WO2014109050A1 - 自動車用エンジンの位相可変装置 - Google Patents

自動車用エンジンの位相可変装置 Download PDF

Info

Publication number
WO2014109050A1
WO2014109050A1 PCT/JP2013/050417 JP2013050417W WO2014109050A1 WO 2014109050 A1 WO2014109050 A1 WO 2014109050A1 JP 2013050417 W JP2013050417 W JP 2013050417W WO 2014109050 A1 WO2014109050 A1 WO 2014109050A1
Authority
WO
WIPO (PCT)
Prior art keywords
camshaft
lock
torque
plate pressing
lock plate
Prior art date
Application number
PCT/JP2013/050417
Other languages
English (en)
French (fr)
Inventor
本間 弘一
真康 永洞
貴史 渡部
Original Assignee
日鍛バルブ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日鍛バルブ株式会社 filed Critical 日鍛バルブ株式会社
Priority to PCT/JP2013/050417 priority Critical patent/WO2014109050A1/ja
Priority to JP2014556305A priority patent/JP6029691B2/ja
Publication of WO2014109050A1 publication Critical patent/WO2014109050A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/352Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using bevel or epicyclic gear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/352Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using bevel or epicyclic gear
    • F01L2001/3522Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using bevel or epicyclic gear with electromagnetic brake

