WO2014109028A1 - Light-emitting element - Google Patents

Light-emitting element Download PDF

Info

Publication number
WO2014109028A1
WO2014109028A1 PCT/JP2013/050284 JP2013050284W WO2014109028A1 WO 2014109028 A1 WO2014109028 A1 WO 2014109028A1 JP 2013050284 W JP2013050284 W JP 2013050284W WO 2014109028 A1 WO2014109028 A1 WO 2014109028A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
layer
light emitting
respect
emitting layer
Prior art date
Application number
PCT/JP2013/050284
Other languages
French (fr)
Japanese (ja)
Inventor
黒田 和男
Original Assignee
パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社 filed Critical パイオニア株式会社
Priority to PCT/JP2013/050284 priority Critical patent/WO2014109028A1/en
Publication of WO2014109028A1 publication Critical patent/WO2014109028A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/858Arrangements for extracting light from the devices comprising refractive means, e.g. lenses

Definitions

  • the present invention relates to a light emitting element having an organic light emitting layer.
  • a light emitting element having an organic light emitting layer as one of the light emitting elements.
  • this light emitting element it is desired to improve the ratio of light emitted to the outside (light extraction efficiency) of the light generated in the organic light emitting layer.
  • Patent Document 1 As a technique for improving the light extraction efficiency, there is a technique described in Patent Document 1.
  • the thin film layer including the light emitting layer is closely fixed to the transparent substrate, and the angle conversion means for converting the emission angle of the light emitted from the light emitting layer and radiating the light to the outside is the transparent substrate. Is provided inside.
  • Patent Document 2 discloses an electroluminescence element in which a cathode, an electroluminescence layer, a transparent electrode layer, and a light transmitting body are arranged in this order, and the surface on the light transmitting body side of the transparent electrode layer is a light scattering uneven surface. Is described. Further, in Patent Document 2, a high refractive index layer having a refractive index equivalent to that of the transparent electrode layer is provided on the surface of the transparent electrode layer on the light transmitting body layer side, and the surface on the light transmitting body side of the high refractive index layer is irradiated with light. It also describes the use of a scattering uneven surface.
  • optical structures having different refractive indices from the surroundings are regularly arranged in a one-dimensional direction at intervals of about the emission wavelength, and organic EL (Electro Luminescence) light emission is caused by these optical structures.
  • An organic EL light emitting element that converts light propagating in the element into a direction radiated from the organic EL light emitting element is described.
  • the optical structure has a rectangular parallelepiped shape, a cylindrical shape, or the like composed of a plane orthogonal to the light emitting layer and a plane parallel to the plane.
  • the organic EL light emitting element is configured, for example, by laminating a translucent electrode, an organic functional layer including a light emitting layer, and a metal electrode on a translucent substrate such as a glass substrate.
  • a translucent electrode such as a glass substrate.
  • the following three factors can be cited as factors that reduce the light extraction efficiency. (1) Due to the difference in refractive index between the translucent substrate and the translucent electrode, total reflection occurs at these interfaces, and light generated in the light emitting layer does not enter the translucent substrate. (2) Due to the difference in refractive index between the translucent substrate and the light emission space (air), total reflection occurs at these interfaces, and the light generated in the light emitting layer is not emitted to the outside.
  • each layer The light transmitted through each layer is attenuated according to the light transmittance of each layer constituting the organic EL light emitting element.
  • light incident in an oblique direction with respect to a light-transmitting electrode having a relatively low light transmittance has a significant attenuation because the optical path length is long.
  • FIG. 1 is a diagram schematically showing the direction in which light is emitted from the light emitting point of the light emitting layer. Light is emitted in all directions (spherically) from the light emitting point of the light emitting layer.
  • FIG. 1 shows a state in which light is emitted in a hemispherical form from the light emitting point P101 in order to make the drawing easy to see.
  • only light angled region R101 shown in FIG. 1
  • the region having a larger angle with the line perpendicular to the translucent electrode for example, the annular region R102 shown in FIG.
  • the inventor has improved the angle of the light extracted from the light emitting element within about 20 degrees with respect to a line perpendicular to the translucent electrode to about 25 degrees, for example, by improving 5 degrees. It was considered that the improvement effect of the light extraction efficiency is larger when the extraction efficiency of light having a larger angle (for example, light in the region R102 shown in FIG. 1) is improved by 5 degrees.
  • Patent Document 2 basically, light is diffused on the concavo-convex surface. Therefore, the angle of light toward the reflective electrode is increased, the number of multiple reflections is increased, and the organic functional layer and the reflective electrode described above are increased. It is considered that the light extraction efficiency is not improved so much by the attenuation due to.
  • Patent Document 3 improves the light extraction efficiency in a narrow wavelength range. For this reason, there is a possibility that light emission characteristics in a broad wavelength range, which is one of the characteristics of the organic EL light emitting element, cannot be obtained sufficiently.
  • An example of a problem to be solved by the present invention is to improve the light extraction efficiency of a light emitting element regardless of the wavelength of light.
  • the invention according to claim 1 includes an organic functional layer including a light emitting layer, A first light transmissive layer disposed on the light extraction side with respect to the organic functional layer; A second light-transmitting layer having a refractive index lower than that of the first light-transmitting layer and embedded in the first light-transmitting layer; With At least a part of the second light transmissive layer is an inclined portion inclined with respect to the light emitting layer, The surface on the organic functional layer side and the surface on the light extraction side in the inclined portion are inclined with respect to the light emitting layer, respectively. In the light emitting element, a surface on the organic functional layer side and a surface on the light extraction side in the inclined portion are in contact with the first light transmitting layer.
  • FIG. 6 is a cross-sectional view of a light emitting device according to Example 2.
  • FIG. 7 is a cross-sectional view of a light emitting device according to Example 3.
  • FIG. 6 is a perspective view of a second light transmissive layer of a light emitting device according to Example 3.
  • FIG. 9A to 9C is a cross-sectional view illustrating paths until light generated in the light emitting layer is emitted to the outside in the light emitting device according to the third embodiment.
  • FIG. 10A is a plan view of the light-emitting element according to Example 4, and FIG. 10B is a cross-sectional view taken along the line CC in FIG.
  • FIG. 11A is a cross-sectional view of the light emitting device according to Example 5, and FIG. 11B is a perspective view of the second light transmitting layer of the light emitting device according to Example 5.
  • 6 is a cross-sectional view of a light emitting device according to Example 6.
  • FIG. 6 is a cross-sectional view of a light emitting device according to Example 7.
  • FIG. 10A is a plan view of the light-emitting element according to Example 4
  • FIG. 10B is a cross-sectional view taken along the line CC in FIG.
  • FIG. 11A is a cross-sectional view of the light emitting device
  • FIG. 14A is a cross-sectional view of the light emitting device according to Example 8, and FIG. 14B is a perspective view of the second light transmitting layer of the light emitting device according to Example 8.
  • FIG. 15A is a perspective view of the second light transmitting layer of the light emitting device according to Example 9, and FIG. 15B is a cross-sectional view of the light emitting device according to Example 9.
  • 16A is a cross-sectional view of the periphery of the second light-transmitting layer of the light-emitting element according to Example 10, and FIG. 16B is a diagram for explaining the effect of the light-emitting element according to Example 10.
  • 12 is a cross-sectional view of a light-emitting element according to Example 11.
  • FIG. It is sectional drawing of the light emitting element which concerns on Example 12.
  • FIG. It is sectional drawing of the light emitting element which concerns on Example 13.
  • the light emitting element according to the present embodiment includes an organic EL element.
  • This light emitting element can be used as a light source for a display, a lighting device, an optical communication device, or the like.
  • FIG. 2 is a cross-sectional view of the light emitting device according to the embodiment.
  • the light emitting device includes an organic functional layer 50 including a light emitting layer, a first light transmissive layer 110 disposed on the light extraction side with respect to the organic functional layer 50, and refractive than the first light transmissive layer 110. And a second light-transmitting layer 120 embedded in the first light-transmitting layer 110 with a low rate. At least a part of the second light transmitting layer 120 is an inclined portion inclined with respect to the light emitting layer.
  • the surface on the organic functional layer 50 side and the surface on the light extraction side in the inclined portion are inclined with respect to the light emitting layer, respectively, and the surface on the organic functional layer 50 side and the surface on the light extraction side in the inclined portion are first. 1 is in contact with the light transmissive layer 110.
  • being inclined with respect to the light emitting layer means being inclined with respect to the surface on which the light emitting layer extends, for example, being inclined with respect to the upper surface of the organic functional layer 50. Means. Further, being inclined with respect to the light emitting layer means not being parallel to the light emitting layer and not being orthogonal to the light emitting layer.
  • the light extraction side means the light extraction surface d side described later.
  • the upper surface of the first light transmissive layer 110 (the surface opposite to the organic functional layer 50 side of the first light transmissive layer 110) is in contact with the light emission space 200 outside the light emitting element.
  • the upper surface of the first light transmissive layer 110 constitutes a light extraction surface d that emits light from the light emitting element to the light emission space 200.
  • the light emitting space 200 is an air layer and has a refractive index of 1.
  • the light extraction film is affixed on the upper surface of the 1st translucent layer 110, and the upper surface of this light extraction film may comprise the light extraction surface d.
  • the light emitting element further includes a translucent first electrode 40 disposed between the organic functional layer 50 and the first translucent layer 110, and a second electrode facing the first electrode 40 with the organic functional layer 50 interposed therebetween. Electrode 60. That is, the first electrode 40 is disposed on one surface side of the organic functional layer 50, and the second electrode 60 is disposed on the other surface side of the organic functional layer 50.
  • the first electrode 40 may be a transparent electrode made of a metal oxide conductor such as ITO (Indium Tin Oxide) or IZO (Indium Zinc Oxide). However, the first electrode 40 may be a metal thin film that is thin enough to transmit light.
  • a metal oxide conductor such as ITO (Indium Tin Oxide) or IZO (Indium Zinc Oxide).
  • the first electrode 40 may be a metal thin film that is thin enough to transmit light.
  • the second electrode 60 is a reflective electrode made of a metal film such as Ag, Au, or Al.
  • the second electrode 60 reflects light traveling from the organic functional layer 50 toward the second electrode 60 toward the light extraction surface d.
  • the second electrode 60 may be a transparent electrode made of a metal oxide conductor such as ITO or IZO, and a light reflecting layer (not shown) may be provided below the second electrode 60.
  • the light emitting layer of the organic functional layer 50 emits light.
  • the first light transmissive layer 110, the second light transmissive layer 120, the first electrode 40, and the organic functional layer 50 all transmit at least part of the light emitted from the light emitting layer of the organic functional layer 50. Part of the light emitted from the light emitting layer is emitted (extracted) from the light extraction surface d of the first light transmitting layer 110 to the outside of the light emitting element (that is, the light emission space 200).
  • the refractive index of the first light transmissive layer 110 is, for example, not less than the refractive index of the first electrode 40 and not more than 2.3.
  • the first light transmissive layer 110 is made of, for example, a dielectric material.
  • the light transmitting layer 110 is made of, for example, an epoxy resin having a refractive index of about 1.8.
  • the first light transmissive layer 110 may be made of a high refractive index material containing nanoparticles using BaTiO 3 , a high refractive index nanocomposite thin film, or the like.
  • the first light transmissive layer 110 may be made of the same material as that of the organic functional layer 50.
  • a thin film barrier film made of SiO 2 or the like that suppresses the influence on the organic material may be formed between the first light transmitting layer 110 and the first electrode 40.
  • the second light transmitting layer 120 is made of, for example, porous silica.
  • the entire second light transmitting layer 120 is an inclined portion.
  • the inclined portion is formed in a flat film shape, for example, and is inclined (inclined at an angle of, for example, 45 °) with respect to the organic functional layer 50.
  • the lower surface and the upper surface of the inclined portion are inclined in the same direction with respect to the light emitting layer, for example.
  • it is preferable that the lower surface and upper surface of an inclination part are mutually parallel.
  • the light incident on the inclined portion is emitted from the inclined portion to the first light transmitting layer 110 at the same angle as the incident portion.
  • the lower surface and the upper surface of the inclined portion may be inclined in directions opposite to each other with respect to the light emitting layer.
  • the layer thickness (film thickness) of the second light transmitting layer 120 is thicker than the wavelength of light emitted by the light emitting layer.
  • the layer thickness of the second light transmissive layer 120 is less than this wavelength, substantially about 100 nm or less, the evanescent light passes through the second light transmissive layer 120 and returns to the propagating light in the first light transmissive layer 110. It becomes difficult to totally reflect light at the interface between the second light transmitting layer 120 and the first light transmitting layer 110.
  • the layer thickness of the second light transmitting layer 120 is preferably sufficiently larger than the wavelength of light emitted by the light emitting layer (for example, 1 ⁇ m or more).
  • the minimum value of the dimension of the inclined part when the inclined part is viewed in the direction perpendicular to the inclined part and the interval (cycle) between the inclined parts arranged adjacent to each other when forming a plurality of inclined parts are also provided. , Larger than the wavelength of light emitted by the light emitting layer. These minimum values are also preferably sufficiently larger than the wavelength of light emitted by the light emitting layer (for example, 1 ⁇ m or more).
  • the surface (lower surface) of the first light transmitting layer 110 on the organic functional layer 50 side and one surface (upper surface) of the first electrode 40 are in contact with each other. Further, the other surface (lower surface) of the first electrode 40 and one surface (upper surface) of the organic functional layer 50 are in contact with each other. Further, the other surface (lower surface) of the organic functional layer 50 and one surface (upper surface) of the second electrode 60 are in contact with each other.
  • another layer may exist between the first light-transmissive layer 110 and the first electrode 40. Similarly, another layer may exist between the first electrode 40 and the organic functional layer 50. Similarly, another layer may exist between the organic functional layer 50 and the second electrode 60.
  • the first light transmissive layer 110 is configured, for example, by curing a resin material with at least one of ultraviolet rays and heat.
  • the 1st light transmission layer 110 is divided and formed in the part above the 2nd light transmission layer 120, and the part below the 2nd light transmission layer 120 like the Example mentioned later. Can do.
  • the second light transmissive layer 120 is formed on the lower surface of the upper portion, and then the second light transmissive layer.
  • a lower portion of the first light transmissive layer 110 than the second light transmissive layer 120 is formed so as to cover 120. Accordingly, the second light transmissive layer 120 can be embedded in the first light transmissive layer 110.
  • the first electrode 40 is configured, for example, by sputtering a metal oxide conductor such as ITO or IZO on the lower surface of the first light transmitting layer 110. Furthermore, a partition wall is formed on the lower surface of the first electrode 40 as necessary.
  • the organic functional layer 50 is configured by evaporating or applying an organic material including a light emitting layer between partition walls, for example.
  • the second electrode 60 is configured by evaporating a metal material on the lower surface of the organic functional layer 50.
  • the refractive index of the second light transmitting layer 120 is lower than the refractive index of the first light transmitting layer 110. For this reason, out of the light reaching the interface between the second light-transmitting layer 120 and the first light-transmitting layer 110, light having an angle greater than the critical angle at the interface is totally reflected at the interface. On the other hand, of the light reaching the interface, light having an angle less than the critical angle at the interface is transmitted through the second light transmitting layer 120 and is incident on the first light transmitting layer 110 again.
  • a light ray L11 illustrated in FIG. 2 travels through the first light-transmitting layer 110 and travels toward the lower surface of the second light-transmitting layer 120 (the surface on the light-emitting layer side) and the lower surface of the second light-transmitting layer 120.
  • the light has an angle less than the critical angle at the interface with the first light transmissive layer 110.
  • the light is totally reflected at the interface between the first light transmissive layer 110 and the light emission space 200. That is, the second light transmissive layer 120 does not substantially affect the extraction efficiency of the light beam L11.
  • the light ray L12 shown in FIG. 2 travels through the first light transmissive layer 110 and out of the second light transmissive layer 120 out of the light traveling toward the upper surface (the surface on the light extraction side) of the second light transmissive layer 120.
  • the light has an angle greater than or equal to the critical angle at the interface between the upper surface and the first light transmissive layer 110.
  • the light L ⁇ b> 12 is totally reflected on the upper surface of the second light transmissive layer 120, so that its traveling direction is converted upward.
