。
分支链端去质子化时间, 优选 10 分钟至 24小时, 时间的控制随着碱的不同而不同。 一 般的, 碱性弱或在有机溶剂中溶解度比较小的强碱(如: 甲醇钠、 甲醇钾、 氢化钠、 氢化钾 等), 需要较长的去质子化时间, 一般在 1小时至 24小时; 而碱性强且在有机溶剂中溶解度 良好的碱(如: 二苯基甲基钾、 正丁基锂、 叔丁基锂等), 即使在无溶剂条件下也可以与小分 子引发剂充分互溶, 去质子速度快, 一般在 10 分钟至 24小时, 优选 20 分钟至 1小时; 当 去质子化时间大于 24小时, 会导致上述对称轴末端羟基保护基的部分分解脱保护。
1.2聚乙二醇负离子中间体(5 )封端反应 (步骤 b ) )
聚乙二醇负离子中间体(5 )末端的烷基醚化封端可以通过以下(1 )或(2 ) 中的任何一 种方法实现:
( 1 ) 聚乙二醇负离子中间体(5 ) 与烷基卤或烷基横酸酯等含有离去基团的化合物 (8 ) 反应。
X-LG!
8
X是具有 1到 20个碳原子的烃基, 包括甲基、 乙基、 丙基、 丙婦基、 丙块基、 异丙基、 丁基、 叔丁基、 戊基、 庚基、 2-乙基己基、 辛基、 壬基、 癸基、 十一烷基、 十二烷基、 十三 烷基、 十四烷基、 十五烷基、 十六烷基、 十七烷基、 十八烷基、 十九烷基、 二十烷基、 苄基、 丁基苯基, 该烃基优选具有 1至 10个碳原子的烃基, 最优选为甲基; 而 Ld为离去基团, 包 括氯、 溴、 碘、 甲磺酸酯、 对甲苯横酸酯、 2,2,2-三氟乙酸横酸酯, 优选碘; 所以用于聚乙二 醇负离子中间体(5 )封端的烷基卤或烷基横酸酯等含离去基团的化合物最优选为碘甲烷。
一般, 烷基卤或烷基横酸酯等含有离去基团的化合物(8 )这种封端试剂的用量为引发剂 的 5至 20倍摩尔当量, 优选 8至 15倍。 如果封端试剂的用量小于 5倍引发剂摩尔当量, 导 致不能完全封端, 末端的氧负离子会参与后续的聚合反应, 得到分子量大于目标分子量的杂 质, 导致分子量分布较宽且含有多个活性官能团; 修饰药物时, 可能导致药物活性的减小或 完全失去。 当封端试剂的用量大于 20倍引发剂摩尔当量, 过量的试剂给纯化带来麻烦, 可能 混入后续步骤, 引起副反应。
封端反应的温度没有特别限制, 优选在 25至 50 °C的条件下进行。
( 2 )往聚乙二醇负离子中间体(5 ) 中加入活化剂, 得到相应的聚乙二醇磺酸酯, 再与 去质子的醇( X-OH )发生取代反应得到化合物( 6 )。 常用的活化剂有甲磺酰氯、对甲苯横酸、 2,2,2-三氟乙酸横酰氯。
方法( 1 )和方法(2 )都可以实现完全封端, 由于方法( 1 )可以与聚合反应在同一反应 容器中进行, 生产工艺较为简便, 优选方法(1 )。
以上产物可通过萃取、 重结晶、 吸附处理、 沉淀、 反沉淀、 薄膜透析或超临界提取等纯 化方法加以纯化, 得到中间体化合物 (6 )。
1.3 中间体化合物 (6 ) 的脱保护 (步骤 c ) )
由于前述合成路线可以用苄基、 硅醚、 缩醛、 叔丁基四种方法对引发剂对称轴末端羟基 进行保护, 所以脱保护的方法相应有:
A: 苄基的脱保护
苄基脱保护可以利用氢化还原剂和氢供体的氢化作用来实现, 在这个反应体系中的含水 量应小于 1% , 反应才能顺利进行。 当体系中的含水量大于 1% , 会发生聚乙二醇链的断裂, 产生低分子量的带羟基的聚乙二醇, 会参与后续的聚合反应或官能团修饰, 给目标产品引入 杂质, 甚至, 与生物相关物质起反应, 改变了制剂的性质。
氢化还原催化剂优选为钯, 但是并不限制载体, 但优选氧化铝或碳, 更优选碳。 钯的用 量为中间体化合物 ( 6 ) 的 1至 100 wt , 优选为中间体化合物 ( 6 ) 的 1至 20% wt%。 当钯 的用量小于 l wt% , 去保护的速率和转化率都会降低, 未脱保护部分不能进行后续的聚合或 官能团化, 导致最终产品官能团率低。 然而, 当钯的用量大于 100 wt% , 会导致聚乙二醇链 的断裂。
反应溶剂没有特别的限制, 只要原料和产物均可以溶剂即可, 但优选甲醇、 乙醇、 乙酸 乙酯、 四氢呋喃, 更优选甲醇。 并不特别限制氢供体, 但优选氢气、 环己烯、 2-丙醇等。 反 应温度优选为 25至 40 V。 当温度高于 40 °C , 易发生聚乙二醇链的断链。 反应时间没有特别 限制, 反应时间与催化剂的用量成负相关, 优选为 1至 5个小时, 当反应时间小于 1小时, 转化率较低, 当反应时间大于 5个小时, 易发生聚乙二醇链的断链。
B: 缩醛、 缩酮的脱保护
用于这类羟基保护的缩醛或缩酮化合物优选乙基乙婦基醚、 四氢吡喃、 丙酮、 2,2-二甲氧 基丙烷、苯甲醛等。 而这类缩醛、缩酮的脱保护通过在酸性条件下实现,溶液 pH优选 0至 4。 当 pH值大于 4, 酸性太弱, 不能完全脱除保护基; 当 pH值小于 0 , 酸性太强, 易发生聚乙 二醇链的断链。 酸没有特别限制, 但优选乙酸、 磷酸、 硫酸、 盐酸、 硝酸, 更优选盐酸。 反 应溶剂没有特别的限制,只要能够溶解反应物和产物即可,优选水。反应温度优选 0至 30 °C。 当温度低于 0 °C , 反应速度较慢, 不能完全脱除保护基; 当温度高 30 °C , 在酸性条件下, 易 发生聚乙二醇链的断链。
C: 硅醚的脱保护
用于这类羟基保护的化合物包括三甲基硅醚、 三乙基硅醚、 二甲基叔丁基硅醚、 叔丁基 二苯基硅醚等。 而这类硅醚的脱保护通过含氟离子的化合物, 优选四丁基氟化铵、 四乙基氟 化铵、 HF酸、 氟化钾, 更优选四丁基氟化铵、 氟化钾。 含氟试剂的用量在引发剂摩尔当量的 5至 20倍, 优选 8至 15倍引发剂, 如果含氟的用量小于 5倍引发剂摩尔当量, 会导致脱保 护不完全; 当脱保护试剂的用量大于 20倍引发剂摩尔当量, 过量的试剂或化合物给纯化带来 麻烦, 可能混入后续步骤, 从而引起副反应。 反应溶剂没有特别的限制, 只要能够溶解反应 物和产物即可, 优选非质子性溶剂, 更优选四氢呋喃、 二氯甲烷。 反应温度优选 0至 30 °C , 当温度低于 0 °C , 反应速度较慢, 不能完全脱除保护基。
D: 叔丁基的脱保护
叔丁基的脱保护在酸性条件下进行, 溶液 pH优选 0至 4。 当 pH值大于 4, 酸性太弱, 不能完全脱除保护基; 当 pH值小于 0 , 酸性太强, 易发生聚乙二醇链的断链。 酸没有特别限 制, 但优选乙酸、 磷酸、 硫酸、 盐酸、 硝酸, 更优选盐酸。 反应溶剂没有特别的限制, 只要 能够溶解反应物和产物即可, 优选水。 反应温度优选 0至 30 °C。 当温度低于 0 °C , 反应速度 较慢, 不能完全脱除保护基; 当温度高 30 °C , 在酸性条件下, 易发生聚乙二醇链的断链。
以上步骤均可通过萃取、 重结晶、 吸附处理、 沉淀、 反沉淀、 薄膜透析或超临界提取等 纯化方法加以纯化, 得到中间体化合物 (7 )。
1.4 中间体(7 ) 与环氧乙烷的聚合(步骤 d ) )
该步聚合与 1.1中的聚合反应类似, 也需要经过两个步骤完成: A: 在碱催化下对称轴末 端羟基的去质子化; B : 与环氧乙烷发生聚合。 这两个步骤可以在溶剂或没有溶剂条件下进 行, 溶剂并没有特别限制, 优选非质子性溶剂, 如甲苯、 苯、 二甲苯、 乙腈、 乙酸乙酯、 四 氢呋喃、 氯仿、 二氯甲烷、 二甲基亚砜、 二甲基甲酰胺或二甲基乙酰胺, 更优选甲苯或四氢 呋喃。
步骤 A: 对称轴末端羟基的去质子化
用于中间体化合物( 7 )对称轴末端羟基的去质子化的碱没有特别限制,优选金属钠、钾、 氢化钠、 氢化钾、 甲醇钠、 甲醇钾、 叔丁醇钾或二苯基甲基钾, 更优选用金属钠、 钾或二苯 基甲基钾, 最优选二苯基甲基钾。 催化剂的用量在 5至 80 mol%。 如果催化剂的用量小于 5 mol , 聚合速率慢而累计热增加, 导致副产物的产生, 如末端羟基发生消除生成乙烯醚化合 物。 在无溶剂条件下反应, 催化剂的量超过 50 mol%会导致反应溶液粘度增加或有固体析出, 导致反应的不均衡且给纯化带来困难。 而在甲苯或四氢呋喃做溶剂时, 反应液粘度增加或有 固体析出的问题可以得到解决, 催化剂量可以相应的增加到 80 mol%。
对称轴末端羟基的去质子化一般在 10至 50 °C的条件下进行, 优选 25至 50 °C。 当温度 小于 10 °C时, 去质子化不完全, 碱作为亲核试剂参与阴离子聚合, 得到目标分子量小的低分 子量杂质, 这类杂质可能与生物相关物质发生反应并改变其物理性能。
对称轴末端羟基的去质子化时间优选 10 分钟至 24小时, 时间的控制随着碱的不同而不 同。 一般的, 碱性弱或在有机溶剂中溶解度比较小的强碱(如: 甲醇钠、 甲醇钾、 氢化钠、 氢化钾等), 需要较长的去质子化时间, 一般在 1小时至 24小时; 而碱性强且在有机溶剂中 溶解度良好的碱(如: 二苯基甲基钾、 正丁基锂、 叔丁基锂等), 即使在无溶剂条件下也可以 与小分子引发剂充分互溶, 去质子速度快, 一般在 10 分钟至 24小时, 优选 20 分钟至 1小 时。 当去质子化时间较短, 去质子化不完全, 碱作为亲核试剂参与阴离子聚合, 得到目标分 子量小的低分子量杂质。
当使用甲醇钾、 叔丁醇钾、 甲醇钠作为催化剂时, 优选甲醇钾, 其用量为 5至 80 mol% , 在 25至 80 的条件下进行, 优选 50至 60 °C ; 除此外, 应该在减压条件下以促进质子交换。 由于甲醇钾、 叔丁醇钾或甲醇钠自身在聚合条件下, 也会与环氧乙烷发生聚合, 得到分子量 比目标分子量小的一端醚化聚乙二醇; 而去质子化后的产物(甲醇、叔丁醇), 不仅是质子源, 会淬灭反应, 而且在聚合条件下也会参与环氧乙烷的聚合, 得到上述一端醚化的聚乙二醇。 所以这类反应需要在较高的温度(优选 50至 60 Ό )保证完全质子化的同时, 进行减压操作 除去低级醇。
步骤 B: 环氧乙烷在对称轴末端的聚合
聚合在 50至 130 的温度下进行。
当在非质子性溶剂条件下, 优选 50至 80 °C。 当温度低于 50 °C时, 随着聚合的进行, 分 子量逐步增加, 反应液体的粘度会增加或有固体析出, 导致反应体系不均匀, 得到的目标产 物分布较宽, 不适合用于高纯度药物的修饰; 而当温度高于 80 °C , 反应体系容易发生爆聚或 易发生副反应如末端醇消除得到乙婦基醚。
当无溶剂条件下, 优选 80至 110 °C。 当温度低于 50 °C时, 聚合速率较低其累计热增加 从而降低了目标产物的质量; 此外, 当温度高于 130 °C , 容易发生副反应如末端醇消除得到 乙烯基醚。 同样的, 随着聚合的进行, 分子量逐步增加, 反应液体的粘度会增加或会产生固 化, 使得反应不均匀, 得到的目标产物分布较宽。 所以, 一般优选在非质子性溶剂下进行, 溶剂优选四氢呋喃或甲苯。
当聚合到一定程度, 加入质子源, 即可得到具有特定聚合度对称轴主链的中间体化合物 ( 3 )。 其中质子源没有特别限制, 只要能提高活泼氢即可, 优选甲醇、 乙醇、 水。
根据不同的需要对中间体化合物 (3 )进行修饰, 可以得到式(1 )所述单一官能化的支 化聚乙二醇。 下面结合 R的几种类型, 分别介绍其制备方法:
2. 单一官能化聚乙二醇的制备(步骤 e ) )
以下详细描述所述单一官能化支化聚乙二醇(除 R = OH外) 的制备。
2.1 R为类 A单一官能化的支化聚乙二醇的制备
a: 相应的活性酯可以通过中间体中间体化合物 (3 )在碱的存在下, 与相应的碳酸酯 ( ( Al l ), ( A51 ) )、 卤代甲酸酯 ((A21 )、 (A31 ) )、 叛基二咪唑 ( A41 )反应得到。
Figure imgf000015_0001
A11 A21
NA N
Figure imgf000015_0002
A41 A51
其中 W为 Cl、 Br、 I, 优选 Cl。
碳酸酯((All )、 (A51))、 卤代甲酸酯((A21)、 (A31))、 叛基二咪唑( A41 )的量为化 合物摩尔当量的 1至 50倍, 优选 1至 20倍, 更优选 5至 10倍。