Definitions

  • the present invention provides a phase variable mechanism that changes the opening / closing timing of the engine valve by changing the relative phase angle of the camshaft with respect to the crankshaft, and a self-locking mechanism that prevents deviation of the relative phase angle due to cam torque generated on the camshaft.
  • This is a technology related to a phase varying device for an automobile engine provided.
  • the phase varying device for an automobile engine shown in FIG. 1 of Patent Document 1 uses a first electromagnetic clutch or a reverse rotation mechanism to provide a center shaft coaxially integrated with a camshaft with respect to a drive rotating body driven by a crankshaft. Relative rotation in either the advance direction (rotation direction of the drive rotator) or the retard direction (reverse direction to the rotation direction of the drive rotator) to change the relative phase angle between the drive rotator and the camshaft. Thus, the opening / closing timing of the engine valve is changed.
  • the hexagonal column-shaped holding portion provided on the center shaft integrated with the camshaft is formed on the inner peripheral surface of the cylindrical portion of the drive rotating body.
  • the three lock plates that are in contact with each other are held in a state in which they cannot rotate relative to the center shaft.
  • Each lock plate rotates integrally with the first control rotator by two pins provided on the first control rotator and a compression coil spring.
  • the first control rotator receives torque from the first electromagnetic clutch or the reverse rotation mechanism
  • the three lock plates that receive torque from the first control rotator have the center shaft with respect to the drive rotator via the holding portion. Relative rotation in either the advance direction or the retard direction changes the opening / closing timing of the engine valve.
  • cam torque due to the reaction force of the valve spring is input to the camshaft when the engine valve is opened and closed.
  • the cam torque is alternately input in the advance angle direction and the retard angle direction, and acts on the camshaft as a relative rotation torque with respect to the drive rotor. Therefore, the cam torque causes a shift in the relative phase angle of the camshaft with respect to the held drive rotating body when the first electromagnetic clutch or the reverse rotation mechanism is stopped. Therefore, in the phase varying device for an automobile engine disclosed in Patent Document 1, the center shaft that receives the cam torque is held so as not to rotate relative to the drive rotating body, thereby preventing the relative phase angle from shifting.
  • a self-locking mechanism is provided.
  • the self-locking mechanism is mainly composed of a cylindrical portion of the drive rotating body, a plurality of lock plates inscribed in the inner peripheral surface of the cylindrical portion, and a hexagonal column-shaped holding portion that holds the lock plate by six plate pressing surfaces. Is done.
  • the holding portion of the center shaft that has received the cam torque in the retarding direction applies a self-locking force in a direction perpendicular to the central axis of the camshaft to each lock plate at a position shifted in the advance direction from the center of each plate pressing surface. .
  • the center shaft holding portion that receives the cam torque in the advance direction applies a self-locking force in a direction perpendicular to the center axis of the cam shaft to each lock plate at a position shifted in the retard direction from the center of each plate pressing surface.
  • each lock plate is pressed against the inner peripheral surface of the cylindrical portion of the drive rotator by the self-locking force, and between the inner peripheral surface of the cylindrical portion of the drive rotator and each lock plate, Friction torque opposite to cam torque is generated.
  • the self-locking mechanism disclosed in Patent Document 1 makes it impossible to rotate the center shaft relative to the drive rotator by generating a friction torque greater than the cam torque between each lock plate and the drive rotator when the cam torque is generated. Generates a self-locking effect to hold.
  • the phase varying device for an automobile engine disclosed in Patent Document 1 is self-driven by a cam torque in the reverse direction with respect to the direction in which the relative phase angle of the camshaft with respect to the drive rotor is changed by the first electromagnetic clutch or the reverse rotation mechanism.
  • the lock effect occurs (for example, when the relative phase angle is changed to the retard side and the self-lock effect based on the cam torque in the advance angle direction occurs)
  • the first electromagnetic clutch or reverse rotation The mechanism cannot change the relative phase angle because it cannot apply to the first control rotor a torque that overcomes the friction torque generated between the drive rotor and each lock plate.
  • the direction of the cam torque is switched from the opposite direction to the same direction with respect to the direction in which the relative phase angle of the camshaft with respect to the drive rotating body is changed.
  • a torque that wins over the friction torque that generates the self-locking effect is obtained.
  • the relative phase angle of the center shaft (camshaft) with respect to the drive rotator is changed by giving the first control rotator from the first electromagnetic clutch or the reverse rotation mechanism.
  • ⁇ Small gaps may occur between each lock plate and the center shaft holder due to manufacturing errors, etc.
  • three lock plates of Patent Document 1 as shown in FIG. 6A, three lock plates are formed by two pins arranged at three boundaries of the three lock plates and one compression coil spring. It is trying to suppress the occurrence of minute gaps by urging the holding part.
  • the self-locking effect is generated between the cylindrical portion of the drive rotator and each lock plate
  • the relative phase angle of the camshaft with respect to the drive rotator is between the cylinder portion of the drive rotator and each lock plate. It must be changed against the generated friction torque. Therefore, the self-locking effect that occurs between each lock plate and the drive rotor when the relative phase angle of the center shaft (camshaft) is changed with respect to the drive rotor is caused by the first electromagnetic clutch or the reverse rotation mechanism. This is undesirable in that it may reduce the relative phase angle changing operation.
  • the present invention prevents rattling that occurs between each lock plate and the camshaft when the relative phase angle of the camshaft with respect to the drive rotating body is not changed, and the relative rotation in the same direction as the cam torque.
  • An object of the present invention is to provide an automobile engine phase variable device that can change the phase angle more quickly when changing the phase angle.
  • a phase varying apparatus for an automobile engine has a cylindrical portion, and is driven by a crankshaft, and a camshaft that supports the control rotator and the drive rotator coaxially and relatively rotatably.
  • Rotating operation force applying means for applying an advance angle or retard angle torque to the control rotating body, a holding portion integrally formed in a flange shape on the outer periphery of the camshaft, and an outer peripheral surface inscribed in the cylindrical portion.
  • a plurality of lock plates whose pressure receiving portions are held by the holding portions so as not to rotate relative to the camshaft, and torque provided to the control rotator and applied to the control rotators.
  • the holding portion has a polygonal column shape including a plurality of plate pressing surfaces, and the lock plate is first formed by one plate pressing surface.
  • a first member that supports the pressure receiving portion a second member that supports the second pressure receiving portion by a plate pressing surface adjacent to one plate pressing surface, and a direction in which the first member and the second member are separated from each other.
  • the plurality of transmission members are arranged with a small gap between each of the plurality of lock plates.
  • the first member and the second member of each lock plate move in a direction in which they are separated from each other along the inner peripheral surface of the cylindrical portion of the drive rotating body by the minute gap formed between the transmission members. I can do it. Therefore, the first member and the second member that have received a biasing force in the direction of being separated from each other by the compression spring have a manufacturing error or the like between each pressure receiving portion and the lock plate pressing surface. In the direction of filling the gap due to the contact between the lock plate pressing surface and the outer end of the first pressure receiving portion and the outer end of the second pressure receiving portion. As a result, a gap due to a manufacturing error or the like is eliminated between the lock plate and the pressure receiving portion.
  • each pressure receiving portion of the first member and the second member is lifted from the plate pressing surface by the outer end of the pressure receiving portion being urged against the plate pressing surface by the compression spring.
  • one of the first member and the second member of each lock plate receives a self-locking force in a direction perpendicular to the central axis of the camshaft from the camshaft holding portion, thereby driving the rotating body.
  • the cylindrical portion is held so as not to move.
  • the other of the first member and the second member is held in a state where it does not receive a self-locking force because the inner end portion of the pressure receiving portion is separated from the holding portion of the camshaft.
  • the relative phase angle of the camshaft with respect to the drive rotating body is changed by transmitting the torque transmitted to the control rotating body by the rotating operation force applying means from the plurality of transmitting members to the plurality of lock plates, respectively.
  • the torque applied to the control rotator from the rotation operation force applying means is applied to the member that is not receiving the self-locking force among the first member and the second member, the self-locking force
  • the pressure receiving portion of the member that has not received the force is biased by the compression coil spring and is offset by the torque of the transmission member, so that it floats up from the holding portion and forms a gap with the holding portion.
  • the relative phase angle of the camshaft with respect to the drive rotating body can be changed in a state where the self-lock effect is released, so that the relative phase angle is quickly changed.
  • Claim 2 is the phase varying apparatus for an automobile engine according to Claim 1, wherein the first member is not in contact with the advance side area of the opposing plate pressing surface, but only in the retard side area.
  • the second member is formed so as to be able to contact, and is formed so as to be able to contact only the advance side region without contacting the retard side region of the opposing plate pressing surface.
  • the first pressure receiving portion of the first member cannot contact the advance side region of the lock plate pressing surface, and the second pressure receiving portion of the second member cannot contact the retard side region of the lock plate pressing surface.
  • the self-locking force that acts on the holding portion based on the cam torque that acts on the center shaft in the advance direction only acts on the first member of each lock plate, and the cam torque that acts on the cam shaft in the retard direction.
  • the self-locking force acting on the holding portion based on this acts only on the second member of each lock plate. That is, one of the first member and the second member is held in an unlocked state with respect to the drive rotating body.
  • a third aspect of the present invention provides the phase varying device for an automobile engine according to the first or second aspect, wherein the holding portion has a polygonal column shape including six or more lock plate pressing surfaces, Half of the number of lock plate pressing surfaces was provided.
  • phase varying device for an automobile engine of claims 1 to 3 when the relative phase angle of the camshaft with respect to the drive rotating body is not changed, the plurality of lock plates are attached to the camshaft holding portion by the compression coil spring. Energizing can prevent backlash of both. Furthermore, since the relative phase angle of the camshaft with respect to the drive rotator can be changed in a state where the self-lock function is released, the relative phase angle of the camshaft with respect to the drive rotator can be quickly changed.
  • FIG. 4 is a cross-sectional view taken along line AA in FIG. 3.
  • A It is BB sectional drawing of FIG. (B) It is CC sectional drawing of FIG. (C) It is DD sectional drawing of FIG. (A) It is EE sectional drawing of FIG. (B) It is FF sectional drawing of FIG. (A) is an expanded partial sectional view of the 1st lock plate and holding part of Drawing 6 (a).
  • FIG. 6B is an enlarged partial cross-sectional view of the second lock plate and the holding portion of FIG.
  • FIG. 7C is an enlarged partial cross-sectional view of the third lock plate and the holding portion of FIG.
  • (A) is the enlarged view which looked at the circumference of the 1st lock plate of Drawing 1 from the front.
  • (B) is the enlarged view which looked at the circumference of the 2nd lock plate of Drawing 1 from the front.
  • (C) is the enlarged view which looked at the circumference of the 3rd lock plate of Drawing 1 from the front.
  • D1 direction advance angle direction
  • the phase varying device for an automobile engine shown in this embodiment is assembled to the engine, transmits the rotation of the crankshaft to the camshaft so that the intake / exhaust valve opens and closes in synchronization with the rotation of the crankshaft, and
  • This is a device for changing the opening / closing timing of the intake / exhaust valve of the engine according to the operating state such as the load and the rotational speed.
  • a phase varying device 1 for an automobile engine includes a drive rotating body 2 that is driven and rotated by a crankshaft, a first control rotating body 3, a camshaft 6, and a relative phase angle changing mechanism. 10 and a self-locking mechanism 11.
  • the second electromagnetic clutch side will be described as the front of the device (reference Fr direction), and the drive rotor side will be described as the rear of the device (reference Re direction). Further, description will be made assuming that (upper: lower: left: right: Up, Dw, Le, Ri). Further, regarding the rotation direction of the drive rotor 2 rotating around the central axis L0 of the camshaft 6, the clockwise direction when viewed from the front of the apparatus is the advance direction (reference D1 direction), and the counterclockwise direction. The description will be made assuming that the direction is retarded (direction D2).
  • the drive rotator 2 is configured by integrating a sprocket 4 that receives a drive force from a crankshaft, a drive cylinder 5, and a disk 9.
  • the sprocket 4 has a central circular hole 4a and a plurality of stepped insertion holes 4b provided around the circular hole 4a.
  • the drive cylinder 5 has a bottomed cylindrical shape including a bottom part 5 c and a cylindrical part 20.
  • the bottom 5c is provided with a circular hole 5a provided at the center and a plurality (six in this embodiment) of female screw holes 5b provided around the circular hole 5a.
  • a ring-shaped bottomed groove 5d is provided on the front surface of the bottom portion 5c along the position where each female screw hole 5b is formed. Further, a plurality of (eight in this embodiment) female screw holes 20 c are provided on the front surface 20 b of the cylindrical portion 20.
  • the circular plate 9 is provided at a central circular hole 9 a, a plurality of (eight in this embodiment) stepped insertion holes 9 b, and at equal intervals in the circumferential direction.
  • a plurality of (three in this embodiment) circumferential grooves 9c and a fixing hole 9d for fixing a shaft-like member 32 described later are provided.
  • the sprocket 4 is integrated with the drive cylinder 5 by inserting a plurality of bolts 2 a through the stepped insertion hole 4 b and screwing into the female screw hole 5 b of the drive cylinder 5.
  • the disk 9 is integrated with the drive cylinder 5 by inserting a plurality of bolts 2b through the stepped insertion holes 9b and screwing them into the female screw holes 20c of the cylindrical portion 20.
  • the first control rotator 3 is formed by a cylindrical portion 3 b having a flange portion 3 a at the front edge portion and a bottom portion 3 c that continues to the rear thereof.
  • the bottom 3c has a central circular hole 3d, a plurality of pin fixing holes 28, a circumferential groove 30 provided on a circumference having a predetermined radius from the central axis L0, and a distance from the central axis L0 to the guide groove.
  • a curved first reduced-diameter guide groove 31 that decreases in the direction of the corner side D1 is provided.
  • the camshaft 6 is formed by a camshaft main body 6 a and a center shaft 7.
  • the camshaft body 6a has a plurality of cams 6b provided on the outer periphery and a female screw hole 6c provided in the center.
  • the center shaft 7 includes a first cylindrical portion 7a, a flange portion 7b, a second cylindrical portion 7c, and a third cylindrical portion 7d that are continuous back and forth along the central axis L0.
  • a lock plate holding portion 12 is formed in a flange shape around the base end portion of the third cylindrical portion 7 d, and a circular hole 7 e is formed in the center of the center shaft 7.
  • the camshaft body 6a is integrated with the center shaft 7 so as to be coaxial and non-rotatable by inserting a bolt 37 into the female screw hole 6c with the circular hole 7e.
  • the holding portion 12 is formed by an even number of plate pressing surfaces (12a to 12f) having a regular polygonal vertical cross section (a cross section perpendicular to the central axis L0). As shown in FIGS. 1 and 6A, the holding portion 12 in this embodiment has six plate pressing surfaces (12a to 12f) having a regular hexagonal vertical cross section (a cross section perpendicular to the central axis L0). ).
  • the sprocket 4 is rotatably supported by the first cylindrical portion 7a of the center shaft 7 through the circular hole 4a, and the drive cylinder 5 is secondly connected to the circular hole 5a.
  • the cylindrical portion 7c is inserted and integrated with the sprocket 4 by a plurality of bolts 2a.
  • a guide ring 8 to be described later is attached to the bottomed groove 5d of the bottom 5c of the drive cylinder 5, and a lock plate 14 to be described later is disposed in front of the guide ring 8.
  • the disc 9 is disposed in front of the lock plate 14.
  • the disc 9 is inserted into the circular hole 9a through the third cylindrical portion 7d of the center shaft 7 and integrated with the drive cylinder 5 by a plurality of bolts 2b.
  • the driving rotating body 2 composed of the sprocket 4, the driving cylinder 5 and the disk 9 is rotatably supported by the center shaft 7.
  • the first control rotator 3 is supported by the third cylindrical portion 7d of the center shaft 7 through the central circular hole 3d, and the drive rotator 2, the first control rotator 3, the camshaft 6, and the center shaft 7 are supported.
  • the relative phase angle changing mechanism 10 shown in FIGS. 1, 2, and 4 is configured so that the camshaft 6 integrated with the center shaft 7 is moved in the advance direction D1 or the drive rotating body 2 interlocked with the rotation of the crankshaft. This is a mechanism for relative rotation in any one of the retarding direction D2.
  • the relative phase angle changing mechanism 10 is configured to rotate relative to the drive rotator 2 by braking the first control rotator 3, the center shaft 7, the self-locking mechanism 11, the shaft-like member 32, and the first control rotator 3.
  • the first electromagnetic clutch 21 to be moved and the drive rotating body 2 are constituted by a reverse rotation mechanism 22 for rotating the first control rotating body 3 in a direction opposite to that when the first electromagnetic clutch 21 is operated.
  • the self-locking mechanism 11 is interposed between the drive rotator 2 and the center shaft 7, and the camshaft 6 is attached to the drive rotator 2 due to cam torque received from a valve spring (not shown).
  • This mechanism prevents the occurrence of misalignment, and is constituted by the holding portion 12 of the center shaft 7, the lock plate 14, and the cylindrical portion 20 of the drive rotating body 2.
  • the lock plate 14 is provided with half the number of plate pressing surfaces (12a to 12f) of the holding portion 12 (three in this embodiment).
  • the lock plate 14 is formed by three of a first lock plate 14a, a second lock plate 14b, and a third lock plate 14c.
  • Each of the lock plates (14a to 14c) has a shape obtained by dividing a shape approximate to a fan shape into a first member (18a to 18c) and a second member (19a to 19c).
  • the first member (18a to 18c) and the second member (19a to 19c) each have an arc-shaped outer peripheral surface (18d, 19d) along the inner peripheral surface 20a of the cylindrical portion 20 of the drive rotating body 2.
  • the first pressure receiving portions (15a to 15c) are provided on the inner peripheral surfaces of the first members (18a to 18c), and the second pressure receiving portions (15a to 19c) are provided on the inner peripheral surfaces of the second members (19a to 19c). 16a to 16c) are provided. Step holes (23a, 23b) are respectively provided in the opposing surfaces (23c, 23d) of the first member (18a-18c) and the second member (19a-19c) which are paired. Moreover, the recessed surface (23e, 23f) dented in the circumferential direction inside is provided in the adjacent surface (23g, 23h) of an adjacent lock plate, respectively. Further, arc-shaped bottomed grooves 23i for engaging the guide rings 8 are provided on the back surfaces of the lock plates (14a to 14c), respectively.
  • the first members (18a to 18c) are connected to the second members (19a to 19c) by shaft-like members (24a to 24c).
  • the shaft-shaped members (24a to 24c) have stepped holes (23a and 23b) formed between the first member (18a to 18c) and the second member (19a to 19c) in a state where the compression coil springs (25a to 25c) are arranged on the outer periphery. ) Is inserted and fixed.
  • the compression coil springs (25a to 25c) are arranged in a direction orthogonal to the camshaft central axis L0.
