WO2014109230A1 - 切削加工用先端工具のガイド部配置構造及びガイド部配置方法 - Google Patents

切削加工用先端工具のガイド部配置構造及びガイド部配置方法 Download PDF

Info

Publication number
WO2014109230A1
WO2014109230A1 PCT/JP2013/084617 JP2013084617W WO2014109230A1 WO 2014109230 A1 WO2014109230 A1 WO 2014109230A1 JP 2013084617 W JP2013084617 W JP 2013084617W WO 2014109230 A1 WO2014109230 A1 WO 2014109230A1
Authority
WO
WIPO (PCT)
Prior art keywords
tool
cutting
guide
guide portion
guide part
Prior art date
Application number
PCT/JP2013/084617
Other languages
English (en)
French (fr)
Inventor
健一郎 松崎
孝宏 劉
恵三 塚本
勝志 藤井
Original Assignee
株式会社アヤボ
国立大学法人九州大学
国立大学法人大分大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アヤボ, 国立大学法人九州大学, 国立大学法人大分大学 filed Critical 株式会社アヤボ
Priority to EP13871165.0A priority Critical patent/EP2944406A4/en
Publication of WO2014109230A1 publication Critical patent/WO2014109230A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B51/00Tools for drilling machines
    • B23B51/04Drills for trepanning
    • B23B51/0486Drills for trepanning with lubricating or cooling equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2251/00Details of tools for drilling machines
    • B23B2251/56Guiding pads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B51/00Tools for drilling machines
    • B23B51/06Drills with lubricating or cooling equipment
    • B23B51/063Deep hole drills, e.g. ejector drills