溶剂可以是无溶剂或非质子性溶剂, 非质子性溶剂包括甲苯、 苯、 二甲苯、 乙腈、 乙酸 乙酯、 乙醚、 甲基叔丁基醚、 四氢呋喃、 氯仿、 二氯甲烷、 二甲基亚砜、 二甲基甲酰胺或二 甲基乙酰胺, 优选四氢呋喃、 二氯甲烷、 二甲基亚砜、 二甲基甲酰胺。
碱包括有机碱(如三乙胺、 吡啶、 4-二甲基氨基吡啶、 咪唑或二异丙基乙基胺)或无机 碱(如碳酸钠、 氢氧化钠、 碳酸氢钠、 乙酸钠、 碳酸钾或氢氧化钾), 优选有机碱, 更优选三 乙胺、 吡啶。 碱的摩尔量为相应碳酸酯 ((All ), (A51))、 卤代甲酸酯 ((A21)、 (A31))、 叛基二咪唑( A41 )摩尔当量的 1至 50倍, 优选为 1至 10倍, 更优选为 3至 5倍。
反应温度为 0至 200。C , 优选 0至 100。C , 更优选为 25至 80 °C , 反应时间优选为 10分 钟至 48小时, 更优选为 30分钟至 24小时。 得到的产物可通过萃取、 重结晶、 吸附处理、 沉 淀、 反沉淀、 薄膜透析或超临界提取等纯化方法加以纯化。
b. 酯类化合物也可以通过缩合反应得到。 中间体化合物 (3)通过一步或多步反应, 得 到羧酸化合物 (D4); 然后羧酸化合物 (D4)在缩合剂的存在下, 与相应的醇和胺反应得到 相应的活性酯和
Figure imgf000015_0003
D4
Figure imgf000015_0004
A12 A22 A32 A52
其中, Xi、 X2、 Ri^ ni, n2、 n3、 Z、 Li, L2、 p、 q与上述相同。
N-羟基琥珀酰亚胺(A12)、 苯酚((A22)、 (A32))、 N-羟基三氮唑( A52 ) 的量为化合 物 ( D4 )摩尔当量的 1至 50倍, 优选 1至 20倍, 更优选 5至 10倍。
并不特别限制缩合剂, 但优选 Ν,Ν'-二环己基叛二亚胺(DCC), 1-乙基 -(3-二甲基氨基丙 基)碳酰二亚胺盐酸盐 (EDC.HC1), 2-(7-偶氮苯并三氮唑) -Ν,Ν,Ν',Ν'-四甲基脲六氟磷酸酯 (HATU), 苯并三氮唑 -Ν,Ν,Ν',Ν'-四甲基脲六氟磷酸盐(HBTU), 最优选为 DCC。 而一般缩 合剂的用量为化合物 (D4 )摩尔当量的 1至 20倍, 优选为 5-10倍, 这个反应可以加入适当 的催化剂 (如 4-二甲基氨基吡啶 )。
溶剂可以是无溶剂或非质子性溶剂, 非质子性溶剂包括甲苯、 苯、 二甲苯、 乙腈、 乙酸 乙酯、 乙醚、 甲基叔丁基醚、 四氢呋喃、 氯仿、 二氯甲烷、 二甲基亚砜、 二甲基甲酰胺或二 甲基乙酰胺, 优选四氢呋喃、 二氯甲烷、 二甲基亚砜、 二甲基甲酰胺。
碱包括一般为有机碱(如三乙胺、 吡啶、 4-二甲基氨基吡啶、 咪唑或二异丙基乙基胺), 优选三乙胺、 吡啶。碱的用量为 N-羟基琥珀酰亚胺( A12 )、 苯酚( A22 ) ( A32 )、 咪唑( A52 ) 的摩尔当量的 1至 50倍, 优选为 1至 10倍, 更优选为 2至 3倍。
反应温度为 0至 200 。C , 优选 0至 100 。C , 更优选为 25至 80 °C , 反应时间优选为 10分 钟至 48小时, 更优选为 30分钟至 24小时。 得到的产物可通过萃取、 重结晶、 吸附处理、 沉 淀、 反沉淀、 薄膜透析或超临界提取等纯化方法加以纯化。
2.2 R为类 B单一官能化的支化聚乙二醇的制备
磺酸酯类衍生物 (B1 , 其中 q为 0 )可以通过中间体化合物 (3 ) 与磺酰氯(B11 )在碱 存在下酯化得到。
Figure imgf000016_0001
W为 Cl、 Br、 I, 优选 CI, Y为具有 1至 10个碳原子的烃基, 其可以包括氟原子, 优选 甲基、 乙基、 丙基、 异丙基、 丁基、 叔丁基、 戊基、 己基、 庚基、 辛基、 壬基、 癸基、 乙烯 基、 苯基、 苄基、 对甲基苯基、 三氟甲基、 2,2,2-三氟乙基、 4- (三氟甲氧基)苯基, 更优选 为甲基、 对甲基苯基、 2,2,2-三氟乙基、 三氟甲基、 乙烯基。
磺酰氯( B11 ) 的量为中间体化合物 ( 3 )摩尔当量的 1至 50倍, 优选 1至 20倍, 更优 选 5至 10倍。
溶剂可以是无溶剂或非质子性溶剂, 非质子性溶剂包括甲苯、 苯、 二甲苯、 乙腈、 乙酸 乙酯、 乙醚、 甲基叔丁基醚、 四氢呋喃、 氯仿、 二氯甲烷、 二甲基亚砜、 二甲基甲酰胺或二 甲基乙酰胺, 优选四氢呋喃、 二氯甲烷、 二甲基亚砜、 二甲基甲酰胺。
碱包括有机碱(如三乙胺、 吡啶、 4-二甲基氨基吡啶、 咪唑或二异丙基乙基胺)或无机 碱(如碳酸钠、 氢氧化钠、 碳酸氢钠、 乙酸钠、 碳酸钾或氢氧化钾), 优选有机碱, 更优选三 乙胺、 吡啶。 碱的用量为磺酰氯( B11 )摩尔当量的 1至 50倍, 优选为 1至 10倍, 更优选为 10至 15倍。
反应温度为 0至 200 。C , 优选 0至 100 。C , 更优选为 25至 80 °C , 反应时间优选为 10分 钟至 48小时, 更优选为 30分钟至 24小时。 得到的产物可通过萃取、 重结晶、 吸附处理、 沉 淀、 反沉淀、 薄膜透析或超临界提取等纯化方法加以纯化。
R为类 B衍生物优选 q为 0。 当 q为 1时, 优选与 q为 0时类似的方法进行制备。 本领 域技术人员熟知有关方法, 这里就不再赘述。
2.3 R为类 C单一官能化的支化聚乙二醇的制备
a: S基衍生物 (C2 ) 的制备。
S基衍生物 (C2 )可以通过中间体化合物 (3 ) 与硫脲反应得到。
CH2-CH20 其中, Xi、 X2、 Ri ^ ni , n2、 n3、 Z、 Li , L2、 p、 q与上述相同。
该反应可以在溶剂中或在没有溶剂的条件下进行, 溶剂没有限制, 优选水、 甲苯、 苯、 二甲苯、 乙腈、 乙酸乙酯、 乙醚、 甲基叔丁基醚、 四氢呋喃、 氯仿、 二氯甲烷、 二甲基亚砜、 二甲基甲酰胺或二甲基乙酰胺, 优选水、 四氢呋喃、 二氯甲烷、 乙腈。 硫脲的用量是中间体 化合物( 3 )摩尔当量的 1至 50倍, 优选为 1至 10倍, 更优选为 5至 8倍。 反应温度优选为 0至 150 °C , 优选 20至 100 °C , 更优选为 25至 80 °C。 反应时间优选为 10分钟至 48小时, 更优选为 30分钟至 24小时。 反应后, 再通过碱水解得到疏基化合物 (C2 )。 得到的产物可 通过萃取、 重结晶、 吸附处理、 沉淀、 或超临界提取等纯化方法加以纯化。
Figure imgf000017_0001
C21
此外, S基化合物(C2 )还可以通过中间体化合物(3 )与化合物(C21 )反应, 然后用 伯胺进行分解得到。 这个反应可以在无溶剂或溶剂条件下进行, 溶剂没有受到限制, 优选非 质子性溶剂, 包括甲苯、 苯、 二甲苯、 乙腈、 乙酸乙酯、 乙醚、 甲基叔丁基醚、 四氢呋喃、 氯仿、 二氯甲烷、 二甲基亚砜、 二甲基甲酰胺或二甲基乙酰胺, 更优选四氢呋喃、 二氯甲烷、 二甲基亚砜、 二甲基甲酰胺。
化合物 ( C21 ) 的量为中间体化合物 ( 3 )摩尔当量的 1至 50倍, 优选 1至 20倍, 更优 选 5至 10倍。 反应温度优选为 0至 150 。C , 优选 20至 100 。C , 更优选为 25至 80 °C , 反应 时间优选为 10分钟至 48小时, 更优选为 30分钟至 24小时。 然后用伯胺进行碱分解在上述 的非质子性溶剂中进行, 使用的伯胺优选为氨、 甲胺、 乙胺、 丙胺、 丁胺、 戊胺、 己胺、 环 己胺、 乙醇胺、 丙醇胺以及丁醇胺。 由于疏基容易被氧化, 反应需在无氧条件下进行。 得到 的产物可通过萃取、 重结晶、 吸附处理、 沉淀、 反沉淀、 薄膜透析或超临界提取等纯化方法 力口以纯^ ί匕。
b: 胺类衍
Figure imgf000017_0002
其中, X2、 Ri ^ ni , n2、 n3、 Z、 Li , L2、 p、 q与上述相同。
胺类衍生物 (C3 )可以通过以下方式合成: ^碱催化下, 中间体化合物 (3 ) 与丙烯氰 或类似物发生偶联反应, 然后在高压反应釜中, 在钯或镍催化下还原氰基得到相应的胺。 这 个反应可以在无溶剂或溶剂条件下进行, 溶剂没有受到限制, 优选水或 1,4-二氧六环及其组 合。 碱包括有机碱(如三乙胺、 吡啶、 4-二甲基氨基吡啶、 咪唑或二异丙基乙基胺)或无机 碱(如碳酸钠、 氢氧化钠、 碳酸氢钠、 乙酸钠、 碳酸钾或氢氧化钾), 优选无机碱, 更优选氢 氧化钠、 氢氧化钾。 碱的用量不受限制, 优选中间体化合物 (3 )摩尔当量的 5至 10倍; 丙 婦基氰及其类似物的用量优选中间体化合物 ( 3 )摩尔当量的 1至 20倍, 更优选 5至 15倍, 用量随着中间体化合物( 3 )的分子量的增加而增大。 此外也可以用丙婦基氰做溶剂, 反应温 度为 -50至 100 。C , 更优选为 20至 60 °C ; 反应时间为 10分钟至 48小时, 优选为 30分钟至 24小时。
氢化反应步骤中, 溶剂的选择没有限制, 但优选为甲苯、 甲醇、 乙醇。 镍和钯催化剂的 使用比率不受限制, 但优选为氰化物的 0.05至 30 wt , 更优选为 0.5至 20 wt , 反应温度 优选为 20至 200 V , 更优选为 50至 150 V , 氢气的压力优选为 2至 10 MPa, 更优选为 3至 8 MPa; 反应时间优选 10分钟到 48小时, 更优化为 30分钟至 24小时。 此外, 为了防止二聚 作用, 需要在反应体系加入氨气,加入的胺压力优选为 0.1至 3 MPa, 更优选为 0.3至 2 MPa。 得到的产物可通过萃取、 重结晶、 吸附处理、 沉淀、 反沉淀、 薄膜透析或超临界提取等纯化 方法力 p以纯 4匕。
胺类衍生物 (C3 , q为 0 )可以通过化合物 (B1 ) 与氨水反应得到。 这个反应时在氨水 中进行。 氨的浓度为 1%至 40% , 优选为 10至 40%。 氨水用量是化合物(B )质量的 1至 300 倍, 优选为 100至 200倍。 反应温度为 25至 300 。C , 优选为 60至 100 。C , 反应时间优选为 10分钟至 48小时, 更优选为 30分钟至 24小时。 得到的产物可通过萃取、 重结晶、 吸附处 理、 沉淀、 反沉淀 薄膜透析或超临界提取等纯化方法加以纯化。
Figure imgf000018_0001
其中, Xi、 x2、 Ri、 n^ n2、 n3、 Z、 L2、 p、 q与上述相同。
除此以外, 化合物 (C4 ) ( C5 )也可以通过化合物 (B1 ) 与相应的叠氮盐、 溴盐反应得 到。 叠氮盐没有限制, 只有在溶剂中有游离的叠氮离子生成即可, 优选叠氮化钠、 叠氮化钾。 同样的, 溴盐也没有限制, 只有在溶剂中有游离的溴离子生成即可, 优选溴化钠、 溴化钾。 该反应的溶剂不受限制, 优选水、 乙醇、 乙腈、 二甲基亚砜、 二甲基甲酰胺或二甲基乙酰胺 溶剂中进行, 优选水和二甲基甲酰胺。 叠氮盐、 溴盐用量是化合物(B1 )摩尔当量的 1至 50 倍, 优选为 5至 20倍, 更优选为 10至 15倍。 反应温度优选为 10至 300 。C , 更优选为 100 至 150 V。 反应时间优选为 10分钟至 48小时, 更优选为 30分钟至 24小时。 得到的产物可 通过萃取、 重结晶、 吸附处理、 沉淀、 反沉淀、 薄膜透析或超临界提取等纯化方法加以纯化。
2.4 R为类 D单一官能化的支化聚乙二醇的制备
Figure imgf000018_0002
D2
其中, Xi、 X2、 Ri ^ ni , n2、 n3、 Z、 Li , L2、 p、 q与上述相同。