  • the light extraction surface d is reflected on the second light transmission layer 120 by reflecting a part of the light that is not emitted from the light extraction surface d at an angle before entering the second light transmission layer 120.
  • the second light transmissive layer 120 plays a role of improving the extraction efficiency of the light beam L12. Further, the light totally reflected by the light extraction surface d is also totally reflected by the second light transmissive layer 120 and has an angle if it is not less than the critical angle at the interface between the first light transmissive layer 110 and the second light transmissive layer 120. As a result of the change, part of the light can be extracted to the outside.
  • the light extraction efficiency of the light emitting element can be improved by the presence of the second light transmissive layer 120.
  • FIG. 3 is a cross-sectional view showing a first example of the layer structure of the organic functional layer 50.
  • the organic functional layer 50 has a structure in which a hole injection layer 51, a hole transport layer 52, a light emitting layer 53, an electron transport layer 54, and an electron injection layer 55 are stacked in this order. That is, the organic functional layer 50 is an organic electroluminescence light emitting layer.
  • the hole injection layer 51 and the hole transport layer 52 one layer having the functions of these two layers may be provided.
  • the electron transport layer 54 and the electron injection layer 55 one layer having the functions of these two layers may be provided.
  • the light emitting layer 53 is, for example, a layer that emits red light, a layer that emits blue light, a layer that emits yellow light, or a layer that emits green light.
  • a region having the light emitting layer 53 that emits red light, a region having the light emitting layer 53 that emits green light, and a region having the light emitting layer 53 that emits blue light are repeated. It may be provided. In this case, when each region emits light simultaneously, the light emitting element emits light in a single light emission color such as white.
  • the light emitting layer 53 may be configured to emit light in a single light emission color such as white by mixing materials for emitting a plurality of colors.
  • FIG. 4 is a cross-sectional view showing a second example of the layer structure of the organic functional layer 50.
  • the light emitting layer 53 of the organic functional layer 50 has a structure in which light emitting layers 53a, 53b, and 53c are laminated in this order.
  • the light emitting layers 53a, 53b, and 53c emit light of different colors (for example, red, green, and blue).
  • the light emitting elements 53a, 53b, and 53c emit light at the same time, so that the light emitting element emits light in a single light emission color such as white.
  • the light emitting element includes the first light transmitting layer 110 and the second light transmitting layer 120 embedded in the first light transmitting layer 110 having a refractive index lower than that of the first light transmitting layer. And at least a part of the second light transmitting layer 120 is an inclined portion inclined with respect to the light emitting layer.
  • the surface on the organic functional layer 50 side and the surface on the light extraction side in the inclined portion are inclined with respect to the light emitting layer.
  • the surface on the organic functional layer 50 side and the surface on the light extraction side in the inclined portion are in contact with the first light transmissive layer 110.
  • the light reaching the second light transmitting layer 120 can be transmitted through the second light transmitting layer 120 and the other part can be totally reflected by the second light transmitting layer 120.
  • those having a critical angle or more at the interface between the first light transmitting layer 110 and the second light transmitting layer 120 are also totally reflected by the second light transmitting layer 120 and the angle.
  • a part of the light can be extracted to the outside. That is, the light extraction efficiency of the light emitting element can be improved by utilizing the reflection of light at the second light transmissive layer 120.
  • the light extraction efficiency can be improved regardless of the wavelength of light from the light emitting layer. Therefore, when the light-emitting element is an organic EL element, light emission characteristics in a broad wavelength range that is one of the characteristics of the organic EL element can be sufficiently obtained.
  • FIG. 5 is a cross-sectional view of the light emitting device according to this example.
  • the light-emitting element according to this example is different from the light-emitting element according to the above-described embodiment in the points described below, and is otherwise configured in the same manner as the light-emitting element according to the above-described embodiment.
  • the second light transmitting layer 120 has a plurality of inclined portions inclined with respect to the light emitting layer in the same direction.
  • FIG. 5 shows two inclined portions 120a and 120b. Each inclination part 120a, 120b is the same as that of the 2nd light transmission layer 120 in said embodiment. Note that the upper surface and the lower surface of the inclined portion 120a are inclined in the same direction with respect to the light emitting layer. Similarly, the upper surface and the lower surface of the inclined portion 120b are inclined in the same direction with respect to the light emitting layer.
  • the inclination angles of the inclined portions 120a and 120b can be set to the same angle, for example.
  • the inclined portions 120a and 120b are spaced apart from each other at a predetermined interval (for example, a constant interval) in a direction parallel to the light emitting layer, and are disposed in parallel to each other.
  • the light beams L11 and L12 operate in the same manner as in the above embodiment.
  • the light ray L13 shown in FIG. 5 travels through the first light transmitting layer 110 and travels toward the lower surface of the one inclined portion 120a (the surface on the light emitting layer side), and the lower surface of the inclined portion 120a and the first light transmitting light.
  • the light has an angle greater than the critical angle at the interface with the layer 110.
  • the light ray L13 is totally reflected on the lower surface of the inclined portion 120a.
  • a part of the light beam L13 is totally reflected on the upper surface of the other inclined portion 120b, so that its traveling direction is converted upward. For this reason, the extraction efficiency of the light beam L13 can be improved by the cooperation of the inclined portions 120a and 120b.
  • the same effect as the above embodiment can be obtained.
  • the light emitting element has a plurality of inclined portions (inclined portions 120a, 120b, etc.) inclined in the same direction with respect to the light emitting layer.
  • the light extraction efficiency can be improved more than the form.
  • the second light transmitting layer 120 may include a plurality of inclined portions inclined with respect to the light emitting layer at different inclination angles.
  • the extraction efficiency can be improved with respect to light having various angles.
  • the inclination directions of the inclined portions with respect to the light emitting layer are the same as each other, but the inclination angles (the absolute values of the inclination angles) of these inclined portions are different from each other.
  • the inclination directions of the inclined portions with respect to the light emitting layer are different from each other, and the inclination angles of the inclined portions are different from each other.
  • FIG. 6 is a cross-sectional view of the light emitting device according to this example.
  • the light-emitting element according to this example is different from the light-emitting element according to the above-described embodiment in the points described below, and is otherwise configured in the same manner as the light-emitting element according to the above-described embodiment.
  • the second light transmitting layer 120 has a plurality of inclined portions inclined with respect to the light emitting layer in opposite directions.
  • FIG. 6 shows two inclined portions 120a and 120b.
  • Each inclination part 120a, 120b is the same as that of the 2nd light transmission layer 120 in said embodiment.
  • the upper surface (surface on the light extraction side) and the lower surface (surface on the organic functional layer side) of the inclined portion 120a are inclined in the same direction with respect to the light emitting layer.
  • the upper surface (surface on the light extraction side) and the lower surface (surface on the organic functional layer side) of the inclined portion 120b are inclined in the same direction with respect to the light emitting layer.
  • the absolute value of the inclination angle of the inclined portions 120a and 120b with respect to the light emitting layer can be set to the same value, for example.
  • the inclined portions 120a and 120b are separated from each other at a predetermined interval (for example, a constant interval) in a direction parallel to the light emitting layer, for example.
  • the light beams L11 and L12 operate in the same manner as in the above embodiment.
  • the light beam L14 illustrated in FIG. 6 is light that takes a path that is plane-symmetrical (plane-symmetrical with respect to a plane orthogonal to the light-emitting layer) with respect to the light beam L12.
  • the light beam L14 also has the same operation as the light beam L12 (a plane-symmetric operation with respect to a plane orthogonal to the light emitting layer).
  • the extraction efficiency of the light beam L14 can be improved as compared with the above embodiment.
  • the light emitting element has a plurality of inclined portions (inclined portions 120a, 120b, etc.) inclined in directions opposite to each other with respect to the light emitting layer.
  • the light extraction efficiency can be improved more than the form.
  • the second light transmitting layer 120 may include a plurality of inclined portions inclined at different inclination angles with respect to the light emitting layer. That is, the inclination directions of the inclined portions with respect to the light emitting layer are opposite to each other, and the inclination angles (the absolute values of the inclination angles) of the inclined portions are different from each other. As a result, the extraction efficiency can be improved with respect to light having various angles.
  • FIG. 7 is a cross-sectional view of the light emitting device according to this example.
  • FIG. 8 is a perspective view of a part of the second light transmitting layer 120 of the light emitting device according to this embodiment.
  • FIGS. 9A to 9C is a cross-sectional view illustrating paths through which light generated in the light emitting layer is emitted to the outside in the light emitting device according to this example.
  • the light-emitting element according to this example is different from the light-emitting element according to the above-described embodiment in the points described below, and is otherwise configured in the same manner as the light-emitting element according to the above-described embodiment.
  • the second light transmitting layer 120 includes a plurality of inclined portions inclined with respect to the light emitting layer in directions opposite to each other.
  • the second light transmissive layer 120 includes a plurality of inclined portions that are inclined with respect to the light emitting layer in the same direction. In each of the inclined portions, the lower surface and the upper surface are inclined in the same direction with respect to the light emitting layer.
  • the second light-transmitting layer 120 is disposed along a first inclined portion (for example, along surfaces A0 to A3 described later) that is inclined with respect to the light emitting layer around a first axis extending in the first direction in a plan view. Tilted with respect to the light emitting layer around a second axis that intersects (for example, perpendicular to) the first direction in plan view, and the tilted portions disposed along the planes C0 to C3 described later). Second inclined portions (for example, inclined portions respectively disposed along the surfaces B0 and B1 described later, or inclined portions respectively disposed along the surfaces D0 and D1 described later).
  • the second light transmitting layer 120 includes each side surface of the truncated pyramid whose cross-sectional area decreases toward either the light extraction side or the light emitting layer side, and the same number of side surfaces as the truncated pyramid. And each side surface of the pyramid having a lower base (bottom surface) coinciding with the upper base of the truncated pyramid and having a cross-sectional area that decreases toward either the light extraction side or the light emitting layer side.
  • a plurality of units 121 each composed of an inclined portion are arranged in a direction parallel to the light emitting layer.
  • the height of the pyramid that defines the shape of the unit 121 (the distance from the lower base to the upper base) and the height of the pyramid (the distance from the lower base (bottom surface) to the apex) are equal to each other.
  • FIG. 8 shows two units 121 of the second light transmissive layer 120.
  • the front unit 121 includes four inclined portions arranged along four side surfaces A0, B0, C1, and D1 of the quadrangular pyramid whose cross-sectional area decreases toward the light extraction side, and the quadrangular pyramid.
  • Four inclined portions respectively disposed along four side faces C0, D0, A1, and B1 of a quadrangular pyramid having a lower base that coincides with the upper base of the quadrangular pyramid and having a cross-sectional area that decreases toward the light emitting layer.
  • a total of eight ramps are included.
  • the quadrangular frustum and the quadrangular pyramid that define the shape of the unit 121 are rectangular in plan view. More specifically, the quadrangular pyramid is a regular quadrangular pyramid, and the quadrangular pyramid is a regular quadrangular pyramid.
  • the rear unit 121 is configured in the same manner as the front unit 121.
  • the side surface corresponding to the side surface A0 of the front unit 121 is referred to as a side surface A2
  • the side surface corresponding to the side surface C1 of the front unit 121 is the side surface C3.
  • the side corresponding to the side C0 of the front unit 121 is referred to as side C2
  • the side corresponding to the side A1 of the front unit 121 is the side. This is referred to as A3.
  • the plurality of units 121 are arranged without a gap so that, for example, one side of the lower base of the truncated pyramid defining the shape of each other coincides with each other.
  • the first light transmissive layer 110 includes a first portion 111 located on the upper side (light extraction side) of the second light transmissive layer 120 and a first portion located on the lower side (light emitting layer side) of the second light transmissive layer 120. 2 parts 112.
  • the refractive index of the second light transmitting layer 120 is lower than the refractive index of the first portion 111 and lower than the refractive index of the second portion 112. Note that the refractive index of the first portion 111 and the refractive index of the second portion 112 may be equal to each other or may be different from each other.
  • a barrier film 70 is formed between the first light transmissive layer 110 and the first electrode 40.
  • the barrier film 70 is made of, for example, a SiO 2 thin film or graphene.
  • a light extraction film 130 having an uneven structure (not shown) on the surface (upper surface) is attached to the upper surface of the first light transmissive layer 110, and the upper surface of the light extraction film 130 forms a light extraction surface d. ing.
  • each of the truncated pyramid defining the shape of each unit 121 and the side surfaces of the pyramid are inclined so that the absolute value of the angle with respect to the light emitting layer is 45 degrees.
  • the absolute value of the angle with respect to the light emitting layer being 45 degrees means that the angle with respect to the light emitting layer is 45 degrees or 135 degrees ( ⁇ 45 degrees).
  • FIG. 7 shows a quadrangular pyramid apex P1 that defines the shape of one unit 121, and a quadrangular pyramid apex P2 that defines the shape of the other unit 121, out of two units 121 arranged in a row. It is sectional drawing when a light emitting element is cut
  • FIGS. 9A to 9C shows the same cross section as FIG.
  • the light passing through the cross section shown in FIG. 7 has an upward component (the angle with respect to the light emitting layer is larger than 0 degree and larger than 180 degrees).
  • a path of light incident on an inclined portion (for example, the inclined portion 120c along the plane C1 in FIGS. 9A to 9C) having an angle of 135 degrees with respect to the light emitting layer will be described.
  • the minimum unit of the light angle is 0.1 degree.
  • the refractive index of the first light transmitting layer 110 is 1.8.
  • the second light transmissive layer 120 is made of, for example, porous silica and has a refractive index of about 1.27 to 1.3.
  • the critical angle at the interface between the second light transmitting layer 120 and the first light transmitting layer 110 is 46.2 degrees.
  • the layer thickness (film thickness) of the 2nd translucent layer 120 shall be fixed, and shall be 2 micrometers.
  • the height of the quadrangular frustum defining the shape of the unit 121 and the quadrangular pyramid is 20 ⁇ m.
  • light having an upward component passes through the first electrode 40, the barrier film 70, and the second portion 112 of the first light transmitting layer 110 in this order, and the second light transmitting layer. It reaches 120 inclined portions 120c.
  • light having an inclination angle ⁇ with respect to the light emitting layer of 1 degree or more and 91.1 degrees or less passes through the inclined part 120c and passes through the inclined part 120c.
  • the light enters the first portion 111.
  • the inclination angle of the inclined portion 120c is 135 degrees as described above.
  • the incident angle of the light having the inclination angle ⁇ of 1 to 91.1 degrees with respect to the inclined portion 120c is (135-90-91.1) to (135-90-1) degrees, that is, ⁇ 46. This is because any absolute value is less than the critical angle (46.2 degrees) from 1 degree to 44 degrees.
  • a part of the light transmitted through the inclined portion 120c that is, light having an inclination angle ⁇ of 45 degrees or more and 91.1 degrees or less, such as the light beam L21 shown in FIG. 9A, reaches the inclined section other than the inclined section 120c. Without being transmitted, the light passes through the first portion 111 and the light extraction film 130 in this order and is emitted to the light emission space 200. Further, another part of the light incident on the inclined portion 120c, that is, light having an inclination angle ⁇ of 1.2 degrees or more and 44.9 degrees or less like the light ray L22 shown in FIG.
  • the light After coming out of the slope, it reaches an inclined portion 120d (an inclined portion along the plane A2) that is obliquely opposed to the inclined portion 120c and is adjacent to the inclined portion 120c. And the advancing direction is converted upwards by totally reflecting in the inclination part 120d. Specifically, the inclination angle ⁇ is converted to 45.1 degrees or more and 88.8 degrees or less. For this reason, the light then passes through the first portion 111 and the light extraction film 130 in this order, and is emitted to the light emission space 200.
  • Light having an inclination angle ⁇ of 91.2 degrees or more and 134.9 degrees or less is converted to an inclination angle ⁇ of 135.1 degrees or more and 178.8 degrees or less by being totally reflected by the lower surface of the inclined portion 120c.
  • the light after being totally reflected by the inclined portion 120c passes through the inclined portion 120g adjacent to the inclined portion 120c (adjacent to the opposite side to the inclined portion 120d) and enters the first portion 111.