Definitions

  • the present invention provides a cutting tool guide for cutting that can prevent vibration during solid boring or counter boring (having a pilot hole) and can significantly prevent the occurrence of a life ring mark, spiral mark, or tool mark.
  • the present invention relates to a part arrangement structure and a guide part arrangement method.
  • a special tip tool is attached to a hollow shaft called a boring bar, and these tools or work materials are rotated while the boring bar and the workpiece are cut.
  • This is a mechanism for drilling by injecting cutting oil at high pressure from the gap with the material and discharging the cutting waste and oil through the hollow part of the boring bar.
  • the tip tool has a cutting edge part and a guide part that receives the cutting force of the cutting edge part while creating a gap through which the cutting oil passes by contacting the inner surface of the hole in the work material. And are attached.
  • Japanese Patent No. 4951788 discloses a conventional example of “first and first angles at 90 ° and 180 ° angles from the 0 ° blade position”. "Two end tools each having two guide portions 2" are introduced. In the present invention, the angle from the position of 0 ° of the blade portion is positive on the side where the blade portion receives the reaction force from the work material.
  • This conventional tip tool has a relatively large hole for general hole drilling and can drill deep holes for the hole diameter, but it can also be used for BTA deep hole drilling and general drilling.
  • a spiral pattern processing mark
  • a life ring mark a spiral mark, or a tool mark
  • the roundness error increases, resulting in a decrease in product accuracy, causing product defects.
  • additional processing such as polishing and honing and finishing are performed. Processing is required, which takes time and cost.
  • the invention that proposes a solution to such a problem is the invention described in Patent Document 1, “the second guide portion disposed at a position of an angle of 180 ° from the position of the blade portion of 0 °, 3 is a tip tool having three guide portions arranged thereon.
  • the tip tool of the invention described in Patent Document 1 eliminates unstable behavior of the tip tool by the third guide part, eliminates deformation and displacement that appear periodically, and the surface of the inner periphery of the hole after machining It is intended to improve the working accuracy of the machining accuracy and overall hole machining by making the state appropriate.
  • the arrangement position of the third guide portion is limited to a predetermined range on the rotation direction delay side of the second guide portion, there is still room for development in terms of wider application. .
  • the present invention is configured by arranging the third guide portion at an appropriate new position where the operational effect is stably obtained and having a higher degree of freedom,
  • a guide part arrangement structure and a guide part arrangement method for a cutting tool for cutting which maintains the posture of the tip tool during cutting and the straight movement of the tip in a stable manner, and makes the surface condition of the inner periphery of the hole after machining suitable.
  • the guide part arrangement structure of the cutting tool for cutting according to the first aspect of the present invention is in contact with the hole inner surface of the work material on the outer periphery of the tool in the cutting tool for cutting while being supplied with cutting oil.
  • the guide part In the arrangement structure of the guide part that receives the cutting force of the blade part while creating a gap through which the cutting oil passes, the guide part is three guide parts arranged on the outer periphery of the tip tool, and the tool rotation of the guide part
  • the position of the part farthest from the center in the tool radial direction is a position within an angular range of 80 ° to 100 ° on the delay side of the blade portion rotation direction, where the cutting edge position of the blade portion is 0 °. At least in the angular range of 1 ° to 34 °, 146 ° to 179 °, and 326 ° to 359 °.
  • a third guide portion that is positioned within one angle range. It is the guide part arrangement structure of the tip tool for cutting characterized by arranging.
  • the guide part arrangement structure of the cutting tool with such a configuration, instability of the tool in addition to the first and second guide parts that receive the component force of the force applied to the blade part of the tip tool, respectively.
  • the third guide portion that significantly suppresses the rotation is disposed in any one of the appropriate three angle ranges described above, and the displacement of the displacement that leads to the self-excited vibration of the tool being processed is included in the third guide portion.
  • the guide part arrangement structure of the cutting tool for cutting according to the second aspect of the present invention is in contact with the hole inner surface of the work material on the outer periphery of the tool in the cutting tool for cutting while being supplied with cutting oil.
  • the guide part In the arrangement structure of the guide part that receives the cutting force of the blade part while generating a gap through which the cutting oil passes, the guide part is disposed on the outer periphery of the tip tool and receives the main component force of the cutting force of the blade part.
  • a second guide portion that receives a back force of the cutting force, and a third guide portion, and the second guide portion is a tool from the tool rotation center of the second guide portion.
  • the position of the portion farthest in the radial direction is disposed so as to be a position within an angular range of 170 ° to 190 ° on the delay side in the rotation direction of the blade portion, where the cutting edge position of the blade portion is 0 °
  • the third guide part is a tool radial direction from the tool rotation center of the third guide part.
  • the position of the most distant portion of each of the blade portions is 1 ° to 34 °, 146 ° to 179 °, and 326 ° to 359 ° on the delay side in the rotation direction of the blade portion, with the cutting edge position of the blade portion being 0 °.
  • a guide portion arrangement structure for a cutting tool for cutting characterized in that the guide portion is arranged so as to be positioned within at least one angle range of the angle range. According to the guide part arrangement structure of the cutting tool with such a configuration, it is possible to obtain the same effect as the first aspect described above.
  • the guide part arrangement structure of the cutting tool for cutting according to the third aspect of the present invention is the guide part arrangement structure of the first or second aspect described above, wherein the third guide part is the third guide part.
  • the position of the guide portion that is farthest from the tool rotation center in the tool radial direction is within an angle range of 25 ° to 29 ° on the delay side of the blade rotation direction, with the cutting edge position of the blade portion being 0 °. It arrange
  • the guide portion arrangement structure of the cutting end tool for cutting with such a configuration among the polygonal cross-sectional shape patterns of holes such as rifle marks that are expected to be generated by cutting processing, a realistic influence due to pattern formation
  • the third guide portion By arranging the third guide portion in an angle range in which the unstable state can be suppressed with respect to a large number of squares, the three unstable guides that lead to the formation of a polygonal cross-sectional pattern with a number of squares that are likely to occur in reality are generated. It is possible to perform highly accurate drilling without the formation of a life ring mark or the like.
  • a guide part arrangement method for a cutting tool for cutting in contact with a hole inner surface of a work material on the outer periphery of the tool in a cutting tool for cutting while being supplied with cutting oil.
  • first to third guide portions are disposed on the outer periphery of the tip tool as the guide portion, and the first guide portion
  • the position of the part farthest from the tool rotation center in the tool radial direction is a position within an angle range of 80 ° to 100 ° on the delay side of the blade rotation direction, where the cutting edge position of the blade portion is 0 °.
  • the first guide portion is arranged so that the position of the portion of the second guide portion farthest from the tool rotation center in the tool radial direction is 0 ° as the cutting edge position of the blade portion.
  • the position will be within the angle range of 170 ° to 190 ° on the delay side of the rotation direction
  • the second guide part is arranged in the position of the third guide part, the part of the third guide part farthest from the tool rotation center in the tool radial direction, the cutting edge position of the blade part being 0 °, and the rotation of the blade part.
  • the third guide portion is disposed so as to be in a position within at least one of the angular ranges of 1 ° to 89 °, 91 ° to 179 °, and 271 ° to 359 ° on the delay side of the direction. Assuming that the value of the arrangement angle ( ⁇ 3 ) of the third guide portion is changed within the angle range, the equation of motion relating to the change in displacement from the steady cutting state in the boring bar to which the tip tool is attached.
  • the occurrence of a life ring mark or the like in the cutting process is regarded as a pattern formation phenomenon by a so-called time delay system, and the displacement fluctuation of the machining tool is analyzed. Then, the stability of the system is verified, and the third guide part is arranged at an angle at which the real part ⁇ of the characteristic root becomes a negative value and can be determined to be stable. Instability of the tool can be prevented to prevent the formation of a life ring mark and the like, the machining accuracy can be improved, and additional machining and finishing work are not required, which is advantageous in terms of labor and cost.
  • the guide part arrangement method for the cutting tool for cutting is to contact the inner surface of the hole of the work material on the outer periphery of the tool in the cutting tool for cutting while being supplied with cutting oil.
  • the guide part is a first guide part that receives the main component force of the cutting force on the outer periphery of the tip tool, and the cutting force
  • the second guide portion and the third guide portion that receive the back component force are disposed, and the position of the portion of the second guide portion that is farthest from the tool rotation center in the tool radial direction is:
  • the second guide portion is arranged so that the cutting edge position of the blade portion is 0 °, and the blade portion is positioned within an angular range of 170 ° to 190 ° on the delay side of the rotation direction of the blade portion.
  • the position of the part farthest from the tool rotation center in the tool radial direction is A position within the angle range of at least one of the angle ranges of 1 ° to 89 °, 91 ° to 179 °, and 271 ° to 359 ° on the delay side of the rotation direction of the blade portion, where the blade position is 0 °
  • the boring bar with the tip tool attached while changing the arrangement angle ( ⁇ 3 ) of the third guide portion within the angle range.
  • the third range is within the range of the acquired angles ( ⁇ 3 ).
  • To location to set the arrangement angle of the third guide portion is a guide portion disposed method for cutting tool bit, characterized in that. According to the guide part arrangement method for the cutting tool with such a configuration, the same effect as that of the fourth aspect described above can be obtained.
  • FIG. 1 is a schematic configuration diagram of a tip tool using the guide portion arrangement structure according to the present embodiment
  • FIG. 2 is a schematic diagram of the tip tool and the boring bar modeled by the guide portion arrangement structure according to the embodiment
  • FIG. FIG. 4 is a schematic diagram of the guide portion arrangement structure according to the present embodiment
  • FIG. 4 is an explanatory diagram of changes in the real part and imaginary part of the characteristic root from the vicinity of the triangle to the vicinity of the pentagon in the analysis result of the guide portion arrangement structure according to the present embodiment.
  • FIG. 1 is a schematic configuration diagram of a tip tool using the guide portion arrangement structure according to the present embodiment
  • FIG. 2 is a schematic diagram of the tip tool and the boring bar modeled by the guide portion arrangement structure according to the embodiment
  • FIG. FIG. 4 is a schematic diagram of the guide portion arrangement structure according to the present embodiment
  • FIG. 4 is an explanatory diagram of changes in the real part and imaginary part of the characteristic root from the vicinity of the triangle to the vicinity of the pentagon in the analysis result
  • FIG. 5 is an explanatory diagram of changes in the real part and imaginary part of the characteristic root from the vicinity of the hexagon to the vicinity of the octagon in the analysis result of the guide part arrangement structure according to the present embodiment
  • FIG. 6 is the guide part arrangement according to the present embodiment
  • FIG. 7 is an explanatory diagram of changes in the real part and the imaginary part of the characteristic roots in the vicinity of the pentagon and the vicinity of the decagon
  • FIG. 7 shows the quasi of the real part of each square in the analysis result of the guide arrangement structure according to the present embodiment.
  • the guide portion arrangement structure is in contact with the hole inner surface of the work material 50 on the outer periphery of the tool in the tip tool 1 that is attached to the tip of the boring bar 40 and rotates relative to the work material 50.
  • Three guide portions are arranged on the outer periphery of the tip tool. Then, the position of the guide portion farthest from the tool rotation center in the tool radial direction is set to 0 ° as the position of the cutting edge 11 of the blade portion 10 around the tool rotation center, and the rotation direction of the blade portion 10 is delayed.
  • a first guide portion 21 and a second guide portion 22 which are arranged so as to be at a predetermined angle on the side (that is, the side in which the blade portion 10 is directed to receive the reaction force from the work material 50), And it is the structure provided with the 3rd guide part 23 arrange
  • the said blade part 10 is a well-known cutting member arrange
  • the blade part 10 is good also as what is divided
  • the tip tool 1 may include a plurality of blade portions such as an outer peripheral blade, an intermediate blade, and a center blade.
  • the “cutting blade” serving as a reference for the 0 ° position is used, the “cutting blade” is located near the outer periphery of the tip tool 1. It shall be the cutting edge which forms the inner peripheral surface of a hole by positioning and interfering with the work material 50 and cutting it.
  • Each of the guide portions 21, 22, and 23 is attached to the outer peripheral portion of the tip tool body as a pad, and receives the cutting force of the blade portion 10 while making contact with the inner surface of the hole of the work material 50 and allowing a cutting oil to pass therethrough.
  • the structure of attaching the first and second guide portions 21 and 22 to the tool body is the same as that conventionally known.
  • the position of the cutting edge 11 of the blade portion 10 is set to 0 °
  • the first The first guide is such that the position of the guide portion 21 that is farthest from the tool rotation center in the tool radial direction is within the angular range of 80 ° to 100 ° on the delay side of the rotation direction of the blade portion 10.
  • the portion 21 is disposed, and the position of the second guide portion 22 farthest in the tool radial direction from the tool rotation center is within an angular range of 170 ° to 190 ° on the delay side in the rotation direction of the blade portion 10.
  • the 2nd guide part 22 is arrange
  • the attachment structure other than the attachment position of the third guide portion 23 to the tool body is the same as that of a conventionally known tool guide portion, and detailed description thereof will be omitted.
  • the first to third guide portions 21, 22, and 23 are arranged so as to be fixed or detachable integrally with the main body of the tip tool 1.