  • the first member (18a to 18c) and the second member (19a to 19c) are urged in a direction away from each other by the compression coil springs (25a to 25c).
  • first pressure receiving portions (15a to 15c) of the first members (18a to 18c) and the second pressure receiving portions (16a to 16c) of the second members (19a to 19c) are shown in FIG. 6 (b) and FIG. As shown, it is formed as a curved surface that is both convex.
  • reference numerals S1 to S6 shown in FIGS. 6A and 7 indicate virtual surfaces (S1 to S6) that pass through the central axis L0 and are orthogonal to the plate pressing surfaces (12a to 12f).
  • Reference numerals C1 to C6 indicate intersecting lines between the virtual surfaces (S1 to S6) and the plate pressing surfaces (12a to 12f).
  • the plate pressing surfaces (12a to 12f) of the holding portion 12 provided on the center shaft 7 intersect with the advance side regions (13a to 13f) in the advance direction from the intersection line (C1 to C6). It is constituted by the retard side region (13g to 13L) in the retard direction from (C1 to C6).
  • each lock plate (14a to 14c) is disposed between the holding portion 12 and the inner peripheral surface 20a of the cylindrical portion 20 of the drive rotating body 2.
  • the outer peripheral surfaces (18d, 19d) of the first member (18a to 18c) and the second member (19a to 19c) are inscribed in the inner peripheral surface 20a.
  • the first pressure receiving portions (15a to 15c) are arranged to face the plate pressing surfaces (12a, 12c, 12e), and the second pressure receiving portions (16a to 16c) are arranged to the plate pressing surfaces (12b, 12d, 12f). ).
  • the first pressure receiving portions (15a to 15c) are arranged so that the outer end portions 23j face the inner end portions 23k and the plate pressing surfaces (12a, 12c, 12e). Since it is formed as a convex curved surface that gradually separates, it does not contact the advance side region (13a, 13c, 13e) of the plate pressing surface (12a, 12c, 12e), and the retard side region (13g, 13i, 13k) can be contacted only. Further, the second pressure receiving portions (16a to 16c) are formed as convex curved surfaces that gradually separate from the plate pressing surfaces (12b, 12d, 12f) from the outer end portions 23m to the inner end portions 23n. Therefore, it is formed so as to be able to contact only the advance side region (13b, 13d, 13f) without contacting the retard side region (13h, 13j, 13L) of the plate pressing surface (12b, 12d, 12f).
  • the second pressure receiving portions (16a to 16c) are formed as convex curved surfaces that gradually separate from the
  • the compression coil springs (25a to 25c) apply a biasing force that slides in the retarding direction D2 along the inner peripheral surface 20a of the cylindrical portion 20 to the first member (18a to 18c), and A biasing force that slides in the advance direction D1 along the inner peripheral surface 20a is applied to the first members (18a to 18c).
  • the outer end portions 23j of the first pressure receiving portions (15a to 15c) are respectively urged by the compression coil springs (25a to 25c) to the retard side region 13b of the plate pressing surfaces (12a, 12c, 12e),
  • the outer end portions 23m of the second pressure receiving portions (16a to 16c) are urged to the advance side regions 13a of the plate pressing surfaces (12b, 12d, 12f) by the compression coil springs (25a to 25c), respectively. Therefore, in the phase varying device for an automobile engine of the present embodiment, when the relative phase angle of the camshaft with respect to the drive rotating body is not changed, the lock plates (14a to 14c) and the holding portion 12 of the center shaft 7 are No rattling occurs in the meantime.
  • the outer end portion 23j of the first pressure receiving portion (15a to 15c) generates a self-locking force F by cam torque in the advance direction (D1 direction) from the retard side region 13b of the plate pressing surface (12a, 12c, 12e).
  • Receive see FIG. 8A.
  • the outer end 23m of the second pressure receiving portion (16a to 16c) receives a self-locking force F due to cam torque in the retarding direction (D2 direction) from the advance side region 13a of the plate pressing surface (12b, 12d, 12f).
  • the guide ring 8 attached to the bottomed groove 5d of the drive cylinder 5 is engaged with the bottomed groove 23i on the back surface of the lock plate (14a to 14c) as shown in FIGS.
  • the three pin fixing holes 28 of the first control rotator 3 are provided with three torque transmission pins 26 from the back side of the first control rotator 3.
  • a transmission member) is attached.
  • the three torque transmission pins 26 are composed of a hollow round shaft 26a and a narrow round shaft 26b engaged and fixed inside thereof, and the thin round shaft 26b is attached to the pin fixing hole 28.
  • the hollow round shaft 26a protrudes from the circumferential groove 9c of the disk 9 to the rear of the disk 9, and is disposed between the recess 23 and the recess 23f of each lock plate (14a to 14c).
  • minute gaps (26c, 26d) are provided between the recesses (23e, 23f) and the hollow round shaft 26a, respectively.
  • the minute gaps (26c, 26d) are formed by connecting the first member (18a-18c) and the second member (19a-19c), which are biased by the compression coil springs (25a-25c), to the length of the minute gap (26c, 26d). It is possible to move in the D2 and D1 directions.
  • the first member (18a to 18c) and the second member (19a to 19c) are compressed coil springs (25a to 25c). ) Is moved by the length of the minute gaps (26c, 26d) and is pressed against the plate pressing surfaces (12a to 12f), and therefore, between each lock plate (14a to 14c) and the holding portion 12. No rattling occurs.
  • a thick round shaft 32a of a shaft-like member 32 composed of a thick round shaft 32a and a thin round shaft 32b is fixed to the fixing hole 9d of the disc 9.
  • the tip of the fine round shaft 32b is inserted into the circumferential groove 30 of the first control rotator 3 and protrudes forward of the bottom 3c.
  • the first electromagnetic clutch 21 is disposed in front of the first control rotor 3 in a state of being fixed to a cover member 36 that is fixed inside the engine (not shown). Is done.
  • the first electromagnetic clutch 21 in operation attracts the front surface 3e of the flange portion 3a of the first control rotating body 3 to contact the friction material 21a.
  • the reverse rotation mechanism 22 includes the first reduced diameter guide groove 31 of the first control rotator 3, the shaft-shaped member 32, the second electromagnetic clutch 38, the second control rotator 39, and the second control rotator 39.
  • the reduced diameter guide groove 40, the crank member 41, and the first and second pin mechanisms (42, 43) are configured.
  • the second control rotating body 39 has a disk shape, and has a central through-hole 39 a and a second reduced diameter guide groove 40.
  • the second control rotator 39 is rotatably supported by the third cylindrical portion 7d of the center shaft 7 through the through-hole 39a.
  • the second reduced diameter guide groove 40 is a bottomed groove that opens rearward, and is a curved groove in which the distance from the central axis L0 to the second reduced diameter guide groove 40 decreases toward the retard side D2.
  • the front surfaces (3e, 39b) of the first and second control rotators (3, 39) are arranged so as to be flush with each other, and the first and second control rotators (3, 39).
  • a second electromagnetic clutch 38 is disposed in front of the second control rotor 39 inside the first electromagnetic clutch 21. During operation, the second electromagnetic clutch 38 attracts the front surface 39b of the second control rotor 39 to contact the friction material 38a.
  • the crank member 41 disposed in front of the first control rotator 3 includes a ring part body 45 that is thick in the radial direction, and a radial direction from the ring part body 45. It has the protrusion part 46 which protrudes outside, and the notch part 47 which notched a part of outer periphery of the ring part main body 45, and was formed as a thin part.
  • the notch 47 is substantially formed in a region in the advance direction (D1 direction) from the protrusion 46.
  • a pin hole 48 penetrating in the front-rear direction is formed in the protruding portion 46.
  • the ring body 45 is provided with first and second pin holes (49, 50) penetrating in the front-rear direction.
  • the first and second pin holes (49, 50) are formed in a region in the retarding direction (D2 direction) from the protruding portion in FIG.
  • the thin round shaft 32 b protruding forward from the first reduced diameter guide groove 31 of the first control rotating body 3 is a pin hole 48 of the crank member 41.
  • the crank member 41 is rotatably supported by a narrow round shaft 32b fixed to the disc 9.
  • the first pin mechanism 42 includes a shaft-like member 42a and a first hollow oblong shaft 42b.
  • the shaft-like member 42a is fixed from the rear to the first pin hole 49 of the crank member 41 through the small diameter portion 42c, and the first hollow oblong shaft 42b is rotated by the shaft-like member 42a behind the crank member 41. It is supported movably.
  • the 2nd pin mechanism 43 is comprised by the shaft-shaped member 43a and the 2nd hollow oblong shaft 43b.
  • the shaft-shaped member 43a is fixed from the front to the second pin hole 50 of the crank member 41 through the small diameter portion 43c, and the second hollow oblong shaft 43b is rotated by the shaft-shaped member 43a in front of the crank member 41. It is supported freely.
  • the first hollow elliptical shaft 42 b is engaged with the first reduced diameter guide groove 31 and is held so as to be displaceable along the first reduced diameter guide groove 31.
  • the second hollow ellipse shaft 43 b is engaged with the second reduced diameter guide groove 40 and is held so as to be displaceable along the second reduced diameter guide groove 40.
  • the self-locking mechanism 11 will be described with reference to FIGS.
  • the cam torque by the valve spring (not shown) is advanced, regardless of whether the relative phase angle of the camshaft with respect to the drive rotator is changed or not.
  • the direction D1 and the direction D2 are alternately input.
  • the cam torque is equal to the relative phase angle of the camshaft 6 with respect to the drive rotator 2 when the first and second electromagnetic clutches (21, 39) are stopped, that is, when the relative phase angle of the camshaft with respect to the drive rotator is maintained.
  • the opening / closing timing of the valve may be out of order by causing the deviation.
  • the self-locking mechanism 11 detects either the outer peripheral surface 18d of the first member (18a-18c) of the first to third lock plates (14a-14c) or the outer peripheral surface 19d of the second member (19a-19c).
  • the relative phase angle of the drive cylinder 5 is pressed against the inner peripheral surface 20a of the cylindrical portion 20 by the self-lock effect that holds the center shaft 7 having the holding portion 12 in a non-rotatable manner with respect to the drive rotating body 2. This is to prevent deviation.
  • the inner ends 23n of the second pressure receiving portions (16a to 16c) of the second members (19a to 19c) are arranged so as not to contact the plate pressing surfaces (12b, 12d, 12f). Even if the holding part 12 rotates in the direction D1, it does not receive a force in a direction perpendicular to the rotation center axis L0 of the camshaft from the plate pressing surfaces (12b, 12d, 12f). Accordingly, in this case, the second members (19a to 19c) are maintained so as to be movable in the circumferential direction with respect to the inner peripheral surface of the cylindrical portion 20 of the drive rotating body 2.
  • the friction force is expressed as follows. First, in FIG. 8 (a), the straight lines passing through the intersecting lines (P1 to P3) and extending in the tangential direction of the outer peripheral surface 18d of the first members (18a to 18c) are denoted by L1, respectively, on the virtual surfaces (S4 to S6).
  • the straight line orthogonal to each other is L2
  • the straight line orthogonal to the straight line L1 is L3
  • the inclination between L3 and the virtual surface (S4 to S6) is ⁇ 1 (hereinafter, ⁇ 1 is referred to as a friction angle)
  • the friction coefficient of the friction surface Is ⁇ is expressed as follows. First, in FIG. 8 (a), the straight lines passing through the intersecting lines (P1 to P3) and extending in the tangential direction of the outer peripheral surface 18d of the first members (18a to 18c) are denoted by L1, respectively, on the virtual surfaces (S4 to S6).
  • the straight line orthogonal to each other is L2
  • the first member (18a to 18c) When the frictional force is larger than the force that causes the relative phase angle to shift, that is, when the condition of F1 ⁇ sin ⁇ 1 ⁇ ⁇ F1 ⁇ cos ⁇ 1 is satisfied, the first member (18a to 18c) has a self-locking force F. Due to the frictional force based on the inner circumferential surface 20a of the cylindrical portion 20, the relative rotation cannot be performed. Therefore, when the friction angle ⁇ 1 is set so as to satisfy ⁇ 1 ⁇ tan ⁇ 1 ⁇ , the center shaft 7 (camshaft 6) that holds the first to third lock plates (14a to 14c) via the holding portion 12 is Further, it is held so that it cannot rotate relative to the drive rotating body 2 having the cylindrical portion 20.
  • FIGS. 10A to 10C show the self-locking effect when the cam torque in the direction D2 which is the retarding direction is generated on the camshaft 6 (center shaft 7).
  • the center shaft 7 receives cam torque in the D2 direction
  • the holding section 12 having a regular hexagonal cross section tends to rotate in the D2 direction.
  • the second pressure receiving portions (16a to 16c) of the second members (19a to 19c) of the first to third lock plates (14a to 14c) are moved to the plate pressing surfaces (12b, 12d, 12f) at the outer end portion 23m. ),
  • the self-locking force F2 in the direction orthogonal to the rotation center axis L0 of the camshaft is received from the advance side region (13b, 13d, 13f).
  • the inner ends 23k of the first pressure receiving portions (15a to 15c) of the first members (18a to 18c) are spaced apart so as not to contact the plate pressing surfaces (12a, 12c, 12e). Even if the holding part 12 rotates in the direction D2, it does not receive a force in a direction perpendicular to the rotation center axis L0 of the camshaft from the plate pressing surfaces (12a, 12c, 12e). Accordingly, in this case, the first members (18a to 18c) are maintained so as to be movable in the circumferential direction with respect to the inner peripheral surface of the cylindrical portion 20 of the drive rotating body 2.
  • the forces that cause a deviation in the relative phase angle of the center shaft 7 (camshaft 6) with respect to the drive rotor 2 due to the cam torque are the outer peripheral surfaces 19d of the second members (19a to 19c) at the intersections (P4 to P6), respectively. Is expressed as a tangential force F2 ⁇ sin ⁇ 2.
  • the frictional force generated between the inner peripheral surface 20a of the cylindrical portion 20 and the outer peripheral surface 19d of the second member (19a to 19c) is represented by ⁇ ⁇ F2 ⁇ cos ⁇ 2.
  • the first electromagnetic clutch 21 When changing the relative phase angle of the center shaft 7 (camshaft) with respect to the drive rotator 2 in the direction D2, which is the retarded direction, the first electromagnetic clutch 21 is operated.
  • the first control rotator 3 attracted by the first electromagnetic clutch 21 receives a braking torque by coming into contact with the friction material 21a, and causes a rotation delay in the direction D2 with respect to the drive rotator 2.
  • the three torque transmission pins 26 shown in FIGS. 6B and 8A to 8C move in the circumferential direction groove 9c of the disk 9 in the D2 direction which is the retarding direction.
  • the second member (19a to 19c) of the first to third lock plates (14a to 14c) are in contact with the recesses 23f of the second member (19a to 19c), respectively. To 19c).
  • the second pressure receiving portions (16a to 16a) of the second member (19a to 19c) 16c) cancels the urging force of the compression coil springs (25a to 25c) by the braking torque in the direction D2 transmitted by the first electromagnetic clutch 21 transmitted by the torque transmission pin 26, so that the plate pressing surfaces (12b, 12d, 12f), and gaps are formed between the second pressure receiving portions (16a to 16c) and the plate pressing surfaces (12b, 12d, 12f).
  • the lock plates (14a to 14c) are generated between the first member (18a to 18c) and the second member (19a to 19c) between the inner peripheral surface 20a of the cylindrical portion 20 of the drive rotating body 2.
  • torque in the direction D2 which is the retarding direction
  • the camshaft 6 rotates relative to the drive rotating body 2 in the retarded direction by the torque in the D2 direction, which is the retarded direction, acting on the holding portion 12 of the center shaft with the self-lock effect released.
  • the relative phase angle of the camshaft with respect to the drive rotator is changed to the direction D2, which is the retard direction, and the opening / closing timing of an engine valve (not shown) is changed.
  • the first hollow elongated circular shaft 42b supported by the shaft-like member 42a is guided by the first reduced-diameter guide groove 31, and the first reduced-diameter guide groove It moves in the direction D3 that is substantially clockwise in the 31.
  • the crank member 41 has a shaft-like member 42a connected to the first pin hole 49 and moved inward in the radial direction of the first control rotor 3 along the first reduced diameter guide groove 31. Rotate around the member 32 in the counterclockwise direction D2.
  • the second electromagnetic clutch 38 is operated.
  • the second control rotor 39 adsorbed by the second electromagnetic clutch 38 is braked by contacting the friction material 38a.
  • the second control rotor 39 braked by the second electromagnetic clutch 38 causes a rotation delay in the direction D2 that is the retarding direction with respect to the center shaft 7.
  • the second hollow oblong shaft 43b moves in the direction D5 that is substantially clockwise in the second reduced diameter guide groove 40 by receiving a force from the inner peripheral surface of the second reduced diameter guide groove 40, and the crank member 41
  • the shaft-like member 42a connected to the first moving member 3 moves outward in the radial direction of the first control rotator 3.
  • the first hollow oblong shaft 42b shown in FIG. 5C moves in the first reduced diameter guide groove 31 in the direction D6, which is substantially counterclockwise, and the inner circumference of the first reduced diameter guide groove 31.
  • the first control rotator 3 is advanced with respect to the drive rotator 2 by the first hollow ellipsoidal shaft 42b of the first pin mechanism 42 that moves in the direction D6 in the first reduced diameter guide groove 31. A torque that relatively rotates in the direction D1 is received.
  • the three torque transmission pins 26 shown in FIGS. 6B and 8A to 8C move in the circumferential direction groove 9c of the disk 9 in the direction D1 which is the advance direction.
  • the first to third lock plates (14a to 14c) of the first member (18a to 18c) are in contact with the recesses 23e of the first member (18a to 18c), respectively, and the rotational torque in the direction D1 is applied to the first member (18a To 18c).
  • the lock plates (14a to 14c) are advanced in the direction D1 which is an advance direction from the torque transmission pin 26 in a state in which the self-lock effect generated between the inner surface 20a of the cylindrical portion 20 of the drive rotator 2 is released. While receiving torque, the torque is transmitted to the holding portion 12 of the center shaft 7.
  • the camshaft 6 rotates relative to the drive rotator 2 in the advance direction by receiving torque in the D1 direction, which is the advance direction, with the self-lock effect released.
  • the relative phase angle of the camshaft with respect to the drive rotator is returned to the direction D1, which is the advance direction, and the opening / closing timing of an engine valve (not shown) is changed.
  • the first to third lock plates (14a to 14c) are self-regulated regardless of the cam torque in the direction D1 or D2.
  • a lock function occurs.
  • the first to third lock plates (14 a to 14 c) are arranged at a plurality of positions equally divided in the circumferential direction in the inner peripheral surface 20 a of the cylindrical portion 20 of the drive cylinder 5 of the drive rotating body 2. Accordingly, an equal self-locking effect is generated on the inner peripheral surface 20a of the cylindrical portion 20 by the uniform force F over the entire circumference.
  • maintenance part 12 should just have a 4 or more even regular polygon cross section and a plate press surface, and is not restricted to the shape which has a regular hexagon cross section and six plate press surfaces.
  • the first pressure receiving portions (15a to 15c) are not limited to convex curved surfaces as long as they do not contact the advance side regions (13a, 13c, 13e) of the plate pressing surfaces (12a, 12c, 12e).
  • the second pressure receiving portion (16a to 16c) is not limited to the convex curved surface as long as it does not contact the retard side region (13h, 13j, 13L) of the plate pressing surface (12b, 12d, 12f). .
  • a portion of the first pressure receiving portion (15a to 15c) facing the advance side region (13a, 13c, 13e) and the second pressure receiving portion (16a to 16c) pressure receiving portion (15a to 15c retarding side region ( 13h, 13j, 13L) may be stepped so as to be recessed toward the outer peripheral surface (18d, 19d).
  • the compression coil springs (25a to 25c) may be any spring member that urges the first member (18a to 18c) and the second member (19a to 19c) away from each other, and is not limited to the coil spring. .
  • the torque transmission pin 26 protrudes from the first control rotator 3 between the lock plates, and torque generated by the first electromagnetic clutch 21 or the reverse rotation mechanism 22 is applied to the lock plates (14a to 14c). If it can communicate, it is not limited to pins.
  • Camshaft 10 Relative phase angle change mechanism 11
  • Self-lock mechanism 12 Holding part 12a-12f Plate press surface 13a-13f Advance angle side area 13g-13L Delay angle side area 14
  • Lock Plates 14a to 14c First to third lock plates 15a to 15c First pressure receiving portions 16a to 16c Second pressure receiving portions 18a to 18c First member 19a to 19c Second member 20 Cylindrical portion 25 Compression coil spring (compression of claim 1) Spring) 26 Torque transmission pin (Transmission member of claim 1) 26c, 26d Minute clearance L0 Rotation center axis D1 of camshaft D1 advance direction D2 retard direction