  • a part of the light (the light beam L23 shown in FIG. 9B, etc.) is then transmitted through the first portion 111 and the light extraction film 130 in this order, and is emitted to the light emission space 200.
  • another part of light (such as the light beam L24 shown in FIG. 9B) is then adjacent to the inclined portion 120g (adjacent to the side opposite to the inclined portion 120c) on the upper surface of the inclined portion 120h. After total reflection, the light is emitted to the light emission space 200.
  • any one of the inclined portions of the second light transmitting layer 120 (inclined portions along the planes B0, B1, D0, D1, etc.). A part of the light is reflected from the surface of the light-emitting element or is transmitted through one of the inclined portions.
  • the second light-transmitting layer 120 contributes to the improvement of the light extraction efficiency by a mechanism similar to the mechanism described in FIGS. 9A to 9C.
  • the inclination angle of the inclined part is smaller than 45 ° (shallow)
  • a part of the light is totally reflected toward the second electrode 60 side by the second light-transmitting layer 120 and then applied to the second electrode. Then, the light is reflected to the second light transmitting layer 120 side.
  • the inclined portions of the second light-transmitting layer 120 it is possible to hit the inclined portion in a direction different from the inclined portion where the part of light hits before. Thereby, a part of the part of the light can be extracted from the light emitting element by the same mechanism as described above.
  • At least a part of the second light transmitting layer 120 is an inclined portion inclined with respect to the light emitting layer.
  • the surface on the organic functional layer 50 side and the surface on the light extraction side in the inclined portion are in contact with the first light transmissive layer 110. For this reason, the effect similar to said embodiment is acquired.
  • the second light transmitting layer 120 has a plurality of inclined portions inclined with respect to the light emitting layer in the same direction. For this reason, the effect similar to said Example 1 is acquired.
  • the second light transmitting layer 120 has a plurality of inclined portions inclined with respect to the light emitting layer in opposite directions. For this reason, the same effect as in the second embodiment can be obtained.
  • the second light transmitting layer 120 intersects the first inclined portion inclined with respect to the light emitting layer around the first axis extending in the first direction in a plan view (for example, the first direction in the plan view (for example, And a second inclined portion inclined with respect to the light emitting layer around a second axis that is orthogonal to each other. Therefore, the extraction efficiency of light traveling in various directions in plan view can be improved.
  • the second light transmitting layer 120 has each side surface of the truncated pyramid whose cross-sectional area is reduced toward either the light extraction side or the light emitting layer side, and the same number of side surfaces as the truncated pyramid.
  • Each of the side surfaces of the pyramid having a lower base coinciding with the upper base of the pyramid frustum and reducing the cross-sectional area toward either the light extraction side or the light emitting layer side, and each of the inclined portions disposed along the side surfaces.
  • a plurality of units 121 are arranged in a direction parallel to the light emitting layer. For this reason, in the case of the present embodiment, the second light transmissive layer 120 includes inclined portions having more directions as compared with the first embodiment.
  • the second light transmissive layer 120 includes inclined portions having more directions as compared to the second embodiment. Thereby, the extraction efficiency of light in various directions can be improved as compared with the second embodiment. For example, the effect described above with reference to FIG. 9 or an equivalent effect can be obtained.
  • the height of the truncated pyramid defining the shape of the unit 121 is equal to the height of the pyramid.
  • the truncated pyramid that defines the shape of the unit 121 is a rectangular truncated pyramid having a rectangular shape in plan view, a plurality of units 121 can be arranged with no gap therebetween. Thereby, more inclined parts can be arrange
  • the plurality of units 121 can be arranged side by side without a gap so that the sides of the lower base of the truncated pyramid defining the shape of each other coincide with each other. By doing so, it is possible to regularly arrange a plurality of inclined portions, so that the light extraction efficiency can be improved uniformly in each region in the plane of the light emitting element.
  • the truncated pyramid that defines the shape of the unit 121 is a triangular truncated pyramid, there are cases where a plurality of units 121 can be arranged without gaps (when the bottom surface is an equilateral triangle, a right isosceles triangle, or the like).
  • the truncated pyramid defining the shape of the unit 121 may be a polygonal truncated pyramid having a number of side faces equal to or larger than a pentagonal truncated pyramid.
  • the truncated pyramid that defines the shape of the unit 121 may be a truncated pyramid having a plane shape other than a rectangle. In these cases, the case where the first axis and the second axis intersect with each other in a relationship other than orthogonal is included.
  • each unit 121 may be turned upside down from that shown in FIG. Further, the vertical direction of each unit 121 may be different (can be set individually). In other words, the unit 121 in the direction shown in FIG. 8 and the unit 121 that is upside down from FIG. 8 may be mixed. For example, the units 121 whose tops and bottoms are inverted in this manner may be alternately arranged (arranged in a staggered manner in a plan view).
  • FIG. 10A is a plan view of the light emitting device according to this example
  • FIG. 10B is a cross-sectional view taken along the line CC in FIG. 10A.
  • FIGS. 10B and 10A the upper and lower sides are inverted with respect to FIG.
  • the first electrode 40 constitutes an anode.
  • the plurality of first electrodes 40 each extend in a band shape in the Y direction parallel to the light emitting layer. Adjacent first electrodes 40 are parallel to the light emitting layer and spaced apart from each other in the X direction perpendicular to the Y direction.
  • Each of the first electrodes 40 is made of, for example, a metal oxide conductor such as ITO or IZO.
  • the 1st electrode 40 may be a metal thin film which has the thickness of the grade which has translucency.
  • the refractive index of the first electrode 40 is, for example, about the same as that of the first light-transmitting layer 110 (for example, the refractive index is about 1.8).
  • a bus line (bus electrode) 72 for supplying a power supply voltage to the first electrode 40 is formed on each surface of the first electrode 40.
  • An insulating film is formed on the first light transmitting layer 110 and the first electrode 40. In this insulating film, a plurality of stripe-shaped openings each extending in the Y direction are formed. Thereby, a plurality of partition walls 71 made of an insulating film are formed. Each opening formed in the insulating film reaches the first electrode 40, and the surface of each first electrode 40 is exposed at the bottom of the opening.
  • An organic functional layer 50 is formed on the first electrode 40 in each opening of the insulating film.
  • the organic functional layer 50 is configured by laminating a hole injection layer 51, a hole transport layer 52, a light emitting layer 53 (light emitting layers 53R, 53G, 53B), and an electron transport layer 54 in this order.
  • materials for the hole injection layer 51 and the hole transport layer 52 include aromatic amine derivatives, phthalocyanine derivatives, porphyrin derivatives, oligothiophene derivatives, polythiophene derivatives, benzylphenyl derivatives, compounds in which tertiary amines are linked by fluorene groups, hydrazones.
  • the light emitting layers 53R, 53G, and 53B are made of a fluorescent organometallic compound that emits red light, green light, and blue light, respectively.
  • the light emitting layers 53R, 53G, and 53B are arranged side by side in a state of being separated from each other by the partition wall portion 71. That is, the organic functional layer 50 forms a plurality of light emitting regions separated by the partition wall 71.
  • An electron transport layer 54 is formed so as to cover the surfaces of the light emitting layers 53R, 53G, 53B and the partition wall 71.
  • a second electrode 60 is formed so as to cover the surface of the electron transport layer 54.
  • the second electrode 60 constitutes a cathode.
  • the second electrode 60 is formed in a strip shape.
  • the second electrode 60 is made of a metal or alloy such as Ag, Au, or Al having a low work function and high reflectivity.
  • the refractive index of the organic functional layer 50 is about the same as that of the first electrode 40 and the first light transmitting layer 110 (for example, the refractive index is about 1.8).
  • the light emitting layers 53R, 53G, and 53B that emit red, green, and blue light, respectively, are repeatedly arranged in a stripe shape, and red, green, and blue light are arbitrarily mixed from the light extraction surface d. In this way, light that is recognized as a single emission color (for example, white) is emitted.
  • an uneven shape having the same shape as the unit 120 is formed on one surface of the first portion 111.
  • the uneven shape can be formed by processing the surface of the first portion 111 using a known surface processing technique such as cutting and polishing, laser processing, chemical etching, or thermal imprinting.
  • the first portion 111 of the first light-transmissive layer 110 may be formed of glass or the like.
  • the second light transmitting layer 120 is formed by vapor deposition or sputtering so as to cover the uneven shape of one surface of the first portion 111. Accordingly, the second light transmitting layer 120 is formed as a three-dimensional film reflecting the uneven shape of the first portion 111.
  • the second portion 112 is formed of an organic material or the like so as to cover the second light transmitting layer 120. Thereby, it is possible to realize a structure in which the second light transmissive layer 120 is embedded in the first light transmissive layer 110.
  • the second portion 112 is changed to the second portion 112. You may affix on the translucent layer 120.
  • the second light transmissive layer 120 may be formed in advance separately from the first portion 111, and the second light transmissive layer 120 may be attached to the first portion 111.
  • FIG. 11A is a cross-sectional view of the light emitting device according to this example
  • FIG. 11B is a perspective view of the second light transmitting layer 120 of the light emitting device according to this example.
  • the light emitting device according to this example is different from the light emitting device according to Example 3 (FIGS. 7 and 8) in the points described below, and is otherwise the same as the light emitting device according to Example 3. It is configured.
  • the second light-transmitting layer 120 includes each side surface of the truncated pyramid whose cross-sectional area decreases toward either the light extraction side or the light emitting layer side.
  • Second side having the same number of side surfaces as the truncated pyramid and having a lower base coinciding with the upper base of the truncated pyramid and having a cross-sectional area that is reduced toward either the light extraction side or the light emitting layer side.
  • Each unit 121 is formed by arranging a plurality of units 121 each having a slope portion arranged along each side surface of the truncated pyramid in a direction parallel to the light emitting layer. Therefore, each unit 121 is formed with a polygonal opening 125 that penetrates the second light transmitting layer 120 from the light emitting layer side to the light extraction side.
  • the second light transmitting layer 120 naturally includes a plurality of inclined portions inclined with respect to the light emitting layer in opposite directions and emits light in the same direction.
  • a plurality of inclined portions inclined with respect to the layer are included.
  • the second light-transmitting layer 120 is naturally the first inclined with respect to the light emitting layer around the first axis extending in the first direction in plan view. And an inclined portion and a second inclined portion that is inclined with respect to the light emitting layer around a second axis that intersects (specifically, is orthogonal to) the first direction in plan view.
  • the height of the truncated pyramid that defines the shape of the unit 121 (the distance from the lower base to the upper base) and the height of the second truncated pyramid (the distance from the lower base to the upper base) are equal to each other.
  • FIG. 11B shows one unit 121 of the second light transmissive layer 120.
  • the unit 121 includes four inclined portions arranged along four side surfaces A0, B0, C1, and D1 of the quadrangular pyramid whose cross-sectional area is reduced toward the light extraction side, and an upper base of the quadrangular pyramid. And four inclined portions respectively disposed along the four side surfaces C0, D0, A1, and B1 of the second quadrangular pyramid having a lower base that coincides with the light emitting layer side and whose cross-sectional area decreases toward the light emitting layer side. A total of eight ramps are included. For this reason, the unit 121 is formed with a rectangular opening 125 that penetrates the second light transmitting layer 120 from the light emitting layer side to the light extraction side.
  • first portion 111 and the second portion 112 of the first light transmitting layer 110 are in contact with each other through the opening 125. Further, the interface between the first portion 111 and the second portion 112 is formed in parallel to the light emitting layer, for example.
  • the quadrangular frustum and the second quadrangular frustum that define the shape of the unit 121 have a rectangular shape in plan view. More specifically, the square frustum and the second square frustum are regular square frustums.
  • L when the length of one side of the opening 125 is L (see FIG. 11A), the value of L is 0 in the third embodiment (FIGS. 7 and 8).
  • the second light-transmitting layer 120 is selectively formed in a region other than the opening 125 on the lower surface of the first portion 111 to thereby form the second light-transmitting light having the opening 125.
  • Layer 120 can be formed.
  • the second light-transmitting layer 120 having the opening 125 may be formed by forming the second light-transmitting layer 120 on the entire lower surface of the first portion 111 and then partially etching the second light-transmitting layer 120. Can be formed.
  • the plurality of units 121 are arranged without a gap so that one side of the bottom base of the truncated pyramid defining the shape of each other coincides with each other.
  • the second light transmitting layer 120 has each side surface of the truncated pyramid whose cross-sectional area decreases toward either the light extraction side or the light emitting layer side, and the same number of side surfaces as the truncated pyramid. And each side surface of the second truncated pyramid that has a lower base that coincides with the upper base of the truncated pyramid and whose cross-sectional area decreases toward the other of the light extraction side and the light emitting layer side, respectively. It is configured by arranging a plurality of units 121 each having an inclined portion arranged in a direction parallel to the light emitting layer. The number and arrangement of the inclined portions included in each unit 121 are the same as those in the third embodiment. For this reason, the same effect as that of the third embodiment can be obtained by this embodiment.
  • the height of the truncated pyramid that defines the shape of the unit 121 is equal to the height of the second truncated pyramid. As a result, more inclined portions can be formed in the region occupied by the unit 121 (region in the thickness direction of the light emitting element) than when the height of the truncated pyramid and the height of the second truncated pyramid are different from each other. it can.
  • each unit 121 may be turned upside down from that shown in FIG. Similarly to the third embodiment, the vertical direction of each unit 121 may be different (set individually).
  • FIG. 12 is a cross-sectional view of the light emitting device according to this example.
  • the light-emitting element according to this example is different from any of the light-emitting elements described above in the configuration described below in the configuration of the first light-transmitting layer 110.
  • the configuration is the same as that of the light emitting element.
  • the first light transmissive layer 110 includes the light transmissive substrate 140 disposed on the light extraction side with respect to the second light transmissive layer 120.
  • the translucent substrate 140 is formed in a flat plate shape with a translucent material such as glass or resin.
  • the refractive index of the translucent substrate 140 is, for example, about 1.5.
  • the translucent substrate 140 may be a translucent film.
  • the refractive index of the translucent substrate 140 is lower than the refractive index of at least the second portion 112 of the first translucent layer 110.
  • the configuration of the second light transmissive layer 120 may be any of the above configurations.
  • FIG. 12 shows an example in which the configuration of the fifth embodiment is adopted as the configuration of the second light transmitting layer 120.
  • the upper end of the second light transmissive layer 120 (the upper end of the unit 121) and the lower surface of the light transmissive substrate 140 may be in contact with each other, or the upper end of the second light transmissive layer 120 may be
  • the first portion 111 may be interposed between the translucent substrate 140.
  • the structure from the first portion 111 to the second electrode 60 is sequentially formed on the translucent substrate 140 (on the lower surface in FIG. 12) using the previously formed translucent substrate 140 as a support substrate. By forming, a light emitting element can be manufactured.
  • the refractive index of the portion of the first light transmitting layer 110 between the second light transmitting layer 120 and the light transmitting substrate 140 (that is, the first portion 111) is made equal to the refractive index of the light transmitting substrate 140. be able to.
  • substrate 140 can be suppressed.
  • a region where total reflection of light occurs is located between the second portion 112 of the first light transmissive layer 110 and the light transmissive substrate 140 and is a region parallel to the light emitting layer. Since the area of this region is smaller than the contact area between the first portion 111 and the translucent substrate 140, an improvement in light extraction efficiency can be expected.
  • the first light-transmitting layer is configured to include the light-transmitting substrate 140, the rigidity (mechanical strength) of the light-emitting element can be improved.
  • the light-emitting element can be manufactured using the light-transmitting substrate 140 as a support substrate, the light-emitting element can be easily manufactured.
  • FIG. 13 is a cross-sectional view of the light emitting device according to this example.
  • the light emitting device according to this example is different from the light emitting device according to Example 6 described above (FIG. 12) in the points described below, and is otherwise configured in the same manner as the light emitting device according to Example 6. Yes.
  • Example 6 an example in which the refractive index of the portion of the first light transmissive layer 110 between the second light transmissive layer 120 and the light transmissive substrate 140 is equal to the refractive index of the light transmissive substrate 140 has been described. .
  • the portion of the first light transmissive layer 110 on the light extraction side with respect to the second light transmissive layer 120 is composed of the light transmissive substrate 140.