  • the position of the third guide portion 23 is set to 0 °, and the position of the third guide portion 23 farthest from the tool rotation center in the tool radial direction is the blade portion around the tool rotation center. 10 is arranged so as to be in a position within an angle range of 1 ° to 34 ° on the delay side of the rotation direction.
  • the third guide portion 23 exists in a specific range close to the blade portion 10 in the tip tool, and therefore, each of the even-numbered squares among the patterns to be formed as the predetermined number of squares. While ensuring the stability of the number of squares, it is possible to suppress an unstable state by canceling patterns to be formed as odd numbers of squares.
  • the rotation of the blade portion 10 is such that the position of the portion of the guide portion 23 farthest from the tool rotation center in the tool radial direction is an angle range in which stability is recognized by analysis described later. More preferably, it is arranged so as to be in a position within an angle range of 25 ° to 29 ° on the direction delay side.
  • the guide portion arrangement structure according to the present embodiment has the property of suppressing an unstable state such as the occurrence of a life ring mark.
  • the occurrence of a life ring mark or the like in which the cutting hole which should originally be a circular cross-section is polygonal is a pattern formation phenomenon by cutting, and this phenomenon is It can be understood that the fluctuation is unstable vibration due to a time delay that is fed back through the blade portion 10 and the guide portions 21, 22, and 23 with time.
  • an analysis model is created, a characteristic root is obtained from a characteristic equation of a linear time delay system by numerical analysis, the stability of the system is determined, and the guide portions 21 and 22 that are less likely to generate unstable vibrations. , 23 are examined.
  • FIG. 2 shows a schematic diagram.
  • the coordinate system is the origin of the boring bar, the Z axis along the boring bar, the X axis in the horizontal direction, the Y axis in the vertical direction, and the tip tool as the mass point.
  • the equation of motion is set as x, y, the change in displacement in the direction of each axis from the steady cutting state, it is the equation of motion of the bending of the beam.
  • the longitudinal elastic modulus E the viscous damping coefficient c, the density ⁇ , the cross-sectional secondary moment I, and the cross-sectional area A.
  • the boundary condition is as follows using the external forces F X and F Y in the respective axial directions acting on the tool because the starting end is a fixed end and the bending moment at the tip is zero.
  • variation of the force of each direction is represented by attaching " ⁇ " to the upper side of the symbol.
  • the fluctuation of the cutting area can be expressed as feed ⁇ to ⁇ ⁇ x (L, t) per rotation, and the main component force and the back component force using the cutting force (specific cutting resistance) K c per unit area.
  • the fluctuations are as follows.
  • the ratio of the back component force to the main component force is b.
  • the blade section after 2 lap variations in frictional force and normal force at a portion in contact with the work material taking into account the contact to n c revolution as the influence of the blade and blade and the workpiece Using the spring constant k c per unit feed length in contact, the dynamic friction coefficient ⁇ c , and the rotation period l, it can be expressed as follows.
  • the Laplace transform of the variation of each displacement of X and Y has the same characteristic index with respect to Z, and can be expressed as follows when ⁇ (s).
  • the imaginary part of the characteristic root corresponds to the vibration frequency (number of vibrations per rotation) generated
  • the generated vibration frequency is N times the rotation speed ⁇ . Therefore, N corresponds to the number of polygons of the polygonal cross-section pattern to be formed. It can be said that the life ring mark in deep hole machining is generated when the number of squares deviates from an integer value and this deviation advances while cutting.
  • the system cannot be completely stabilized and a life ring mark is generated, in this embodiment, there are three guide parts, and the real part is present in all the square numbers to be considered. Find the position of the negative guide.
  • the equation of motion is set for each value while changing the value of the angle ⁇ 3 of the third guide portion within the possible angle range from 1 ° to 89 °, and the characteristic equation is obtained as described above.
  • the characteristic equation is solved numerically to obtain the characteristic root, and when the imaginary part N of the characteristic root is near an integer, that is, near the number of squares, the value that changes corresponding to the change in the tool rotational speed of the real part ⁇ is calculated. Then, the maximum value of ⁇ for each N is obtained. With respect to ⁇ , whether the system is stable or not is determined by determining whether it is positive or negative. As for the imaginary part N, those that deviate significantly from the integer value are not realistic from comparison with the actually generated rifle mark, so it is sufficient to consider only solutions in the range close to the integer value. Table 1 below shows the basic analysis conditions used for the numerical analysis.
  • the feed ⁇ is a value when the work material side is rotated at 15 [Hz] and the tool side is fed at 1.0 [mm / s].
  • Time to consider delay n c, n i is the actual tool, the lower part of the blade 10 [mm], the axial length of the guide is determined from a 20 [mm].
  • the specific cutting resistance of the cutting edge and the contact rigidity between the cutting edge and the work material in the second and subsequent rounds are values set by referring to literatures and previous studies.
  • the viscosity damping coefficient c is set so that the damping ratio with respect to the lowest natural frequency is about 1.0%. Therefore, the value of c may change depending on conditions. . It should be noted that when performing the stability determination of the pattern formation, the degree of instability is completely different from the conditions under which the friction self-excited vibration occurs, and the stability determination of the pattern formation cannot be performed. In actual cutting, if friction self-excited vibration coexists, it may become divergent vibration immediately due to the degree of instability, and it operates under conditions that actually generate friction self-excited vibration. Therefore, all the analyzes of the present invention are performed under the condition that frictional self-excited vibration does not occur.
  • the number of squares of the life ring mark that has been reported in the past is a triangle or a pentagon, and in fact, the guide portion and the work material are not a line contact but a distributed contact. Based on the above, it will be up to the vicinity of a dodecagon. That is, here, if the real part ⁇ (instability) of the characteristic root up to the vicinity of the decagon is negative, no life ring mark is generated, and all are considered to be stable.
  • the angle ⁇ 1 of the first guide portion is 90 ° and the angle ⁇ 2 of the second guide portion is 180 ° as in the conventional case.
  • the analysis confirms that the odd square has an unstable region and the life ring mark cannot be completely suppressed.
  • a tendency that a guide portion is preferably present in the vicinity of ⁇ 30 ° appears. Therefore, as an example of analysis, a case where the angle ⁇ 3 of the third guide portion is set to 30 ° will be described.
  • the natural frequencies up to the third order in each direction in the tool in this case are shown in Table 2 below.
  • the horizontal axis represents the product of the rotation speed f and the integer value N 0 of the corresponding square number
  • the vertical axis represents the value of the real part ⁇ on the upper side and the value of the imaginary part N on the lower side.
  • the dotted line in the vertical direction in each figure represents the natural frequency corresponding to the mode in the X direction and the natural frequency corresponding to the mode in the Y direction.
  • the imaginary part N focuses only on a deviation within a predetermined minute range from the integer value N 0 .
  • the relationship between the deviation of the imaginary part N from the integer value N 0 and the pitch of the life ring mark in each square number tends to decrease as the deviation increases, and the pitch of the life ring mark decreases. Things that are too small are not realistic. Therefore, it can be said that the imaginary part N greatly deviating from the integer value is not realistic in relation to the actually generated lifeling mark. Therefore, in the analysis, it is sufficient to focus only on the case where N is in the vicinity of an integer. The solutions outside the above range of N are ignored, and the case of other guide angles is similarly considered.
  • the distance between the second guide portion and the third guide portion is 150 °, which is close to a pentagonal two-wavelength 144 ° and a heptagonal three-wavelength 154 °, so that the pattern passes through two guides. This is thought to be because the impact on In any square number, the maximum value of the real part ⁇ is a peak value at the third-order natural frequency.
  • the equation of motion is set while changing the value of the angle ⁇ 3 of the third guide portion 23, the characteristic equation is obtained from this, the characteristic root is obtained, and the imaginary part N of the characteristic root is 10 or less.
  • a value that changes corresponding to the change in the tool rotational speed of the real part ⁇ in the case of an integer is calculated to obtain a quasi-static value of ⁇ for each N and a maximum value up to the third natural frequency.
  • 7A and 7B show the quasi-static values of ⁇ obtained for each possible value of ⁇ 3 and the maximum values up to the third order plotted for each number of squares with the horizontal axis as the angle ⁇ 3 . ) Respectively. Note that even-numbered squares are omitted in all cases because ⁇ ⁇ 0 and all are stable.
  • the vertical axis indicates the size of the real part ⁇ of the characteristic root
  • the horizontal axis indicates the angle from 1 ° to 89 ° that the third guide portion 23 can take.
  • the real part ⁇ is a negative value for all squares up to 9-sided, that is, as a stable angle range, the values in the quasi-static state of FIG.
  • the range of 1 ° to 34 ° is included in the case of Fig. 7A, and the range of 25 ° to 29 ° is included regarding the maximum value up to the third order in Fig. 7A.
  • ⁇ 3 25 ° to 29
  • the guide part arrangement structure of the cutting tool for cutting includes the third guide parts 21 and 22 that receive the component force of the force applied to the blade part 10 of the tip tool 1, respectively.
  • the occurrence of a life ring mark or the like in cutting processing including deep hole processing is regarded as a pattern formation phenomenon by a so-called time delay system, and the displacement fluctuation of the processing tool is analyzed to stabilize the system.
  • the third guide portion is arranged at an angle at which the real part ⁇ of the characteristic root becomes a negative value and can be determined to be stable so that the displacement that leads to the self-excited vibration of the tool being processed is verified.
  • the entire tool is maintained in a stable operating state and the hole cross section is made into a polygonal shape.
  • the inner surface of the hole after processing Not appear IF ring mark or the like, along with increased machining accuracy as the surface state with no problem, even unnecessary additional machining or finishing operations, which is advantageous in terms of time and cost.
  • FIG. 8 is a schematic diagram of a guide portion arrangement structure according to the second embodiment of the present invention.
  • the guide part arrangement structure according to this embodiment is different from that of the first embodiment only in the arrangement position of the third guide part 23. That is, the angle ⁇ 1 of the first guide portion 21 is set in the range of 80 ° to 100 ° and the angle ⁇ 2 of the second guide portion 22 is set to a range of 80 ° to 100 ° at the position farthest from the tool rotation center in the tool radial direction.
  • the angle ⁇ 3 of the third guide portion 23 is changed within a range of 91 ° to 179 ° different from the first embodiment. Analysis, find a stable guide position, and place it there.
  • the equation of motion is set while changing the value of the angle ⁇ 3 of the third guide portion 23, and the characteristic equation is obtained from this to obtain the characteristic root.
  • the part N is in the vicinity of an integer of 10 or less, a value that changes corresponding to the change in the tool rotation speed of the real part ⁇ is calculated, and the quasi-static value of ⁇ for each N and the maximum up to the third natural frequency The value was determined.
  • 9A and 9B are graphs in which the quasi-static value of ⁇ obtained for each possible value of ⁇ 3 and the maximum value up to the third order are plotted for each number of squares with the horizontal axis as the angle ⁇ 3 . ) Respectively. Note that even-numbered squares are omitted in all cases because ⁇ ⁇ 0 and all are stable.
  • the vertical axis indicates the size of the real part ⁇ of the characteristic root
  • the horizontal axis indicates the angle from 91 ° to 179 ° that the third guide portion 23 can take.
  • the real part ⁇ is a negative value for all the numbers up to nine-sided, that is, a stable angle range is a range of 146 ° to 179 °. It is done.
  • FIG. 9B there is no range in which the real part ⁇ is a negative value for all the square numbers up to the hexagon.
  • the unstable state can be suppressed to a considerable extent by setting the angle ⁇ 3 of the third guide portion 23 to 146 ° to 179 °. Can be stabilized.
  • FIG. 10 is a schematic diagram of a guide portion arrangement structure according to the third embodiment of the present invention.
  • the present embodiment differs from the first and second embodiments only in the arrangement position of the third guide portion 23. That is, with respect to the position of the portion farthest from the tool rotation center in the tool radial direction, the angle ⁇ 1 of the first guide portion 21 is in the range of 80 ° to 100 °, and the angle ⁇ 2 of the second guide portion is 170 °.
  • the analysis is performed by changing the angle ⁇ 3 of the third guide portion within a range of 271 ° to 359 ° within a range of ⁇ 190 °, and a stable guide position is found and arranged there.
  • the same analysis as in each of the above embodiments is performed by changing within a range of 359 ° to find a stable guide position.
  • conditions other than the arrangement position of the 3rd guide part 23 are the same as 1st Embodiment.
  • the equation of motion is set while changing the value of the angle ⁇ 3 of the third guide portion 23, the characteristic equation is obtained from this, the characteristic root is obtained, and the imaginary part N of the characteristic root
  • the value which changes corresponding to the tool rotation speed change of the real part ⁇ in the case of an integer near 10 or less is calculated, and the quasi-static value of ⁇ for each N and the maximum value up to the third natural frequency are calculated.
  • 11A and 11B are graphs in which the quasi-static value of ⁇ obtained for each possible value of ⁇ 3 and the maximum value up to the third order are plotted for each number of squares with the horizontal axis as the angle ⁇ 3 . ) Respectively. Note that even-numbered squares are omitted in all cases because ⁇ ⁇ 0 and all are stable.
  • the vertical axis represents the size of the real part ⁇ of the characteristic root
  • the horizontal axis represents the angle from 271 ° to 359 ° that can be taken by the third guide portion 23.
  • the real part ⁇ is a negative value for all the numbers up to nine-sided, that is, a stable angle range is a range of 326 ° to 359 °. It is done.
  • FIG. 9B there is no range in which the real part ⁇ is a negative value for all the square numbers up to the hexagon.
  • the unstable state can be suppressed to a considerable extent by setting the angle ⁇ 3 of the third guide portion 23 to 326 ° to 359 °. Can be stabilized.
  • the present invention is not limited to the description of each aspect and each embodiment. Various modifications are also included in the present invention as long as those skilled in the art can easily conceive without departing from the scope of the claims.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Drilling Tools (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)