聚乙二醇衍生物 (Dl ) ( D2 ) ( D4 )通过以下方法制备: 将中间体(3 )去质子化后, 与 α-卤代乙酸酯发生取代反应后, 再与相应的亲核试剂发生水解或胺解。 步骤 A: 中间体(3 )去质子化。 去质子化使用的碱没有限制, 优选金属钠、 钾, 氢化钠、 氢化钾, 甲醇钠、 甲醇钾、 叔丁醇钾或二苯基甲基钾, 更优选用氢化钠或二苯基甲基钾。 碱 用量为中间体化合物 ( 3 )摩尔当量的 5至 20倍, 优选 8至 15倍, 如果碱的用量小于 5倍, 去质子化不完全, 不能完全取代。 去质子化温度优选在 10至 50 下进行。 当温度小于 10 V 时, 去质子化不完全, 导致官能化率偏低。
去质子化时间, 优选 10 分钟至 24小时, 时间的控制随着碱的不同而不同。 一般的, 碱 性弱或在有机溶剂中溶解度比较小的强碱(如: 甲醇钠、 甲醇钾、 氢化钠、 氢化钾等), 需要 较长的去质子化时间,一般在 1小时至 24小时;而碱性强且在有机溶剂中溶解度良好的碱(如: 二苯基甲基钾、 正丁基锂、叔丁基锂等), 即使在无溶剂条件下也可以与小分子引发剂充分互 溶, 去质子速度快, 一般在 10 分钟至 24小时, 优选 20 分钟至 1小时。
步骤 B: 加入 α-卤代乙酸酯 (9 )进 到中间体(10 )。
Figure imgf000019_0001
Figure imgf000019_0002
其中, X2、 Ri ^ ni , n2、 n3、 Z、 Li , L2、 p与上述相同。
W为 Cl、 Br、 I, 优选 Br、 I, Y为具^■ 1至 10个碳原子的烃基, 其可以包括氟原子, 优选甲基、 乙基、 丙基、 异丙基、 丁基、 叔丁基、 戊基、 己基、 庚基、 辛基、 壬基、 癸基、 乙烯基、 苯基、 苄基、 对甲基苯基、 三氟甲基、 2,2,2-三氟乙基、 4- (三氟甲氧基)苯基, 更 优选为甲基、 对甲基苯基、 2,2,2-三氟乙基、 三氟甲基、 乙婦基。
酰胺(Dl )、 酰肼 (D2 )、 羧酸(D4 )可以通过化合物 (10 )分别与氨水、 水合肼、 碱 性溶液反应得到。
制备酰胺( D1 )中,氨的浓度为 1%至 40% ,优选为 25%至 35%。氨水用量是化合物( B1 ) 质量的 1至 300倍, 优选为 100至 200倍。 反应温度为 25至 100 。C , 优选为 25至 60 °C。 反 应时间优选为 10分钟至 48小时, 更优选为 30分钟至 24小时。
制备酰肼(D2 ) 中, 水合肼的浓度为 1%至 80% , 优选为 50%至 80%。 水合肼水用量是 化合物( B1 )质量的 1至 300倍, 优选为 50至 100倍。 反应温度为 25至 100 。C , 优选为 25 至 60 °C。 反应时间优选为 10分钟至 48小时, 更优选为 30分钟至 24小时。
制备羧酸(D4 )中, 碱为无机碱(如氢氧化钠、 氢氧化钾、 氢氧化钡), 溶度为 0.1 mol/L 至 10 mol/L, 优选为 1 mol/L至 5 mol/L, 反应温度为 0至 100 。C , 优选为 40至 80 °C。 反应 时间优选为 10分钟至 48小时, 更优选为 30分钟至 24小时。
以上所得得到的产物均可通过萃取、 重结晶、 吸附处理、 沉淀、 反沉淀、 薄膜透析或超 临界提取等纯化方法加以纯化。
2.4 R为类 一官能化的支化聚乙二醇的制备
Figure imgf000019_0003
Figure imgf000020_0001
O O
W-1L ■(C=CH2 W-"- -C( =CH2
H
E21 E31
其中, Xi、 X2、 Ri ^ ni , n2、 n3、 Z、 Li , L2、 p、 q与上述相同; W为 Cl、 Br、 I, 优选 Cl、 Br。
这类的化合物可以通过聚乙二醇中间体(3 )去质子化后,与相应的 (¾代物(E21 )、 ( E31 ) 反应得到。 聚乙二醇中间体(3 )去质子化, 碱没有限制, 优选金属钠、 钾, 氢化钠、 氢化钾, 甲醇钠、 叔丁醇钾或二苯基甲基钾, 更优选用氢化钠或二苯基甲基钾, 碱用量在中间体化合 物(3 )摩尔当量的 5至 20倍, 优选 8至 15倍, 如果碱的用量小于 5倍摩尔当量, 去质子化 不完全, 不能完全取代。 去质子化温度优选在 10至 50 °C下进行, 当温度小于 10 °C时, 去质 子化不完全, 导致官能化率偏低。
反应溶剂没有限制, 优选非质子性溶剂, 如甲苯、 苯、 二甲苯、 乙腈、 乙酸乙酯、 四氢 呋喃、 氯仿、 二氯甲烷、 二甲基亚砜、 二甲基甲酰胺或二甲基乙酰胺, 更优选甲苯或四氢呋 喃。
去质子化时间, 优选 10 分钟至 24小时, 时间的控制随着碱的不同而不同。 一般的, 碱 性弱或在有机溶剂中溶解度比较小的强碱(如: 甲醇钠、 甲醇钾、 氢化钠、 氢化钾等), 需要 较长的去质子化时间,一般在 1小时至 24小时;而碱性强且在有机溶剂中溶解度良好的碱(如: 二苯基甲基钾、 正丁基锂、叔丁基锂等), 即使在无溶剂条件下也可以与小分子引发剂充分互 溶, 去质子速度快, 一般在 10 分钟至 24小时, 优选 20 分钟至 1小时。
加入的卤代物( E21 )、 ( E31 ) 的量是中间体化合物( 3 )摩尔当量的 1至 50倍, 优选为 5至 10倍。 反应温度为 25至 100 。C , 优选为 25至 60 V。 反应时间优选为 10分钟至 48小 时, 更优选为 30分钟至 24小时。
以上所得得到的产物均可通过萃取、 重结晶、 吸附处理、 沉淀、 反沉淀、 薄膜透析或超 临界提取等纯化方法加以纯化。
2.5 R为 一官能化的支化聚乙二醇的制备
Figure imgf000020_0002
Figure imgf000021_0001
.
W-CH2CH=CH2 W-CH2C≡CH W-CH2CH-CH
F11 F21 F31
其中, 其中, X2、 Ri^ ni, n2、 n3、 Z、 Li, L2、 p、 q与上述相同; W为 Cl、 Br、 I, 优 选 Cl、 Br。
这类的化合物可以通过聚乙二醇中间体化合物( 3 )去质子化后, 与相应的 (¾代物( F11 )、 ( F21 )、 (F31 )发生取代得到。 中间体化合物(3 )去质子化,碱没有受到限制, 优选金属钠、 钾, 氢化钠、 氢化钾, 甲醇钠、 叔丁醇钾或二苯基甲基钾, 更优选氢化钠或二苯基甲基钾。 碱用量在中间体化合物( 3 )摩尔当量的 5至 20倍, 优选 8至 15倍, 如果碱的用量小于 5倍 引发剂, 会导致去质子化不完全, 不能完全取代, 导致官能化率降低。 去质子化温度优选在 10至 50 °C下进行, 当温度小于 10 °C时, 导致去质子化不完全, 不能完全取代。
反应溶剂没有特别限制, 优选非质子性溶剂, 如甲苯、 苯、 二甲苯、 乙腈、 乙酸乙酯、 四氢呋喃、 氯仿、 二氯甲烷、 二甲基亚砜、 二甲基甲酰胺或二甲基乙酰胺, 更优选甲苯或四 氢呋喃
去质子化时间, 优选 10 分钟至 24小时, 时间的控制随着碱的不同而不同。 一般的, 碱 性弱或在有机溶剂中溶解度比较小的强碱(如: 甲醇钠、 甲醇钾、 氢化钠、 氢化钾等), 需要 较长的去质子化时间,一般在 1小时至 24小时;而碱性强且在有机溶剂中溶解度良好的碱(如: 二苯基甲基钾、 正丁基锂、叔丁基锂等), 即使在无溶剂条件下也可以与小分子引发剂充分互 溶, 去质子速度快, 一般在 10 分钟至 24小时, 优选 20 分钟至 1小时。
加入的卤代物 ( Fll )、 ( F21 )、 ( F31 ) 的量是中间体化合物 ( 3 )摩尔当量的 1至 50倍, 优选 5至 10倍。 反应温度为 25至 100 °C , 优选为 25至 60 °C , 反应时间优选为 10分钟至 48小时, 更优选为 30分钟至 24小时。
以上所得得到的产物均可通过萃取、 重结晶、 吸附处理、 沉淀、 反沉淀、 薄膜透析或超 临界提取等纯化方法加以纯化。
2.6 R为类
Figure imgf000021_0002
其中, X2、 Ri ^ ni , n2、 n3、 Z、 Li , L2、 p、 q与上述相同。
以 G2 为例, 这类的化合物可以通过聚乙二醇酸衍生物 (D4 ) 与醇(G21 )缩合反应得 到。 醇( G21 ) 的量为化合物 ( D4 )摩尔当量的 1至 50倍, 优选 1至 20倍, 更优选 5至 10 倍。
并不特别限制缩合剂, 但优选 DCC, EDC, HATU, HBTU, 最优选为 DCC, HATU。 而一般缩合剂的用量为底物摩尔当量的 1至 20倍, 优选为 5-10倍。 这个反应可以加入适当 的催化剂 (如 4-二甲基氨基吡啶 )。
溶剂可以是无溶剂或非质子性溶剂, 非质子性溶剂包括甲苯、 苯、 二甲苯、 乙腈、 乙酸 乙酯、 乙醚、 甲基叔丁基醚、 四氢呋喃、 氯仿、 二氯甲烷、 二甲基亚砜、 二甲基甲酰胺或二 甲基乙酰胺, 优选四氢呋喃、 二氯甲烷、 二甲基亚砜、 二甲基甲酰胺。
碱包括一般为有机碱(如三乙胺、 吡啶、 4-二甲基氨基吡啶、 咪唑或二异丙基乙基胺) 优选三乙胺、 吡啶。 碱的用量为缩合剂摩尔当量的 1至 50倍, 优选为 1至 10倍, 更优选为 2至 3倍。
反应温度为 0至 200 。C , 优选 0至 100 。C , 更优选为 25至 80 °C。 反应时间优选为 10分 钟至 48小时, 更优选为 30分钟至 24小时。
得到的产物可通过萃取、 重结晶、 吸附处理、 沉淀、 反沉淀、 薄膜透析或超临界提取等 纯化方法加以纯化。
2.7 R为 基官能团单一官能化的支化聚乙二醇的制备
2.7.1 乙醛衍生物的制备:
Figure imgf000022_0001
D5a
其中, X2、 Ri ^ ni , n2、 n3、 Li, L2、 p与上述相同。
聚乙二醇乙醛可以由中间体化合物( 3 )直接氧化得到,氧化剂没有特别限制,优选 PDC、 PCC、 DCC+DMSO, Mn02, 优选 DCC+DMSO。 DCC的用量为中间体化合物(3 )物质的量 的 1至 50倍, 优选 5至 25倍, 更优选 10至 20倍, 并不特别限制反应溶剂, 优选非质子性 溶剂如甲苯、 苯、 二甲苯、 乙腈、 乙酸乙酯、 四氢呋喃、 氯仿、 二氯甲烷、 二甲基亚砜、 二 甲基甲酰胺或二甲基乙酰胺, 更优选二氯甲烷、 二甲基亚砜。 反应温度优选 -78 °C至 100 °C , 优选 0 °〇至50 °C , 更优选 25 °〇至30 V。 反应时间优选为 10分钟至 48小时, 更优选为 30 分钟至 24小时。 除此以外, 此反应中应该添加弱酸性的盐, 没有特别限制, 优选吡啶三氟乙 酸盐、 三乙胺三氟乙酸盐、 吡啶盐酸盐、 三乙胺盐酸盐、 吡啶^ ^酸盐、 三乙胺^ 盐等, 更 优选吡啶三氟乙酸盐。
2.7.2 丙醛或其他醛类衍生物的制备:
Figure imgf000022_0002
Figure imgf000023_0001
Figure imgf000023_0002
11
其中, Xi、 X2、 Ri ^ ni , n2、 n3、 Li , L2、 与上述相同; 为碳链大于 2的亚烷基; W为 Cl、 Br、 I , 优选 Br、 I。
丙醛以及其他醛类衍生物可以通过中间体化合物(3 )去质子化后, 与 (¾代物(D51 )反 应得到缩醛中间体(11 ), 化合物 (11 )在酸性条件下水解得到相应的醛。
中间体化合物(3 )去质子化, 使用的碱没有特别限制, 优选金属钠、 钾, 氢化钠、 氢化 钾, 甲醇钠、 叔丁醇钾或二苯基甲基钾, 更优选用氢化钠或二苯基甲基钾。 碱用量在化合物 ( 3 )摩尔当量的 5至 20倍, 优选 8至 15倍, 如果碱的用量小于 5倍, 会导致去质子化不完 全, 不能完全取代, 导致官能化率降低。 去质子化温度优选在 10至 50 °C下进行, 当温度小 于 10 °C时, 导致去质子化不完全, 官能团取代率低。
并不特别限制反应溶剂, 优选非质子性溶剂, 如甲苯、 苯、 二甲苯、 乙腈、 乙酸乙酯、 四氢呋喃、 氯仿、 二氯甲烷、 二甲基亚砜、 二甲基甲酰胺或二甲基乙酰胺, 更优选甲苯或四 氢呋喃。