  • the light transmissive substrate 140 is in contact with the light extraction side surface (the upper surface in FIG. 13) of the second light transmissive layer 120.
  • the first portion 111 is configured by the translucent substrate 140. According to the present embodiment, since the first portion 111 does not need to be configured by two portions, the configuration of the light emitting element can be simplified as compared with the above-described Embodiment 6.
  • FIG. 14A is a cross-sectional view of the light emitting device according to this example
  • FIG. 14B is a perspective view of the second light transmitting layer 120 of the light emitting device according to this example.
  • the light-emitting element according to this example is different from the light-emitting element according to the above-described embodiment in the points described below, and is otherwise configured in the same manner as the light-emitting element according to the above-described embodiment.
  • the second light transmitting layer 120 includes a plurality of inclined portions inclined with respect to the light emitting layer in opposite directions.
  • the second light transmissive layer 120 includes a plurality of inclined portions that are inclined with respect to the light emitting layer in the same direction.
  • the second light transmitting layer 120 is configured by arranging a plurality of first units 201 and second units 202 in a direction parallel to the light emitting layer.
  • the 1st unit 201 consists of a slope part arranged along the 1st and 2nd slope which is two slopes of the 1st gable roof shape 221, respectively.
  • the first gable roof shape 221 has a first axis 211 parallel to the light emitting layer as a top, and is convex toward the light extraction side or the light emitting layer side. Note that the gable roof shape means that two rectangular surfaces having the same shape and dimensions are aligned with each other and the positions of the sides having a common length are inclined with respect to each other as the axis of rotation.
  • the two rectangular surfaces are formed so as to be diagonally opposed to each other (including a state in which they are orthogonal to each other).
  • the second unit 202 includes inclined portions respectively disposed along the third and fourth inclined surfaces that are the two inclined surfaces of the second gable roof shape 222.
  • the second gable roof shape 222 has a second axis 212 that is parallel to the light emitting layer and orthogonal to the first axis 211 as a top, and is convex toward the light extraction side or the light emitting layer side. .
  • the second light-transmitting layer 120 naturally has a first inclined portion inclined with respect to the light emitting layer around the first axis extending in the first direction in plan view, and in plan view. And a second inclined portion inclined with respect to the light emitting layer around a second axis that intersects (specifically, orthogonally) with respect to the first direction.
  • first unit 201 and the second unit 202 are alternately arranged in the longitudinal direction of the first shaft 211, and the first unit 201 and the second unit 202 are connected to the second shaft 212. Are alternately arranged in the longitudinal direction.
  • the first gable roof shape 221 and the second gable roof shape 222 are convex in the same direction, and are composed of two first units 201 and two second units 202 4. The ends of the light emitting layer side or the light extraction side of the two units are in contact with each other at one point P201 in plan view.
  • the first gable roof shape 221 and the second gable roof shape 222 are convex toward the light extraction side, and four units including two first units 201 and two second units 202 are provided. The ends on the light emitting layer side are in contact with each other at a point P201.
  • first units 201 and a large number of second units 202 are arranged in a zigzag shape in a plan view without any gaps so that four units adjacent to each other are in contact with each other at one point in a plan view.
  • the dimension of the first unit 201 in the direction orthogonal to the light emitting layer is equal to the dimension of the second unit 202 in the direction orthogonal to the light emitting layer.
  • the absolute value of the angle of each inclined portion of the second light transmitting layer 120 with respect to the light emitting layer is, for example, 45 degrees. That is, the first inclined surface, the second inclined surface, the third inclined surface, and the fourth inclined surface are inclined at an angle of 45 degrees with respect to the light emitting layer.
  • the first light-transmitting layer 110 is composed of a first portion 111 and a second portion 112, the barrier film 70 is formed between the first light-transmitting layer 110 and the first electrode 40, and the first
  • the point that the light extraction film 130 is affixed on the upper surface of the light transmissive layer 110 is the same as in the third embodiment. Further, the point that the first light transmissive layer 110 includes the light transmissive substrate 140 is the same as that in the sixth embodiment.
  • FIG. 14 shows an example in which the first portion 111 is interposed between the upper end of the second light-transmitting layer 120 and the light-transmitting substrate 140, but the upper end of the second light-transmitting layer 120 ( The upper ends of the first unit 201 and the second unit 202) and the lower surface of the translucent substrate 140 may be in contact with each other.
  • At least a part of the second light transmitting layer 120 is an inclined portion inclined with respect to the light emitting layer.
  • the surface on the organic functional layer 50 side and the surface on the light extraction side in the inclined portion are in contact with the first light transmissive layer 110. For this reason, the effect similar to said embodiment is acquired.
  • the second light transmitting layer 120 has a plurality of inclined portions inclined with respect to the light emitting layer in the same direction. For this reason, the effect similar to said Example 1 is acquired.
  • the second light transmitting layer 120 has a plurality of inclined portions inclined with respect to the light emitting layer in opposite directions. For this reason, the same effect as in the second embodiment can be obtained.
  • the second light transmitting layer 120 intersects the first inclined portion inclined with respect to the light emitting layer around the first axis extending in the first direction in a plan view (for example, the first direction in the plan view (for example, And a second inclined portion inclined with respect to the light emitting layer around a second axis that is orthogonal to each other. Therefore, the extraction efficiency of light traveling in various directions in plan view can be improved.
  • the second light transmissive layer 120 has two inclined surfaces of a first gable roof shape 221 that has a first axis 211 parallel to the light emitting layer as a top and is convex toward the light extraction side or the light emitting layer side.
  • the second gable roof shape 222 convex toward the side or the light emitting layer side
  • the second unit 202 composed of inclined portions respectively arranged along the third and fourth inclined surfaces which are two inclined surfaces.
  • the plurality of layers are arranged in a direction parallel to the layer.
  • the second light transmissive layer 120 includes inclined portions having more directions as compared with the first embodiment. Thereby, the extraction efficiency of light in various directions can be improved as compared with the first embodiment. Further, light that does not hit the second light transmissive layer 120 that forms the gable roof shape can pass directly to the first portion 111 of the first light transmissive layer 110, and the adjacent second light transmissive layer having the gable roof shape. The light is totally reflected on the upper surface of 120 and then travels toward the light extraction side. Similarly, in the case of the present embodiment, the second light transmissive layer 120 includes inclined portions having more directions as compared to the second embodiment. Thereby, the extraction efficiency of light in various directions can be improved as compared with the second embodiment.
  • the first unit 201 and the second unit 202 are alternately arranged in the longitudinal direction of the first shaft 211, and the first unit 201 and the second unit 202 are alternately arranged in the longitudinal direction of the second shaft 212.
  • first gable roof shape 221 and the second gable roof shape 222 are convex in the same direction, and the light emitting layer side in the four units including the two first units 201 and the two second units 202.
  • the end portions on the light extraction side are in contact with each other at one point P201 in plan view.
  • the dimension of the first unit 201 in the direction orthogonal to the light emitting layer is equal to the dimension of the second unit 202 in the direction orthogonal to the light emitting layer.
  • the first unit 201 may be reversed upside down from that shown in FIG.
  • the second unit 202 may be inverted from that shown in FIG.
  • the vertical direction of each of the plurality of first units 201 may be individually different (the vertical direction may be set individually).
  • the vertical direction of each of the plurality of second units 202 may be individually different (the vertical direction may be set individually).
  • FIG. 15A is a perspective view of the second light transmitting layer 120 of the light emitting device according to this example
  • FIG. 15B is a cross-sectional view of the light emitting device according to Example 9.
  • the light-emitting element according to this example is different from the light-emitting element according to the above-described embodiment in the points described below, and is otherwise configured in the same manner as the light-emitting element according to the above-described embodiment.
  • the second light transmitting layer 120 is configured by arranging a plurality of units 340 shown in FIG. 15A in a direction parallel to the light emitting layer.
  • the first gable roof shape 321 has a first axis 311 extending in a first direction (arrow A direction) parallel to the light emitting layer and having a predetermined length as a top, on the light extraction side. Or it is convex toward either one of the light emitting layer side.
  • the two inclined surfaces of the first gable roof shape 321 are referred to as first and second inclined surfaces, respectively.
  • the first and second inclined surfaces have the same shape.
  • the second gable roof shape 322 has the second axis 312 as the top.
  • the second gable roof shape 322 is formed in the same shape as the first gable roof shape 321 and is convex in the same direction as the first gable roof shape 321.
  • the second axis 312 is the first axis in the second direction (arrow B direction) parallel to the light emitting layer and orthogonal to the first direction, as much as the width of the first gable roof shape 321 in the second direction. This is the axis obtained by shifting 311.
  • the two inclined surfaces of the second gable roof shape 322 are referred to as third and fourth inclined surfaces, respectively.
  • the third gable roof shape 323 has the third axis 313 as the top.
  • the third gable roof shape 323 is formed in the same shape as the first gable roof shape 321 and is convex in the same direction as the first gable roof shape 321.
  • the third axis 313 is located in a plane including the first axis 311 and the second axis 312 and is orthogonal to the first axis 311 (and the second axis 312).
  • the third shaft 313 is separated from the one end 311a of the first shaft 311 on the first shaft 311 by 1 ⁇ 2 of the width of the first gable roof shape 321 (the width of the first gable roof shape 321 in the second direction). It passes through the point P301.
  • the third axis 313 is in the second direction (arrow B direction) from the end of the first gable roof shape 321 in the third direction (arrow C direction) which is the opposite direction to the second direction (arrow B direction).
  • the two inclined surfaces of the third gable roof shape 323 are referred to as fifth and sixth inclined surfaces, respectively.
  • the fourth gable roof shape 324 has the fourth axis 314 as the top.
  • the fourth gable roof shape 324 is formed in the same shape as the first gable roof shape 321 and is convex in the same direction as the first gable roof shape 321.
  • the fourth axis 314 is formed by shifting the third axis 313 in the first direction (arrow A direction) by the same width as the width of the first gable roof shape 321 (the width of the first gable roof shape 321 in the second direction). The resulting axis.
  • the two inclined surfaces of the fourth gable roof shape 324 are referred to as seventh and eighth inclined surfaces, respectively.
  • Each of the gable roof shapes 321 to 324 penetrates the other two gable roof shapes whose axial directions are orthogonal to each other (for example, the first gable roof shape 321 is the third gable roof shape 323 and the fourth gable roof shape).
  • the unit 340 has the other seven inclined surfaces when viewed from the convex direction of the first to fourth gable roof shapes 321 to 324. It consists of the inclination part each arrange
  • the second light transmissive layer 120 naturally includes a plurality of inclined portions inclined with respect to the light emitting layer in opposite directions.
  • the second light transmissive layer 120 includes a plurality of inclined portions that are inclined with respect to the light emitting layer in the same direction.
  • the second light-transmitting layer 120 naturally intersects the first inclined portion inclined with respect to the light emitting layer around the first axis extending in the first direction in plan view and the first direction in plan view. And a second inclined portion inclined with respect to the light emitting layer around a second axis (specifically orthogonal).
  • a plurality of units 340 shown in FIG. 15A are arranged side by side without any gap.
  • the absolute value of the angle of the first to eighth inclined surfaces with respect to the light emitting layer is, for example, 45 degrees.
  • the first light-transmitting layer 110 is composed of a first portion 111 and a second portion 112, the barrier film 70 is formed between the first light-transmitting layer 110 and the first electrode 40, and the first The point that the light extraction film 130 is affixed on the upper surface of the light transmissive layer 110 is the same as in the third embodiment.
  • FIG. 15B shows, for example, a light emitting element that passes through a midpoint P311 at both ends of the third axis 313 and a midpoint P312 at both ends of the fourth axis 314 and is orthogonal to the light emitting layer. It is sectional drawing when cutting. It can be seen that this cross section is the same as the cross sectional shape of the third embodiment (FIG. 7). For this reason, also in the present embodiment, the same effect of improving the light extraction efficiency as in the third embodiment can be obtained.
  • At least a part of the second light transmitting layer 120 is an inclined portion inclined with respect to the light emitting layer.
  • the surface on the organic functional layer 50 side and the surface on the light extraction side in the inclined portion are in contact with the first light transmissive layer 110. For this reason, the effect similar to said embodiment is acquired.
  • the second light transmitting layer 120 has a plurality of inclined portions inclined with respect to the light emitting layer in the same direction. For this reason, the effect similar to said Example 1 is acquired.
  • the second light transmitting layer 120 has a plurality of inclined portions inclined with respect to the light emitting layer in opposite directions. For this reason, the same effect as in the second embodiment can be obtained.
  • the second light transmitting layer 120 intersects the first inclined portion inclined with respect to the light emitting layer around the first axis extending in the first direction in a plan view (for example, the first direction in the plan view (for example, And a second inclined portion inclined with respect to the light emitting layer around a second axis that is orthogonal to each other. Therefore, the extraction efficiency of light traveling in various directions in plan view can be improved.
  • the second light transmitting layer 120 is configured by arranging a plurality of units 340 having the above-described configuration in a direction parallel to the light emitting layer, for example, a cross-sectional shape as illustrated in FIG. Become.
  • This cross-sectional shape is the same as that in the third embodiment (FIG. 7). For this reason, the same effect as that of the third embodiment can be obtained by this embodiment.
  • the unit 340 may be turned upside down from that shown in FIG. Further, the vertical direction of each of the plurality of units 340 may be different (the vertical direction may be set individually).
  • FIG. 16A is a cross-sectional view of the periphery of the second light transmitting layer 120 of the light emitting device according to this example
  • FIG. 16B is a diagram for explaining the effect of the light emitting device according to this example.
  • the refractive index of the second light transmitting layer 120 is higher toward the light emitting layer side.
  • the second light transmitting layer 120 is configured by, for example, laminating a plurality of layers. And the refractive index of these several layers is so high that it becomes a layer by the side of a light emitting layer.
  • the second light transmitting layer 120 includes a first layer 401, a second layer 402, a third layer 403, and a fourth layer 404 in order from the light extraction side.
  • the refractive index of the first layer 401 is 1.3
  • the refractive index of the second layer 402 is 1.4
  • the refractive index of the third layer 403 is 1.5
  • the refractive index of the fourth layer 404 is 1.6. It has become.
  • the refractive indexes of the first portion 111 and the second portion 112 are, for example, 1.8, respectively.
  • the amount of change in the refractive index is relatively small at the interface between the second portion 112 and the second light transmissive layer 120, and the refractive index toward the light extraction side in the second light transmissive layer 120.
  • the refractive index changes sharply at the interface between the second light transmitting layer 120 and the first portion 111 of the first light transmitting layer 110. In other words, when straddling the second light transmitting layer 120 from the light emitting layer side toward the light extraction side, the refractive index gradually decreases and then increases rapidly.
  • FIG. 16B shows the relationship between the incident angle (horizontal axis) of light and the transmittance (vertical axis) with respect to the second light transmitting layer 120.
  • the refractive index changes sharply interface between the first portion 111 and the second light transmitting layer 120
  • the transmittance ratio changes in the direction of the arrow D in FIG.
  • the amount of reflection decreases. For this reason, by adopting the structure as shown in FIG.
  • the light traveling from the light extraction side toward the second light transmissive layer 120 has more reflection near the critical angle, and the second light transmissive layer from the light emitting layer side. With respect to light directed to 120, it becomes possible to increase the transmission near the critical angle.
  • the refractive index of the second light transmitting layer 120 is higher toward the light emitting layer side. Therefore, the light extraction efficiency of the light emitting element is improved.
  • the refractive index of the second light transmissive layer 120 may increase continuously toward the light emitting layer instead of stepwise.
  • FIG. 17 is a cross-sectional view of the light emitting device according to this example.
  • the light emitting device according to this example is different from the light emitting device according to Example 4 described above (FIG. 10) in the points described below, and is otherwise configured in the same manner as the light emitting device according to Example 4. Yes.
  • the light emitting element may have the light extraction film 130 but may not have the light extraction film 130 as shown in FIG.
  • a translucent protective member (for example, protective glass) 160 is disposed above the first translucent layer 110.
  • the protection member 160 is supported on the base member 80 via the support member 84, for example.