Abstract

 第3のガイド部を切削加工用先端工具の所定の位置に配置して、先端工具の切削中の姿勢及び先端の直進移動作用を安定維持させて、加工後の穴内周の表面状態を好適なものとするガイド部配置構造及びガイド部配置方法において、第3のガイド部を、作用効果が安定して得られ、且つ、より自由度の高い適切な位置に配置する。 切削油を供給されつつ切削加工を行うための先端工具における、工具外周で被削材の穴内面と接触して切削油を通す隙間を生じさせつつ刃部の切削力を受けるガイド部の配置構造において、ガイド部は、先端工具外周に配設される3つのガイド部であって、ガイド部の工具回転中心から工具径方向に最も離れた部分の位置がそれぞれ、刃部の切れ刃位置を0°として、刃部の回転方向の遅れ側の80°~100°の角度範囲内の位置となる第1のガイド部と、170°~190°の角度範囲内の位置となる第2のガイド部と、1°~34°、146°~179°、及び、326°~359°の各角度範囲の少なくとも一つの角度範囲内の位置となる第3のガイド部とを配置してなる。

Description

切削加工用先端工具のガイド部配置構造及びガイド部配置方法
 本発明は、ソリッドボーリング又はカウンターボーリング(下穴有)時の振動等を防止しライフリングマークやスパイラルマーク、又はツールマークの発生を顕著に防止することを可能にした切削加工用先端工具のガイド部配置構造及びガイド部配置方法に関する。
 例えばBTA(Boring and Trepanning Association)方式でのソリッドボーリングによる深穴加工は、ボーリングバーと呼ばれる中空軸に特殊な先端工具を取り付け、これらの工具又は被削材を回転させながら、ボーリングバーと被削材との隙間から切削油を高圧注入し、ボーリングバーの中空部分を通して切削屑と油を排出することで、穴あけ加工を行う仕組みである。
 この両ボーリングとも、先端工具には、切削を行う刃部と、工具外周で被削材の穴内面と接触して切削油を通す隙間を生じさせつつ刃部の切削力を受けて支えるガイド部とが取り付けられている。こうしたBTA方式での深穴加工に用いる装置の従来の先端工具例として、特許第4951788号公報に従来例として「刃部の位置0°からの角度90°と180°の位置に第1と第2の2つのガイド部をそれぞれ配置した先端工具」が紹介されている。
 本発明において、刃部の位置0°からの角度は、刃部が被削材から反力を受ける向きの側を正とする。
 この従来の先端工具は、一般的な穴加工に対して比較的大口径の穴で且つ穴径に対し深い穴を加工できるが、BTA深穴加工においても、一般的なドリルなどによる加工でもみられるように、加工した穴にライフリングマークやスパイラルマーク、又はツールマークと呼ばれる螺旋状の模様(加工痕)が形成されることがある。この場合、真円度誤差が大きくなるなど製品精度の低下を招き、製品不良の原因となることに加え、真円度の高い穴内周面を得ようとすると研磨やホーニング等の追加工や仕上げ処理が必要となり、手間とコストがかかる。
 このような問題に対する解決策を提案する発明が、特許文献1に記載の発明「刃部の位置0°からの角度180°の位置に配置の第2のガイド部の回転方向遅れ側に、第3のガイド部を配置した先端工具」である。
日本国特許第4951788号公報
 特許文献1に記載の発明の先端工具は、第3のガイド部により、先端工具の挙動の不安定な状態を解消し、周期的に現れる変形や変位を無くして、加工後の穴内周の表面状態を適切なものとし、加工精度及び穴加工全体の作業効率を高めようとしたものである。
 しかしながら、第3のガイド部の配置位置が、第2のガイド部の回転方向遅れ側の所定範囲内に限定されたものであったため、より広範な応用という点では、なお発展の余地があった。
 本発明は、特許文献1に記載の先端工具発明における、第3のガイド部の配置を、作用効果が安定して得られ、且つ、より自由度の高い適切な新規な位置に配置して、先端工具の切削中の姿勢及び先端の直進移動作用を安定維持させて、加工後の穴内周の表面状態を好適なものとする切削加工用先端工具のガイド部配置構造及びガイド部配置方法を提供するものである。
 本発明者らは上記課題を解決するために鋭意検討を重ねた結果、下記のように本発明の各局面に想到した。
 即ち、本発明の第1の局面による切削加工用先端工具のガイド部配置構造は、切削油を供給されつつ切削加工を行うための先端工具における、工具外周で被削材の穴内面と接触して切削油を通す隙間を生じさせつつ刃部の切削力を受けるガイド部の配置構造において、前記ガイド部は、先端工具外周に配設される3つのガイド部であって、ガイド部の工具回転中心から工具径方向に最も離れた部分の位置がそれぞれ、刃部の切れ刃位置を0°として、刃部の回転方向の遅れ側の80°~100°の角度範囲内の位置となる第1のガイド部と、170°~190°の角度範囲内の位置となる第2のガイド部と、1°~34°、146°~179°、及び、326°~359°の各角度範囲の少なくとも一つの角度範囲内の位置となる第3のガイド部とを配置してなることを特徴とする切削加工用先端工具のガイド部配置構造である。
 このような構成の切削加工用先端工具のガイド部配置構造によれば、先端工具の刃部に加わる力の分力をそれぞれ受ける第1、第2の二つのガイド部に加え、工具の不安定性を顕著に抑える第3のガイド部を前記した適切な3つの角度範囲内のいずれかに配設して、加工中の工具の自励振動に繋がる変位の変動をこの第3のガイド部を含む三つのガイド部で制限することにより、工具全体の直進切削動作を安定状態に維持して加工精度を高め、加工後の穴断面を多角形とすることなく、且つ穴内面にライフリングマーク等を発現させず、問題のない美麗な表面状態にするものである。これにより、追加工や仕上げ作業も不要となり、手間やコストの面でも有利となる。
 また、本発明の第2の局面による切削加工用先端工具のガイド部配置構造は、切削油を供給されつつ切削加工を行うための先端工具における、工具外周で被削材の穴内面と接触して切削油を通す隙間を生じさせつつ刃部の切削力を受けるガイド部の配置構造において、前記ガイド部は、先端工具外周に配設され、刃部の切削力の主分力を受ける第1のガイド部、当該切削力の背分力を受ける第2のガイド部、及び第3のガイド部とからなり、前記第2のガイド部は、該第2のガイド部の、工具回転中心から工具径方向に最も離れた部分の位置が、刃部の切れ刃位置を0°として、刃部の回転方向の遅れ側の170°~190°の角度範囲内の位置となるように配置され、前記第3のガイド部は、該第3のガイド部の、工具回転中心から工具径方向に最も離れた部分の位置が、刃部の切れ刃位置を0°として、刃部の回転方向の遅れ側の1°~34°、146°~179°、及び、326°~359°の各角度範囲の少なくとも一つの角度範囲内の位置となるように配置される、ことを特徴とする切削加工用先端工具のガイド部配置構造である。
 このような構成の切削加工用先端工具のガイド部配置構造によれば、上記した第1の局面と同様の効果を得ることができる。
 また、本発明の第3の局面による切削加工用先端工具のガイド部配置構造は、上記の第1または第2の局面のガイド部配置構造において、前記第3のガイド部は、該第3のガイド部の、工具回転中心から工具径方向に最も離れた部分の位置が、刃部の切れ刃位置を0°として、刃部の回転方向の遅れ側の25°~29°の角度範囲内の位置となるように配置される、ことを特徴とする。
 このような構成の切削加工用先端工具のガイド部配置構造によれば、切削加工で発生が予想されるライフリングマーク等の穴の多角形断面形状パターンのうち、パターン形成に伴う現実的な影響の大きい角形数について不安定状態を抑えられる角度範囲に第3のガイド部を配置することにより、現実的に発生しやすい角形数の多角形断面形状パターンの形成に繋がる不安定状態を三つのガイド部で確実に抑えられ、ライフリングマーク等の形成のない高精度の穴加工が行える。
 本発明の第4の局面による切削加工用先端工具のガイド部配置方法は、切削油を供給されつつ切削加工を行うための先端工具における、工具外周で被削材の穴内面と接触して切削油を通す隙間を生じさせつつ刃部の切削力を受けるガイド部の配置方法において、前記ガイド部として、先端工具外周に第1~第3のガイド部を配設し、前記第1のガイド部の、工具回転中心から工具径方向に最も離れた部分の位置が、刃部の切れ刃位置を0°として、刃部の回転方向の遅れ側の80°~100°の角度範囲内の位置となるように該第1のガイド部を配置し、前記第2のガイド部の、工具回転中心から工具径方向に最も離れた部分の位置が、刃部の切れ刃位置を0°として、刃部の回転方向の遅れ側の170°~190°の角度範囲内の位置となるように該第2のガイド部を配置し、前記第3のガイド部の、工具回転中心から工具径方向に最も離れた部分の位置が、刃部の切れ刃位置を0°として、刃部の回転方向の遅れ側の1°~89°、91°~179°、及び、271°~359°の各角度範囲の少なくとも一つの角度範囲内の位置となるように該第3のガイド部を配置したと仮定して、該第3のガイド部の配置角度(α3)の値を前記角度範囲内で変化させつつ、先端工具を取り付けたボーリングバーにおける定常切削状態からの変位の変動に係る運動方程式をそれぞれ立て、当該運動方程式を基に特性方程式を得て、その特性根s=σ+jNを虚部Nが所定数以下の各整数付近である場合について求めて、得られる実部σの最大値が各Nのいずれについても負となる角度(α3)の範囲を取得し、該取得した角度(α3)の範囲内に、前記第3のガイド部の、工具回転中心から工具径方向に最も離れた部分が位置するよう、該第3のガイド部の配置角度を設定する、ことを特徴とする切削加工用先端工具のガイド部配置方法である。
 このような構成の切削加工用先端工具のガイド部配置方法によれば、切削加工におけるライフリングマーク等の発生を、いわゆる時間遅れ系によるパターン形成現象と捉えて、加工用工具の変位変動を解析して系の安定性を検証し、特性根の実部σが負の値となって安定と判別できる角度の位置に第3のガイド部を配置することにより、三つのガイド部で切削中の工具の不安定化を防止してライフリングマーク等の形成を抑えられ、加工精度を高められると共に、追加工や仕上げ作業も不要となり、手間やコストの面でも有利となる。
 また、本発明の第5の局面による切削加工用先端工具のガイド部配置方法は、切削油を供給されつつ切削加工を行うための先端工具における、工具外周で被削材の穴内面と接触して切削油を通す隙間を生じさせつつ刃部の切削力を受けるガイド部の配置方法において、前記ガイド部として、先端工具外周に、切削力の主分力を受ける第1のガイド部、切削力の背分力を受ける第2のガイド部、及び第3のガイド部の三つを配設し、前記第2のガイド部の、工具回転中心から工具径方向に最も離れた部分の位置が、刃部の切れ刃位置を0°として、刃部の回転方向の遅れ側の170°~190°の角度範囲内の位置となるように該第2のガイド部を配置し、前記第3のガイド部の、工具回転中心から工具径方向に最も離れた部分の位置が、刃部の切れ刃位置を0°として、刃部の回転方向の遅れ側の1°~89°、91°~179°、及び、271°~359°の各角度範囲の少なくとも一つの角度範囲内の位置となるように、該第3のガイド部を配置したと仮定して、該第3のガイド部の配置角度(α3)の値を前記角度範囲内で変化させつつ、先端工具を取り付けたボーリングバーにおける定常切削状態からの変位の変動に係る運動方程式をそれぞれ立て、当該運動方程式を基に特性方程式を得て、その特性根s=σ+jNを虚部Nが所定数以下の各整数付近である場合について求めて、得られる実部σの最大値が各Nのいずれについても負となる角度(α3)の範囲を取得し、該取得した角度(α3)の範囲内に、前記第3のガイド部の、工具回転中心から工具径方向に最も離れた部分が位置するよう、該第3のガイド部の配置角度を設定する、ことを特徴とする切削加工用先端工具のガイド部配置方法である。
 このような構成の切削加工用先端工具のガイド部配置方法によれば、上記した第4の局面と同様の効果を得ることができる。
本発明の第1の実施形態に係るガイド部配置構造を用いた先端工具の概略構成図である。 本発明の第1の実施形態に係るガイド部配置構造でモデル化した先端工具及びボーリングバーの模式図である。 本発明の第1の実施形態に係るガイド部配置構造の模式図である。 本発明の第1の実施形態に係るガイド部配置構造の解析結果における3角形付近から5角形付近までの特性根の実部と虚部の変化説明図である。 本発明の第1の実施形態に係るガイド部配置構造の解析結果における6角形付近から8角形付近までの特性根の実部と虚部の変化説明図である。 本発明の第1の実施形態に係るガイド部配置構造の解析結果における9角形付近及び10角形付近の特性根の実部と虚部の変化説明図である。 本発明の第1の実施形態に係るガイド部配置構造の解析結果における各角形数の実部の準静的における値及び3次までの最大値の第3のガイド部の配置角度に対する各変化説明図である。 本発明の第2の実施形態に係るガイド部配置構造の模式図である。 本発明の第2の実施形態に係るガイド部配置構造の解析結果における各角形数の実部の準静的における値及び3次までの最大値の第3のガイド部の配置角度に対する各変化説明図である。 本発明の第3の実施形態に係るガイド部配置構造の模式図である。 本発明の第3の実施形態に係るガイド部配置構造の解析結果における各角形数の実部の準静的における値及び3次までの最大値の第3のガイド部の配置角度に対する各変化説明図である。