去质子化时间优选 10 分钟至 24小时, 时间的控制随着碱的不同而不同。 一般的, 碱性 弱或在有机溶剂中溶解度比较小的强碱(如: 甲醇钠、 甲醇钾、 氢化钠、 氢化钾等), 需要较 长的去质子化时间,一般在 1小时至 24小时; 而碱性强且在有机溶剂中溶解度良好的碱(如: 二苯基甲基钾、 正丁基锂、叔丁基锂等), 即使在无溶剂条件下也可以与小分子引发剂充分互 溶, 去质子速度快, 一般在 10 分钟至 24小时, 优选 20 分钟至 1小时。
加入的 1¾代物 ( D51 ) 的量是中间体化合物 ( 3 )摩尔当量的 1至 50倍, 优选为 5至 10 倍。 反应温度为 25至 100 °C , 优选为 25至 60 °C , 反应时间优选为 10分钟至 48小时, 更优 选为 30分钟至 24小时。
缩醛脱保护在酸性条件下进行, 溶液 pH值优选 1至 4。 当 pH值大于 4 , 酸性太弱, 不 能完全脱除保护基; 当 pH值小于 1 , 酸性太强, 易发生聚乙二醇链的断链。 酸没有特别限制, 优选乙酸、 磷酸、 硫酸、 盐酸、 硝酸, 更优选盐酸。 反应溶剂没有特别的限制, 只要能够溶 解反应物和产物即可, 优选水。 反应温度优选 0至 30 °C。 当温度低于 0 °C , 反应速度较慢, 不能完全脱除保护基; 当温度高于 30 °C , 在酸性条件下, 易发生聚乙二醇链的断链。
以上所得得到的产物均可通过萃取、 重结晶、 吸附处理、 沉淀、 反沉淀、 薄膜透析或超 临界提取等纯化方法加以纯化。
2.8 马来酰亚胺单一官能化的支化聚乙二醇的制备
马来酰亚胺衍生物 (E1 )可以通过方法(1 )、 方法(2 )任何一种制备:
( 1 ): 使用 2.3 方法制得的胺类化合物 (C3 ) 与马来酸酐发生开环反应得到酸中间体, 然后在乙酸酐或乙酸钠催化下发生关环缩合反应。
Figure imgf000024_0001
其中, Xi、 X2、 Ri ^ ni , n2、 n3、 Z、 Li , L2、 p、 q与上述相同。
反应溶剂没有特别限制, 优选非质子性溶剂, 如甲苯、 苯、 二甲苯、 乙腈、 乙酸乙酯、 四氢呋喃、 氯仿、 二氯甲烷、 二甲基亚砜、 二甲基甲酰胺或二甲基乙酰胺, 更优选二氯甲烷、 甲苯或四氢呋喃。
马来酸酐的用量优选胺类化合物( C3 )物质的量的 1至 100倍, 更优选 5至 10倍。 反应 温度优选为 0至 200 °C , 更优选为 25至 150 V。 反应时间优选为 10分钟至 48小时, 更优选 为 30分钟至 24小时。 产物可通过萃取、 重结晶、 吸附处理、 沉淀、 反沉淀、 薄膜透析或超 临界提取等纯化方法加以纯化。
在关环缩合反应中, 溶剂不受受到限制, 优选上述的非质子性溶剂或乙酸酐。 乙酸钠的 用量为中间体化合物 ( 3 )物质的量 0.1倍至 100倍, 优选 1倍至 50倍。 反应温度优选为 0 至 200 °C , 更优选为 25至 150 V。 反应时间优选为 10分钟至 48小时, 更优选为 30分钟至 24小时。 得到的产物均可通过萃取、 重结晶、 吸附处理、 沉淀、 反沉淀、 薄膜透析或超临界 提取等纯化方法加以纯化。
( 2 ): 上述方法的胺类化合物(C3 )与含有马来酰亚胺基团的酸(E11 )缩合反应得到。
Figure imgf000024_0002
E11
其中, z2为亚烷基或含有酯基、 尿烷基、 酰胺基、 醚基、 双键、 三键、 碳酸酯基或仲胺基等 在光照、 酶、 酸性、 碱性条件下稳定存在基团的亚烷基, 更优选亚烷基或含醚键、 酰胺键、 仲氨基的亚烷基, 其中, 亚烷基优选亚甲基、 1,2-亚乙基、 1,3-亚丙基、 1,2-亚丙基、 异亚丙 基、 亚丁基、 亚戊基以及亚己基。
缩合剂没有特别限制, 优选为 DCC, EDC, HATU, HBTU, 更优选为 DCC。 而一般缩 合剂的用量为底物摩尔当量的 1至 20倍, 优选为 5-10倍。 这个反应可以加入适当的催化剂 (如 4-二甲基氨基吡啶)。
反应溶剂没有特别限制, 优选非质子性溶剂, 包括甲苯、 苯、 二甲苯、 乙腈、 乙酸乙酯、 乙醚、 甲基叔丁基醚、 四氢呋喃、 氯仿、 二氯甲烷、 二甲基亚砜、 二甲基甲酰胺或二甲基乙 酰胺, 更优选四氢呋喃、 二氯甲烷、 二甲基亚砜、 二甲基甲酰胺。
碱是有机碱(如三乙胺、 吡啶、 4-二甲基氨基吡啶、 咪唑或二异丙基乙基胺), 优选三乙 胺、 吡啶。 碱的摩尔量为缩合剂摩尔当量的 1至 50倍, 优选为 1至 10倍, 更优选为 2至 3 倍。
反应温度为 0至 200 V , 优选 0至 100 V , 更优选为 25至 80 °C。 反应时间优选为 10分 钟至 48小时, 更优选为 30分钟至 24小时。
产物可通过萃取、 重结晶、 吸附处理、 沉淀、 反沉淀、 薄膜透析或超临界提取等纯化方 法加以纯化。
以上有关单一官能化的支化聚乙二醇的具体结构描述中仅提出了一些常见的结构例子, 其制备方法也仅描述了自化合物(3 )的路线。 需要指出的是, 单一官能化的支化聚乙二醇的 制备亦可以方便地通过化合物( HI ) ( q为 1时)实现,有关步骤和试剂使用与通过化合物( 3 ) 的方法类似, 并为本领域的技术人员所熟知。
2.9 官能化聚乙二醇修饰生物相关物质的制备
生物相关物质, 包括生物活性物质和改性的生物活性物质, 具体包括但不仅限于以下物 质: 多肽、 蛋白质、 酶、 小分子药物、 染料、 脂质体、 核苷、 核苷酸、 寡核苷酸、 多核苷酸、 核酸、 多糖、 体化合物、 脂类化合物、 磷脂、 糖脂、 糖蛋白、 病毒、 细胞、 胶束。 可以归 类为:
( 1 ) 糖类
糖类是构成细胞和器官的主要成分, 没有特别限制, 主要包括糖脂、 糖蛋白、 糖原等。 糖脂在生物体分布较广, 主要包含糖基酰甘油和糖鞘脂两大类, 具体包含神经酰胺、 脑苷脂、 鞘氨醇、 神经节苷脂以及甘油基糖脂等; 糖蛋白是分支的寡糖链与多肽共价相连缩构成的复 合糖, 通常分泌到体液中或是膜蛋白的组成成分, 具体包括转铁蛋白、 血铜蓝蛋白、 膜结合 蛋白、 组织相容性抗原、 激素、 载体、 凝集素以及抗体。
( 2 ) 脂类
脂类主要包括油脂和类脂两大类。 其中, 脂肪酸的成分没有特别限制, 但优选具有 12至 22个碳原子的脂肪酸, 而脂肪酸可以是饱和脂肪酸或不饱和脂肪酸。 类脂包括糖脂、 磷脂、 胆固醇酯, 其中, 磷脂可以是天然的磷脂物质如蛋黄、 大豆等, 或可以是合成的磷酸酯化合 物, 优选磷脂酸、 磷脂酰胆碱、 磷脂酰乙醇胺、 心磷脂、 磷脂酰丝氨酸、 磷脂酰肌醇以及溶 血甘油磷脂异构体。 胆固醇及 类化合物 (类固醇)等物质对于生物体维持正常的新陈代谢 和生殖过程, 起着重要的调节作用, 主要包括胆固醇、 胆酸、 性激素及维生素 D等。
( 3 ) 核酸
由许多核苷酸聚合成的生物大分子化合物, 为生命的最基本物质之一。 核酸广泛存在于 所有动物、 植物细胞、 ^:生物内、 生物体内核酸常与蛋白质结合形成核蛋白。 根据化学组成 不同, 核酸可分为核糖核酸和脱氧核糖核酸。
( 4 ) 多肽和蛋白质
蛋白质是组成生命的基础, 更具体的蛋白质和多肽包括: 激素, 如垂体激素、 甲状腺激 素、 雄性激素、 雌性激素以及肾上腺素等; 血清蛋白, 如血红蛋白以及血液因子等; 免疫球 蛋白, 如 IgG、 IgE、 IgM、 IgA以及 IgD等; 细胞因子, 如白介素、 干扰素、 粒细胞集落刺 激因子、 巨噬细胞集落刺激因子、 粒细胞 -巨噬细胞集落刺激因子、 血小板源生长因子、 磷脂 酶激活蛋白、 胰岛素、 高血糖素、 凝集素、 蓖麻毒蛋白、 肿瘤坏死因子、 表皮细胞生长因子、 血管内皮生长因子、 神经生长因子、 骨生长因子、 胰岛素样生长因子、 肝素结合生长因子、 肿瘤生长因子、 胶质细胞系源神经营养因子、 巨噬细胞分化因子、 分化诱导因子、 白血病抑 制因子、 双调节素、 生长调节素、 促红细胞生长素、 血细胞生长素、 凝血细胞生长素以及降 钙素; 酶, 如蛋白水解酶、 氧化还原酶、 转移酶、 水解酶、 裂解酶、 异构酶、 连接酶、 天冬 胺酶、 精氨酸酶、 精氨酸脱氨酶、 腺苷脱氨酶、 超氧化物歧化酶、 内毒素酶、 过氧化氢酶、 糜蛋白酶、 脂肪酶、 尿酸酶、 弹性酶、 链激酶、 尿激酶、 尿激酶原、 腺苷二碑酸酶、 酪氨酸 酶、 胆红素氧化酶、 葡萄糖氧化酶、 葡萄糖酶以及葡萄苷酸酶; 单克隆或多克隆抗体及其片 段; 多聚氨酸, 如聚 L-赖氨酸, 聚 D-赖氨酸等; 疫苗、 抗原以及病毒, 如乙型肝炎疫苗、 疟 疾疫苗、 黑素瘤疫苗、 HIV-1疫苗等。
( 5 )其他
维生素是人和动物为维持正常的生理功能而必需从食物中获得的一类^:量有机物质, 在 人体生长、 代谢、 发育过程中发挥着重要的作用。 更具体的维生素包括维生素 A、 维生素 B、 维生素 C、 维生素 E、 以及维生素 K等。
小分子药物没有受到限制, 优选抗癌药物和抗真菌药物。 更具体的抗癌药物优选紫杉醇、 阿霉素、 多柔比星、 顺铂、 道诺霉素、 丝裂霉素、 长春新碱、 表柔比星、 甲氨蝶呤、 5-氟尿 嘧啶、 阿克拉霉素、 伊达霉素、 博来霉素、 吡柔比星、 培洛霉素、 万古霉素以及喜树碱等。 更具体的抗真菌药物优选两性霉素 B、 制霉菌素、 氟代胞嘧啶、 咪康唑、 氟康唑、 伊曲康唑、 酮康唑以及肽抗真菌药物。
脂质体、 细胞、 胶束等该领域技术人员所熟知的生物相关物质等。
生物相关物质的反应基团与单一官能化支化聚乙二醇的活性基团反应, 生成共价残基基 团 L3, 连接生物相关物质和所述支化聚乙二醇。 其中, 残基 L3优选三氮唑、 异恶唑、 醚基、 酰胺基、 亚酰胺基、 亚胺基、 仲氨基、 叔胺基、 硫酯基、 硫醚基、 二硫基、 尿烷基、 硫代碳 酸酯基、 磺酸酯基、 磺酰胺基、 氨基甲酸酯基、 酪氨酸基、 半胱氨酸基、 组氨酸基及其组合。
残基 L3结构与生物相关物质的反应基团以及聚乙二醇的官能团有关。 例如: 含有氨基的 生物相关物质分别与含有活性酯、 甲酸活性酯、 磺酸酯、 醛、 α,β-不饱和键、 羧酸基团的聚 乙二醇反应得到带酰胺基、 尿烷基、 氨基、 亚胺基(可进一步还原成仲胺基)、 氨基、 酰胺基 等基团连接的聚乙二醇修饰物; 含有疏基的生物相关物质分别与含有活性酯、 甲酸活性酯、 磺酸酯、 S基、 马来酰亚胺、 醛、 α,β-不饱和键、 羧酸基团的聚乙二醇反应得到带硫酯基、 硫代碳酸酯、 硫醚、 二硫化物、 硫醚、 硫代半缩醛、 硫醚、 硫酯等基团连接的聚乙二醇修饰 物; 含有不饱和键的生物相关物质与含有 S基的聚乙二醇反应得到带硫醚基团连接的聚乙二 醇修饰物; 含有羧酸的生物相关物质分别与含有 S基氨基的聚乙二醇反应得到带硫酯基、 酰 胺基等基团连接的聚乙二醇修饰物。 下面结合一些具体实施方式对本发明所述单一官能化的支化聚乙二醇及其制备方法做进 一步描述。 具体实施例为进一步详细说明本发明, 非限定本发明的保护范围。
实施例 1: R为类 H时单一官能化的支化聚乙二醇的制备
化合物 H1-1的制备
在本例中, 类 H化合物选定 Ι^ = Οί2, L2= CH2, Ri = H, Xi = X2= CH3, p = 1 , q = 0, 小分子引发剂对称轴末端羟基的保护基 PG = TBS。 设计总分子量约为 20000, 其中两个分支 链的分子量约为 2*8500 = 17000, 即 - n2- 193;对称轴主链的分子量约为 3000, 即 n3 - 68。
Figure imgf000026_0001
a、 往无水无氧的密闭反应釜中, 依次加入四氢呋喃 (250 mL )、 小分子引发剂 (2.532 mmol )和二苯基甲基钾 ( 4.0 mmol );
b、 加入计算量的环氧乙烷(50 mL ), 逐步升温至温度为 60 °C , 反应 48小时; c、 加入过量的二苯基甲基钾(40 mmol ), 然后加入过量碘甲烷( 100 mmol ), 反应温度 在 30 °C , 反应时间为 12小时; 将反应釜打开, 溶剂浓缩后, 在 0°C无水乙醚中沉淀, 过滤, 干燥, 即得对称轴主链端部羟基硅醚保护的中间体 6-1 ;