  • On the base member 80 the light emitting element having the structure described in the fourth embodiment is fixed.
  • the space surrounded by the base member 80, the protection member 160, and the support member 84 is sealed.
  • a gas for example, air or inert gas
  • the upper surface of the protection member 160 constitutes the light extraction surface d.
  • the base member 80 can be a sealing body (sealing layer), for example.
  • a conductor 191 for electrically connecting the second electrode 60 to the outside is provided through the base member 80 at a portion covering the partition wall 71.
  • Embodiment 4 the same effect as that of Embodiment 4 can be obtained. Moreover, since the 1st translucent layer 110 is protected by the protection member 160, durability of a light emitting element can be improved.
  • FIG. 18 is a cross-sectional view of the light emitting device according to this example.
  • the second portion 112 of the first light transmissive layer 110 is formed of a light transmissive electrode. You may have a function. That is, in this case, the second portion 112 is configured by a light-transmitting conductor such as a metal oxide conductor such as ITO.
  • the second portion 112 of the first light transmissive layer 110 since the second portion 112 of the first light transmissive layer 110 also functions as a light transmissive electrode, it is possible to reduce the number of parts of the light emitting element.
  • FIG. 19 is a cross-sectional view of the light emitting device according to this example.
  • a light-transmitting protective film 170 may be formed on the upper surface of the first light-transmitting layer 110.
  • the protective film 170 may be made of an inorganic material such as a silicon oxide film, or may be made of the same material as the first electrode 40.
  • the protective film 170 is formed by using, for example, a vapor phase growth method such as a CVD method or a sputtering method.
  • the upper surface of the protective film 170 constitutes the light extraction surface d.
  • the same effect as in the above embodiment can be obtained.
  • the first light transmissive layer 110 is protected by the protective film 170, the durability of the light emitting element can be improved.

Abstract

This light-emitting element is provided with an organic functional layer (50) including a light-emitting layer, a first light-transmissive layer (110) arranged on the light extraction side relative to the organic functional layer (50), and a second light-transmissive layer (120) having a lower refractive index than the first light-transmissive layer (110) and embedded in the first light-transmissive layer (110). At least a part of the second light-transmissive layer (120) is a tilted part tilted relative to the light-emitting layer. The surface of the tilted part on the side of the organic functional layer (50) and the surface thereof on the light-extraction side both contact the first light-transmissive layer (110).

Description

発光素子Light emitting element
 本発明は、有機発光層を有する発光素子に関する。 The present invention relates to a light emitting element having an organic light emitting layer.
 発光素子の1つに有機発光層を有する発光素子がある。この発光素子においては、有機発光層で発生した光のうち外部に放射される光の割合(光取り出し効率)を向上することが望まれている。 There is a light emitting element having an organic light emitting layer as one of the light emitting elements. In this light emitting element, it is desired to improve the ratio of light emitted to the outside (light extraction efficiency) of the light generated in the organic light emitting layer.
 光取り出し効率の向上を目的とした技術としては、特許文献1に記載のものがある。特許文献1に記載されたディスプレイ装置においては、発光層を含む薄膜層が透明基板に密着固定され、発光層から出射された光の出射角度を変換して外部に放射させる角度変換手段が透明基板内に設けられている。 As a technique for improving the light extraction efficiency, there is a technique described in Patent Document 1. In the display device described in Patent Document 1, the thin film layer including the light emitting layer is closely fixed to the transparent substrate, and the angle conversion means for converting the emission angle of the light emitted from the light emitting layer and radiating the light to the outside is the transparent substrate. Is provided inside.
 また、特許文献2には、陰極、エレクトロルミネッセンス層、透明電極層および透光体がこの順に配置されてなり、透明電極層の透光体側の表面が光散乱性の凹凸面であるエレクトロルミネッセンス素子が記載されている。また、特許文献2には、透明電極層の透光体層側の表面に、透明電極層と同等の屈折率を有する高屈折率層を設け、高屈折率層の透光体側の表面を光散乱性の凹凸面とすることについても記載されている。 Patent Document 2 discloses an electroluminescence element in which a cathode, an electroluminescence layer, a transparent electrode layer, and a light transmitting body are arranged in this order, and the surface on the light transmitting body side of the transparent electrode layer is a light scattering uneven surface. Is described. Further, in Patent Document 2, a high refractive index layer having a refractive index equivalent to that of the transparent electrode layer is provided on the surface of the transparent electrode layer on the light transmitting body layer side, and the surface on the light transmitting body side of the high refractive index layer is irradiated with light. It also describes the use of a scattering uneven surface.
 また、特許文献3には、周囲とは屈折率が異なる光学的構造体が発光波長程度の間隔で一次元方向において規則的に配列され、これら光学的構造体によって、有機EL(Electro Luminescence)発光素子内を伝搬する光を有機EL発光素子から放射される方向に変換する有機EL発光素子が記載されている。光学的構造体は、発光層に対して直交する面と平行な面とからなる直方体形状や円柱形状などである。 Further, in Patent Document 3, optical structures having different refractive indices from the surroundings are regularly arranged in a one-dimensional direction at intervals of about the emission wavelength, and organic EL (Electro Luminescence) light emission is caused by these optical structures. An organic EL light emitting element that converts light propagating in the element into a direction radiated from the organic EL light emitting element is described. The optical structure has a rectangular parallelepiped shape, a cylindrical shape, or the like composed of a plane orthogonal to the light emitting layer and a plane parallel to the plane.
特開平10-189251号公報JP-A-10-189251 特開2004-296438号公報JP 2004-296438 A 特開2004-311419号公報JP 2004-311419 A
 有機EL発光素子は、例えば、ガラス基板等の透光性基板上に透光性電極、発光層を含む有機機能層、金属電極を積層して構成されている。このような有機EL発光素子において、光取り出し効率を低下させている要因としては、以下の3つが挙げられる。(1)透光性基板と透光性電極との屈折率差に起因して、これらの界面で全反射が起こり、発光層で生成された光が透光性基板に入射しない。(2)透光性基板と光放出空間(空気)との屈折率差に起因して、これらの界面で全反射が起こり、発光層で生成された光が外部に放出されない。(3)有機EL発光素子を構成する各層の光透過率に応じて各層を透過する光が減衰する。特に、光透過率の比較的低い透光性電極に対して斜め方向に入射する光は、光路長が長くなるため、減衰が顕著となる。 The organic EL light emitting element is configured, for example, by laminating a translucent electrode, an organic functional layer including a light emitting layer, and a metal electrode on a translucent substrate such as a glass substrate. In such an organic EL light emitting device, the following three factors can be cited as factors that reduce the light extraction efficiency. (1) Due to the difference in refractive index between the translucent substrate and the translucent electrode, total reflection occurs at these interfaces, and light generated in the light emitting layer does not enter the translucent substrate. (2) Due to the difference in refractive index between the translucent substrate and the light emission space (air), total reflection occurs at these interfaces, and the light generated in the light emitting layer is not emitted to the outside. (3) The light transmitted through each layer is attenuated according to the light transmittance of each layer constituting the organic EL light emitting element. In particular, light incident in an oblique direction with respect to a light-transmitting electrode having a relatively low light transmittance has a significant attenuation because the optical path length is long.
 図1は発光層の発光点から光が放射される方向を模式的に示す図である。発光層の発光点からは、全方向に(球状に)光が放射される。なお、図1では、図面を見やすくするために、発光点P101から半球状に光が放射される様子を示している。現在の一般的な発光素子においては、透光性電極に対して垂直な線を基準として20度程度以内の角度の光(図1に示す円状の領域R101の光)しか発光素子から取り出せていない。しかし、透光性電極に対して垂直な線との角度が大きい領域(例えば図1に示す環状の領域R102)の方が、発光点P101から放射される光の総量が多い。なぜなら、図1に示す領域R101よりも領域R102の方が面積が大きいためである。このため、本発明者は、発光素子から取り出される光の角度について、透光性電極に対して垂直な線を基準として20度程度以内であるところを例えば5度改善して25度程度とするよりも、より角度が大きい光(例えば図1に示す領域R102の光)の取り出し効率を5度分改善する方が、光取り出し効率の改善効果が大きいと考えた。 FIG. 1 is a diagram schematically showing the direction in which light is emitted from the light emitting point of the light emitting layer. Light is emitted in all directions (spherically) from the light emitting point of the light emitting layer. FIG. 1 shows a state in which light is emitted in a hemispherical form from the light emitting point P101 in order to make the drawing easy to see. In the current general light emitting element, only light (angled region R101 shown in FIG. 1) having an angle within about 20 degrees with respect to a line perpendicular to the translucent electrode can be extracted from the light emitting element. Absent. However, the region having a larger angle with the line perpendicular to the translucent electrode (for example, the annular region R102 shown in FIG. 1) has a larger total amount of light emitted from the light emitting point P101. This is because the area of the region R102 is larger than that of the region R101 shown in FIG. For this reason, the inventor has improved the angle of the light extracted from the light emitting element within about 20 degrees with respect to a line perpendicular to the translucent electrode to about 25 degrees, for example, by improving 5 degrees. It was considered that the improvement effect of the light extraction efficiency is larger when the extraction efficiency of light having a larger angle (for example, light in the region R102 shown in FIG. 1) is improved by 5 degrees.
 特許文献1の技術では、発光層が透明基板に密着し、角度変換手段が透明基板内に配置されているので、高屈折率の発光層から低屈折率の透明基板との界面で光が全反射してしまう。よって、図1に示す領域R102の光の取り出し効率を改善することが困難である。 In the technique of Patent Document 1, since the light emitting layer is in close contact with the transparent substrate and the angle conversion means is disposed in the transparent substrate, light is entirely transmitted from the high refractive index light emitting layer to the low refractive index transparent substrate. It will be reflected. Therefore, it is difficult to improve the light extraction efficiency of the region R102 shown in FIG.
 特許文献2の技術では、基本的に、凹凸面において光を拡散させるものであるため、反射電極へ向かう光の角度が大きくなり、多重反射の回数が増加し、前述の有機機能層や反射電極による減衰により、光の取り出し効率はそれほど改善されないと考えられる。 In the technique of Patent Document 2, basically, light is diffused on the concavo-convex surface. Therefore, the angle of light toward the reflective electrode is increased, the number of multiple reflections is increased, and the organic functional layer and the reflective electrode described above are increased. It is considered that the light extraction efficiency is not improved so much by the attenuation due to.
 特許文献3の技術では、狭い波長範囲の光の取り出し効率が向上する。このため、有機EL発光素子の特徴の1つであるブロードな波長範囲の発光特性を十分に得られない可能性がある。 The technology of Patent Document 3 improves the light extraction efficiency in a narrow wavelength range. For this reason, there is a possibility that light emission characteristics in a broad wavelength range, which is one of the characteristics of the organic EL light emitting element, cannot be obtained sufficiently.
 本発明が解決しようとする課題としては、光の波長にかかわらず、発光素子の光取り出し効率を向上することが一例として挙げられる。 An example of a problem to be solved by the present invention is to improve the light extraction efficiency of a light emitting element regardless of the wavelength of light.
 請求項1に記載の発明は、発光層を含む有機機能層と、
 前記有機機能層を基準として光取り出し側に配置された第1透光層と、
 前記第1透光層よりも屈折率が低く、前記第1透光層内に埋設された第2透光層と、
 を備え、
 前記第2透光層の少なくとも一部分は、前記発光層に対して傾斜した傾斜部であり、
 前記傾斜部における前記有機機能層側の面と前記光取り出し側の面とが、それぞれ前記発光層に対して傾斜しているとともに、
 前記傾斜部における前記有機機能層側の面と前記光取り出し側の面とが、それぞれ前記第1透光層に接している発光素子である。
The invention according to claim 1 includes an organic functional layer including a light emitting layer,
A first light transmissive layer disposed on the light extraction side with respect to the organic functional layer;
A second light-transmitting layer having a refractive index lower than that of the first light-transmitting layer and embedded in the first light-transmitting layer;
With
At least a part of the second light transmissive layer is an inclined portion inclined with respect to the light emitting layer,
The surface on the organic functional layer side and the surface on the light extraction side in the inclined portion are inclined with respect to the light emitting layer, respectively.
In the light emitting element, a surface on the organic functional layer side and a surface on the light extraction side in the inclined portion are in contact with the first light transmitting layer.
 上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。 The above-described object and other objects, features, and advantages will be further clarified by a preferred embodiment described below and the following drawings attached thereto.
発光層の発光点から光が放射される方向を模式的に示す図である。It is a figure which shows typically the direction in which light is radiated | emitted from the light emission point of a light emitting layer. 実施形態に係る発光素子の断面図である。It is sectional drawing of the light emitting element which concerns on embodiment. 有機機能層の層構造の第1例を示す断面図である。It is sectional drawing which shows the 1st example of the layer structure of an organic functional layer. 有機機能層の層構造の第2例を示す断面図である。It is sectional drawing which shows the 2nd example of the layer structure of an organic functional layer. 実施例1に係る発光素子の断面図である。1 is a cross-sectional view of a light emitting device according to Example 1. FIG. 実施例2に係る発光素子の断面図である。6 is a cross-sectional view of a light emitting device according to Example 2. FIG. 実施例3に係る発光素子の断面図である。7 is a cross-sectional view of a light emitting device according to Example 3. FIG. 実施例3に係る発光素子の第2透光層の斜視図である。6 is a perspective view of a second light transmissive layer of a light emitting device according to Example 3. FIG. 図9(a)~(c)の各図は、実施例3に係る発光素子において、発光層で生成された光が外部に放出されるまでの経路を例示した断面図である。Each of FIGS. 9A to 9C is a cross-sectional view illustrating paths until light generated in the light emitting layer is emitted to the outside in the light emitting device according to the third embodiment. 図10(a)は実施例4に係る発光素子の平面図であり、図10(b)は図10(a)におけるC-C線に沿った断面図である。FIG. 10A is a plan view of the light-emitting element according to Example 4, and FIG. 10B is a cross-sectional view taken along the line CC in FIG. 図11(a)は実施例5に係る発光素子の断面図、図11(b)は実施例5に係る発光素子の第2透光層の斜視図である。FIG. 11A is a cross-sectional view of the light emitting device according to Example 5, and FIG. 11B is a perspective view of the second light transmitting layer of the light emitting device according to Example 5. 実施例6に係る発光素子の断面図である。6 is a cross-sectional view of a light emitting device according to Example 6. FIG. 実施例7に係る発光素子の断面図である。6 is a cross-sectional view of a light emitting device according to Example 7. FIG. 図14(a)は実施例8に係る発光素子の断面図、図14(b)は実施例8に係る発光素子の第2透光層の斜視図である。14A is a cross-sectional view of the light emitting device according to Example 8, and FIG. 14B is a perspective view of the second light transmitting layer of the light emitting device according to Example 8. 図15(a)は実施例9に係る発光素子の第2透光層の斜視図、図15(b)は実施例9に係る発光素子の断面図である。FIG. 15A is a perspective view of the second light transmitting layer of the light emitting device according to Example 9, and FIG. 15B is a cross-sectional view of the light emitting device according to Example 9. 図16(a)は実施例10に係る発光素子の第2透光層の周辺の断面図、図16(b)は実施例10に係る発光素子の効果を説明するための図である。16A is a cross-sectional view of the periphery of the second light-transmitting layer of the light-emitting element according to Example 10, and FIG. 16B is a diagram for explaining the effect of the light-emitting element according to Example 10. 実施例11に係る発光素子の断面図である。12 is a cross-sectional view of a light-emitting element according to Example 11. FIG. 実施例12に係る発光素子の断面図である。It is sectional drawing of the light emitting element which concerns on Example 12. FIG. 実施例13に係る発光素子の断面図である。It is sectional drawing of the light emitting element which concerns on Example 13. FIG.
 以下、実施の形態について、図面を用いて説明する。尚、すべての図面において、同様の構成要素には同一の符号を付し、適宜説明を省略する。 Hereinafter, embodiments will be described with reference to the drawings. In all the drawings, the same components are denoted by the same reference numerals, and description thereof will be omitted as appropriate.