(本発明の第1の実施形態)
 以下、本発明の第1の実施形態に係る切削加工用先端工具のガイド部配置構造を図1ないし図7に基づいて説明する。図1は本実施形態に係るガイド部配置構造を用いた先端工具の概略構成図、図2は本実施形態に係るガイド部配置構造でモデル化した先端工具及びボーリングバーの模式図、図3は本実施形態に係るガイド部配置構造の模式図、図4は本実施形態に係るガイド部配置構造の解析結果における3角形付近から5角形付近までの特性根の実部と虚部の変化説明図、図5は本実施形態に係るガイド部配置構造の解析結果における6角形付近から8角形付近までの特性根の実部と虚部の変化説明図、図6は本実施形態に係るガイド部配置構造の解析結果における9角形付近及び10角形付近の特性根の実部と虚部の変化説明図、図7は本実施形態に係るガイド部配置構造の解析結果における各角形数の実部の準静的における値及び3次までの最大値の第3のガイド部の配置角度に対する各変化説明図である。
 前記各図において本実施形態に係るガイド部配置構造は、ボーリングバー40の先端に取り付けられて被削材50に対し相対回転する先端工具1における、工具外周で被削材50の穴内面と接触するガイド部が、先端工具外周に三つ配設されるものである。そして、ガイド部の、工具回転中心から工具径方向に最も離れた部分の位置が、工具回転中心まわりに、刃部10の切れ刃11の位置を0°として、刃部10の回転方向の遅れ側(即ち、刃部10が被削材50から反力を受ける向きの側)にそれぞれ所定の角度を成す位置となるように配置される第1のガイド部21と第2のガイド部22、及び、それらのガイド部21、22とは異なる位置に配置される第3のガイド部23とを備える構成である。なお、前記刃部10は、先端工具1本体と一体に固定もしくは着脱可能に配設され、端部に切れ刃11を形成されてなる公知の切削部材であり、詳細な説明は省略する。
 また、刃部10は複数個に分割されているものとしても良い。換言すれば、先端工具1は、外周刃、中間刃、中心刃等の複数の刃部を備えるものであっても良い。
 また、刃部10の個数(換言すれば、分割数)に関わらず、本発明において0°位置の基準となる「切れ刃」という場合、当該「切れ刃」は、先端工具1の外周付近に位置し、被削材50と干渉してこれを切削することにより穴の内周面を形成する切れ刃のことを指すものとする。
 前記各ガイド部21、22、23は、パッドとして先端工具本体外周部に取り付けられ、被削材50の穴内面と接触して切削油を通す隙間を生じさせつつ刃部10の切削力を受けるものである。第1及び第2のガイド部21、22の工具本体への取り付け構造は従来公知のものと同様であって、本例では、刃部10の切れ刃11の位置を0°として、第1のガイド部21の、工具回転中心から工具径方向に最も離れた部分の位置が、刃部10の回転方向の遅れ側の80°~100°の角度範囲内の位置となるように第1のガイド部21を配置し、第2のガイド部22の、工具回転中心から工具径方向に最も離れた部分の位置が、刃部10の回転方向の遅れ側の170°~190°の角度範囲内の位置となるように第2のガイド部22を配置するものである。また、第3のガイド部23の工具本体に対する取り付け位置以外の取り付け構造については、従来公知の工具のガイド部同様であり、詳細な説明は省略する。なお、第1~第3のガイド部21、22、23は、先端工具1本体と一体に固定もしくは着脱可能に配設されるものである。
 第3のガイド部23は、切れ刃11の位置を0°として、第3のガイド部23の、工具回転中心から工具径方向に最も離れた部分の位置が、工具回転中心まわりに、刃部10の回転方向の遅れ側の1°~34°の角度範囲内の位置となるように配置されるものである。このように、第3のガイド部23が、先端工具における刃部10に近い特定の範囲内に存在していることで、所定の角形数として形成されようとするパターンのうち、偶数角形の各角形数についての安定を確保しつつ、奇数角形の各角形数として形成されようとするパターン同士の打消しによる不安定状態の抑制が図れる。この第3のガイド部23については、このガイド部23の工具回転中心から工具径方向に最も離れた部分の位置が、後述する解析により安定性が認められる角度範囲である、刃部10の回転方向の遅れ側の25°~29°の角度範囲内の位置となるように配設するのがより好ましい。
 次に、本実施形態に係るガイド部配置構造が、ライフリングマーク発生等の不安定状態を抑える性質を有する点を示すための解析過程について説明する。
 BTA方式等による深穴加工を含む切削加工で、本来円断面形状であるべき切削穴が多角形化するライフリングマーク等の発生は、切削によるパターン形成現象であり、こうした現象は、切削時の変動が刃部10やガイド部21、22、23を介して時間をおいてフィードバックされる時間遅れによる不安定振動と捉えることができる。本発明では、こうした現象について、解析モデルをたて、数値解析により線形時間遅れ系の特性方程式より特性根を求めて、系の安定判別を行い、不安定振動が発生しにくいガイド部21、22、23の位置関係を検討している。
 まず、先端工具1を取り付けたボーリングバー40を梁としたモデル化について説明する。図2に模式図を示す。先端工具1を取り付けたボーリングバー40について、座標系として、ボーリングバーの始端を原点とし、ボーリングバーに沿ってZ軸、水平方向にX軸、鉛直方向にY軸をとり、先端工具を質点として先端に質量を付加した長さLの梁としてモデル化する。このモデルにおける仮定として、ボーリングバーの始端(Z=0)は固定端とし、終端(Z=L)では先端工具の質量mと被削材側から受ける外力のみ考慮し、曲げモーメントは無視する。また、ねじりモーメントは考慮しない。
 また、工具各部にかかる力を図3に示す。工具による切削は被削材50に下穴がある状態で行われるものとする。この切削に際しては、被削材側が時計回りに回転しているものとし、所定の回転速度ωで回転周期T=2π/ωとなる。切削に係る仮定としては、刃部の切れ刃とガイド部をなすパッドは長手方向に幅があるため、この幅の範囲で繰り返し被削材の同一位置と接触するが、切れ刃が最初に被削材にあたる部分でのみ切削が行われ、それ以降に切れ刃と被削材が接触する部分では切削は行われないものとする。この切削部分では切削力として主分力Pcと背分力Qc=bPcが作用し、切削力は切削面積に比例する。また、2周目以降に刃部が被削材と接触する部分では、垂直抗力Ncと摩擦力Fc=μccが作用する。
 さらに、各ガイド部のX軸(切れ刃位置)から時計回りの角度をαi(i=1、2、3、・・・)とする。これら各ガイド部では切削は行われず、被削材との接触は線接触(XY平面で見れば点接触)として、垂直抗力Niと摩擦力Fi=μiiが作用する。なお、垂直抗力の特性は線形ばねでモデル化し、摩擦力はクーロン摩擦とする。これら刃部とガイド部の影響は、それぞれnc、ni回転後まで考慮する。一方、切削における重力の影響は考慮しない。
 これまでの仮定を考慮しつつ、モデル化したボーリングバーについて、定常切削状態からの各軸方向への変位の変動をx、yとして運動方程式を立てると、梁の曲げの運動方程式であるため、バーの縦弾性係数E、粘性減衰係数c、密度ρ、断面2次モーメントI、断面積Aを用いて、次式で表せる。
Figure JPOXMLDOC01-appb-M000001
 また、境界条件は、始端が固定端であり、先端での曲げモーメントは0であるために、工具に作用する各軸方向の外力FX、FYを用いて、以下のようになる。なお、各方向の力の変動は前記記号の上側に「^」を付けて表している。
Figure JPOXMLDOC01-appb-M000002
 切削面積の変動は1回転当りの送りδからδ・x(L,t)と表すことができ、単位面積当りの切削力(比切削抵抗)Kcを用いて、主分力と背分力の変動は次のようになる。ただし、背分力は主分力に対する割合がbになると考える。
Figure JPOXMLDOC01-appb-M000003
 さらに、2周目以降に刃部が被削材と接触する部分における垂直抗力と摩擦力の変動は、刃の影響としてnc回転分までの接触を考慮し、また刃と被削材との接触における単位送り長さ当りのばね定数kc、動摩擦係数μc、回転の周期lを用いて、次のように表せる。
Figure JPOXMLDOC01-appb-M000004
 加えて、ガイド部が被削材と接触する部分における垂直抗力、摩擦力の変動は、所定のガイド部iの半径方向変位の変動riが次式
  ri(t)=x(L,t)cosαi-y(L,t)sinαi    (5)
 で表せることから、ガイド部の影響はni回転分までの接触を考慮し、また、ガイド部と被削材との接触における単位長さ当たりのばね定数ki、動摩擦係数μiを用いて、
Figure JPOXMLDOC01-appb-M000005
と表せることとなる。
 これらを用いて、工具に作用するX、Y各軸方向の外力の変動はそれぞれ次のように表すことができる。
Figure JPOXMLDOC01-appb-M000006
 前記式(4)、式(6)は、l周期前までに削った分が相対的な変位となることを意味しており、それがnc、ni回転後まで時間遅れの項としてフィードバックされることとなり、パターン形成現象の特徴を示している。
 続いて、前記運動方程式の固有値解析を経て、特性方程式を得る過程について説明する。
 運動方程式に対してτ=ωtとする変数変換を施すと次式が得られる。なお、次式におけるx、yの上のドットはτに関する微分を表す。
Figure JPOXMLDOC01-appb-M000007
 さらに上式に対して、初期値を0としてτに関するLaplace変換を行うと次式を得ることができる。ここでこれ以降の記号上側の「~」はそれぞれの変動のLaplace変換を表し、sはLaplace変換変数である。
Figure JPOXMLDOC01-appb-M000008
 X、Yの各変位の変動のLaplace変換は、いずれもZに関する特性指数が等しく、それをλ(s)とすると次のように表せる。
  ρAω22+cωs+EIλ(s)4=0         (10)
 これより、特性指数λ(s)は次のように表すことができる。
Figure JPOXMLDOC01-appb-M000009
 よって、
Figure JPOXMLDOC01-appb-M000010
と表せる。また、前記各境界条件も、同様に変数変換し、Laplace変換を行うことで次式が得られる。
Figure JPOXMLDOC01-appb-M000011
 ここで、
Figure JPOXMLDOC01-appb-M000012
 そして、
Figure JPOXMLDOC01-appb-M000013
 以上から、次式が得られる。
Figure JPOXMLDOC01-appb-M000014
 ここで、
Figure JPOXMLDOC01-appb-M000015
であり、これらの式よりマトリクス表示を行うと、
Figure JPOXMLDOC01-appb-M000016
となる行列A(s)が求まる。これより、特性方程式
Figure JPOXMLDOC01-appb-M000017
が得られ、その特性根sを次式で表せる。
  s=σ+jN                 (20)
 この特性根sを求めることによって、系の安定判別を行うことができる。すなわち、特性方程式を満たす特性根sにおける実部σはパターン形成現象の不安定性を示す値となっており、特性根のうち1つでも実部σが正になるものがあれば一様な切削が不安定となる。逆に全ての特性根の実部σが負であれば系は安定となり、パターンは形成されない。特性根の虚部Nは、τ=ωtの変数変換を行ったため、再変換するとNωとなる。特性根の虚部は発生する振動の振動数(1回転当りの振動の回数)にあたるので、工具の回転速度がωのとき、発生する振動数は回転速度ωのN倍となる。したがってNは形成される多角形断面のパターンの角形数に相当する。深穴加工におけるライフリングマークは、この角形数が整数値からずれ、このずれが切削しながら進んでいくことにより発生するといえる。
 従来の工具におけるガイド部の位置関係は、第1のガイド部の角度α1=80°~100°の範囲内、第2のガイド部の角度α2=170°~190°の範囲内であるが、この場合、完全に系を安定とすることはできず、ライフリングマークが発生してしまうことから、本実施形態ではガイド部を3つとし、考慮すべき全ての角形数において実部が負となるガイド部の位置を見つける。
 具体的には、ガイド部2つの場合を基本としてこれらのガイド部の角度α1=90°、α2=180°を固定とし、第3のガイド部の角度α3を1°~89°の範囲で変化させて解析を行い、安定なガイド位置を見出す。