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Valve Device For Special Equipments (AREA)

Abstract

 【課題】 ロックプレートとカムシャフトとの間のガタつきを防止し、駆動回転体に対するカムシャフトの相対位相角を迅速に変更可能にした自動車用エンジンの位相可変装置の提供。 【解決手段】 カムシャフトの保持部が、カムトルクによりロックプレートを駆動回転体の円筒部に押し付けるセルフロック機構を有し、回動操作力付与手段が、制御回転体、複数の伝達部材、ロックプレート及び保持部によってカムシャフトにトルクを伝達し、駆動回転体に対するカムシャフトの相対位相角を変更する、自動車用エンジンの位相可変装置において、前記保持部を多角柱形状にし、ロックプレートが、保持部の一の面に支持される第1部材と、前記一の面の隣接面に支持される第2部材と、圧縮ばねを有し、前記複数の伝達部材を、微小隙間を空けて複数のロックプレートの間にそれぞれ配置した。 

Description

自動車用エンジンの位相可変装置
 本発明は、クランクシャフトに対するカムシャフトの相対位相角を変更してエンジンバルブの開閉タイミングを変更する位相可変機構に、カムシャフトに発生するカムトルクによる前記相対位相角のズレを防止するセルフロック機構を設けた自動車用エンジンの位相可変装置に関する技術である。
 特許文献1の図1に示される自動車用エンジンの位相可変装置は、クランクシャフトによって駆動する駆動回転体に対し、カムシャフトに同軸に一体化されたセンターシャフトを第1電磁クラッチまたは逆回転機構によって進角方向(駆動回転体の回転方向)または遅角方向(駆動回転体の回転方向に対する逆方向)のいずれかに相対回動させて、駆動回転体とカムシャフトの相対位相角を変化させることで、エンジンバルブの開閉タイミングを変更するものである。
 特許文献1の図1、図6(b)に示されるように、カムシャフトと一体のセンターシャフトに設けられた六角柱型の保持部には、駆動回転体の円筒部の内周面に内接する3つのロックプレートが、センターシャフトに対して相対回動不能な状態に保持される。各ロックプレートは、第1制御回転体に設けられた二つのピンと、圧縮コイルばねにより、第1制御回転体と一体になって回動する。第1制御回転体が、第1電磁クラッチまたは逆回転機構によってトルクを受けると、第1制御回転体からトルクを受ける3つのロックプレートは、保持部を介してセンターシャフトを駆動回転体に対して進角方向または遅角方向のいずれかに相対回動させ、エンジンバルブの開閉タイミングを変化させる。
 一方、カムシャフトには、特許文献1の図8に示されるようにエンジンバルブの開閉時において、バルブスプリングの反力によるカムトルクが入力される。カムトルクは、進角方向と遅角方向に交互に入力され、駆動回転体に対する相対回動トルクとしてカムシャフトに作用する。従って、カムトルクは、第1電磁クラッチまたは逆回転機構の停止時において、保持されていた駆動回転体に対するカムシャフトの相対位相角にズレを生じさせる原因となる。そこで、特許文献1の自動車用エンジンの位相可変装置には、カムトルクを受けたセンターシャフトが、駆動回転体に対して相対回動しないように保持されることによって、前記相対位相角のズレを防止するセルフロック機構が設けられている。
 セルフロック機構は、主に、駆動回転体の円筒部と、前記円筒部の内周面に内接する複数のロックプレートと、6つのプレート押圧面によってロックプレートを保持する六角柱状の保持部によって構成される。遅角方向のカムトルクを受けたセンターシャフトの保持部は、各プレート押圧面の中央から進角方向にずれた位置において、各ロックプレートにカムシャフト中心軸に直交する向きのセルフロック力を作用させる。また、進角方向のカムトルクを受けたセンターシャフトの保持部は、各プレート押圧面の中央から遅角方向にずれた位置において、カムシャフト中心軸に直交する向きのセルフロック力を各ロックプレートに作用させる。
 各ロックプレートの円弧状の外周面は、前記セルフロック力により、駆動回転体の円筒部の内周面に押し付けられ、駆動回転体の円筒部の内周面及び各ロックプレートの間には、カムトルクと逆向きの摩擦トルクが発生する。特許文献1のセルフロック機構は、カムトルクの発生時に、カムトルク以上の摩擦トルクを各ロックプレートと駆動回転体との間に発生させることにより、センターシャフトを駆動回転体に対して相対回動不能に保持するセルフロック効果を発生させる。
 尚、特許文献1の自動車用エンジンの位相可変装置は、第1電磁クラッチまたは逆回転機構によって駆動回転体に対するカムシャフトの相対位相角を変更しようとする方向に対して、逆向きのカムトルクによるセルフロック効果が発生している場合(例えば、前記相対位相角を遅角側に変更した場合において、進角方向のカムトルクに基づくセルフロック効果が発生している場合)、第1電磁クラッチまたは逆回転機構は、駆動回転体と各ロックプレートの間に発生する摩擦トルクに打ち勝つトルクを第1制御回転体に付与することが出来ないため、相対位相角を変更することが出来ない。
 従って、特許文献1の自動車用エンジンの位相可変装置においては、カムトルクの方向が駆動回転体に対するカムシャフトの相対位相角を変更しようとする方向に対して逆向きから同じ方向に切り替わることによりセルフロック効果が解除された時、または、セルフロック効果が、前記相対位相角を変更しようとする方向と同じ方向のカムトルクによって発生している場合において、セルフロック効果を発生させる摩擦トルクにうち勝つトルクを第1電磁クラッチまたは逆回転機構から第1制御回転体に付与することにより、駆動回転体に対するセンターシャフト(カムシャフト)の相対位相角を変更している。
PCT/JP2012/76099
 各ロックプレートとセンターシャフトの保持部との間には、製造誤差等による微小隙間が形成されることで、ガタつきが生じる場合がある。特許文献1の3つのロックプレートにおいては、図6(a)に示されるように、3つのロックプレートの3つの境界に配置された二つのピンと、一つの圧縮コイルばねによって、3つのロックプレートを保持部に付勢し、微小隙間の発生を抑制しようとしている。
 しかし、特許文献1の圧縮コイルばね及び2つのピンによって各ロックプレートをセンターシャフトの保持部に付勢した場合、各ロックプレートと保持部との間の一部の場所で微小隙間の抑制が不十分になるために、3つのロックプレート全てに力が伝達するまでの時間、即ちセルフロック効果が発生するまでの時間が長くなる問題が発生する。セルフロック効果が発生するまでの時間が長くなると、カムトルクなどの外乱によるガタつきが、センターシャフトの保持部と各ロックプレートとの間に発生しやすくなる点で問題がある。
 一方、駆動回転体の円筒部と各ロックプレートの間にセルフロック効果が発生している間、駆動回転体に対するカムシャフトの相対位相角は、駆動回転体の円筒部と各ロックプレートの間に発生する摩擦トルクに逆らって変更しなければならない。従って、駆動回転体に対するセンターシャフト(カムシャフト)の相対位相角の変更動作をする際に各ロックプレートと駆動回転体との間に発生するセルフロック効果は、第1電磁クラッチまたは逆回転機構による相対位相角の変更動作を低下させるおそれがある点で望ましくない。