Figure imgf000027_0001
6-1
本例所述中间体 6-1的氢语数据如下:
1HNMR (CDC13) δ (ppm): 0.21 (-Si(CH3)2), 0.98 (-SiC(CH3)3), 2.51 (-CH(CH2)3-), 3.35 (CH^O-), 3.40-3.80 (-CH2CH20-, -CH-CH2-OSi-); Mn = 17000, PDI = 1.03。
d、 在干燥洁净的容器中加入步骤 c中制得的中间体 6-1, 用四氢呋喃溶解, 加入四叔丁 基氟化铵(TBAF), 反应过夜后, 即得到羟基棵露的中间体 7。
本例所述中间体 7的氢语数据如下:
1H NMR (CDC13) δ (ppm): 2.52 (-CH(CH2)3-) , 3.35 (CH^O-), 3.40-3.80 (-CH2CH20-, -CH-CH2O-); Mn = 17000, PDI =1.03。
e、重复(a)、 (b)反应步骤,最后加入过量的质子源(如曱醇),得到化合物 Η1-1(Ι^ = Οί2, L2=CH2, Ri = H, Xi = X = CH3, p = 1, q = 0 )。
Figure imgf000027_0002
化合物 m-i的氢语数据如下:
1H NMR (CDCI3) δ (ppm): 2.51 (-CH(CH2)3-), 3.35 (CH^O-), 3.40-3.80 (-CH2CH20-, -CHCH2O-); Mn = 20000, PDI = 1.05 (分子量约为 2 * 8500 + 3000 = 20000, 其中对称轴主链的 分子量约为 3000)。
化合物 Η1-2的制备
在本例中, 类 Η化合物选定 1^ = 0¾,1^2=0¾, Ri = H, X1 =X2=CH3, p = 1, q = 0, 小 分子引发剂对称轴末端羟基的保护基 PG = EE。设计总分子量约为 40000,其中两个分支链的 分子量约为 2*8500= 17000, ?? ηι2~ 193; 3-522。
Figure imgf000027_0003
a、 往无水无氧的密闭反应釜中, 依次加入四氢呋喃 (250mL)、 引发剂 ( 2.532 mmol ) 和二苯基曱基钾(4.0 mmol);
b、 加入计算量的环氧乙烷(50 mL), 逐步升温温度至 60 °C, 反应 48小时;
c、 加入过量的二苯基曱基钾(40 mmol), 然后加入过量碘曱烷( 100 mmol ), 反应温度 在 30 °C,反应时间为 12小时; 将反应釜打开, 溶剂浓缩后,在 0 °C无水乙醚中沉淀, 过滤, 干燥, 即得对称轴主链端部羟基缩搭保护的中间体 6-2;
Figure imgf000028_0001
本例所述中间体 6-2的氢语数据如下:
1H NMR (CDC13) δ (ppm): 1.22 (-OCH2CH3), 1.30 (-OCH(0)CH3), 2.51 (-CH(CH2)3-) , 3.35 (CH30-), 3.40-3.80 (-CH2CH20-, -CHCH20-, OCH2CH3), 4.75 (-OCHCH3(OCH2)); Mn = 17000, PDI = 1.03。
d、 在干燥洁净的容器中加入步骤 c中制得的 V型聚乙二醇, 用曱醇溶解, 加入 1M盐 酸至 pH = 1.0 , 反应 4小时后, 即得到羟基棵露的中间体 7。
本例所述中间体 7的氢语数据如下:
1H NMR (CDC13) δ (ppm): 2.52 (-CH(CH2)3), 3.35 (CH3O-), 3.40-3.80 (-CH2CH20-, -CHCH2O-); Mn = 17000, PDI =1.03。
e、重复(a)、(b)反应步骤,最后加入过量的质子源(如曱醇),得到化合物 Η1-2(Ι^ =。Η2, L2=CH2, Ri = H, Xi =X = CH3, p= 1, q = 0 )。
Figure imgf000028_0002
化合物 m-2的氢语数据如下:
1H NMR (CDCI3) δ (ppm): 2.51 (-CH(CH2)3), 3.35 (CH^O-), 3.40-3.80 (-CH2CH20-, -CHCH2O-); Mn = 40000, PDI = 1.10 (分子量约为 2 * 8500 + 23000 = 40000, 其 对称轴主链 的分子量约为 23000)。
化合物 Η1-3的制备
在本例中, 类 Η化合物选定 LF CH L2= CH2, Ri =H, Xi =X2=CH3, p = 1, q = 0, 小分子引发剂对称轴末端羟基的保护基 PG = Bn。设计总分子量约为 30000, 其中两个分支链 的分子量约为 0,即 n3 - 227。
Figure imgf000028_0003
a、 往无水无氧的密闭反应釜中, 依次加入四氢呋喃 (250 mL)、 引发剂 (2.02 mmol ) 和二苯基曱基钾 ( 3.2 mmol );
b、 加入计算量的环氧乙烷(50 mL), 逐步升温温度至 60 °C, 反应 48小时;
c、 加入过量的二苯基曱基钾 (32 mmol), 然后加入过量碘曱烷(54 mmol), 反应温度 在 30 °C,反应时间为 12小时; 将反应釜打开, 溶剂浓缩后,在 0 °C无水乙醚中沉淀, 过滤, 干燥, 即得对称轴主链端部羟基苄基保护的中间体 6-3;
Figure imgf000029_0001
6-3
本例所述中间体 6-3的氢语数据如下:
1H NMR (CDC13) δ (ppm) 2.51 (-CH(CH2)3), 3.35 (CH^O-), 3.40-3.80 (-CH2CH20-, -CHCH2O-) , 4.70 (OCH2C6H5), 7.35-7.50 (OCH2C6H5); Mn = 20000, PDI = 1.05。
d、 在干燥洁净的容器中依次加入步骤 c中制得的 V型聚乙二醇(经共沸除水)和等质 量的 5% Pd/C, 氮气保护, 加入环己烯, 40 °C下反应 4小时, 抽滤, 乙酸乙酯洗涤, 浓缩, 乙醚沉淀, 即得到羟基棵露的中间体 7。
本例所述中间体 7的氢语数据如下:
1H NMR (CDC13) δ (ppm): 2.52 (-CH(CH2)3-) , 3.35 (CH^O-), 3.40-3.80 (-CH2CH20-, -CHCH2O-); Mn = 20000, PDI = 1.05。
e、重复 ( a )、 (b)反应步骤,最后加入过量的质子源(如曱醇),得到化合物 Η1-3 ( = CH2, L2= CH2, Ri = H, Xi = X = CH3, p = 1 , q = 0 )。
Figure imgf000029_0002
化合物 m-3的氢语数据如下:
1H NMR (CDCI3) δ (ppm): 2.51 (CH(CH2)3), 3.35 (CH^O-), 3.40-3.80 (-CH2CH20-, -CH-CH2-O); Mn= 30000, PDI = 1.10 (分子量约为 2 * 10000 + 10000 = 30000, 其中对称轴主 链的分子量约为 10000 )。
实施例 2活性酯衍生物的制备
活性酯 A1-1的合成
活性酯( A1-1 )的合成,其中 Ι^ =。Η2, L2 = CH2, R4 = H, 丄二 ^^, Ζ为 OCH2CH20, p =1 , q = 1 , 分子量约为 20000, 其中 、 n2、 n3的取值同化合物 Hl-1。 本实施例直接釆用 化合物 H1-1对称轴主链末端的羟基与碳酸酯反应制备相应的活性酯。
Figure imgf000029_0003
A1 -1
在干燥洁净的 1 L圆底烧瓶中加入 40 g实施例 1中制得的支化聚乙二醇(H1-1 , 经曱苯 共沸除水) 、 500 mL乙腈、 40 mL三乙胺和 10 g Ν,Ν'-二琥珀酰亚胺基碳酸酯, 在室温下反 应 24小时后, 浓缩, 异丙醇重结晶, 得到白色固体的活性酯 (A1-1 ) 。
活性酯 A1-1的氢语数据如下:
1H NMR (CDC13) δ (ppm): 2.51 (-CH(CH2)3-) , 2.80 (-(0=)CCH2CH2C(=0)-), 3.35 (CH^O-), 3.40-3.80 (-CH2CH20-, -CHCH2O-) , 4.15 (-CH2OCO -)。
碳酸对硝基苯酯化合物 A2-1的合成
碳酸对硝基苯酯化合物( A2-1 )的合成, 其中 = CH2, L2 = CH2, Ri = H, Xi = X2= CH3, Z为 = 1 , q = l , 分子量约为 20000, 其中 、 n2、 n3的取值同化合物 Hl-1。
Figure imgf000030_0001
A2-1 在装有冷凝管的 1 L圆底烧瓶中加入 40 g实施例 1中制得的支化聚乙二醇(H1-1 , 经甲 苯共沸除水) 、 500 mL甲苯、 40 mL三乙胺和 10 g 氯甲酸对硝基苯酯, 在 80 °C下反应 24 小时后, 过滤, 浓缩, 异丙醇重结晶, 得到碳酸对硝基苯酯化合物 (A2-1 ) 。
碳酸对硝基苯酯化合物 A2-1的氢语数据如下:
1H NMR (CDC13) δ (ppm): 2.51 (-CH(CH2)3-) , 3.35 (CH^O-) , 3.40-3.80 (-CH2CH20-, -CHCH2O-) , 4.30-4.50 (-CH2OCO-), 7.40 (-C6H4N02), 8.28 ((-C6H4N02)。
活性酯 Al-2的合成
活性酯(Al-2 )的合成, 其中 1^ = 0¾, 1^2= 0¾, Ri = H, X1 = X2= CH3, Z为 OCH2, p = 1 , q = 1 , 分子量约为 20000。
Figure imgf000030_0002
在干燥洁净的 1 L圆底烧瓶中加入 40 g实施例 4得到的支化聚乙二醇乙酸衍生物( D4-1 )、 20 mL三乙胺和 10 g N-羟基琥珀酰亚胺, 氮气保护, 加入溶剂二氯甲烷( 500 mL ) , 搅拌至 溶解, 再加入 20 g二环己烷碳二亚胺(DCC ) 的二氯甲烷溶液, 室温下反应 24小时后, 过 滤除去不溶物, 浓缩, 异丙醇重结晶, 得到白色固体的活性酯 (A1-2 ) 。
活性酯 A1-2的氢语数据如下:
1H NMR (CDC13) δ (ppm): 2.51 (-CH(CH2)3-) , 2.81 (-(0=)CCH2CH2C(=0)-) , 2.83 (-(0=)CCH2CH2C(=0)-), 3.35 (CH30-), 3.40-3.80 (-CH2CH20-, -CHCH20-),4.61 (-OCH2COO -)。
实施例 3磺酸酯衍生物的的制备
磺酸酯 B1-1的合成
磺酸酯(B1-1 )的合成, 其中 R为 OTs, Li = CH2, L2 = CH2, Ri = H, X1=X2= CH3, p = 1 , q = 0, 分子量约为 20000, 其中 、 n2、 n3的取值同化合物 Hl-1。
Figure imgf000030_0003
在干燥洁净的 1 L圆底烧瓶中加入 40 g实施例 1中制得支化聚乙二醇(H1-1 )后, 氮气 保护, 加入 500 mL无水无氧的二氯甲烷、 20 mL吡啶和 5 g对甲苯磺酰氯, 在室温下反应 24 小时后,加入 1 mol/L盐酸中和至 pH = 7后, 水相用二氯甲烷洗涤( 3*50 mL ) ,合并有机相, 饱和食盐水洗, 无水硫酸钠干燥, 过滤, 浓缩, 重结晶, 得到的磺酸酯 (B1-1 ) 。
磺酸酯 B1-1的氢谱数据如下:
1H NMR (CDC13) δ (ppm): 2.42 (CHjC6H4S02-) , 2.51 (-CH(CH2)3), 3.35 (CH3O-) , 3.40-3.80 (-CH2CH20-, -CHCH2O-) , 7.30 (CH3C6H4SO2-), 7.80 (CH3C6H4S02-)。