 解析では、第3のガイド部の角度α3の値をその取り得る1°から89°までの角度範囲で変えながらその各値についてそれぞれ運動方程式を設定し、これから上記のように特性方程式を得、特性方程式を数値的に解いて特性根を求め、特性根の虚部Nが整数付近の場合、すなわち角形数付近の場合における実部σの工具回転数変化に対応して変化する値を計算して各Nごとのσの最大値を取得する。このσについて、正負を判定して系の安定判別を行うこととなる。なお、虚部Nについては、整数値から大きくずれるものは実際に発生するライフリングマークとの比較から現実的なものでないため、整数値に近い範囲の解のみ考慮すれば十分である。
 数値解析に用いる基本的な解析条件を以下の表1に示す。
Figure JPOXMLDOC01-appb-T000018
 断面積A、断面2次モーメントIはボーリングバーの内径d1=12.0×10-3[m]と外径d2=17.8×10-3[m]から計算された値である。送りδは被削材側を15[Hz]で回転させ、工具側を1.0[mm/s]で送ったときの値である。時間遅れを考慮するnc、niは、実際の工具において、刃の下の部分が10[mm]、ガイドの軸方向長さが20[mm]であることから決定した。切れ刃の比切削抵抗や2周目以降の切れ刃と被削材の接触剛性は、文献やこれまでの研究を参考にして設定した値を用いている。また粘性減衰係数cについては、最も低次の固有振動数に対する減衰比が1.0%程度になるように値を設定しているため、条件によってはcの値が変化しているところもある。なお、パターン形成の安定判別を行う際に、摩擦自励振動が発生してしまう条件では、そうでない条件の場合と不安定度の大きさが全く異なり、パターン形成の安定判別を行えないが、実際の切削においては、摩擦自励振動が共存すると、その不安定の度合いの大きさから、すぐに発散振動となってしまうこともあり、実際に摩擦自励振動が発生する条件で稼動しているとは到底考えられないことから、本発明の解析では全て摩擦自励振動が発生しない条件で行っている。
 また、考慮する角形数については、従来報告されているライフリングマークの角形数が3角形や5角形であること、実際にはガイド部と被削材が線接触ではなく分布接触であることなどを踏まえて10角形付近までとする。つまり、ここでは10角形付近までの特性根の実部σ(不安定度)が負であれば、ライフリングマークは発生せず、全て安定であると考える。ここで、まずガイド部2つのみの場合について解析を行ってみると、従来同様の第1のガイド部の角度α1=90°、第2のガイド部の角度α2=180°の場合が、不安定性を抑える点では最適であり、角度α2=180°となる第2のガイド部が偶数角形の角形数については安定で、偶数角形のパターン形成を抑える効果のあることがわかるが、奇数角形では不安定な領域をもち、ライフリングマークを完全に抑制することはできないことが解析からも裏付けられた。ただし、偶数角形と共に奇数角形についても、全体的に不安定度を下げるためには、α=30°近辺にガイド部が存在することが好ましい傾向が現れている。そこで、解析の例として、第3のガイド部の角度α3=30°とした場合を説明する。この場合の工具における各方向における3次までの固有振動数を以下の表2に示す。
Figure JPOXMLDOC01-appb-T000019
 この状態での、工具回転数を変化させた場合の3角形付近~10角形付近までの特性根の実部σと虚部Nの変化を図4ないし図6に示す。横軸は回転数fと、対応する角形数の整数値N0の積を表し、縦軸は上側が実部σ、下側が虚部Nの値を表している。各図中の縦方向の点線は、それぞれX方向のモードに対応した固有振動数、Y方向のモードに対応した固有振動数を表している。また、同様に横方向の点線は、特性根の実部σ=0、または虚部N=N0を表している。
 虚部Nは整数値N0からの所定微小範囲内のずれのみ着目している。それぞれの角形数における虚部Nの整数値N0からのずれとライフリングマークのピッチとの関係は、ずれが大きくなると、ライフリングマークのピッチが小さくなる傾向にあり、ライフリングマークのピッチがあまり小さすぎるものは現実的ではない。そのため、虚部Nが整数値から大きくずれるものは実際に発生するライフリングマークとの関係で現実的ではないといえる。よって、解析では、Nが整数付近の場合のみ着目すれば十分であり、Nの前記範囲外の解は無視し、他のガイド角度の場合も同様に考える。
 図4ないし図6から、偶数角形については、常にσ<0であり、刃部の対面に第2のガイド部があることからも常に安定であることが確認できる。奇数角形は、どの角形数においても固有振動数付近のピーク以外では不安定度が下がっており、特に3角形、5角形、7角形については常にσ<0で完全に安定となっている(特に、5角形、7角形については大きく安定となっている)。つまり、この条件であれば3角形、5角形や7角形のライフリングマークはどの回転数であっても発生しないといえる。これは第2のガイド部と第3のガイド部との間隔が150°となり、5角形の2波長144°および7角形の3波長154°に近いことから、パターンが2つのガイドを介して工具に与える影響が相殺されるためであると考えられる。いずれの角形数の場合も、実部σの最大値は3次の固有振動数でのピーク値となっている。
 前記と同様の手順で、第3のガイド部23の角度α3の値を変えながらそれぞれ運動方程式を設定し、これから特性方程式を得て特性根を求め、特性根の虚部Nが10以下の整数付近の場合における実部σの工具回転数変化に対応して変化する値を計算して各Nごとのσの準静的における値及び3次固有振動数までの最大値を求める。こうしてα3のとり得る値ごとに求めたσの準静的における値及び3次までの最大値を、横軸を角度α3として角形数ごとにプロットしたものを図7(A)、(B)にそれぞれ示す。なお、偶数角形についてはいずれの場合もσ<0となって全て安定のため図示を省略する。
 図7では、縦軸は特性根の実部σの大きさを、横軸は第3のガイド部23の取り得る1°から89°までの角度をそれぞれ示している。図7より、奇数角形については、9角形までの全ての角形数で実部σが負の値となる、すなわち安定している角度範囲としては、図7(A)の準静的においての値については1°~34°の範囲が、図7(A)の3次までの最大値については25°~29°の範囲が挙げられる。偶数角形については全て安定していることから、本実施形態に係るガイド配置の場合、第3のガイド部23の角度α3=1°~34°、より好ましくは、α3=25°~29°とすることによって、不安定状態を抑えて安定化できると考えられる。
 このように、本実施形態に係る切削加工用先端工具のガイド部配置構造は、先端工具1の刃部10に加わる力の分力をそれぞれ受ける二つのガイド部21、22に加え、第3のガイド部23を配設すると共に、深穴加工を含む切削加工におけるライフリングマーク等の発生を、いわゆる時間遅れ系によるパターン形成現象と捉えて、加工用工具の変位変動を解析して系の安定性を検証し、特性根の実部σが負の値となって安定と判別できる角度の位置に第3のガイド部を配置するようにして、加工中の工具の自励振動に繋がる変位の変動をこの第3のガイド部23を含む三つのガイド部21、22、23で制限することから、工具全体を安定に動作する状態に維持して、穴断面を多角形とするような不安定状態に陥らず、加工後の穴内面にライフリングマーク等があらわれず、問題のない表面状態として加工精度を高められると共に、追加工や仕上げ作業も不要となり、手間やコストの面でも有利となる。
(本発明の第2の実施形態)
 次に、本発明の第2の実施形態に係る切削加工用先端工具のガイド部配置構造を図8及び図9に基づいて説明する。
 図8は、本発明の第2の実施形態に係るガイド部配置構造の模式図である。本実施形態に係るガイド部配置構造が第1の実施形態のものと異なる点は、第3のガイド部23の配置位置のみである。即ち、工具回転中心から工具径方向に最も離れた部分の位置につき、第1のガイド部21の角度α1を80°~100°の範囲内とし、第2のガイド部22の角度α2を170°~190°の範囲内とすることは第1の実施形態と同じである一方、第3のガイド部23の角度α3を第1実施形態とは異なる91°~179°の範囲で変化させて解析を行い、安定なガイド位置を見出し、そこに配置する。
 具体的な解析例として、第1のガイド部の角度α1=90°、及び、第2のガイド部の角度α2=180°を固定とし、第3のガイド部の角度α3を91°~179°の範囲で変化させて第1の実施形態と同様の解析を行い、安定なガイド位置を見出す。なお、第3のガイド部23の配置位置以外の条件は、第1の実施形態と同じである。
 偶数角形と共に奇数角形について、全体的に不安定度を下げるためには、α=150°近辺にガイド部が存在することが好ましい傾向が現れている。
 第1の実施形態の場合と同様の手順で、第3のガイド部23の角度α3の値を変えながらそれぞれ運動方程式を設定し、これから特性方程式を得て特性根を求め、特性根の虚部Nが10以下の整数付近の場合における実部σの工具回転数変化に対応して変化する値を計算して各Nごとのσの準静的における値及び3次固有振動数までの最大値を求めた。こうしてα3のとり得る値ごとに求めたσの準静的における値及び3次までの最大値を、横軸を角度α3として角形数ごとにプロットしたものを図9(A)、(B)にそれぞれ示す。なお、偶数角形については、いずれの場合もσ<0となって全て安定のため図示を省略する。
 図9では、縦軸は特性根の実部σの大きさを、横軸は第3のガイド部23の取り得る91°から179°までの角度をそれぞれ示している。図9(A)より、奇数角形については、9角形までの全ての角形数で実部σが負の値となる、すなわち安定している角度範囲としては、146°~179°の範囲が挙げられる。ただし、図9(B)においては、9角形までの全ての角形数で実部σが負の値となる範囲は存在しない。偶数角形については全て安定していることから、本実施形態に係るガイド配置の場合、第3のガイド部23の角度α3=146°~179°とすることによって、不安定状態を相当程度抑えて、安定化できると考えられる。
(本発明の第3の実施形態)
 次に、本発明の第3の実施形態に係る切削加工用先端工具のガイド部配置構造を図10及び図11に基づいて説明する。
 図10は、本発明の第3の実施形態に係るガイド部配置構造の模式図である。
 本実施形態が第1及び第2実施形態と異なるのは、第3のガイド部23の配置位置のみである。即ち、工具回転中心から工具径方向に最も離れた部分の位置につき、第1のガイド部21の角度α1を80°~100°の範囲内、第2のガイド部の角度α2を170°~190°の範囲内とし、第3のガイド部の角度α3を271°~359°の範囲で変化させて解析を行い、安定なガイド位置を見出し、そこに配置する。
 具体的な解析例として、第1のガイド部の角度α1=90°、及び、第2のガイド部の角度α2=180°を固定とし、第3のガイド部の角度α3を271°~359°の範囲で変化させて上記の各実施形態と同様の解析を行い、安定なガイド位置を見出す。なお、第3のガイド部23の配置位置以外の条件は、第1の実施形態と同じである。
 偶数角形と共に奇数角形について、全体的に不安定度を下げるためには、α=330°近辺にガイド部が存在することが好ましい傾向が現れている。
 上記の各実施形態と同様の手順で、第3のガイド部23の角度α3の値を変えながらそれぞれ運動方程式を設定し、これから特性方程式を得て特性根を求め、特性根の虚部Nが10以下の整数付近の場合における実部σの工具回転数変化に対応して変化する値を計算して各Nごとのσの準静的における値及び3次固有振動数までの最大値を求めた。こうしてα3のとり得る値ごとに求めたσの準静的における値及び3次までの最大値を、横軸を角度α3として角形数ごとにプロットしたものを図11(A)、(B)にそれぞれ示す。なお、偶数角形については、いずれの場合もσ<0となって全て安定のため図示を省略する。
 図11では、縦軸は特性根の実部σの大きさを、横軸は第3のガイド部23の取り得る271°から359°までの角度をそれぞれ示している。図11(A)より、奇数角形については、9角形までの全ての角形数で実部σが負の値となる、すなわち安定している角度範囲としては、326°~359°の範囲が挙げられる。ただし、図9(B)においては、9角形までの全ての角形数で実部σが負の値となる範囲は存在しない。偶数角形については全て安定していることから、本実施形態に係るガイド配置の場合、第3のガイド部23の角度α3=326°~359°とすることによって、不安定状態を相当程度抑えて、安定化できると考えられる。
 本発明は、前記各局面および前記各実施形態の説明に何ら限定されるものではない。特許請求の範囲の記載を逸脱せず、当業者が容易に想到できる範囲で種々の変形態様も本発明に含まれる。
1 先端工具
10 刃部
11 切れ刃
21 第1のガイド部
22 第2のガイド部
23 第3のガイド部
40 ボーリングバー
50 被削材