 上記課題に鑑み、本願発明は、駆動回転体に対するカムシャフトの相対位相角を変更しない場合に各ロックプレートとカムシャフトとの間に発生するガタつきを防止し、かつカムトルクと同方向に前記相対位相角を変更しようとする場合において、変更動作をより迅速にした自動車用エンジンの位相可変装置を提供するものである。
 請求項1の自動車用エンジンの位相可変装置は、円筒部を有し、クランクシャフトによって駆動する駆動回転体と、制御回転体及び駆動回転体を同軸かつ相対回動可能に支持するカムシャフトと、前記制御回転体に進角方向または遅角方向のトルクを付与する回動操作力付与手段と、カムシャフトの外周にフランジ状に一体形成された保持部と、外周面が前記円筒部に内接し、かつ受圧部が前記保持部によってカムシャフトに対して相対回動不能に保持される複数のロックプレートと、前記制御回転体に設けられ、制御回転体に付与されたトルクを複数のロックプレートに伝達する複数の伝達部材と、を有しカムトルクを受けた保持部が、ロックプレートを駆動回転体の円筒部に押し付けるセルフロック機構によって、駆動回転体に対するカムシャフトの相対位相角を維持し、回動操作力付与手段が(制御回転体、伝達部材、ロックプレート、保持部を介して)カムシャフトにトルクを伝達することによって前記相対位相角を変更し、エンジンバルブの開閉タイミングを変更する、自動車用エンジンの位相可変装置において、前記保持部は、複数のプレート押圧面からなる多角柱形状を有し、前記ロックプレートは、一のプレート押圧面によって第1受圧部を支持される第1部材と、一のプレート押圧面に隣接するプレート押圧面によって第2受圧部を支持される第2部材と、前記第1部材及び第2部材を互いに引き離す方向に付勢する圧縮ばねと、を有し、前記複数の伝達部材が、前記複数のロックプレートの間にそれぞれ微小隙間を空けて配置されるようにした。
 (作用)各ロックプレートの第1部材と第2部材は、伝達部材との間に形成された微小隙間の分だけ、駆動回転体の円筒部の内周面に沿って互いに引き離される方向に移動出来る。従って、圧縮ばねによって互いに引き離される方向の付勢力を受けた第1部材と第2部材は、各受圧部と、ロックプレート押圧面との間に製造誤差などによる隙間がある場合、前記製造誤差などによる隙間を埋める方向に移動し、第1受圧部の外側端部及び第2受圧部の外側端部において、ロックプレート押圧面にそれぞれ接触する。その結果、ロックプレートと受圧部との間に製造誤差等による隙間が、解消される。
 尚、第1部材と第2部材の各受圧部の内側端部は、受圧部の外側端部が、圧縮ばねによってプレート押圧面に付勢されることによって、プレート押圧面から浮き上がる。
 従って、カムシャフトにカムトルクが発生すると、各ロックプレートの第1部材と第2部材のうち一方は、カムシャフト中心軸に直交する方向のセルフロック力をカムシャフトの保持部から受けて駆動回転体の円筒部に押し付けられることにより、円筒部に対して移動出来ないように保持される。また、第1部材と第2部材のうちもう一方は、受圧部の内側端部が、カムシャフトの保持部から離れているため、セルフロック力を受けない状態に保持される。
 駆動回転体に対するカムシャフトの相対位相角は、回動操作力付与手段によって制御回転体に伝達されたトルクを複数の伝達部材から複数のロックプレートにそれぞれ伝達することによって変更される。回動操作力付与手段から制御回転体に付与されたトルクを複数の伝達部材から、第1部材と第2部材のうちセルフロック力を受けていない方の部材に作用させた場合、セルフロック力を受けていない方の部材の受圧部は、圧縮コイルばねによる付勢力を伝達部材のトルクによって相殺されるため、保持部から浮き上がり、保持部との間に隙間を形成する。
 セルフロック力を受けていない方の部材とロックプレートとの間に隙間が形成された状態において、駆動回転体に対するカムシャフトの相対位相角を変更する方向と同じ方向にカムトルクの方向が切り替わった場合、第1部材及び第2部材のうち、セルフロック力を受けていた方の部材は、セルフロック効果を解除され、もう一方の部材は、伝達部材からトルクを伝達されている間、保持部と受圧部との間に形成された隙間によって、保持部と接触しない状態、即ちセルフロック効果を解除した状態に維持される。
 つまり、ロックプレートを形成する第1部材と第2部材の双方において、セルフロック効果を解除した状態で駆動回転体に対するカムシャフトの相対位相角を変更出来るため、前記相対位相角が迅速に変更される。
 また、請求項2は、請求項1の自動車用エンジンの位相可変装置であって、前記第1部材は、対向するプレート押圧面の進角側領域に接触することなく、遅角側領域のみに接触可能に形成され、前記第2部材は、対向するプレート押圧面の遅角側領域に接触することなく、進角側領域のみに接触可能に形成されるようにした。
 (作用)第1部材の第1受圧部は、ロックプレート押圧面の進角側領域に接触出来ず、第2部材の第2受圧部は、ロックプレート押圧面の遅角側領域に接触出来ない。その結果、センターシャフトに進角方向に作用するカムトルクに基づいて保持部に作用するセルフロック力は、各ロックプレートの第1部材にしか作用せず、カムシャフトに遅角方向に作用するカムトルクに基づいて保持部に作用するセルフロック力は、各ロックプレートの第2部材にしか作用しない。即ち、第1部材と第2部材のうち一方は、駆動回転体に対してロックされない状態に保持される。
 その状態で、回動操作力付与手段によって制御回転体に付与したトルクを伝達部材から、第1部材と第2部材のうちセルフロック力を受けていない方の部材に作用させた場合、ロックプレートを形成する第1部材と第2部材の双方において、セルフロック効果を解除されるため、駆動回転体に対するカムシャフトの相対位相角が、迅速に変更される。
 また、請求項3は、請求項1または2に記載の自動車用エンジンの位相可変装置であって、前記保持部は、6以上のロックプレート押圧面からなる多角柱形状を有し、前記複数のロックプレートが、ロックプレート押圧面数の半数組設けられた。
 (作用)駆動回転体の円筒部の内周面に対して、3以上のロックプレートを周方向略等分複数箇所に設けたことにより、各ロックプレートは、セルフロック効果の発生時において、前記内周面の全周に均等に押し付けられやすくなる。仮にロックプレートが駆動回転体の円筒部の内周面全周に均等に押し付けられない場合、押し付けられたロックプレートは、前記内周面に食い込み易くなって、セルフロック機能の解除を阻害する。しかし、請求項3の自動車用エンジンの位相可変装置における各ロックプレートは、駆動回転体の円筒部の内周面全周に均等に押し付けられることによって、前記内周面に食い込まないため、駆動回転体に対するカムシャフトの相対位相角を変更する際にセルフロック機能が確実に解除される。
 請求項1から請求項3の自動車用エンジンの位相可変装置によれば、駆動回転体に対するカムシャフトの相対位相角を変更しない場合において、圧縮コイルばねによって複数のロックプレートをカムシャフトの保持部に付勢することによって両者のガタツキを防止できる。更に、セルフロック機能を解除した状態で駆動回転体に対するカムシャフトの相対位相角を変更出来るため、駆動回転体に対するカムシャフトの相対位相角を迅速に変更できる。
自動車用エンジンの位相可変装置の実施例を装置前方から見た分解斜視図である。 自動車用エンジンの位相可変装置の実施例を装置後方から見た分解斜視図である。 第1実施例の自動車用エンジンの位相可変装置の正面図である。 図3のA-A断面図である。 (a)図4のB-B断面図である。(b)図4のC-C断面図である。(c)図4のD-D断面図である。 (a)図4のE-E断面図である。(b)図4のF-F断面図である。 (a)は、図6(a)の第1ロックプレート及び保持部の拡大部分断面図である。(b)は、図6(a)の第2ロックプレート及び保持部の拡大部分断面図である。(c)は、図6(a)の第3ロックプレート及び保持部の拡大部分断面図である。 (a)は、図1の第1ロックプレートの周辺を前方から見た拡大図である。(b)は、図1の第2ロックプレートの周辺を前方から見た拡大図である。(c)は、図1の第3ロックプレートの周辺を前方から見た拡大図である。 (a)本実施例において、進角方向(D1方向)のカムトルクがカムシャフトに発生した際に第1ロックプレートに作用するセルフロック効果の説明図である。(b)進角方向(D1方向)のカムトルクがカムシャフトに発生した際に第2ロックプレートに作用するセルフロック効果の説明図である。(c)進角方向(D1方向)のカムトルクがカムシャフトに発生した際に第3ロックプレートに作用するセルフロック効果の説明図である。 (a)本実施例において、進角方向(D2方向)のカムトルクがカムシャフトに発生した際に第1ロックプレートに作用するセルフロック効果の説明図である。(b)進角方向(D2方向)のカムトルクがカムシャフトに発生した際に第2ロックプレートに作用するセルフロック効果の説明図である。(c)進角方向(D2方向)のカムトルクがカムシャフトに発生した際に第3ロックプレートに作用するセルフロック効果の説明図である。
 本実施例に示す自動車用エンジンの位相可変装置は、エンジンに組付けられ、クランクシャフトの回転に同期して吸排気弁が開閉するようにクランクシャフトの回転をカムシャフトに伝達するとともに、エンジンの負荷や回転数などの運転状態によってエンジンの吸排気弁の開閉タイミングを変更するための装置である。
 本実施例の自動車用エンジンの位相可変装置1は、図1から図6に示す通り、クランクシャフトによって駆動回転する駆動回転体2、第1制御回転体3、カムシャフト6、相対位相角変更機構10、セルフロック機構11によって構成される。
 尚、各図においては、第2電磁クラッチ側を装置前方(符号Fr方向)、駆動回転体側を装置後方(符号Re方向)として説明する。また、(上方:下方:左方:右方=Up、Dw、Le、Ri)として説明する。また、カムシャフト6の中心軸線L0周りに回転する駆動回転体2の回転方向については、装置前方から見て時計回りとなる方向を進角方向(符号D1方向)、反時計回りとなる方向を遅角方向(符号D2方向)として説明する。
 図1,図2、図4、図6に示すとおり、駆動回転体2は、クランクシャフトから駆動力を受けるスプロケット4と駆動円筒5と円板9を一体化することによって構成されている。スプロケット4は、中心の円孔4aと、円孔4aの周囲に複数設けられた段差付挿通孔4bを有する。駆動円筒5は、底部5c及び円筒部20からなる有底円筒形状を有する。底部5cは、中心に設けられる円孔5aと、円孔5aの周囲に設けられる複数の(本実施例では6箇所の)雌ねじ孔5bが設けられる。底部5cの前面には、各雌ねじ孔5bの形成位置に沿ってリング形状の有底溝5dが設けられる。また、円筒部20の前面20bには、複数の(本実施例では8箇所の)雌ねじ孔20cが設けられている。
 円板9は、図1,図2、図6(a)に示す通り、中心の円孔9a、複数の(本実施例では8箇所の)段差付挿通孔9b、周方向等間隔に設けられた複数の(本実施例では3箇所の)の円周方向溝9c及び後述する軸状部材32を固定する固定孔9dを有する。スプロケット4は、段差付挿通孔4bに複数のボルト2aを挿通し、かつ駆動円筒5の雌ねじ孔5bにネジ止めすることで駆動円筒5に一体化される。また、円板9は、複数のボルト2bを段差付挿通孔9bに挿通し、かつ円筒部20の雌ねじ孔20cにネジ止めすることで駆動円筒5に一体化される。
 図1,図2、図4、図5(c)に示すとおり、第1制御回転体3は、前縁部にフランジ部3aを有する円筒部3bとその後方に連続する底部3cによって形成される。底部3cには、中心の円孔3d、複数のピン固定孔28、中心軸線L0から所定半径を有する円周上に設けられた円周方向溝30、中心軸線L0からガイド溝への距離が進角側D1方向に向けて減少する曲線状の第1縮径ガイド溝31が設けられる。
 また、図4に示すとおり、カムシャフト6は、カムシャフト本体6aと、センターシャフト7によって形成される。カムシャフト本体6aは、外周に設けられた複数のカム6bと、中心に設けられた雌ねじ孔6cを有する。図1,図2、図4に示すとおり、センターシャフト7は、中心軸線L0に沿って前後に連続する第1円筒部7a、フランジ部7b、第2円筒部7c、及び第3円筒部7dを有する。第3円筒部7dの基端部の周囲には、ロックプレートの保持部12がフランジ状に形成され、センターシャフト7の中心には、円孔7eが形成される。カムシャフト本体6aは、円孔7eとの雌ねじ孔6cにボルト37を挿入することによって、センターシャフト7に同軸かつ相対回動不能に一体化される。
 保持部12は、正多角形の垂直断面(中心軸線L0に直交する断面)を有する偶数のプレート押圧面(12a~12f)によって形成される。尚、本実施例における保持部12は、図1,図6(a)に示すように、正6角形の垂直断面(中心軸線L0に直交する断面)を有する6つのプレート押圧面(12a~12f)によって形成されている。
 図1、図2,図4に示すとおり、スプロケット4は、円孔4aを介してセンターシャフト7の第1円筒部7aに回動可能に支持され、駆動円筒5は、円孔5aに第2円筒部7cを挿通されると共に複数のボルト2aによってスプロケット4に一体化される。駆動円筒5の底部5cの有底溝5dには、後述するガイドリング8が取り付けられ、ガイドリング8の前方には、後述するロックプレート14が配置される。円板9は、ロックプレート14の前方に配置される。また、円板9は、円孔9aにセンターシャフト7の第3円筒部7dを挿通されると共に複数のボルト2bによって駆動円筒5に一体化される。
 スプロケット4,駆動円筒5及び円板9からなる駆動回転体2は、センターシャフト7によって回動可能に支持される。また、第1制御回転体3は、中心の円孔3dを介してセンターシャフト7の第3円筒部7dに支持され、駆動回転体2,第1制御回転体3,カムシャフト6,センターシャフト7は、中心軸線L0上に同軸に配置される。
 図1,図2、図4に示す、相対位相角変更機構10は、クランクシャフトの回転に連動する駆動回転体2に対し、センターシャフト7に一体化されたカムシャフト6を進角方向D1または遅角方向D2のいずれかに相対回動させる機構である。相対位相角変更機構10は、第1制御回転体3、センターシャフト7,セルフロック機構11、及び軸状部材32、第1制御回転体3を制動することによって駆動回転体2に対して相対回動させる第1電磁クラッチ21、及び駆動回転体2に対して、第1電磁クラッチ21の作動時と逆向きに第1制御回転体3を相対回動させる逆回転機構22によって構成される。
 セルフロック機構11は、駆動回転体2とセンターシャフト7との間に介装され、カムシャフト6が図示しないバルブスプリングから受けるカムトルクを原因とした、駆動回転体2に対するカムシャフト6の組付角のズレの発生を防止する機構であり、センターシャフト7の保持部12,ロックプレート14,駆動回転体2の円筒部20によって構成される。
 ロックプレート14は、図1,図6(b)、図7に示すように、保持部12のプレート押圧面(12a~12f)の数の半数組(本実施例では3組)設けられる。本実施例においてロックプレート14は、第1ロックプレート14a、第2ロックプレート14b及び第3ロックプレート14cの3つによって形成される。各ロックプレート(14a~14c)は、それぞれ扇形に近似する形状を第1部材(18a~18c)と第2部材(19a~19c)に2分割してなる形状を有する。第1部材(18a~18c)と第2部材(19a~19c)は、それぞれ駆動回転体2の円筒部20の内周面20aに沿った円弧形状の外周面(18d、19d)を有する。また、第1部材(18a~18c)の内周面には、第1受圧部(15a~15c)が設けられ、第2部材(19a~19c)の内周面には、第2受圧部(16a~16c)が設けられる。一対になる第1部材(18a~18c)と、第2部材(19a~19c)の対向面(23c、23d)には、それぞれ段差孔(23a,23b)がそれぞれ設けられる。また、隣り合うロックプレートの隣接面(23g、23h)には、周方向内側に凹む凹部(23e、23f)がそれぞれ設けられる。また各ロックプレート(14a~14c)の裏面には、ガイドリング8を係合させる円弧形状の有底溝23iがそれぞれ設けられる。
 第1部材(18a~18c)は、軸状部材(24a~24c)によって第2部材(19a~19c)に連結される。軸状部材(24a~24c)は、外周に圧縮コイルばね(25a~25c)を配置した状態で、第1部材(18a~18c)と第2部材(19a~19c)の段差孔(23a,23b)にを挿入固定される。圧縮コイルばね(25a~25c)は、カムシャフト中心軸線L0に直交する方向に配置される。第1部材(18a~18c)と第2部材(19a~19c)は、圧縮コイルばね(25a~25c)によって互いに離間する方向に付勢される。
 また、第1部材(18a~18c)の第1受圧部(15a~15c)と第2部材(19a~19c)の第2受圧部(16a~16c)は、図6(b)及び図7に示す通り、共に凸となる曲面として形成される。
 尚、図6(a)及び図7に示す符号S1~S6は、中心軸線L0を通り、各プレート押圧面(12a~12f)に直交する仮想面(S1~S6)を示す。また、符号C1~C6は、仮想面(S1~S6)と各プレート押圧面(12a~12f)との交線を示す。また、センターシャフト7に設けられた保持部12の各プレート押圧面(12a~12f)は、交線(C1~C6)から進角方向にある進角側領域(13a~13f)と、交線(C1~C6)から遅角方向にある遅角側領域(13g~13L)によって構成される。
 図6(b)及び図7に示すように、各ロックプレート(14a~14c)は、保持部12と、駆動回転体2の円筒部20の内周面20aとの間に配置される。第1部材(18a~18c)及び第2部材(19a~19c)の外周面(18d、19d)は、内周面20aに内接する。また、第1受圧部(15a~15c)は、プレート押圧面(12a,12c,12e)に対向して配置され、第2受圧部(16a~16c)は、プレート押圧面(12b,12d,12f)に対向して配置される。
 第1受圧部(15a~15c)は、図8(a)~(c)に示す通り、それぞれの外側端部23jが内側端部23kに向けて、プレート押圧面(12a,12c,12e)から徐々に離間する凸型曲面として形成されるため、プレート押圧面(12a,12c,12e)の進角側領域(13a,13c,13e)に接触することなく、遅角側領域(13g,13i,13k)のみに接触可能に形成される。また、また、第2受圧部(16a~16c)は、それぞれの外側端部23mから内側端部23nに向けて、プレート押圧面(12b,12d,12f)から徐々に離間する凸型曲面として形成されるため、プレート押圧面(12b,12d,12f)の遅角側領域(13h,13j,13L)に接触することなく、進角側領域(13b,13d,13f)のみに接触可能に形成される。
 尚、圧縮コイルばね(25a~25c)は、円筒部20の内周面20aに沿って遅角方向D2にスライドする付勢力を第1部材(18a~18c)に付与し、かつ円筒部20の内周面20aに沿って進角方向D1にスライドする付勢力を第1部材(18a~18c)に付与する。その結果、第1受圧部(15a~15c)の外側端部23jは、圧縮コイルばね(25a~25c)によってプレート押圧面(12a,12c,12e)の遅角側領域13bにそれぞれ付勢され、第2受圧部(16a~16c)の外側端部23mは、圧縮コイルばね(25a~25c)によってプレート押圧面(12b,12d,12f)の進角側領域13aにそれぞれ付勢される。従って、本実施例の自動車用エンジンの位相可変装置においては、駆動回転体に対するカムシャフトの相対位相角を変更しない場合において、各ロックプレート(14a~14c)とセンターシャフト7の保持部12との間にガタツキが発生しない。
 また、第1受圧部(15a~15c)の外側端部23jは、プレート押圧面(12a,12c,12e)の遅角側領域13bから進角方向(D1方向)のカムトルクによるセルフロック力Fを受ける(図8(a)を参照)。第2受圧部(16a~16c)の外側端部23mは、プレート押圧面(12b,12d,12f)の進角側領域13aから遅角方向(D2方向)のカムトルクによるセルフロック力Fを受ける。
 駆動円筒5の有底溝5dに取り付けられたガイドリング8は、図1及び図2に示す通り、ロックプレート(14a~14c)の裏面の有底溝23iに係合される。
 また、図2及び図5(c)に示す、第1制御回転体3の3つのピン固定孔28には、第1制御回転体3の裏面側から3つのトルク伝達ピン26(請求項1の伝達部材)が取り付けられる。3つのトルク伝達ピン26は、中空太丸軸26aと、その内側に係合固定される細丸軸26bから構成され、細丸軸26bは、ピン固定孔28に取り付けられる。一方、中空太丸軸26aは、円板9の円周方向溝9cから円板9の後方に突出し、各ロックプレート(14a~14c)の凹部23と、凹部23fとの間に配置される。
 図7(a)(b)に示す通り、凹部(23e,23f)と中空太丸軸26aとの間には、それぞれ微小隙間(26c、26d)が設けられる。微小隙間(26c、26d)は、圧縮コイルばね(25a~25c)による付勢力を受けた第1部材(18a~18c)及び第2部材(19a~19c)を微小隙間(26c、26d)の長さ分だけD2方向及びD1方向に移動可能にする。各ロックプレート(14a~14c)と保持部12の間に製造誤差による隙間が発生した場合、第1部材(18a~18c)及び第2部材(19a~19c)は、圧縮コイルばね(25a~25c)の付勢力によって微小隙間(26c、26d)の長さ分だけ移動し、プレート押圧面(12a~12f)に押し付けられるため、各ロックプレート(14a~14c)と、保持部12との間には、ガタツキが発生しない。