实施例 4 后钾
硫基衍生物 C2-2的合成
S基衍生物 (C2-2) 的合成, 其中 R = SH, L! = CH2,L2 = CH2, R1 =H, X1=X2=CH: p=l, q = 0, 分子量 -1。
Figure imgf000031_0001
A: 在干燥洁净的 1 L圆底烧瓶中加入 40 g实施例 3中制得支化聚乙二醇磺酸酯( B1-1 ) 氮气保护, 加入 400 mL四氢呋喃、 16 mLDMF, 搅拌至完全溶解, 加入 10 g乙基横酸 在室温下反应 24小时后, 浓缩后, 加入 400mL二氯甲烷后, 过滤除去不溶物, 用饱和 食盐水洗涤(3* 中间体(C2-l)。
Figure imgf000031_0002
中间体 C2- 1的氢语数据如下:
1H NMR (CDC13) δ (ppm): 0.9 (CH^CH2OCS-) , 2.51 (-CH(CH2)3-), 2.82 (-OCH2CH2S-) , 3.35 (CH^O-), 3.40-3.80 (-CH2CH20-, -CHCH20-, -SCH2CH20-, C¾CH2OCS -)。
B: 在干燥洁净的 400 mL圆底烧瓶中加入 20 g步骤 A制得的支化聚乙二醇硫酸酯衍生 物 (C2-1)后, 氮气保护, 加入 200 mL四氢呋喃、 搅拌至完全溶解, 加入 10 mL正丙胺, 在室温下反应 24小时后, 浓缩, 除氧的异丙醇重结晶, 得到白色或淡黄色固体的 基衍生物 ( C2-2 )。
硫基衍生物 C2-2的氢谱数据如下:
1H NMR (CDC13) δ (ppm): 2.51 (-CH(CH2)3-) , 2.85 (-OCH2CH2SH) , 3.35 (CH^O-), 3.40-3.80 (-OCH2CH20-, -CHCH20-, -OCH2CH2SH)。
胺类衍生物 C3-1的合成
胺类衍生物(C3-1 )的合成, 其中 R = NH2, Li =CH2, L2 = CH2, Ri = H, X1 = X2=CH3, p=l, q = 0, 分子 -1。
Figure imgf000031_0003
在干燥洁净的 1 L圆底烧瓶中加入 40 g实施例 3中制得支化聚乙二醇磺酸酯 (B1-1 )后 加入 800 mL氨水溶液(质量分数为 40%), 搅拌至完全溶解, 在室温下反应一周后, 用二氯 甲烷(3 * 200mL), 合并有机相, 饱和食盐水洗涤, 干燥, 过滤, 浓缩, 重结晶, 得到白色 胺类衍生物 (C3-l)。
所述胺类衍生物 C3-1的氢语数据如下:
1HNMR (CDC13) δ (ppm): 2.51 (-CH(CH2)3-) , 2.85 (-CH2CH2NH2) , 3.35 (CH )-), 3.40-3.80 (-CH2CH20-, -CHCH2O-, -OCH2CH2NH2)。
胺类衍生物 C3-2的合成 胺类衍生物 (C3-2) 的合成, 其中 R = OCH2CH2CH2NH2, = CH2, L2 = CH2, R1 = H, X1 =X2=CH3, Z为 OCH2CH2CH2, p = 1, q = l, 分子量约为 40000, 其中 、 n2、 n3的数值 与化合物 -2相同。
Figure imgf000032_0001
A: 在干燥洁净的 1 L圆底烧瓶中加入 40 g实施例 1中制得支化聚乙二醇(H1-2)后, 氮气保护, 加入 500 mL 1,4-二氧六环, 搅拌至溶解后, 在水浴下, 加入 10克 50%的氢氧化 钾溶液, 滴加丙烯基氰, 室温下反应 24小时, 用 1 mol/L的盐酸中和至 pH = 7后, 浓缩除去 1,4-二氧六环, 加入 100 mL去离子水溶解、 水相用二氯甲烷洗涤(3 * 50 mL) , 合并有机相, 饱和食盐水洗, -1) 。
Figure imgf000032_0002
中间体 F1-1的氢谱数据如下:
1H NMR (CDC13) δ (ppm): 2.51 (-CH(CH2)3-), 2.60(-CH2CH2CN), 3.35 (CH^O-), 3.40-3.80 (-CH2CH2O-, -CHCH2O-, -OCH2CH2CN); Mn = 40000, PDI = 1.10。
B: 1L高压反应釜中加入 50g步骤 A制得的中间体 Fl-1, 加入 500 mL甲苯, 加热至 溶解, 加入 5.0克镍或钯碳, 用氨力。压至 0.7 MPa, 然后用氢气加压至 4.5 MPa, 在 130 °C下 反应过夜, 待反应完全后, 过滤, 浓缩, 异丙醇重结晶, 得到白色胺类衍生物 (C3-2)。
所述白色胺类衍生物 C3-2的氢语数据如下:
1HNMR (CDC13) δ (ppm): 1.81 (-CH2CH2CH2NH2), 2.51 (-CH(CH2)3-), 2.83 (-CH2CH2NH2) , 3.35 (CH30-), 3.40-3.80 (-CH2CH20-, -CHCH20-, -OCH2CH2NH2); Mn = 40000, PDI = 1.10。
酰肼衍生物 D2-1的合成
酰肼衍生物 (D2-1) 的合成, 其中 R = OCH2CONHNH2, Li = CH2, L2 = CH2, Ri = H, X1 =X2=CH3, Z为 OCH2, p= 1, q=l, 分子量约为 20000, 其中 、 n2、 n3的数值与化合 物 Hl-1相同。
Figure imgf000032_0003
A: 在干燥洁净的 1 L圆底烧瓶中加入 0.32 g氢化钠 ( 60重量% 在油中;), 氮气保护, 加入 400 mL无水四氢呋喃, 水浴下緩慢滴加 40 g实施例 1中制得支化聚乙二醇(H1-1, 甲 苯共沸除水)的四氢呋喃溶液, 室温搅拌 3小时后, 加入 2.2 mL溴代乙酸乙酯, 室温下反应 24 h, 加入少量的饱和氯化铵溶液淬灭反应后, 浓缩, 加入 400 mL二氯甲烷溶液, 用饱和食 盐水(3* 100 mL) 洗涤, 干燥, 浓缩, 重结晶得白色支化聚乙二醇酯类中间体(D2,)。
Figure imgf000033_0001
所述中间体 D2,的氢谱数据如下:
1H NMR (CDC13) δ (ppm): 1.31 (-COOCH2CH3), 2.51 (-CH(CH2)3-) , 3.35 (CH^O-) , 3.40-3.80 (-CH2CH2O- , -CHCH2O- , -OCH2CH3) , 4.33 (-OCH2COO-); Mn = 20000, PDI = 1.05。
B.在干燥洁净的 500 mL圆底烧瓶中加入 40 g步骤 A制得支化聚乙二醇酯类中间体( D2, ) 后, 加入 200 mL 80%水合肼, 搅拌至完全溶解, 在室温下反应 24小时后, 加入 200 mL去离 子水, 用二氯曱烷(3 * 100 mL )萃取, 合并有机相, 饱和食盐水洗涤, 干燥, 过滤, 浓缩, 重结晶, 得到酰肼化合物 ( D2-1 )。
所述酰肼化合物 D2-1的氢谱数据如下:
1H NMR (CDC13) δ (ppm): 2.21 (-OCH2CONH2NH2), 2.51 (-CH(CH2)3— ) , 3.35 (CH^O-) , 3.40-3.80 (-CH2CH20-, -CHCH2O- ) , 4.26 (-CH2CONH2), 7.52 (-CH2CONH2NH2); Mn = 20000, PDI = 1.05。
酰胺衍生物 Dl-1的合成
酰胺衍生物(Dl-1 ) 的合成, 其中 R = OCH2CONH2, Li = CH2, L2 = CH2, Ri = H, Xi = X2 = CH3, Z为 OCH2, p = 1 , q = 1 , 分子量约为 20000, 其中 、 n2、 n3的数值与化合物 Hl-1 相同。
Figure imgf000033_0002
在干燥洁净的 500 mL高压反应釜中加入 40 g实施例 4-4步骤 A得到的支化聚乙二醇酯 类中间体( D2,)后, 加入 200 mL 34%氨水, 搅拌至完全溶解, 在 80 °C下反应 24小时后, 加入 200 mL去离子水, 用二氯曱烷(3 * 100 mL )萃取, 合并有机相, 饱和食盐水洗涤, 干 燥, 过滤, 浓缩, 重结晶, 得到白色酰胺化合物 (Dl-1 )。
酰胺化合物 D 1 - 1的氢谱数据如下:
1H NMR (CDC13) δ (ppm): 2.51 (CH(CH2)3) , 3.35 (CH3O-) , 3.40-3.80 (-CH2CH20-, -CHCH2O-) , 4.26 (-OCH2CONH2), 5.52 (-CH2CONH2); Mn = 20000, PDI = 1.05。
羧酸类衍生物 D4-1的合成
羧酸类衍生物( D4-1 )的合成, 其中 R = OCH2COOH, = CH2, L2 = CH2, = H, = X2 = CH3, Z为 OCH2, p = 1 , q = 1 , 分子量约为 20000, 其中 、 n2、 n3的数值与化合物 Hl-1 相同。
Figure imgf000033_0003
在干燥洁净的 500 mL高压反应釜中加入 40 g实施例 4-4步骤 A得到的支化聚乙二醇酯 类中间体(D2,)后, 加入 200 mL 1 mol/L氢氧化钠水溶液, 搅拌至完全溶解, 在 80 °C下反 应 24小时后, 水浴下, 用 3 mol/L HC1酸化至 pH = 3 , 水相用二氯曱烷( 3*100 mL )萃取, 合并有机相, 饱和食盐水洗涤, 干燥, 过滤, 浓缩, 重结晶, 得到白色羧酸衍生物 (D4-l )。
酰胺化合物 D4-1的氢谱数据如下: 1H NMR (CDCI3) δ (ppm): 2.51 (-CH(CH2)3-) , 3.35 (CH^O-), 3.40-3.80 (-CH2CH20- -CHCH2O-) , 4.31 (-OCH2COOH); Mn = 20000, PDI =1.05。
实施例 5
a,; ^不饱和酸酯 E2-1的合成
O
O- -^-C=CH2
不饱和酸酯(E2-1 )的合成, 其中 R = H , Li = CH2, L2 = CH2, Ri=H,
X1 = X2=CH3, Z为 OCH2CH20, p = 1, q = l, 分子量约为 30000, 其中 、 n2、 n3的数值与 化合物 Hl-3相
Figure imgf000034_0001
在干燥洁净的 1 L圆底烧瓶中加入 40 g实施例 1中制得支化聚乙二醇(H1-3, 曱苯共沸 除水)后, 氮气保护, 加入无水无氧 600 mL的四氢呋喃, 室温搅拌至溶解, 水浴下, 依次加 入 10 mL三乙胺和 2 mL丙烯酰氯, 室温下反应 24h, 浓缩, 加入 200mL去离子水, 用二氯 曱烷(3*75mL)萃取, 合并有机相, 用饱和食盐水(3*50 mL)洗涤, 干燥, 浓缩, 重结 晶得白色固体产物 (E2-l)。
a, 不饱和酸酯 E2-1的氢语数据如下:
1H NMR (CDC13) δ (ppm): 2.51 (-CH(CH2)3-) , 3.35 (CH^O-), 3.40-3.80 (-CH2CH20-, -CHCH2O-, -OCH2CH2OCO-), 4.28 (-CH2CH2OCO-) , 5.60-6.31 (CH2=CHCOO-); Mn = 30000, PDI = 1.10。
丙烯基醚衍生物 F2-1的合成
丙烯基醚衍生物(F2-1 )的合成, 其中 R = OCH2CH=CH2, L! = CH2, L2 = CH2, R1 =H, Xi = X2= CH3, Z为 OCH2CH20, p = 1, q = 1, 分子量约为 30000, 其中 、 n2、 n3的数值 与化合物 Hl-3
Figure imgf000034_0002