 (実施形態)
 本実施形態に係る発光素子は、有機EL素子を含んで構成される。この発光素子は、例えばディスプレイ、照明装置、又は光通信装置等の光源として用いることができる。
(Embodiment)
The light emitting element according to the present embodiment includes an organic EL element. This light emitting element can be used as a light source for a display, a lighting device, an optical communication device, or the like.
 図2は実施形態に係る発光素子の断面図である。 FIG. 2 is a cross-sectional view of the light emitting device according to the embodiment.
 本実施形態に係る発光素子は、発光層を含む有機機能層50と、有機機能層50を基準として光取り出し側に配置された第1透光層110と、第1透光層110よりも屈折率が低く第1透光層110内に埋設された第2透光層120と、を備える。第2透光層120の少なくとも一部分は、発光層に対して傾斜した傾斜部である。傾斜部における有機機能層50側の面と光取り出し側の面とが、それぞれ発光層に対して傾斜しているとともに、傾斜部における有機機能層50側の面と光取り出し側の面とが第1透光層110に接している。ここで、発光層に対して傾斜しているとは、発光層が延在する面に対して傾斜していることを意味し、例えば、有機機能層50の上面に対して傾斜していることを意味する。また、発光層に対して傾斜しているとは、発光層に対して平行ではないとともに、発光層に対して直交もしていないことを意味する。また、光取り出し側とは、後述する光取り出し面d側を意味する。 The light emitting device according to the present embodiment includes an organic functional layer 50 including a light emitting layer, a first light transmissive layer 110 disposed on the light extraction side with respect to the organic functional layer 50, and refractive than the first light transmissive layer 110. And a second light-transmitting layer 120 embedded in the first light-transmitting layer 110 with a low rate. At least a part of the second light transmitting layer 120 is an inclined portion inclined with respect to the light emitting layer. The surface on the organic functional layer 50 side and the surface on the light extraction side in the inclined portion are inclined with respect to the light emitting layer, respectively, and the surface on the organic functional layer 50 side and the surface on the light extraction side in the inclined portion are first. 1 is in contact with the light transmissive layer 110. Here, being inclined with respect to the light emitting layer means being inclined with respect to the surface on which the light emitting layer extends, for example, being inclined with respect to the upper surface of the organic functional layer 50. Means. Further, being inclined with respect to the light emitting layer means not being parallel to the light emitting layer and not being orthogonal to the light emitting layer. The light extraction side means the light extraction surface d side described later.
 以下においては、説明を簡単にするため、発光素子の各構成要素の位置関係(上下関係等)が各図に示す関係であるものとして説明を行う。ただし、この説明における位置関係は、発光素子の使用時の位置関係とは無関係である。 Hereinafter, in order to simplify the description, description will be made assuming that the positional relationship (vertical relationship, etc.) of each component of the light emitting element is the relationship shown in each drawing. However, the positional relationship in this description is irrelevant to the positional relationship when the light emitting element is used.
 本実施形態の場合、第1透光層110の上面(第1透光層110における有機機能層50側とは反対側の面)は、発光素子の外部の光放出空間200に接している。そして、第1透光層110の上面は、発光素子から光放出空間200に光を放出する光取り出し面dを構成している。光放出空間200は、空気層であり、屈折率が1である。なお、第1透光層110の上面には、光取り出しフィルムが貼り付けられており、この光取り出しフィルムの上面が、光取り出し面dを構成していても良い。 In the present embodiment, the upper surface of the first light transmissive layer 110 (the surface opposite to the organic functional layer 50 side of the first light transmissive layer 110) is in contact with the light emission space 200 outside the light emitting element. The upper surface of the first light transmissive layer 110 constitutes a light extraction surface d that emits light from the light emitting element to the light emission space 200. The light emitting space 200 is an air layer and has a refractive index of 1. In addition, the light extraction film is affixed on the upper surface of the 1st translucent layer 110, and the upper surface of this light extraction film may comprise the light extraction surface d.
 発光素子は、更に、有機機能層50と第1透光層110との間に配置された透光性の第1電極40と、有機機能層50を挟んで第1電極40と対向する第2電極60と、を有する。すなわち、有機機能層50の一方の面側に第1電極40が配置され、有機機能層50の他方の面側に第2電極60が配置されている。 The light emitting element further includes a translucent first electrode 40 disposed between the organic functional layer 50 and the first translucent layer 110, and a second electrode facing the first electrode 40 with the organic functional layer 50 interposed therebetween. Electrode 60. That is, the first electrode 40 is disposed on one surface side of the organic functional layer 50, and the second electrode 60 is disposed on the other surface side of the organic functional layer 50.
 第1電極40は、例えばITO(Indium Tin Oxide)やIZO(Indium Zinc Oxide)などの金属酸化物導電体からなる透明電極とすることができる。ただし、第1電極40は、光が透過する程度に薄い金属薄膜であっても良い。 The first electrode 40 may be a transparent electrode made of a metal oxide conductor such as ITO (Indium Tin Oxide) or IZO (Indium Zinc Oxide). However, the first electrode 40 may be a metal thin film that is thin enough to transmit light.
 第2電極60は、例えば、Ag、Au、Alなどの金属膜からなる反射電極である。第2電極60は、有機機能層50から第2電極60側に向かう光を、光取り出し面d側に向けて反射する。ただし、第2電極60をITOやIZOなどの金属酸化物導電体からなる透明電極とし、第2電極60よりも下層に光反射層(図示略)を設けても良い。 The second electrode 60 is a reflective electrode made of a metal film such as Ag, Au, or Al. The second electrode 60 reflects light traveling from the organic functional layer 50 toward the second electrode 60 toward the light extraction surface d. However, the second electrode 60 may be a transparent electrode made of a metal oxide conductor such as ITO or IZO, and a light reflecting layer (not shown) may be provided below the second electrode 60.
 第1電極40と第2電極60との間に電圧が印加されることにより、有機機能層50の発光層が発光する。第1透光層110、第2透光層120、第1電極40、及び、有機機能層50は、いずれも、有機機能層50の発光層が発光した光の少なくとも一部を透過する。発光層が発光した光の一部は、第1透光層110の光取り出し面dから、発光素子の外部(つまり上記光放出空間200)に放射される(取り出される)。 When a voltage is applied between the first electrode 40 and the second electrode 60, the light emitting layer of the organic functional layer 50 emits light. The first light transmissive layer 110, the second light transmissive layer 120, the first electrode 40, and the organic functional layer 50 all transmit at least part of the light emitted from the light emitting layer of the organic functional layer 50. Part of the light emitted from the light emitting layer is emitted (extracted) from the light extraction surface d of the first light transmitting layer 110 to the outside of the light emitting element (that is, the light emission space 200).
 第1透光層110の屈折率は、例えば、第1電極40の屈折率以上であり、且つ、2.3以下である。第1透光層110は、例えば、誘電体材料により構成されている。透光層110は、例えば屈折率1.8程度のエポキシ樹脂により構成されている。或いは、第1透光層110は、BaTiOを用いたナノパーティクルを含有する高屈折率材料や、高屈折率ナノコンポジット薄膜などによって構成されていても良い。また、第1透光層110は、有機機能層50と同じ材料により構成されていても良い。なお、第1透光層110と第1電極40との間には、有機材料への影響を抑制するSiOなどによる薄膜バリア膜が形成されていても良い。 The refractive index of the first light transmissive layer 110 is, for example, not less than the refractive index of the first electrode 40 and not more than 2.3. The first light transmissive layer 110 is made of, for example, a dielectric material. The light transmitting layer 110 is made of, for example, an epoxy resin having a refractive index of about 1.8. Alternatively, the first light transmissive layer 110 may be made of a high refractive index material containing nanoparticles using BaTiO 3 , a high refractive index nanocomposite thin film, or the like. The first light transmissive layer 110 may be made of the same material as that of the organic functional layer 50. A thin film barrier film made of SiO 2 or the like that suppresses the influence on the organic material may be formed between the first light transmitting layer 110 and the first electrode 40.
 第2透光層120は、例えばポーラスシリカなどにより構成されている。本実施形態の場合、例えば、第2透光層120の全体が傾斜部となっている。傾斜部は、例えば、平板な膜状に形成され、有機機能層50に対して傾斜(例えば45°などの角度で傾斜)している。なお、傾斜部の下面と上面とは、例えば、発光層に対して互いに同じ方向に傾斜している。また、傾斜部の下面と上面とは互いに平行であることが好ましい。この場合、傾斜部に入射した光は、入射したときと同じ角度で傾斜部から第1透光層110へ出射する。ただし、傾斜部の下面と上面とは、発光層に対して互いに反対方向に傾斜していても良い。 The second light transmitting layer 120 is made of, for example, porous silica. In the case of this embodiment, for example, the entire second light transmitting layer 120 is an inclined portion. The inclined portion is formed in a flat film shape, for example, and is inclined (inclined at an angle of, for example, 45 °) with respect to the organic functional layer 50. Note that the lower surface and the upper surface of the inclined portion are inclined in the same direction with respect to the light emitting layer, for example. Moreover, it is preferable that the lower surface and upper surface of an inclination part are mutually parallel. In this case, the light incident on the inclined portion is emitted from the inclined portion to the first light transmitting layer 110 at the same angle as the incident portion. However, the lower surface and the upper surface of the inclined portion may be inclined in directions opposite to each other with respect to the light emitting layer.
 第2透光層120の層厚(膜厚)は、発光層により発光される光の波長よりも厚い。第2透光層120の層厚をこの波長以下、実質的には100nm程度以下にすると、エバネッセント光が第2透光層120を通過し、第1透光層110で伝播光に戻るので、第2透光層120と第1透光層110との界面にて光を全反射させることが困難となる。第2透光層120の層厚をこの波長よりも厚くすることにより、第2透光層120と第1透光層110との界面にて光を全反射させることができる。第2透光層120の層厚は、発光層により発光される光の波長よりも十分に大きいこと(例えば1μm以上であること)が好ましい。 The layer thickness (film thickness) of the second light transmitting layer 120 is thicker than the wavelength of light emitted by the light emitting layer. When the layer thickness of the second light transmissive layer 120 is less than this wavelength, substantially about 100 nm or less, the evanescent light passes through the second light transmissive layer 120 and returns to the propagating light in the first light transmissive layer 110. It becomes difficult to totally reflect light at the interface between the second light transmitting layer 120 and the first light transmitting layer 110. By making the thickness of the second light transmissive layer 120 thicker than this wavelength, light can be totally reflected at the interface between the second light transmissive layer 120 and the first light transmissive layer 110. The layer thickness of the second light transmitting layer 120 is preferably sufficiently larger than the wavelength of light emitted by the light emitting layer (for example, 1 μm or more).
 また、傾斜部に対して面直方向に傾斜部を見たときの傾斜部の寸法の最小値および複数の傾斜部を形成する場合において隣り合って配置される傾斜部どうしの間隔(周期)も、発光層により発光される光の波長よりも大きい。これらの最小値も、発光層により発光される光の波長よりも十分に大きいこと(例えば1μm以上であること)が好ましい。 In addition, the minimum value of the dimension of the inclined part when the inclined part is viewed in the direction perpendicular to the inclined part and the interval (cycle) between the inclined parts arranged adjacent to each other when forming a plurality of inclined parts are also provided. , Larger than the wavelength of light emitted by the light emitting layer. These minimum values are also preferably sufficiently larger than the wavelength of light emitted by the light emitting layer (for example, 1 μm or more).
 なお、第1透光層110における有機機能層50側の面(下面)と第1電極40の一方の面(上面)とが相互に接している。また、第1電極40の他方の面(下面)と有機機能層50の一方の面(上面)とが相互に接している。また、有機機能層50の他方の面(下面)と第2電極60の一方の面(上面)とが相互に接している。ただし、第1透光層110と第1電極40との間には他の層が存在していても良い。同様に、第1電極40と有機機能層50との間には他の層が存在していても良い。同様に、有機機能層50と第2電極60との間には他の層が存在していても良い。 Note that the surface (lower surface) of the first light transmitting layer 110 on the organic functional layer 50 side and one surface (upper surface) of the first electrode 40 are in contact with each other. Further, the other surface (lower surface) of the first electrode 40 and one surface (upper surface) of the organic functional layer 50 are in contact with each other. Further, the other surface (lower surface) of the organic functional layer 50 and one surface (upper surface) of the second electrode 60 are in contact with each other. However, another layer may exist between the first light-transmissive layer 110 and the first electrode 40. Similarly, another layer may exist between the first electrode 40 and the organic functional layer 50. Similarly, another layer may exist between the organic functional layer 50 and the second electrode 60.
 第1透光層110は、例えば、樹脂材料を紫外線と熱とのうちの少なくとも何れか一方によって硬化させることにより構成されている。なお、第1透光層110は、後述する実施例のように、第2透光層120よりも上側の部分と、第2透光層120よりも下側の部分とに分けて形成することができる。例えば、第1透光層110における第2透光層120よりも上側の部分を形成した後で、当該上側の部分の下面に第2透光層120を形成し、その後、第2透光層120を覆うように、第1透光層110における第2透光層120よりも下側の部分を形成する。これにより、第1透光層110内に第2透光層120を埋設することができる。 The first light transmissive layer 110 is configured, for example, by curing a resin material with at least one of ultraviolet rays and heat. In addition, the 1st light transmission layer 110 is divided and formed in the part above the 2nd light transmission layer 120, and the part below the 2nd light transmission layer 120 like the Example mentioned later. Can do. For example, after forming a portion of the first light transmissive layer 110 above the second light transmissive layer 120, the second light transmissive layer 120 is formed on the lower surface of the upper portion, and then the second light transmissive layer. A lower portion of the first light transmissive layer 110 than the second light transmissive layer 120 is formed so as to cover 120. Accordingly, the second light transmissive layer 120 can be embedded in the first light transmissive layer 110.
 第1電極40は、例えば、第1透光層110の下面に対してITOやIZOなどの金属酸化物導電体をスパッタリングすることにより構成されている。更に、第1電極40の下面には、必要に応じて隔壁部を形成する。有機機能層50は、例えば隔壁部間に発光層を含む有機材料を蒸着又は塗布することによって構成されている。第2電極60は、有機機能層50の下面に金属材料を蒸着することにより構成されている。 The first electrode 40 is configured, for example, by sputtering a metal oxide conductor such as ITO or IZO on the lower surface of the first light transmitting layer 110. Furthermore, a partition wall is formed on the lower surface of the first electrode 40 as necessary. The organic functional layer 50 is configured by evaporating or applying an organic material including a light emitting layer between partition walls, for example. The second electrode 60 is configured by evaporating a metal material on the lower surface of the organic functional layer 50.
 次に、動作を説明する。 Next, the operation will be described.
 第2透光層120の屈折率は、第1透光層110の屈折率よりも低い。このため、第2透光層120と第1透光層110との界面に到達する光のうち、当該界面における臨界角以上の角度の光は、当該界面にて全反射する。一方、当該界面に到達する光のうち、当該界面における臨界角未満の角度の光は、第2透光層120を透過して再び第1透光層110に入射する。 The refractive index of the second light transmitting layer 120 is lower than the refractive index of the first light transmitting layer 110. For this reason, out of the light reaching the interface between the second light-transmitting layer 120 and the first light-transmitting layer 110, light having an angle greater than the critical angle at the interface is totally reflected at the interface. On the other hand, of the light reaching the interface, light having an angle less than the critical angle at the interface is transmitted through the second light transmitting layer 120 and is incident on the first light transmitting layer 110 again.
 図2に示す光線L11は、第1透光層110内を進み、且つ、第2透光層120の下面(発光層側の面)に向かう光のうち、第2透光層120の下面と第1透光層110との界面における臨界角未満の角度の光である。図2に示すように、光線L11は、第2透光層120を透過して再び第1透光層110に入射した後、光取り出し面dから外部(光放出空間200)に放射されるか、又は、第1透光層110と光放出空間200との界面にて全反射する。つまり、第2透光層120は、光線L11の取り出し効率には実質的に影響を与えない。 A light ray L11 illustrated in FIG. 2 travels through the first light-transmitting layer 110 and travels toward the lower surface of the second light-transmitting layer 120 (the surface on the light-emitting layer side) and the lower surface of the second light-transmitting layer 120. The light has an angle less than the critical angle at the interface with the first light transmissive layer 110. As shown in FIG. 2, is the light ray L11 transmitted through the second light transmissive layer 120 and again incident on the first light transmissive layer 110, and then emitted from the light extraction surface d to the outside (light emission space 200)? Alternatively, the light is totally reflected at the interface between the first light transmissive layer 110 and the light emission space 200. That is, the second light transmissive layer 120 does not substantially affect the extraction efficiency of the light beam L11.