 また、円板9の固定孔9dには、図1、図2、図6(b)に示すとおり、太丸軸32aと細丸軸32bからなる軸状部材32の太丸軸32aが固定される。細丸軸32bの先端は、第1制御回転体3の円周方向溝30に挿通されて、底部3cの前方に突出する。
 また、図1,図2、図4に示す通り、第1電磁クラッチ21は、図示しないエンジンの内部に固定されたカバー部材36に固定された状態で、第1制御回転体3の前方に配置される。作動時の第1電磁クラッチ21は、第1制御回転体3のフランジ部3aの前面3eを吸着して摩擦材21aに接触させる。また、逆回転機構22は、第1制御回転体3の第1縮径ガイド溝31、軸状部材32、第2電磁クラッチ38,第2制御回転体39,第2制御回転体39の第2縮径ガイド溝40,クランク部材41、第1及び第2のピン機構(42,43)によって構成される。
 図1,図2、図5(a)に示すとおり、第2制御回転体39は、円盤形状を有し、かつ中心の貫通円孔39aと第2縮径ガイド溝40を有する。第2制御回転体39は、貫通円孔39aを介し、センターシャフト7の第3円筒部7dによって回動可能に支持される。第2縮径ガイド溝40は、後方に開口する有底溝であり、かつ中心軸線L0から第2縮径ガイド溝40への距離が遅角側D2方向に向けて減少する曲線溝で有る。第1及び第2制御回転体(3,39)の前面(3e、39b)は、図4に示すように互いに面一となるように配置され、第1及び第2制御回転体(3、39)はボルト37に取付けられるホルダー44によって前方に抜け止めされる。また、第1電磁クラッチ21の内側において、第2制御回転体39の前方には、第2電磁クラッチ38が配置される。作動時の第2電磁クラッチ38は、第2制御回転体39の前面39bを吸着して摩擦材38aに接触させる。
 図1,図5(b)に示すように、第1制御回転体3の前方に配置されるクランク部材41は、半径方向に厚肉となるリング部本体45と、リング部本体45から半径方向外側に突出する突出部46と、リング部本体45の外周の一部を切り欠いて薄肉部として形成された切欠部47と、を有する。切欠部47は、突出部46から進角方向(D1方向)の領域にほぼ形成されている。突出部46には、前後に貫通するピン孔48が形成される。リング部本体45には、前後に貫通する第1及び第2ピン孔(49,50)が設けられる。第1及び第2ピン孔(49,50)は、図5(b)において、突出部から遅角方向(D2方向)の領域に形成されている。
 図1、図5(c)、図6(a)に示すとおり、第1制御回転体3の第1縮径ガイド溝31から前方に突出した細丸軸32bは、クランク部材41のピン孔48に係合し、クランク部材41は、円板9に固定された細丸軸32bによって回動可能に支持される。
 また、図1,図2に示すとおり、第1のピン機構42は、軸状部材42aと、第1中空長円軸42bによって構成される。軸状部材42aは、小径部42cを介してクランク部材41の第1のピン孔49に後方から固定され、第1中空長円軸42bは、クランク部材41の後方で、軸状部材42aによって回動自在に支持される。第2のピン機構43は、軸状部材43aと、第2中空長円軸43bによって構成される。軸状部材43aは、小径部43cを介してクランク部材41の第2ピン孔50に前方から固定され、第2中空長円軸43bは、クランク部材41の前方で、軸状部材43aによって回動自在に支持される。第1中空長円軸42bは、第1縮径ガイド溝31に係合し、かつ第1縮径ガイド溝31に沿って変位可能に保持される。第2中空長円軸43bは、第2縮径ガイド溝40に係合し、かつ第2縮径ガイド溝40に沿って変位可能に保持される。
 ここで、図9と図10によりセルフロック機構11について説明する。駆動回転体2と共に回転するカムシャフト6には、駆動回転体に対するカムシャフトの相対位相角を変更する場合または、変更しない場合のいずれにおいても、バルブスプリング(図示せず)によるカムトルクが、進角方向であるD1方向と遅角方向であるD2方向に交互に入力されている。カムトルクは、第1及び第2電磁クラッチ(21,39)の停止時、即ち、駆動回転体に対するカムシャフトの相対位相角を保持する場合において、駆動回転体2に対するカムシャフト6の相対位相角にズレを生じさせることにより、バルブの開閉タイミングを狂わせるおそれがある。セルフロック機構11は、カムトルクの発生時に第1から第3ロックプレート(14a~14c)の第1部材(18a~18c)の外周面18dまたは第2部材(19a~19c)の外周面19dのいずれかを駆動円筒5の円筒部20の内周面20aに押し付けて、保持部12を有するセンターシャフト7を駆動回転体2に対して回動不能に保持するセルフロック効果により、前記相対位相角のズレを防止するものである。
 図9(a)~(c)は、カムシャフト6に進角方向であるD1方向にカムトルクが発生した場合におけるセルフロック効果を示すものである。カムシャフト6のセンターシャフト7が、進角方向であるD1方向のカムトルクを受けると、断面正六角形の保持部12は、D1方向に回動しようとする。その際、第1から第3ロックプレート(14a~14c)の第1部材(18a~18c)の第1受圧部(15a~15c)は、外側端部23jにおいてプレート押圧面(12a,12c,12e)の遅角側領域(13g,13i,13k)からカムシャフトの回転中心軸線L0に直交する方向のセルフロック力F1を受ける。
 一方、第2部材(19a~19c)の第2受圧部(16a~16c)の内側端部23nは、プレート押圧面(12b,12d,12f)に接触しないように離間して配置されているため、保持部12がD1方向に回動しても、プレート押圧面(12b,12d,12f)からカムシャフトの回転中心軸線L0に直交する方向の力を受けない。従って、この場合、第2部材(19a~19c)は、駆動回転体2の円筒部20の内周面に対して周方向に移動可能に維持される。
 図9(a)~(c)において、第1部材(18a~18c)の外側端部23jを通り、仮想面(S1,S3,S5)に平行な仮想面をそれぞれ(S7~S9)とし、仮想面(S7~S9)と、第1部材(18a~18c)の外周面18dとの交線を(P1~P3)とすると、円筒部20の内周面20aは、交線(P1~P3)において第1部材(18a~18c)の外周面18dから力F1を受ける。力F1は、円筒部20の内周面20aと、第1部材(18a~18c)の外周面18dとの間に摩擦力を発生させる。
 前記摩擦力は、以下のように表される。まず、図8(a)において、交線(P1~P3)を通り、第1部材(18a~18c)の外周面18dの接線方向に延びる直線をそれぞれL1とし、仮想面(S4~S6)にそれぞれ直交する直線をL2とし、直線L1に直交する直線をL3とし、L3と仮想面(S4~S6)との傾きをそれぞれθ1(以降は、θ1を摩擦角という)とし、摩擦面の摩擦係数をμとする。カムトルクにより、駆動回転体2に対するセンターシャフト7(カムシャフト6)の相対位相角にズレを発生させる力は、交線(P1~P3)において、外周面18dの接線方向の力F・sinθ1としてそれぞれ表される。一方、円筒部20の内周面20aと、第1部材(18a~18c)の外周面18dとの間に発生する摩擦力は、μ・F1・cosθ1によってそれぞれ表される。
 前記摩擦力が相対位相角にズレを発生させる力よりも大きい場合、即ち、F1・sinθ1<μ・F1・cosθ1の条件を満たす場合、第1部材(18a~18c)は、セルフロック力Fに基づく摩擦力により、円筒部20の内周面20aに対して相対回動出来ない。従って、θ1<tan-1μを満たすように摩擦角θ1を設定した場合、保持部12を介して第1から第3ロックプレート(14a~14c)を保持するセンターシャフト7(カムシャフト6)は、円筒部20を有する駆動回転体2に対して相対回動出来ないように保持される。
 一方、図10(a)~(c)は、カムシャフト6(センターシャフト7)に遅角方向であるD2方向のカムトルクが発生した場合におけるセルフロック効果を示すものである。センターシャフト7が、D2方向のカムトルクを受けると断面正六角形の保持部12は、D2方向に回動しようとする。その際、第1から第3ロックプレート(14a~14c)の第2部材(19a~19c)の第2受圧部(16a~16c)は、外側端部23mにおいてプレート押圧面(12b,12d,12f)の進角側領域(13b,13d,13f)からカムシャフトの回転中心軸線L0に直交する方向のセルフロック力F2を受ける。
 一方、第1部材(18a~18c)の第1受圧部(15a~15c)の内側端部23kは、プレート押圧面(12a,12c,12e)に接触しないように離間して配置されているため、保持部12がD2方向に回動しても、プレート押圧面(12a,12c,12e)からカムシャフトの回転中心軸線L0に直交する方向の力を受けない。従って、この場合、第1部材(18a~18c)は、駆動回転体2の円筒部20の内周面に対して周方向に移動可能に維持される。
 図10(a)~(c)において、第2部材(19a~19c)の外側端部23mを通り、仮想面(S2,S4,S6)に平行な仮想面をそれぞれ(S10~S12)とし、仮想面(S10~S12)と、第2部材(19a~19c)の外周面19dとの交線を(P4~P6)とすると、円筒部20の内周面20aは、交線(P4~P6)において、第2部材(19a~19c)の外周面19dから力F2を受ける。力F2は、円筒部20の内周面20aと、第2部材(19a~19c)の外周面19dとの間に以下に示す摩擦力を発生させる。
 まず、図10(a)~(c)において、交線(P4~P6)から第2部材(19a~19c)の外周面19dの接線方向に延びる直線をそれぞれL4とし、仮想面(S10~S12)にそれぞれ直交する直線をL5とし、直線L4に直交する直線をL6とし、L6と仮想面(S10~S12)との傾きをそれぞれθ2(以降は、θ2を摩擦角という)とする。カムトルクにより、駆動回転体2に対するセンターシャフト7(カムシャフト6)の相対位相角にズレを発生させる力は、交線(P4~P6)において、それぞれ第2部材(19a~19c)の外周面19dの接線方向の力F2・sinθ2として表される。一方、円筒部20の内周面20aと、第2部材(19a~19c)の外周面19dとの間に発生する摩擦力は、μ・F2・cosθ2によってそれぞれ表される。
 即ち、F2・sinθ2<μ・F2・cosθ2の条件を満たす場合、第2部材(19a~19c)は、円筒部20の内周面20aに対して相対回動出来ない。従って、θ2<tan-1μを満たすように摩擦角θ2を設定した場合、センターシャフト7(カムシャフト6)は、駆動回転体2(図示しないクランクシャフト)に対して相対回動出来ないように保持される。
 図9及び図10に示す通り、セルフロック機構11においては、進角方向であるD1方向または遅角方向であるD2方向のいずれのカムトルクがカムシャフト6に発生しても、駆動回転体2(図示しないクランクシャフト)に対するカムシャフト6の相対位相角がズレることなく保持される、セルフロック効果が発生する。
 次に、駆動回転体2に対するセンターシャフト7(カムシャフト6)の相対位相角の変更動作を説明する。第1及び第2電磁クラッチ(21、38)が作動していない場合、カムシャフト6、第1制御回転体3及び第2制御回転体39は、クランクシャフト(図示せず)によって駆動する駆動回転体2と共にD1方向に回転する(図1及び図5(a)(c)を参照)。
 駆動回転体2に対するセンターシャフト7(カムシャフト)の相対位相角を遅角方向であるD2方向に変更する場合には、第1電磁クラッチ21を作動させる。第1電磁クラッチ21によって吸着された第1制御回転体3は、摩擦材21aと接触することによって制動トルクを受け、駆動回転体2に対してD2方向に回転遅れを生じる。
 その際、図6(b)及び図8(a)~(c)に示す、3つのトルク伝達ピン26は、円板9の円周方向溝9c内を遅角方向であるD2方向に移動し、かつ図6(b)に示す第1から第3ロックプレート(14a~14c)の第2部材(19a~19c)の凹部23fにそれぞれ接触し、D2方向の回動トルクを第2部材(19a~19c)に付与する。
 進角方向であるD1方向のカムトルクがカムシャフトに基づくセルフロック力が第1部材(18a~18c)に作用している場合において、第2部材(19a~19c)の第2受圧部(16a~16c)は、圧縮コイルばね(25a~25c)による付勢力をトルク伝達ピン26によって伝達された、第1電磁クラッチ21によるD2方向の制動トルクによって相殺されるため、プレート押圧面(12b,12d,12f)から浮き上がり、第2受圧部(16a~16c)と、プレート押圧面(12b,12d,12f)との間には、隙間が形成される。
 第2受圧部(16a~16c)と、プレート押圧面(12b,12d,12f)との間に隙間が形成された状態において、カムシャフトに発生するカムトルクの方向がD2方向に切り替わった場合、セルフロック力を受けていた第1部材(18a~18c)は、セルフロック効果を解除され、第2部材(19a~19c)は、第2受圧部(16a~16c)と、プレート押圧面(12b,12d,12f)との間に隙間が形成された状態でトルク伝達ピン26からトルクを受ける。
 つまり、ロックプレート(14a~14c)は、第1部材(18a~18c)と第2部材(19a~19c)の双方において、駆動回転体2の円筒部20の内周面20aとの間に発生するセルフロック効果を解除された状態でトルク伝達ピン26から遅角方向であるD2方向のトルクを受けると共に、当該トルクをセンターシャフト7の保持部12に伝達する。カムシャフト6は、セルフロック効果を解除された状態でセンターシャフトの保持部12に遅角方向であるD2方向のトルクが作用することにより、駆動回転体2に対して遅角方向に相対回動する。その結果、駆動回転体に対するカムシャフトの相対位相角は、遅角方向であるD2方向に変更され、図示しないエンジンバルブの開閉タイミングが変更される。
 その際、図5(b)(c)に示す通り、軸状部材42aに支持された第1中空長円軸42bは、第1縮径ガイド溝31によってガイドされながら、第1縮径ガイド溝31内を略時計回りとなるD3方向に移動する。その際、クランク部材41は、第1のピン孔49に連結された軸状部材42aが第1縮径ガイド溝31に沿って第1制御回転体3の半径方向内側に移動することにより、軸状部材32の周りを反時計回りD2方向に回動する。一方、第2ピン孔50に連結された軸状部材43aがクランク部材41によって移動すると、第2中空長円軸43bは、第2縮径ガイド溝40内を略反時計回りとなるD4方向に移動することにより、第2縮径ガイド溝40の内周面に半径方向内向きの力を付与する。その結果、第2制御回転体39は、センターシャフト7に対して進角方向であるD1方向に相対回動する。
 一方、駆動回転体2に対するセンターシャフト7(カムシャフト6)の相対位相角を進角方向であるD1方向に変更する場合には、第2電磁クラッチ38を作動させる。第2電磁クラッチ38によって吸着された第2制御回転体39は、摩擦材38aと接触することによって制動される。
 図5(a)に示す通り、第2電磁クラッチ38によって制動された第2制御回転体39は、センターシャフト7に対して遅角方向であるD2方向に回転遅れを生じる。第2中空長円軸43bは、第2縮径ガイド溝40の内周面から力を受けることにより、第2縮径ガイド溝40内を略時計回りとなるD5方向に移動し、クランク部材41に連結された軸状部材42aは、第1制御回転体3の半径方向外側に移動する。その際、図5(c)に示す第1中空長円軸42bは、第1縮径ガイド溝31内を略反時計回りとなるD6方向に移動し、第1縮径ガイド溝31の内周面に半径方向外向きの力を付与する。第1制御回転体3は、第1縮径ガイド溝31内をD6方向に移動する第1のピン機構42の第1中空長円軸42bにより、駆動回転体2に対し、進角方向であるD1方向に相対回動するトルクを受ける。
 その際、図6(b)及び図8(a)~(c)に示す、3つのトルク伝達ピン26は、円板9の円周方向溝9c内を進角方向であるD1方向に移動し、かつ図6(b)に示す第1から第3ロックプレート(14a~14c)の第1部材(18a~18c)の凹部23eにそれぞれ接触し、D1方向の回動トルクを第1部材(18a~18c)に付与する。
 遅角方向であるD2方向のカムトルクがカムシャフトに基づくセルフロック力が第2部材(19a~19c)に作用している場合において、第1部材(18a~18c)の第1受圧部(15a~15c)は、圧縮コイルばね(25a~25c)による付勢力をトルク伝達ピン26によって伝達された、D1方向のトルクによって相殺されるため、プレート押圧面(12a,12c,12e)から浮き上がり、第1受圧部(15a~15c)と、プレート押圧面(12a,12c,12e)との間には、隙間が形成される。
 第1受圧部(15a~15c)と、プレート押圧面(12a,12c,12e)との間に隙間が形成された状態において、カムシャフトに発生するカムトルクの方向がD1方向に切り替わった場合、セルフロック力を受けていた第2部材(19a~19c)は、セルフロック効果を解除され、第1部材(18a~18c)は、第1受圧部(15a~15c)と、プレート押圧面(12a,12c,12e)との間に隙間が形成された状態でトルク伝達ピン26からトルクを受ける。
 ロックプレート(14a~14c)は、駆動回転体2の円筒部20の内周面20aとの間に発生するセルフロック効果を解除された状態でトルク伝達ピン26から進角方向であるD1方向のトルクを受けると共に、当該トルクをセンターシャフト7の保持部12に伝達する。カムシャフト6は、セルフロック効果を解除された状態で進角方向であるD1方向のトルクを受けることにより、駆動回転体2に対して進角方向に相対回動する。その結果、駆動回転体に対するカムシャフトの相対位相角は、進角方向であるD1方向に戻され、図示しないエンジンバルブの開閉タイミングが変更される。
 また、図9及び図10に示す通り、このセルフロック機構11によれば、D1方向またはD2方向のいずれのカムトルクを受けても、第1から第3ロックプレート(14a~14c)の全てにセルフロック機能が発生する。第1から第3ロックプレート(14a~14c)は、駆動回転体2の駆動円筒5の円筒部20の内周面20a内の周方向等分複数箇所に配置されている。従って、円筒部20の内周面20aには、均等な力Fにより、全周にわたって均等なセルフロック効果が発生する。全周にわたって均等なセルフロック効果が発生した場合、ロックプレート14は、セルフロック効果の発生時に円筒部20の内周面20aに食い込まなくなり、駆動回転体2は、カムシャフトの中心軸線L0に対して傾かなくなる。従って、駆動回転体2に対するカムシャフト6の相対位相角を変更する際に、ロックプレート14と円筒部20との間には、余分な摩擦力が発生せず、駆動回転体2と駆動回転体2を保持するセンターシャフト7との間にも、余分な摩擦力が発生しない。その結果、第1または第2電磁クラッチ(21,39)の作動時において、駆動回転体2(図示しないクランクシャフト)に対するカムシャフト6の相対位相角は、セルフロック機構11の影響を受けることなくスムーズに変更される。
 尚、保持部12の形状は、4以上の偶数の正多角形断面及びプレート押圧面を有するものであればよく、正6角形断面及び6つのプレート押圧面を有する形状に限られない。
 また、第1受圧部(15a~15c)は、プレート押圧面(12a,12c,12e)の進角側領域(13a,13c,13e)に接触しない形状であれば、凸型曲面に限られない。また、第2受圧部(16a~16c)は、プレート押圧面(12b,12d,12f)の遅角側領域(13h,13j,13L)に接触しない形状であれば、凸型曲面に限られない。例えば、第1受圧部(15a~15c)の進角側領域(13a,13c,13e)に対向する部分と、第2受圧部(16a~16c)受圧部(15a~15cの遅角側領域(13h,13j,13L)に対向する部分を共に外周面(18d、19d)に向かって凹む段差状にしても良い。
 また、圧縮コイルばね(25a~25c)は、第1部材(18a~18c)と第2部材(19a~19c)互いに離間する方向に付勢するばね部材であればよく、コイルばねに限られない。
 また、トルク伝達ピン26は、第1制御回転体3から各ロックプレートの間に突出する形態を有し、第1電磁クラッチ21または逆回転機構22によるトルクを各ロックプレート(14a~14c)に伝達できるものであれば、ピンに限られない。
1          自動車用エンジンの位相可変装置
2          駆動回転体
6          カムシャフト
10         相対位相角変更機構
11         セルフロック機構
12         保持部
12a~12f    プレート押圧面
13a~13f    進角側領域
13g~13L    遅角側領域
14         ロックプレート
14a~14c    第1から第3ロックプレート
15a~15c    第1受圧部
16a~16c    第2受圧部
18a~18c    第1部材
19a~19c    第2部材
20         円筒部
25         圧縮コイルばね(請求項1の圧縮ばね)
26         トルク伝達ピン(請求項1の伝達部材)
26c、26d    微小隙間
L0         カムシャフトの回動中心軸線
D1         進角方向
D2         遅角方向