在干燥洁净的 i L圆底烧瓶中加入 0.32 g氢化钠 ( 60重量% 在矿物油中;), 氮气保护, 加入 400 mL无水四氢呋喃, 水浴下緩慢滴加 40 g实施例 1中制得支化聚乙二醇(H1-3, 曱 苯共沸除水) 的四氢呋喃溶液, 室温搅拌 3小时后, 加入 2mL3-溴丙烯, 室温下反应 24h, 加入少量的饱和氯化铵溶液淬灭反应后,浓缩,加入 200 mL二氯曱烷溶液,用饱和食盐水( 3 *50mL) 洗涤, 干燥, 浓缩, 重结晶得白色固体的丙婦基醚衍生物 (F2-l)。
丙烯基醚衍生物 F2- 1的氢谱数据如下:
1H NMR (CDC13) δ (ppm): 2.51 (-CH(CH2)3-) , 3.35 (CH^O-), 3.40-3.80 (-CH2CH20-, -CHCH2O-), 4.05 (-OCH2CH=CH2), 5.31-6.06 (-OCH2CH=CH2); Mn = 30000, PDI = 1.10。
缩水甘油醚衍生物 F4-1的合成
O
缩水甘油醚衍生物( F4-1 )的合成,其中 R= 0-CH2-CH2-0-CH2-^ , = =
Ri = H, X1 =X2=CH3, Z为 OCH2CH2, p = 1, q = 1, 分子量约为 30000, 其中 、 n2、 n3 的数值与化合物 m-3相同。
Figure imgf000035_0001
F4-1
在干燥洁净的 i L圆底烧瓶中加入 0.32 g氢化钠 ( 60重量% 在矿物油中;), 氮气保护, 加入 400 mL无水四氢呋喃, 水浴下緩慢滴加 40 g实施例 1中制得支化聚乙二醇(H1-3, 甲 苯共沸除水)的四氢呋喃溶液,室温搅拌 3小时后,加入 2 mL环氧氯丙烷,室温下反应 24 h, 加入少量的饱和氯化铵溶液淬灭反应后,浓缩,加入 200 mL二氯甲烷溶液,用饱和食盐水( 3 * 50 mL ) 洗涤, 干燥, 浓缩, 重结晶得白色固体, 得到环氧衍生物 (F4-l )。
缩水甘油醚衍生物 F4-1的氢语数据如下:
1H NMR (CDC13) δ (ppm): 2.38 (-CH2CH(0)CH20-), 2.51 (-CH(CH2)3) , 2.63 (-CH2CH(0)CH20-), 3.35 (CH^O-), 3.40-3.80 (-CH2CH20-, -CHCH20-, -CH2CH (0)CH20-); Mn = 30000, PDI = 1.10„
活性炔类化合物 G2-1的合成
活性炔类化合物(G2-1 )的合成, 其中!^ = 0¾ 2 = 0¾, R1 = H, X1 = X2= CH3, Z为 OCH2COO, D4-1相同。
Figure imgf000035_0002
G21
在干燥洁净的 1 L圆底烧瓶中加入 40 g支化聚乙二醇乙酸衍生物(D4-1 ,甲苯共沸除水)、 20 mL三乙胺和 10 g醇( G21 ), 氮气保护, 加入溶剂二氯甲烷( 200 mL ), 搅拌至溶解, 再 加入 20 g二环己烷碳二亚胺(DCC ), 室温下反应 24小时后, 过滤除去不溶物, 浓缩, 异丙 醇重结晶, 得到白色固体的活性炔类化合物 ( G2-1 )。
活性炔类化合物 G2-1的氢语数据如下:
1H NMR (CDC13) δ (ppm): 2.51 (-CH(CH2)3-) , 2.91-3.15 (PhCH2CH-), 3.35 (CH^O-), 3.40-3.80 (-CH2CH20-, PhCH2CH(0)CH2-), 4.53 (-OCH2COO-), 7.32-7.54 (C6H4-); Mn = 20000, PDI = 1.05。
实施例 Ί
乙 M "生物 D5-1的合成
乙醛衍生物(D5-1 )的合成, 其中 R = OCH2CHO, = CH2, L2 = CH2, R1 = H, X1 = X2 = CH3, Z 为 OCH2, p = 1 , q = l , 分子量约为 20000, 其中 、 n2、 n3的数值与化合物 Hl-1 相同。
Figure imgf000036_0001
在干燥洁净的 500 mL圆底烧瓶中加入 40 g实施例 1中制得支化聚乙二醇(H1-1 , 甲苯 共沸除水)后, 氮气保护, 依次加入无水无氧 100 mL二氯甲烷、 100 mL二甲亚砜和 1 mL 吡啶,水浴下,滴加 0.88 mL三氟乙酸,水浴下搅拌 1小时后,滴加 5 g二环己烷碳二亚胺( DCC ) 的二氯甲烷溶液, 室温搅拌 24小时, 过滤除去不溶物, 加入 200 mL二氯甲烷, 依次用去离 子水(3 * 100 mL )、 饱和食盐水洗涤, 合并有机相, 用饱和食盐水(3 * lOO mL ) 洗涤, 干 燥, 浓缩, 重结晶得白色固体, 得到乙醛类衍生物 (D5-l )。
乙醛衍生物 D5-1的氢谱数据如下:
1H NMR (CDC13) δ (ppm): 2.51 (-CH(CH2)3-) , 3.35 (CH^O-), 3.40-3.80 (-CH2CH20-, -CHCH2O-), 4.23 ( -OCH2CHO ), 9.80 ( -OCH2CHO ); Mn = 20000, PDI = 1.05。
丙酪衍生物 D5-2的合成
丙 衍生物( D5-2 )的合成, 其中 R =OCH2CH2 CHO, = CH2, L2 = CH2, R1 = H, = X2= CH3, Z为 OCH2CH2, p = 1 , q = l , 分子量约为 20000, 其中 、 n2、 n3的数值与化合 物 Hl-1相同
Figure imgf000036_0002
A: 在干燥洁净的 1 L圆底烧瓶中依次加入 40 g实施例 1中制得支化聚乙二醇(H1-1 ) 和 5 g氢氧化钠, 氮气保护, 加入 400 mL甲苯后, 滴加 2 mL 2-(2-溴乙基 )-1,3-二恶烷, 加热 至回流反应 24 h后, 加入 400 mL去离子水, 分层, 水相用二氯甲烷( 3*200 mL )萃取, 合 并有机相, 用饱和食盐水(3 * 100 mL )洗涤, 干燥, 浓缩, 重结晶得白色支化聚乙二醇缩醛 中间体(D5, )。
Figure imgf000036_0003
聚乙二醇缩醛中间体 D5'的氢谱数据如下:
1H NMR (CDC13) δ (ppm): 1.91 (-OCH2CH2CHO(0)-) , 2.51 (-CH(CH2)3-), 3.35 (CH3O-) , 3.40-3.90 (-OCH2CH20-, -CHCH20-, -OCH2CH2CHO(0)-) , 4.89 ( -OCH2CH2CHO(0)- )。
B. 在干燥洁净的 1 L圆底烧瓶中加入 40 g步骤 A制得支化聚乙二醇缩醛中间体后, 加 入 400 mL去离子水, 搅拌至完全溶解, 在水浴下, 用 lmol/L HCl, 调节 pH = 1.0, 在室温 下反应 4小时后, 用二氯甲烷(3 * 200 mL )萃取, 合并有机相, 饱和食盐水洗涤, 干燥, 过 滤, 浓缩, 重结晶, 得到白色聚乙二醇醛类衍生物 ( D5-2 )。
聚乙二醇醛类衍生物 D5-2的氢语数据如下:
1H NMR (CDC13) δ (ppm): 2.51 (-CH(CH2)3), 2.63 ( -OCH2CH2CHO ) 3.35 (CH^O-), 3.40-3.80 (-CH2CH20-, -CHCH2O-, -OCH2CH2CHO), 9.75 ( -OCH2CH2CHO ); Mn = 20000, PDI = 1.05。
实施例 8
马来酰亚胺类衍生物 E1-1的合成
马来酰亚胺类衍生物(E1-1 )的合成, 其中 R
Figure imgf000037_0001
, Li = CH2, L2― CH:
Ri = H, Xi =X2=CH3, Z为 NHCOCH2CH2, p= 1, q= 1, 分子量约为 20000, 其中 、 n2、 n3的数值与化合物 C3-1相同。
Figure imgf000037_0002
在干燥洁净的 1 L圆底烧瓶中加入 40 g由实施例 4-2制备的支化聚乙二醇胺衍生物( C3-1, 经甲苯共沸除水)和 10 g 马来酰亚胺丙酸(E11), 氮气保护,加入溶剂二氯甲烷(600 mL), 搅拌至溶解后, 再依次加入 20 mL三乙胺、 20 g二环己烷碳二亚胺(DCC), 室温下反应 24 小时后, 过滤除去不溶物, 浓缩, 异丙醇重结晶, 得到白色马来酰亚胺类衍生物 (El-1)。
所述马来酰亚胺类衍生物 E1-1的氢语数据如下:
1H NMR (CDC13) δ (ppm): 2.51 (-CH(CH2)3), 2.70 (-NHCOCH2CH2-) , 3.35 (CH^O-), 3.40-3.80 (-CH2CH20- , -CHCH2O- , -NHCOCH2CH2N-) , 3.92 (-NHCOCH2CH2N-) , 6.81 (-CH=CH-); Mn = 20000, PDI =1.05。
实施例 9: 乙酸类衍生物 (D4-1 )修饰紫杉醇的制备方法
在干燥洁净的 250 mL圆底烧瓶中加入 1.8 g由实施例 4制备的支化聚乙二醇乙酸衍生物 (D4-1, 分子量约 20000, 经甲苯共沸除水)、 90mg紫杉醇和 12mgDMAP, 氮气保护, 加 入溶剂二氯甲烷(50mL), 搅拌至溶解后, 緩慢滴加 30 mg二环己烷碳二亚胺( DCC ) 的二 氯甲烷溶液, 室温下反应 24小时后, 过滤除去不溶物, 浓缩, 乙醚沉淀, 得到聚乙二醇修饰 后的紫杉醇。 产率: 1.7克 (87%)。
Figure imgf000038_0001
实施例 10: 聚乙二醇琥珀酰亚胺衍生物 (A1-2 )修饰; ^干扰素的制备方法
在干燥洁净的 50 mL圆底烧瓶中加入 60 mg由实施例 2-3制备的支化聚乙二醇琥珀酰亚 胺衍生物 (A1-2, 分子量为 20000 ), 氮气保护, 加入 7.5 mL含有 干扰素 (l g/L ) 的 PBS 緩冲盐溶液, pH = 8.0,在 25 °C下震摇 7小时后,在 4 °C条件下震摇 24小时,在加入 7.5 mL pH = 8.0的 PBS緩冲盐溶液, 稀释至 干扰素浓度为 0.5 g/L, 再通过琼脂糖凝胶交换树脂纯 化, 分别收集单取代、 双取代的成分, 超滤浓缩。 最终产物用 SDS-PAGE显示其中没有游离 的 干扰素, GPC显示没有游离的 PEG分子。
实施例 11: 聚乙二醇马来酰亚胺衍生物 (E1-1 )修饰溶菌酶的制备方法
在干燥洁净的 50 mL圆底烧瓶中加入 10 mL含有蛋白溶菌酶( 0.5 mmol/L ) 的磷酸盐緩 冲溶液( pH = 7.4 ), 震摇至溶解后, 冷却至 4 V , 加入 2.5摩尔当量 2-亚氨基 烷盐酸盐, 反应 24小时后, 蛋白溶菌酶上的氨基全部转化为疏基, 除去过量的 2-亚氨基硫烷盐酸盐后, 加入 3摩尔当量由实施例 8制得的支化聚乙二醇马来酰亚胺衍生物(E1-1 , 分子量为 20000 ) 后, 4 °C条件下反应 24 小时后, 除去无机盐, 离子交换树脂纯化。 最终产物用 SDS-PAGE 显示其中没有游离的溶菌酶, GPC显示没有游离的 PEG分子。
实施例 12: 聚乙二醇琥珀酰亚胺衍生物 (A1-2 )修饰反义寡脱氧核苷酸的制备方法 在干燥洁净的 50 mL圆底烧瓶中加入 5,-氨基反义寡脱氧核苷酸( 1 mg, 152 nmol )和 10 mL磷酸盐緩冲溶液( pH = 7.0 ), 震摇至溶解, 再加入 3摩尔当量由实施例 2制得的支化聚 乙二醇琥珀酰亚胺乙酸酯衍生物 (A1-2, 分子量为 20000 )后, 室温下反应 4小时后, 在去 离子水中超滤, 除去未反应的聚乙二醇和无机盐, 最终产物用 GPC检测, 没有游离的 PEG 分子。 以上所述仅为本发明的实施例, 并非因此限制本发明的专利范围, 凡是利用本发明说明 书内容所作的等效结构或等效流程变换, 或直接或间接运用在其他相关的技术领域, 均同理 包括在本发明的专利保护范围内。