 一方、図2に示す光線L12は、第1透光層110内を進み、且つ、第2透光層120の上面(光取り出し側の面)に向かう光のうち、第2透光層120の上面と第1透光層110との界面における臨界角以上の角度の光である。図2に示すように、光線L12は、第2透光層120の上面にて全反射することにより、その進行方向が上向きに変換される。このため、第2透光層120に入射する前の角度では光取り出し面dから外部に放射されないような光の一部について、第2透光層120にて反射させることにより、光取り出し面dから外部に放射させることができる。つまり、第2透光層120は、光線L12の取り出し効率を向上させる役割を果たす。また光取り出し面dで全反射した光も、第1透光層110と第2透光層120との界面における臨界角以上であれば、第2透光層120にて全反射するとともに角度が変化する結果、当該光の一部を外部に取り出すことができる。 On the other hand, the light ray L12 shown in FIG. 2 travels through the first light transmissive layer 110 and out of the second light transmissive layer 120 out of the light traveling toward the upper surface (the surface on the light extraction side) of the second light transmissive layer 120. The light has an angle greater than or equal to the critical angle at the interface between the upper surface and the first light transmissive layer 110. As shown in FIG. 2, the light L <b> 12 is totally reflected on the upper surface of the second light transmissive layer 120, so that its traveling direction is converted upward. For this reason, the light extraction surface d is reflected on the second light transmission layer 120 by reflecting a part of the light that is not emitted from the light extraction surface d at an angle before entering the second light transmission layer 120. Can be emitted to the outside. That is, the second light transmissive layer 120 plays a role of improving the extraction efficiency of the light beam L12. Further, the light totally reflected by the light extraction surface d is also totally reflected by the second light transmissive layer 120 and has an angle if it is not less than the critical angle at the interface between the first light transmissive layer 110 and the second light transmissive layer 120. As a result of the change, part of the light can be extracted to the outside.
 よって、第2透光層120の存在により、発光素子の光取り出し効率を向上することができる。 Therefore, the light extraction efficiency of the light emitting element can be improved by the presence of the second light transmissive layer 120.
 次に、有機機能層50の層構造の例について説明する。 Next, an example of the layer structure of the organic functional layer 50 will be described.
 図3は有機機能層50の層構造の第1例を示す断面図である。この有機機能層50は、正孔注入層51、正孔輸送層52、発光層53、電子輸送層54、及び電子注入層55をこの順に積層した構造を有している。すなわち有機機能層50は、有機エレクトロルミネッセンス発光層である。なお、正孔注入層51及び正孔輸送層52の代わりに、これら2つの層の機能を有する一つの層を設けてもよい。同様に、電子輸送層54及び電子注入層55の代わりに、これら2つの層の機能を有する一つの層を設けてもよい。 FIG. 3 is a cross-sectional view showing a first example of the layer structure of the organic functional layer 50. The organic functional layer 50 has a structure in which a hole injection layer 51, a hole transport layer 52, a light emitting layer 53, an electron transport layer 54, and an electron injection layer 55 are stacked in this order. That is, the organic functional layer 50 is an organic electroluminescence light emitting layer. Instead of the hole injection layer 51 and the hole transport layer 52, one layer having the functions of these two layers may be provided. Similarly, instead of the electron transport layer 54 and the electron injection layer 55, one layer having the functions of these two layers may be provided.
 図3の例において、発光層53は、例えば赤色の光を発光する層、青色の光を発光する層、黄色の光を発光する層、又は緑色の光を発光する層である。この場合、例えば、平面視において、赤色の光を発光する発光層53を有する領域、緑色の光を発光する発光層53を有する領域、及び青色の光を発光する発光層53を有する領域が繰り返し設けられていても良い。この場合、各領域を同時に発光させると、発光素子は白色等の単一の発光色で発光する。 In the example of FIG. 3, the light emitting layer 53 is, for example, a layer that emits red light, a layer that emits blue light, a layer that emits yellow light, or a layer that emits green light. In this case, for example, in a plan view, a region having the light emitting layer 53 that emits red light, a region having the light emitting layer 53 that emits green light, and a region having the light emitting layer 53 that emits blue light are repeated. It may be provided. In this case, when each region emits light simultaneously, the light emitting element emits light in a single light emission color such as white.
 なお、発光層53は、複数の色を発光するための材料を混ぜることにより、白色等の単一の発光色で発光するように構成されていても良い。 The light emitting layer 53 may be configured to emit light in a single light emission color such as white by mixing materials for emitting a plurality of colors.
 図4は有機機能層50の層構造の第2例を示す断面図である。この有機機能層50の発光層53は、発光層53a、53b、53cをこの順に積層した構成を有している。発光層53a、53b、53cは、互いに異なる色の光(例えば赤、緑、及び青)を発光する。そして発光層53a、53b、53cが同時に発光することにより、発光素子は白色等の単一の発光色で発光する。 FIG. 4 is a cross-sectional view showing a second example of the layer structure of the organic functional layer 50. The light emitting layer 53 of the organic functional layer 50 has a structure in which light emitting layers 53a, 53b, and 53c are laminated in this order. The light emitting layers 53a, 53b, and 53c emit light of different colors (for example, red, green, and blue). The light emitting elements 53a, 53b, and 53c emit light at the same time, so that the light emitting element emits light in a single light emission color such as white.
 以上のような実施形態によれば、発光素子は、第1透光層110と、第1透光層よりも屈折率が低く第1透光層110内に埋設された第2透光層120と、を備え、第2透光層120の少なくとも一部分は、発光層に対して傾斜した傾斜部である。傾斜部における有機機能層50側の面と光取り出し側の面とが、それぞれ発光層に対して傾斜している。そして、この傾斜部における有機機能層50側の面と光取り出し側の面とが第1透光層110に接している。これにより、第2透光層120に到達する光の一部は、第2透光層120を透過し、他の一部は第2透光層120にて全反射するようにできる。また光取り出し面dにて全反射した光のうち、第1透光層110と第2透光層120との界面における臨界角以上のものも第2透光層120にて全反射するとともに角度が変化する結果、当該光の一部を外部に取り出すことができる。すなわち、第2透光層120での光の反射を利用することにより、発光素子の光取り出し効率を向上することができる。ここで、発光層からの光の波長にかかわらず、光取り出し効率を向上することができる。よって、発光素子が有機EL素子である場合に、有機EL素子の特徴の1つであるブロードな波長範囲の発光特性を十分に得ることができる。 According to the embodiment as described above, the light emitting element includes the first light transmitting layer 110 and the second light transmitting layer 120 embedded in the first light transmitting layer 110 having a refractive index lower than that of the first light transmitting layer. And at least a part of the second light transmitting layer 120 is an inclined portion inclined with respect to the light emitting layer. The surface on the organic functional layer 50 side and the surface on the light extraction side in the inclined portion are inclined with respect to the light emitting layer. The surface on the organic functional layer 50 side and the surface on the light extraction side in the inclined portion are in contact with the first light transmissive layer 110. Thereby, a part of the light reaching the second light transmitting layer 120 can be transmitted through the second light transmitting layer 120 and the other part can be totally reflected by the second light transmitting layer 120. Of the light totally reflected by the light extraction surface d, those having a critical angle or more at the interface between the first light transmitting layer 110 and the second light transmitting layer 120 are also totally reflected by the second light transmitting layer 120 and the angle. As a result of the change, a part of the light can be extracted to the outside. That is, the light extraction efficiency of the light emitting element can be improved by utilizing the reflection of light at the second light transmissive layer 120. Here, the light extraction efficiency can be improved regardless of the wavelength of light from the light emitting layer. Therefore, when the light-emitting element is an organic EL element, light emission characteristics in a broad wavelength range that is one of the characteristics of the organic EL element can be sufficiently obtained.
 (実施例1)
 図5は本実施例に係る発光素子の断面図である。本実施例に係る発光素子は、以下に説明する点で、上記の実施形態に係る発光素子と相違し、その他の点では上記の実施形態に係る発光素子と同様に構成されている。
(Example 1)
FIG. 5 is a cross-sectional view of the light emitting device according to this example. The light-emitting element according to this example is different from the light-emitting element according to the above-described embodiment in the points described below, and is otherwise configured in the same manner as the light-emitting element according to the above-described embodiment.
 本実施例の場合、第2透光層120は、互いに同じ方向に発光層に対して傾斜した複数の傾斜部を有している。図5には、2つの傾斜部120a、120bを示している。各傾斜部120a、120bは、上記の実施形態における第2透光層120と同様のものである。なお、傾斜部120aの上面と下面とは、発光層に対して互いに同じ方向に傾斜している。同様に、傾斜部120bの上面と下面とは、発光層に対して互いに同じ方向に傾斜している。 In the case of the present embodiment, the second light transmitting layer 120 has a plurality of inclined portions inclined with respect to the light emitting layer in the same direction. FIG. 5 shows two inclined portions 120a and 120b. Each inclination part 120a, 120b is the same as that of the 2nd light transmission layer 120 in said embodiment. Note that the upper surface and the lower surface of the inclined portion 120a are inclined in the same direction with respect to the light emitting layer. Similarly, the upper surface and the lower surface of the inclined portion 120b are inclined in the same direction with respect to the light emitting layer.
 これら傾斜部120a、120bの傾斜角度は、例えば、同じ角度に設定することができる。これら傾斜部120a、120bは、例えば、発光層に対して平行な方向において互いに所定の間隔(例えば一定間隔)で離間しているとともに、互いに平行に配置されている。 The inclination angles of the inclined portions 120a and 120b can be set to the same angle, for example. The inclined portions 120a and 120b are spaced apart from each other at a predetermined interval (for example, a constant interval) in a direction parallel to the light emitting layer, and are disposed in parallel to each other.
 図5に示すように、本実施例の場合、光線L11、L12に関しては、上記の実施形態と同様の動作となる。 As shown in FIG. 5, in the case of the present embodiment, the light beams L11 and L12 operate in the same manner as in the above embodiment.
 図5に示す光線L13は、第1透光層110内を進み、且つ、一方の傾斜部120aの下面(発光層側の面)に向かう光のうち、傾斜部120aの下面と第1透光層110との界面における臨界角以上の角度の光である。図5に示すように、光線L13は、傾斜部120aの下面にて全反射する。その後、光線L13の一部は、図5に示すように、他方の傾斜部120bの上面にて全反射することにより、その進行方向が上向きに変換される。このため、傾斜部120a、120bの協働により、光線L13の取り出し効率を向上することができる。 The light ray L13 shown in FIG. 5 travels through the first light transmitting layer 110 and travels toward the lower surface of the one inclined portion 120a (the surface on the light emitting layer side), and the lower surface of the inclined portion 120a and the first light transmitting light. The light has an angle greater than the critical angle at the interface with the layer 110. As shown in FIG. 5, the light ray L13 is totally reflected on the lower surface of the inclined portion 120a. Thereafter, as shown in FIG. 5, a part of the light beam L13 is totally reflected on the upper surface of the other inclined portion 120b, so that its traveling direction is converted upward. For this reason, the extraction efficiency of the light beam L13 can be improved by the cooperation of the inclined portions 120a and 120b.
 本実施例によれば、上記の実施形態と同様の効果が得られる。また、本実施例の場合、発光素子は、発光層に対して互いに同じ方向に傾斜した複数の傾斜部(傾斜部120a、120b等)を有しているので、上述したメカニズムにより、上記の実施形態よりも光取り出し効率を向上することができる。 According to this example, the same effect as the above embodiment can be obtained. In the case of this embodiment, the light emitting element has a plurality of inclined portions ( inclined portions 120a, 120b, etc.) inclined in the same direction with respect to the light emitting layer. The light extraction efficiency can be improved more than the form.
 なお、本実施例において、第2透光層120は、互いに異なる傾斜角で発光層に対して傾斜した複数の傾斜部を含んでいても良い。これによって、より様々な角度の光について、取り出し効率を向上できるようになる。例えば、発光層に対するこれら傾斜部の傾斜方向は互いに同じ方向であるが、これら傾斜部の傾斜角(傾斜角の絶対値)が互いに異なる。或いは、発光層に対するこれら傾斜部の傾斜方向が互いに異なるとともに、これら傾斜部の傾斜角が互いに異なる。 In the present embodiment, the second light transmitting layer 120 may include a plurality of inclined portions inclined with respect to the light emitting layer at different inclination angles. As a result, the extraction efficiency can be improved with respect to light having various angles. For example, the inclination directions of the inclined portions with respect to the light emitting layer are the same as each other, but the inclination angles (the absolute values of the inclination angles) of these inclined portions are different from each other. Alternatively, the inclination directions of the inclined portions with respect to the light emitting layer are different from each other, and the inclination angles of the inclined portions are different from each other.
 (実施例2)
 図6は本実施例に係る発光素子の断面図である。本実施例に係る発光素子は、以下に説明する点で、上記の実施形態に係る発光素子と相違し、その他の点では上記の実施形態に係る発光素子と同様に構成されている。
(Example 2)
FIG. 6 is a cross-sectional view of the light emitting device according to this example. The light-emitting element according to this example is different from the light-emitting element according to the above-described embodiment in the points described below, and is otherwise configured in the same manner as the light-emitting element according to the above-described embodiment.
 本実施例の場合、第2透光層120は、互いに反対方向に発光層に対して傾斜した複数の傾斜部を有している。図6には、2つの傾斜部120a、120bを示している。各傾斜部120a、120bは、上記の実施形態における第2透光層120と同様のものである。なお、傾斜部120aの上面(光取り出し側の面)と下面(有機機能層側の面)とは、発光層に対して互いに同じ方向に傾斜している。同様に、傾斜部120bの上面(光取り出し側の面)と下面(有機機能層側の面)とは、発光層に対して互いに同じ方向に傾斜している。 In the case of the present embodiment, the second light transmitting layer 120 has a plurality of inclined portions inclined with respect to the light emitting layer in opposite directions. FIG. 6 shows two inclined portions 120a and 120b. Each inclination part 120a, 120b is the same as that of the 2nd light transmission layer 120 in said embodiment. Note that the upper surface (surface on the light extraction side) and the lower surface (surface on the organic functional layer side) of the inclined portion 120a are inclined in the same direction with respect to the light emitting layer. Similarly, the upper surface (surface on the light extraction side) and the lower surface (surface on the organic functional layer side) of the inclined portion 120b are inclined in the same direction with respect to the light emitting layer.
 発光層に対するこれら傾斜部120a、120bの傾斜角度の絶対値は、例えば、同じ値に設定することができる。これら傾斜部120a、120bは、例えば、発光層に対して平行な方向において互いに所定の間隔(例えば一定間隔)で離間している。 The absolute value of the inclination angle of the inclined portions 120a and 120b with respect to the light emitting layer can be set to the same value, for example. The inclined portions 120a and 120b are separated from each other at a predetermined interval (for example, a constant interval) in a direction parallel to the light emitting layer, for example.
 図6に示すように、本実施例の場合、光線L11、L12に関しては、上記の実施形態と同様の動作となる。また、図6に示す光線L14は、光線L12に対して面対称(発光層に対して直交する面を基準とする面対称)の経路をとる光である。光線L14についても、光線L12と同様の動作(発光層に対して直交する面を基準とする面対称の動作)となる。本実施例の場合、光線L14の取り出し効率を上記の実施形態よりも向上することができる。 As shown in FIG. 6, in the case of the present embodiment, the light beams L11 and L12 operate in the same manner as in the above embodiment. In addition, the light beam L14 illustrated in FIG. 6 is light that takes a path that is plane-symmetrical (plane-symmetrical with respect to a plane orthogonal to the light-emitting layer) with respect to the light beam L12. The light beam L14 also has the same operation as the light beam L12 (a plane-symmetric operation with respect to a plane orthogonal to the light emitting layer). In the case of this example, the extraction efficiency of the light beam L14 can be improved as compared with the above embodiment.