Claims (3)

  1.  円筒部を有し、クランクシャフトによって駆動する駆動回転体と、
     制御回転体及び駆動回転体を同軸かつ相対回動可能に支持するカムシャフトと、
     前記制御回転体に進角方向または遅角方向のトルクを付与する回動操作力付与手段と、
     カムシャフトの外周にフランジ状に一体形成された保持部と、
     外周面が前記円筒部に内接し、かつ受圧部が前記保持部によってカムシャフトに対して相対回動不能に保持される複数のロックプレートと、
     前記制御回転体に設けられ、制御回転体に付与されたトルクを複数のロックプレートに伝達する複数の伝達部材と、を有し、
     カムトルクを受けた保持部が、ロックプレートを駆動回転体の円筒部に押し付けるセルフロック機構によって、駆動回転体に対するカムシャフトの相対位相角を維持し、
     回動操作力付与手段が、カムシャフトにトルクを伝達することによって前記相対位相角を変更し、エンジンバルブの開閉タイミングを変更する、自動車用エンジンの位相可変装置において、
     前記保持部は、複数のプレート押圧面からなる多角柱形状を有し、
     前記ロックプレートは、一のプレート押圧面によって第1受圧部を支持される第1部材と、一のプレート押圧面に隣接するプレート押圧面によって第2受圧部を支持される第2部材と、前記第1部材及び第2部材を互いに引き離す方向に付勢する圧縮ばねと、を有し、
     前記複数の伝達部材が、前記複数のロックプレートの間にそれぞれ微小隙間を空けて配置されたことを特徴とする、自動車用エンジンの位相可変装置。
  2.  前記第1部材の第1受圧部は、対向するプレート押圧面の進角側領域に接触することなく、遅角側領域のみに接触可能に形成され、
     前記第2部材は、対向するプレート押圧面の遅角側領域に接触することなく、進角側領域のみに接触可能に形成されたことを特徴とする、請求項1に記載の自動車用エンジンの位相可変装置。
  3.  前記保持部は、6以上のロックプレート押圧面からなる多角柱形状を有し、
     前記複数のロックプレートが、ロックプレート押圧面数の半数組設けられたことを特徴とする、請求項1または2に記載の自動車用エンジンの位相可変装置。
PCT/JP2013/050417 2013-01-11 2013-01-11 自動車用エンジンの位相可変装置 WO2014109050A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2013/050417 WO2014109050A1 (ja) 2013-01-11 2013-01-11 自動車用エンジンの位相可変装置
JP2014556305A JP6029691B2 (ja) 2013-01-11 2013-01-11 自動車用エンジンの位相可変装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/050417 WO2014109050A1 (ja) 2013-01-11 2013-01-11 自動車用エンジンの位相可変装置