Claims

权 利 要 求 书
1、 一种单一官能化的支化聚乙二醇, 其特征在于, 所述单一官能化的支化聚乙二醇的通 式如式( 1 )所示:
Figure imgf000039_0001
其中, Xi、 X2各自独立地为具有 1至 20个碳原子的烃基; 、 n2各自独立地为 1~1000 的整数; n3为 11~1000的整数; L2为在光照、 酶、 酸性或碱性条件下稳定存在的连接基 团; p为 0或 1; 为氢原子或至少具有 1至 20个碳的烃基; R为功能性基团。
2、 根据权利要求 1所述单一官能化的支化聚乙二醇, 其特征在于, 所述 X2为甲基、 乙基、 丙基、 丙烯基、 丙块基、 异丙基、 丁基、 叔丁基、 戊基、 庚基、 2-乙基己基、 辛基、 壬基、 癸基、 十一烷基、 十二烷基、 十三烷基、 十四烷基、 十五烷基、 十六烷基、 十七烷基、 十八烷基、 十九烷基、 二十烷基、 苄基或丁基苯基, 且在同一分子中, 可以相同也可以不同。
3、 根据权利要求 1所述单一官能化的支化聚乙二醇, 其特征在于, 所述 L2为具有 1 至 20个碳原子的二价烃基。
4、 根据权利要求 1所述单一官能化的支化聚乙二醇, 其特征在于, 所述 L2为含有 在光照、 酶、 酸性或碱性条件下稳定存在的醚基、 硫醚基、 酰胺基、 双键、 三键或氨基的具 有 1至 20个碳原子的二价烃基。
5、 根据权利要求 1所述单一官能化的支化聚乙二醇, 其特征在于, 所述 为氢原子、 具有 1至 20个碳的烃基或含有在阴离子聚合条件下稳定存在的修饰基团的具有 1至 20个碳 的烃基。
6、根据权利要求 5所述单一官能化的支化聚乙二醇, 其特征在于, 所述在阴离子聚合条 件下稳定存在的修饰基团为酯基、 尿烷基、 酰胺基、 醚基、 双键、 三键、 碳酸酯基或叔胺基。
7、 根据权利要求 1所述单一官能化的支化聚乙二醇, 其特征在于, 所述 R为能与生物 相关物质相互反应的功能性基团。
8、 根据权利要求 1所述单一官能化的支化聚乙二醇, 其特征在于, 所述 R选自以下类 组:
类 A:
Figure imgf000039_0002
Figure imgf000039_0003
Figure imgf000040_0001
Figure imgf000041_0001
H1
其中 Z为亚烷基或含有酯基、 尿烷基、 酰胺基、 醚基、 双键、 三键、 碳酸酯基或仲胺基 等在光照、 酶、 酸性、 碱性条件下稳定存在基团的亚烷基;
q为 0或 1;
Y为具有 1至 10个碳原子的烃基或包括氟原子的具有 1至 10个碳原子的烃基;
Q为氢或有助于不饱和键电子的诱导、 共轭效应的基团;
M为位于环上的碳原子或氮原子;
W为卤原子。
9、 根据权利要求 1所述单一官能化的支化聚乙二醇, 其特征在于, 所述 n3为 11~200的 整数。
10、 一种权利要求 1~9任意一项权利要求所述单一官能化的支化聚乙二醇的制备方法, 其特征在于, 包括如下步骤:
a) 以含有对称羟基的小分子引发剂 (4) 与碱组成共引发体系, 引发环氧乙烷聚合, 生 成两条分支链, 并进行去质子化, 得到中间体(5);
b)对步骤 a)所得中间体(5) 的两条分支链的活性引发点进行封端, 得到中间体(6); c )对步骤 b )所得中间体( 6 ) 的对称轴末端羟基的脱保护, 得到中间体( 7 );
d)对步骤 c)所得中间体(7) 的对称轴端羟基引发环氧乙烷聚合, 生成对称轴主链, 得到中间体 (3);
e)对步骤 d)所得中间体(3)进行对称轴主链末端的官能团修饰, 得到式(1)所述单 一官能化的支化聚乙二醇;
Figure imgf000042_0001
所述 PG为羟基保护基团。
11、 一种聚乙二醇修饰的生物相关物盾, 其特征在于, 所述聚乙二醇修饰的生物相关物 质的通式如式(2 )所示:
Figure imgf000042_0002
2
其中, Xi、 X2各自独立地为具有 1至 20个碳原子的烃基; ηι、 n2各自独立地为 1~ 1000 的整数; n3为 11~1000的整数; L2为在光照、 酶、 酸性或碱性条件下稳定存在的连接基 团; p为 0或 1 , q为 0或 1 ; 为氢原子或具有 1至 20个碳的烃基; D为生物相关物质; Z 为连接基团, 能与生物相关物质反应的官能团通过该连接基团 Z连接于对称轴聚乙二醇主链 上并与生物相关物质发生化学反应, 形成残基 L3
12、 如权利要求 11所述聚乙二醇修饰的生物相关物质, 其特征在于, 所述 X2为曱 基、 乙基、 丙基、 丙烯基、 丙块基、 异丙基、 丁基、 叔丁基、 戊基、 庚基、 2-乙基己基、 辛 基、 壬基、 癸基、 十一烷基、 十二烷基、 十三烷基、 十四烷基、 十五烷基、 十六烷基、 十七 烷基、 十八烷基、 十九烷基、 二十烷基、 苄基或丁基苯基, 且在同一分子中, 可以相同也可 以不同。
13、 如权利要求 11所述聚乙二醇修饰的生物相关物质, 其特征在于, 所述 L2为具 有 1至 20个碳原子的二价烃基。
14、 如权利要求 11所述聚乙二醇修饰的生物相关物质, 其特征在于, 所述 L2为含 有在光照、 酶、 酸性或碱性条件下稳定存在的醚基、 硫醚基、 酰胺基、 双键、 三键或二级氨 基的二价烃基。
15、 根据权利要求 11所述聚乙二醇修饰的生物相关物质, 其特征在于, 所述 为氢原 子、 具有 1至 20个碳的烃基或含有在阴离子聚合条件下稳定存在的修饰基团的具有 1至 20 个破的烃基。
16、 如权利要求 11所述聚乙二醇修饰的生物相关物质, 其特征在于, 所述 D为多肽、 蛋白质、 酶、 小分子药物、 染料、 脂质体、 核苷、 核苷酸、 寡核苷酸、 多核苷酸、 核酸、 多 糖、 体化合物、 脂类化合物、 磷脂、 糖脂、 糖蛋白、 类固醇、 细胞、 病毒或胶束。
17、 根据权利要求 11 所述聚乙二醇修饰的生物相关物质, 其特征在于, 所述 ηι、 n2为 10-800的整数。
18、根据权利要求 11所述聚乙二醇修饰的生物相关物质,其特征在于,所述 n3为 11~500 的整数。
PCT/CN2013/073463 2013-01-17 2013-03-29 一种单一官能化的支化聚乙二醇及其修饰的生物相关物质 WO2014110867A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP13871951.3A EP2947111B1 (en) 2013-01-17 2013-03-29 Monofunctional branched polyethyleneglycol and bio-related substance modified by same
DK13871951.3T DK2947111T3 (en) 2013-01-17 2013-03-29 MONOFUNCTIONAL BRANCHED POLYETHYLENE LYCOL AND BIORELATED SUBSTANCE MODIFIED BY SAME

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201310017350.4A CN103044676B (zh) 2013-01-17 2013-01-17 一种聚乙二醇修饰的生物相关物质
CN201310017350.4 2013-01-17
CN201310020124.1 2013-01-17
CN201310020124.1A CN103044675B (zh) 2013-01-17 2013-01-17 一种单一官能化的支化聚乙二醇

Publications (1)

Publication Number Publication Date
WO2014110867A1 true WO2014110867A1 (zh) 2014-07-24

Family

ID=51165442

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/073463 WO2014110867A1 (zh) 2013-01-17 2013-03-29 一种单一官能化的支化聚乙二醇及其修饰的生物相关物质

Country Status (4)

Country Link
US (2) US20140199750A1 (zh)
EP (1) EP2947111B1 (zh)
DK (1) DK2947111T3 (zh)
WO (1) WO2014110867A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024041225A1 (zh) * 2022-08-26 2024-02-29 厦门赛诺邦格生物科技股份有限公司 一种聚乙二醇醛衍生物的制备方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014172392A1 (en) 2013-04-18 2014-10-23 Armo Biosciences, Inc. Methods of using interleukin-10 for treating diseases and disorders
ES2688206T3 (es) 2013-06-17 2018-10-31 Armo Biosciences, Inc. Procedimiento de evaluación de la identidad y la estabilidad de proteínas
US10010588B2 (en) 2013-08-30 2018-07-03 Armo Biosciences, Inc. Methods of using pegylated interleukin-10 for treating hyperlipidemia
RU2016122957A (ru) 2013-11-11 2017-12-19 Армо Байосайенсиз, Инк. Способы применения интерлейкина-10 для лечения заболеваний и расстройств
CN107847583A (zh) 2015-05-28 2018-03-27 阿尔莫生物科技股份有限公司 用于治疗癌症的聚乙二醇化白细胞介素‑10
CN108025040A (zh) 2015-08-25 2018-05-11 阿尔莫生物科技股份有限公司 使用白介素-10治疗疾病和病症的方法
CN109153780B (zh) * 2016-05-25 2021-07-09 韩国Nh化学品有限公司 聚亚烷基二醇的末端烷化催化剂及利用它的聚亚烷基二醇末端烷化方法
KR102498068B1 (ko) 2016-10-07 2023-02-09 도오쿄 인스티튜드 오브 테크놀로지 분기형 헤테로 단분산 폴리에틸렌 글리콜, 그 제조 방법, 및 그 결합체
CN114685778B (zh) * 2020-12-30 2023-10-17 苏州艾博生物科技有限公司 长循环阳离子脂质体的合成方法
CN117396537A (zh) * 2022-04-12 2024-01-12 厦门赛诺邦格生物科技股份有限公司 一种非线性聚乙二醇化脂质及其应用
CN116178733B (zh) * 2023-03-03 2023-08-01 浙江博美生物技术有限公司 一种基于三官能团氨基酸的支化单分散peg衍生物、制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101010105A (zh) * 2004-08-31 2007-08-01 法玛西雅厄普约翰有限责任公司 甘油支化的聚乙二醇人生长激素缀合物、其制备方法及其使用方法
CN101448525A (zh) * 2006-05-12 2009-06-03 东亚制药株式会社 聚乙二醇-干扰素α缀合物
CN101616678A (zh) * 2006-11-17 2009-12-30 东亚制药株式会社 聚乙二醇-g-csf缀合物
CN101831065A (zh) * 2009-03-13 2010-09-15 复旦大学 一种含单一活性功能基团的多臂星型聚乙二醇及其制备方法
CN102367290A (zh) * 2011-04-26 2012-03-07 刘超 链官能化的多级支化聚乙二醇及其合成方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5919455A (en) * 1993-10-27 1999-07-06 Enzon, Inc. Non-antigenic branched polymer conjugates
US5932462A (en) * 1995-01-10 1999-08-03 Shearwater Polymers, Inc. Multiarmed, monofunctional, polymer for coupling to molecules and surfaces
MXPA04004336A (es) * 2001-11-07 2005-05-16 Nektar Therapeutics Al Corp Polimeros ramificados y sus conjugados.
PT2644206T (pt) * 2003-05-23 2019-07-10 Nektar Therapeutics Derivados de peg contendo duas cadeias de peg

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101010105A (zh) * 2004-08-31 2007-08-01 法玛西雅厄普约翰有限责任公司 甘油支化的聚乙二醇人生长激素缀合物、其制备方法及其使用方法
CN101448525A (zh) * 2006-05-12 2009-06-03 东亚制药株式会社 聚乙二醇-干扰素α缀合物
CN101616678A (zh) * 2006-11-17 2009-12-30 东亚制药株式会社 聚乙二醇-g-csf缀合物
CN101831065A (zh) * 2009-03-13 2010-09-15 复旦大学 一种含单一活性功能基团的多臂星型聚乙二醇及其制备方法
CN102367290A (zh) * 2011-04-26 2012-03-07 刘超 链官能化的多级支化聚乙二醇及其合成方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
BIOCONJUGATE CHEM., vol. 6, 1995, pages 62 - 69
GREENWALD ET AL., J. ORG. CHEM., 1995, pages 331 - 336
MACROMOLECULES, vol. 33, 2000, pages 5418 - 5426
POLYMER, vol. 44, 2003, pages 5067 - 5074
See also references of EP2947111A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024041225A1 (zh) * 2022-08-26 2024-02-29 厦门赛诺邦格生物科技股份有限公司 一种聚乙二醇醛衍生物的制备方法

Also Published As

Publication number Publication date
EP2947111A1 (en) 2015-11-25
EP2947111A4 (en) 2016-01-13
US20140199750A1 (en) 2014-07-17
DK2947111T3 (en) 2018-05-07
US20220118100A1 (en) 2022-04-21
EP2947111B1 (en) 2018-03-07

Similar Documents

Publication Publication Date Title
WO2014110867A1 (zh) 一种单一官能化的支化聚乙二醇及其修饰的生物相关物质
JP4877225B2 (ja) ポリオキシアルキレン誘導体
US9127123B2 (en) Membrane enhanced polymer synthesis
EP2692771B1 (en) Polyoxyethylene derivative having a plurality of hydroxyl groups at end
CN104109235B (zh) 一种具有氮原子支化中心的单一官能化聚乙二醇、制备方法及其生物相关物质
JP5825507B2 (ja) 分岐型ヘテロポリエチレングリコール
US10494340B2 (en) Branched hetero polyethylene glycol and intermediate
JP5199125B2 (ja) ポリアルキレンオキシド・カルボン酸の高効率製法
CN104387577A (zh) 一种具有氮原子支化中心的单一官能化聚乙二醇、制备方法及其生物相关物质
CN103044676B (zh) 一种聚乙二醇修饰的生物相关物质
CN103044675B (zh) 一种单一官能化的支化聚乙二醇
EP2554565B1 (en) Multifunctional polyoxyalkylene compound, method for producing same and intermediate of same
US9029568B2 (en) Branched hetero polyfunctional polyoxyalkylene compound and intermediate thereof
CA2515889A1 (en) The selective and specific preparation of discrete peg compounds
CN118557742A (zh) 一种刷状高分子药物递送系统及其制备方法和应用
CN117126394A (zh) 单一分子量聚乙二醇、制备方法及其应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13871951

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013871951

Country of ref document: EP