Claims (5)

  1.  切削油を供給されつつ切削加工を行うための先端工具における、工具外周で被削材の穴内面と接触して切削油を通す隙間を生じさせつつ刃部の切削力を受けるガイド部の配置構造において、
     前記ガイド部は、先端工具外周に配設される3つのガイド部であって、ガイド部の工具回転中心から工具径方向に最も離れた部分の位置がそれぞれ、刃部の切れ刃位置を0°として、刃部の回転方向の遅れ側の80°~100°の角度範囲内の位置となる第1のガイド部と、170°~190°の角度範囲内の位置となる第2のガイド部と、1°~34°、146°~179°、及び、326°~359°の各角度範囲の少なくとも一つの角度範囲内の位置となる第3のガイド部とを配置してなる、ことを特徴とする切削加工用先端工具のガイド部配置構造。
  2.  切削油を供給されつつ切削加工を行うための先端工具における、工具外周で被削材の穴内面と接触して切削油を通す隙間を生じさせつつ刃部の切削力を受けるガイド部の配置構造において、
     前記ガイド部は、先端工具外周に配設され、刃部の切削力の主分力を受ける第1のガイド部、当該切削力の背分力を受ける第2のガイド部、及び第3のガイド部とからなり、
     前記第2のガイド部は、該第2のガイド部の、工具回転中心から工具径方向に最も離れた部分の位置が、刃部の切れ刃位置を0°として、刃部の回転方向の遅れ側の170°~190°の角度範囲内の位置となるように配置され、
     前記第3のガイド部は、該第3のガイド部の、工具回転中心から工具径方向に最も離れた部分の位置が、刃部の切れ刃位置を0°として、刃部の回転方向の遅れ側の1°~34°、146°~179°、及び、326°~359°の各角度範囲の少なくとも一つの角度範囲内の位置となるように配置される、ことを特徴とする切削加工用先端工具のガイド部配置構造。
  3.  前記第3のガイド部は、該第3のガイド部の、工具回転中心から工具径方向に最も離れた部分の位置が、刃部の切れ刃位置を0°として、刃部の回転方向の遅れ側の25°~29°の角度範囲内の位置となるように配置される、ことを特徴とする請求項1又は2に記載の切削加工用先端工具のガイド部配置構造。
  4.  切削油を供給されつつ切削加工を行うための先端工具における、工具外周で被削材の穴内面と接触して切削油を通す隙間を生じさせつつ刃部の切削力を受けるガイド部の配置方法において、
     前記ガイド部として、先端工具外周に第1~第3のガイド部を配設し、前記第1のガイド部の、工具回転中心から工具径方向に最も離れた部分の位置が、刃部の切れ刃位置を0°として、刃部の回転方向の遅れ側の80°~100°の角度範囲内の位置となるように該第1のガイド部を配置し、前記第2のガイド部の、工具回転中心から工具径方向に最も離れた部分の位置が、刃部の切れ刃位置を0°として、刃部の回転方向の遅れ側の170°~190°の角度範囲内の位置となるように該第2のガイド部を配置し、
     前記第3のガイド部の、工具回転中心から工具径方向に最も離れた部分の位置が、刃部の切れ刃位置を0°として、刃部の回転方向の遅れ側の1°~89°、91°~179°、及び、271°~359°の各角度範囲の少なくとも一つの角度範囲内の位置となるように該第3のガイド部を配置したと仮定して、該第3のガイド部の配置角度(α3)の値を前記角度範囲内で変化させつつ、先端工具を取り付けたボーリングバーにおける定常切削状態からの変位の変動に係る運動方程式をそれぞれ立て、当該運動方程式を基に特性方程式を得て、その特性根s=σ+jNを虚部Nが所定数以下の各整数付近である場合について求めて、得られる実部σの最大値が各Nのいずれについても負となる角度(α3)の範囲を取得し、
     前記取得した角度(α3)の範囲内に、前記第3のガイド部の、工具回転中心から工具径方向に最も離れた部分が位置するよう、該第3のガイド部の配置角度を設定する、ことを特徴とする切削加工用先端工具のガイド部配置方法。
  5.  切削油を供給されつつ切削加工を行うための先端工具における、工具外周で被削材の穴内面と接触して切削油を通す隙間を生じさせつつ刃部の切削力を受けるガイド部の配置方法において、
     前記ガイド部として、先端工具外周に、切削力の主分力を受ける第1のガイド部、切削力の背分力を受ける第2のガイド部、及び第3のガイド部の三つを配設し、
     前記第2のガイド部の、工具回転中心から工具径方向に最も離れた部分の位置が、刃部の切れ刃位置を0°として、刃部の回転方向の遅れ側の170°~190°の角度範囲内の位置となるように該第2のガイド部を配置し、
     前記第3のガイド部の、工具回転中心から工具径方向に最も離れた部分の位置が、刃部の切れ刃位置を0°として、刃部の回転方向の遅れ側の1°~89°、91°~179°、及び、271°~359°の各角度範囲の少なくとも一つの角度範囲内の位置となるように、該第3のガイド部を配置したと仮定して、該第3のガイド部の配置角度(α3)の値を前記角度範囲内で変化させつつ、先端工具を取り付けたボーリングバーにおける定常切削状態からの変位の変動に係る運動方程式をそれぞれ立て、当該運動方程式を基に特性方程式を得て、その特性根s=σ+jNを虚部Nが所定数以下の各整数付近である場合について求めて、得られる実部σの最大値が各Nのいずれについても負となる角度(α3)の範囲を取得し、
     前記取得した角度(α3)の範囲内に、前記第3のガイド部の、工具回転中心から工具径方向に最も離れた部分が位置するよう、該第3のガイド部の配置角度を設定する、ことを特徴とする切削加工用先端工具のガイド部配置方法。
PCT/JP2013/084617 2013-01-09 2013-12-25 切削加工用先端工具のガイド部配置構造及びガイド部配置方法 WO2014109230A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP13871165.0A EP2944406A4 (en) 2013-01-09 2013-12-25 GUIDE PART LAYOUT STRUCTURE AND GUIDE PART LAYOUT METHOD FOR CUTTING TOOL FOR CUTTING WORK