Publications (1)

Publication Number Publication Date
WO2014109050A1 true WO2014109050A1 (ja) 2014-07-17

Family

ID=51166719

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/050417 WO2014109050A1 (ja) 2013-01-11 2013-01-11 自動車用エンジンの位相可変装置

Country Status (2)

Country Link
JP (1) JP6029691B2 (ja)
WO (1) WO2014109050A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011145175A1 (ja) * 2010-05-18 2011-11-24 日鍛バルブ株式会社 エンジンの位相可変装置
WO2012001812A1 (ja) * 2010-07-02 2012-01-05 日鍛バルブ株式会社 エンジンの位相可変装置及びその制御装置
WO2012049727A1 (ja) * 2010-10-12 2012-04-19 日鍛バルブ株式会社 エンジンの位相可変装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011145175A1 (ja) * 2010-05-18 2011-11-24 日鍛バルブ株式会社 エンジンの位相可変装置
WO2012001812A1 (ja) * 2010-07-02 2012-01-05 日鍛バルブ株式会社 エンジンの位相可変装置及びその制御装置
WO2012049727A1 (ja) * 2010-10-12 2012-04-19 日鍛バルブ株式会社 エンジンの位相可変装置

Also Published As

Publication number Publication date
JPWO2014109050A1 (ja) 2017-01-19
JP6029691B2 (ja) 2016-11-24

Similar Documents

Publication Publication Date Title
JP5102071B2 (ja) 自動車用エンジンにおける位相可変装置
US8726867B2 (en) Phase varying apparatus for automobile engine technical
JP2021073412A (ja) 機械式カム位相システムおよび方法
US8322319B2 (en) Cam shaft phase variable device in engine for automobile
JP5616440B2 (ja) エンジンの位相可変装置
JP5030964B2 (ja) エンジンのバルブ制御装置
JP5255114B2 (ja) エンジンの位相可変装置
JP5180135B2 (ja) 可変バルブタイミング装置およびこの可変バルブタイミング装置に組み込まれるローラ減速機
JP6029691B2 (ja) 自動車用エンジンの位相可変装置
JP5260741B2 (ja) エンジンの位相可変装置
WO2011077516A1 (ja) エンジンの位相可変装置における電磁クラッチの回り止め構造
WO2014057530A1 (ja) 自動車用エンジンの位相可変装置
JP6053915B2 (ja) 内燃機関の位相可変装置
JP5840768B2 (ja) エンジンの位相可変装置
JP5840769B2 (ja) エンジンの位相可変装置
JP5802273B2 (ja) 自動車用エンジンの位相可変装置
JP5247871B2 (ja) エンジンのバルブ制御装置
JP2020172898A (ja) バルブタイミング調整装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13870775

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014556305

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13870775

Country of ref document: EP

Kind code of ref document: A1