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013001568A JP5655234B2 (ja) 2013-01-09 2013-01-09 切削加工用先端工具のガイド部配置構造及びガイド部配置方法
JP2013-001568 2013-01-29

Publications (1)

Publication Number Publication Date
WO2014109230A1 true WO2014109230A1 (ja) 2014-07-17

Family

ID=51166887

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/084617 WO2014109230A1 (ja) 2013-01-09 2013-12-25 切削加工用先端工具のガイド部配置構造及びガイド部配置方法

Country Status (3)

Country Link
EP (1) EP2944406A4 (ja)
JP (1) JP5655234B2 (ja)
WO (1) WO2014109230A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6543956B2 (ja) * 2015-02-26 2019-07-17 大同特殊鋼株式会社 深孔加工用先端工具

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03130314U (ja) * 1990-04-16 1991-12-27
JPH068043A (ja) * 1992-01-31 1994-01-18 Mapal Fab Praezisionswerkzeu Dr Kress Kg 単刃型リーマ
JP2004167645A (ja) * 2002-11-21 2004-06-17 Yunitakku Kk ドリル
JP2010155303A (ja) * 2008-12-26 2010-07-15 Kyushu Univ 深穴加工用先端工具のガイド部配置構造及びガイド部配置方法
WO2010137712A1 (ja) * 2009-05-29 2010-12-02 株式会社タンガロイ リーマ

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2317568A1 (de) * 1973-04-07 1974-10-31 Sig Schweiz Industrieges Werkzeug zum auf- und nachbohren vorgearbeiteter bohrungen
SE504331C2 (sv) * 1994-09-12 1997-01-13 Sandvik Ab Stödlist för borr
DE202010015045U1 (de) * 2010-11-05 2011-02-17 Botek Präzisionsbohrtechnik Gmbh Einlippenbohrer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03130314U (ja) * 1990-04-16 1991-12-27
JPH068043A (ja) * 1992-01-31 1994-01-18 Mapal Fab Praezisionswerkzeu Dr Kress Kg 単刃型リーマ
JP2004167645A (ja) * 2002-11-21 2004-06-17 Yunitakku Kk ドリル
JP2010155303A (ja) * 2008-12-26 2010-07-15 Kyushu Univ 深穴加工用先端工具のガイド部配置構造及びガイド部配置方法
JP4951788B2 (ja) 2008-12-26 2012-06-13 国立大学法人九州大学 深穴加工用先端工具のガイド部配置構造及びガイド部配置方法
WO2010137712A1 (ja) * 2009-05-29 2010-12-02 株式会社タンガロイ リーマ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2944406A4

Also Published As

Publication number Publication date
EP2944406A4 (en) 2016-08-24
JP5655234B2 (ja) 2015-01-21
EP2944406A1 (en) 2015-11-18
JP2014133271A (ja) 2014-07-24

Similar Documents

Publication Publication Date Title
JP4951788B2 (ja) 深穴加工用先端工具のガイド部配置構造及びガイド部配置方法
Liu et al. Prediction of cutting force distribution and its influence on dimensional accuracy in peripheral milling
Matsuzaki et al. Theoretical and experimental study on rifling mark generating phenomena in BTA deep hole drilling process (generating mechanism and countermeasure)
JP4993528B2 (ja) 切削工具
KR101331752B1 (ko) 구멍뚫기 공구
JP2006198767A (ja) フライス工具
Sato et al. Time domain coupled simulation of machine tool dynamics and cutting forces considering the influences of nonlinear friction characteristics and process damping
WO2011142370A1 (ja) 深穴加工用ドリルヘッド及びそのガイドパッド
JP2017154202A (ja) エンドミルによる加工方法および加工装置
JP4753893B2 (ja) ダイヤモンドリーマ
JP5655234B2 (ja) 切削加工用先端工具のガイド部配置構造及びガイド部配置方法
JP5716955B2 (ja) 切削加工装置,振動条件提示装置及びその方法
Kudryashov et al. Stabilizing tool for intermittent turning of complex surfaces
JP5946984B1 (ja) 溝部の加工方法
US10774595B2 (en) Earth-boring tools with reduced vibrational response and related methods
JP6414819B2 (ja) ワーク加工方法、及びワーク加工システム
Basile Modeling transverse motions of a drill bit for process understanding
Svinin et al. Control of self-excited vibrations in face milling with two-rim mill
Hemanth et al. Influence of machining parameters on microdrill performance
Raabe et al. Dynamic disturbances in BTA deep-Hole drilling: Modelling chatter and spiralling as regenerative effects
Liu Machining dynamics in milling processes
CN207288978U (zh) 背线碾光钻头
Katz et al. On the hole quality and drill wandering relationship
JP2014079814A (ja) 穴加工工具
JP5568789B2 (ja) 超耐熱合金の切削加工方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13871165

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013871165

Country of ref document: EP