 本実施例によれば、上記の実施形態と同様の効果が得られる。また、本実施例の場合、発光素子は、発光層に対して互いに反対方向に傾斜した複数の傾斜部(傾斜部120a、120b等)を有しているので、上述したメカニズムにより、上記の実施形態よりも光取り出し効率を向上することができる。 According to this example, the same effect as the above embodiment can be obtained. In the case of this embodiment, the light emitting element has a plurality of inclined portions ( inclined portions 120a, 120b, etc.) inclined in directions opposite to each other with respect to the light emitting layer. The light extraction efficiency can be improved more than the form.
 なお、本実施例においても、第2透光層120は、発光層に対して互いに異なる傾斜角で傾斜した複数の傾斜部を含んでいても良い。すなわち、発光層に対するこれら傾斜部の傾斜方向が互いに反対方向であり、且つ、これら傾斜部の傾斜角(傾斜角の絶対値)が互いに異なる。これによって、より様々な角度の光について、取り出し効率を向上できるようになる。 Note that, also in the present embodiment, the second light transmitting layer 120 may include a plurality of inclined portions inclined at different inclination angles with respect to the light emitting layer. That is, the inclination directions of the inclined portions with respect to the light emitting layer are opposite to each other, and the inclination angles (the absolute values of the inclination angles) of the inclined portions are different from each other. As a result, the extraction efficiency can be improved with respect to light having various angles.
 (実施例3)
 図7は本実施例に係る発光素子の断面図である。図8は本実施例に係る発光素子の第2透光層120の一部分の斜視図である。図9(a)~(c)の各図は、本実施例に係る発光素子において、発光層で生成された光が外部に放出されるまでの経路を例示した断面図である。本実施例に係る発光素子は、以下に説明する点で、上記の実施形態に係る発光素子と相違し、その他の点では上記の実施形態に係る発光素子と同様に構成されている。
(Example 3)
FIG. 7 is a cross-sectional view of the light emitting device according to this example. FIG. 8 is a perspective view of a part of the second light transmitting layer 120 of the light emitting device according to this embodiment. Each of FIGS. 9A to 9C is a cross-sectional view illustrating paths through which light generated in the light emitting layer is emitted to the outside in the light emitting device according to this example. The light-emitting element according to this example is different from the light-emitting element according to the above-described embodiment in the points described below, and is otherwise configured in the same manner as the light-emitting element according to the above-described embodiment.
 図7に示すように、本実施例の場合、第2透光層120は、互いに反対方向に発光層に対して傾斜した複数の傾斜部を含む。また、第2透光層120は、互いに同じ方向に発光層に対して傾斜した複数の傾斜部を含む。傾斜部の各々において、下面と上面とは、発光層に対して互いに同じ方向に傾斜している。 As shown in FIG. 7, in the case of the present embodiment, the second light transmitting layer 120 includes a plurality of inclined portions inclined with respect to the light emitting layer in directions opposite to each other. The second light transmissive layer 120 includes a plurality of inclined portions that are inclined with respect to the light emitting layer in the same direction. In each of the inclined portions, the lower surface and the upper surface are inclined in the same direction with respect to the light emitting layer.
 更に、第2透光層120は、平面視において第1方向に延在する第1軸周りに発光層に対して傾斜した第1傾斜部(例えば、後述する面A0~A3に沿ってそれぞれ配置された傾斜部、又は後述する面C0~C3に沿ってそれぞれ配置された傾斜部)と、平面視において第1方向に対して交差(例えば直交)する第2軸周りに発光層に対して傾斜した第2傾斜部(例えば、後述する面B0、B1等に沿ってそれぞれ配置された傾斜部、又は、後述する面D0、D1等に沿ってそれぞれ配置された傾斜部)と、を含む。 Further, the second light-transmitting layer 120 is disposed along a first inclined portion (for example, along surfaces A0 to A3 described later) that is inclined with respect to the light emitting layer around a first axis extending in the first direction in a plan view. Tilted with respect to the light emitting layer around a second axis that intersects (for example, perpendicular to) the first direction in plan view, and the tilted portions disposed along the planes C0 to C3 described later). Second inclined portions (for example, inclined portions respectively disposed along the surfaces B0 and B1 described later, or inclined portions respectively disposed along the surfaces D0 and D1 described later).
 図8に示すように、第2透光層120は、光取り出し側又は発光層側のうち何れか一方に向けて断面積が縮小する角錐台の各側面と、この角錐台と同じ数の側面を有するとともに、この角錐台の上底と一致する下底(底面)を有し、光取り出し側又は発光層側の何れか他方に向けて断面積が縮小する角錐の各側面と、に沿ってそれぞれ配置された傾斜部からなるユニット121を、発光層に対して平行な方向に複数並べることにより構成されている。 As shown in FIG. 8, the second light transmitting layer 120 includes each side surface of the truncated pyramid whose cross-sectional area decreases toward either the light extraction side or the light emitting layer side, and the same number of side surfaces as the truncated pyramid. And each side surface of the pyramid having a lower base (bottom surface) coinciding with the upper base of the truncated pyramid and having a cross-sectional area that decreases toward either the light extraction side or the light emitting layer side. A plurality of units 121 each composed of an inclined portion are arranged in a direction parallel to the light emitting layer.
 例えば、このユニット121の形状を画定する角錐台の高さ(下底から上底までの距離)と角錐の高さ(下底(底面)から頂点までの距離)とが互いに等しい。 For example, the height of the pyramid that defines the shape of the unit 121 (the distance from the lower base to the upper base) and the height of the pyramid (the distance from the lower base (bottom surface) to the apex) are equal to each other.
 図8には第2透光層120の2つのユニット121を示している。
 このうち手前のユニット121は、光取り出し側に向けて断面積が縮小する四角錐台の4つの側面A0、B0、C1、D1に沿ってそれぞれ配置された4つの傾斜部と、この四角錐台の上底と一致する下底を有し、発光層側に向けて断面積が縮小する四角錐の4つの側面C0、D0、A1、B1に沿ってそれぞれ配置された4つの傾斜部と、の合計8つの傾斜部を含んでいる。
 ここで、ユニット121の形状を画定する四角錐台および四角錐は、平面視矩形状である。より具体的には、この四角錐台は、正四角錐台であり、この四角錐は、正四角錐である。
FIG. 8 shows two units 121 of the second light transmissive layer 120.
Among these units, the front unit 121 includes four inclined portions arranged along four side surfaces A0, B0, C1, and D1 of the quadrangular pyramid whose cross-sectional area decreases toward the light extraction side, and the quadrangular pyramid. Four inclined portions respectively disposed along four side faces C0, D0, A1, and B1 of a quadrangular pyramid having a lower base that coincides with the upper base of the quadrangular pyramid and having a cross-sectional area that decreases toward the light emitting layer. A total of eight ramps are included.
Here, the quadrangular frustum and the quadrangular pyramid that define the shape of the unit 121 are rectangular in plan view. More specifically, the quadrangular pyramid is a regular quadrangular pyramid, and the quadrangular pyramid is a regular quadrangular pyramid.
 奥のユニット121も、手前のユニット121と同様に構成されている。奥のユニット121の形状を画定する四角錐台の4つの側面のうち、手前のユニット121の側面A0に対応する側面を側面A2と称し、手前のユニット121の側面C1に対応する側面を側面C3と称する。また、奥のユニット121の形状を画定する四角錐の4つの側面のうち、手前のユニット121の側面C0に対応する側面を側面C2と称し、手前のユニット121の側面A1に対応する側面を側面A3と称する。 The rear unit 121 is configured in the same manner as the front unit 121. Of the four side surfaces of the truncated pyramid that defines the shape of the back unit 121, the side surface corresponding to the side surface A0 of the front unit 121 is referred to as a side surface A2, and the side surface corresponding to the side surface C1 of the front unit 121 is the side surface C3. Called. Of the four sides of the quadrangular pyramid that defines the shape of the back unit 121, the side corresponding to the side C0 of the front unit 121 is referred to as side C2, and the side corresponding to the side A1 of the front unit 121 is the side. This is referred to as A3.
 また、これら複数のユニット121は、例えば、互いの形状を画定する角錐台の下底の一辺どうしが互いに一致するように、隙間無く並んでいる。 In addition, the plurality of units 121 are arranged without a gap so that, for example, one side of the lower base of the truncated pyramid defining the shape of each other coincides with each other.
 なお、第1透光層110は、第2透光層120の上側(光取り出し側)に位置する第1部分111と、第2透光層120の下側(発光層側)に位置する第2部分112と、からなる。第2透光層120の屈折率は、第1部分111の屈折率よりも低く、且つ、第2部分112の屈折率よりも低い。なお、第1部分111の屈折率と第2部分112の屈折率とは、互いに等しくても良いし、互いに異なっていても良い。 The first light transmissive layer 110 includes a first portion 111 located on the upper side (light extraction side) of the second light transmissive layer 120 and a first portion located on the lower side (light emitting layer side) of the second light transmissive layer 120. 2 parts 112. The refractive index of the second light transmitting layer 120 is lower than the refractive index of the first portion 111 and lower than the refractive index of the second portion 112. Note that the refractive index of the first portion 111 and the refractive index of the second portion 112 may be equal to each other or may be different from each other.
 また、第1透光層110と第1電極40との間には、バリア膜70が形成されている。バリア膜70は、例えば、SiO薄膜、又はグラフェンなどにより構成されている。 A barrier film 70 is formed between the first light transmissive layer 110 and the first electrode 40. The barrier film 70 is made of, for example, a SiO 2 thin film or graphene.
 更に、第1透光層110の上面には、図示しない凹凸構造を表面(上面)に有する光取り出しフィルム130が貼り付けられており、この光取り出しフィルム130の上面が光取り出し面dを構成している。 Further, a light extraction film 130 having an uneven structure (not shown) on the surface (upper surface) is attached to the upper surface of the first light transmissive layer 110, and the upper surface of the light extraction film 130 forms a light extraction surface d. ing.
 本実施例の場合、各ユニット121の形状を画定する角錐台および角錐の側面の各々は、発光層に対する角度の絶対値が45度となるように傾斜しているものとする。ここで、発光層に対する角度の絶対値が45度であることは、発光層に対する角度が45度であるか、又は、135度(-45度)であることを意味する。 In the case of the present embodiment, it is assumed that each of the truncated pyramid defining the shape of each unit 121 and the side surfaces of the pyramid are inclined so that the absolute value of the angle with respect to the light emitting layer is 45 degrees. Here, the absolute value of the angle with respect to the light emitting layer being 45 degrees means that the angle with respect to the light emitting layer is 45 degrees or 135 degrees (−45 degrees).
 ここで、図7は、一列に並ぶ2つのユニット121のうち、一方のユニット121の形状を画定する四角錐の頂点P1と、他方のユニット121の形状を画定する四角錐の頂点P2と、を通過し、且つ、発光層に対して直交する面で発光素子を切断したときの断面図である。また、図9(a)~(c)の各図は、図7と同じ断面を示している。 Here, FIG. 7 shows a quadrangular pyramid apex P1 that defines the shape of one unit 121, and a quadrangular pyramid apex P2 that defines the shape of the other unit 121, out of two units 121 arranged in a row. It is sectional drawing when a light emitting element is cut | disconnected in the surface which passes and is orthogonal to a light emitting layer. Each of FIGS. 9A to 9C shows the same cross section as FIG.
 以下、図9(a)~(c)を参照して、図7に示す断面内を通過する光のうち、上向きの成分を持ち(発光層に対する角度が0度よりも大きく且つ180度よりも小さい)、且つ、発光層に対する角度が135度の傾斜部(例えば図9(a)~(c)の面C1に沿った傾斜部120c)に入射する光の経路について説明する。なお、便宜上、光の角度の最小単位が0.1度であるものとして説明を行う。 Hereinafter, with reference to FIGS. 9A to 9C, the light passing through the cross section shown in FIG. 7 has an upward component (the angle with respect to the light emitting layer is larger than 0 degree and larger than 180 degrees). A path of light incident on an inclined portion (for example, the inclined portion 120c along the plane C1 in FIGS. 9A to 9C) having an angle of 135 degrees with respect to the light emitting layer will be described. For convenience, the description will be made assuming that the minimum unit of the light angle is 0.1 degree.
 ここで、第1透光層110の屈折率は1.8であるものとする。また、第2透光層120は、例えばポーラスシリカなどにより構成され、その屈折率は1.27以上1.3以下程度であるものとする。この場合、第2透光層120と第1透光層110との界面における臨界角は、46.2度である。また、第2透光層120の層厚(膜厚)は一定であり、且つ、2μmであるものとする。また、ユニット121の形状を画定する四角錐台および四角錐の高さは20μmであるものとする。 Here, it is assumed that the refractive index of the first light transmitting layer 110 is 1.8. The second light transmissive layer 120 is made of, for example, porous silica and has a refractive index of about 1.27 to 1.3. In this case, the critical angle at the interface between the second light transmitting layer 120 and the first light transmitting layer 110 is 46.2 degrees. Moreover, the layer thickness (film thickness) of the 2nd translucent layer 120 shall be fixed, and shall be 2 micrometers. In addition, the height of the quadrangular frustum defining the shape of the unit 121 and the quadrangular pyramid is 20 μm.
 発光層から発せられた光のうち、上向きの成分を持つ光は、第1電極40、バリア膜70および第1透光層110の第2部分112をこの順に透過して、第2透光層120の傾斜部120cに到達する。 Of the light emitted from the light emitting layer, light having an upward component passes through the first electrode 40, the barrier film 70, and the second portion 112 of the first light transmitting layer 110 in this order, and the second light transmitting layer. It reaches 120 inclined portions 120c.
 このうち、発光層に対する傾斜角θが1度以上91.1度以下の光(図9(a)に示す光線L21、L22等)は、傾斜部120cを透過して第1透光層110の第1部分111に入射する。なぜなら、傾斜部120cの傾斜角度は上述のように135度である。このため、傾斜角θが1度以上91.1度以下の光の傾斜部120cに対する入射角は、(135-90-91.1)度以上(135-90-1)度以下、すなわち-46.1度以上44度以下となって、何れの絶対値も上記臨界角(46.2度)を下回るためである。
 傾斜部120cを透過した光の一部、すなわち図9(a)に示す光線L21等のように傾斜角θが45度以上91.1度以下の光は、傾斜部120c以外の傾斜部に到達しないまま、第1部分111および光取り出しフィルム130をこの順に透過して、光放出空間200へ放射される。
 また、傾斜部120cに入射した光の他の一部、すなわち図9(a)に示す光線L22等のように傾斜角θが1.2度以上44.9度以下の光は、傾斜部120cから出た後、傾斜部120cに対して斜めに対向し且つ傾斜部120cに対して隣接する傾斜部120d(面A2に沿った傾斜部)に到達する。そして、傾斜部120dにて全反射することにより、その進行方向が上向きに変換される。すなわち、具体的には、傾斜角θが45.1度以上88.8度以下に変換される。このため、この光は、その後、第1部分111および光取り出しフィルム130をこの順に透過して、光放出空間200へ放射される。
Among these, light having an inclination angle θ with respect to the light emitting layer of 1 degree or more and 91.1 degrees or less (light rays L21 and L22 shown in FIG. 9A) passes through the inclined part 120c and passes through the inclined part 120c. The light enters the first portion 111. This is because the inclination angle of the inclined portion 120c is 135 degrees as described above. For this reason, the incident angle of the light having the inclination angle θ of 1 to 91.1 degrees with respect to the inclined portion 120c is (135-90-91.1) to (135-90-1) degrees, that is, −46. This is because any absolute value is less than the critical angle (46.2 degrees) from 1 degree to 44 degrees.
A part of the light transmitted through the inclined portion 120c, that is, light having an inclination angle θ of 45 degrees or more and 91.1 degrees or less, such as the light beam L21 shown in FIG. 9A, reaches the inclined section other than the inclined section 120c. Without being transmitted, the light passes through the first portion 111 and the light extraction film 130 in this order and is emitted to the light emission space 200.
Further, another part of the light incident on the inclined portion 120c, that is, light having an inclination angle θ of 1.2 degrees or more and 44.9 degrees or less like the light ray L22 shown in FIG. After coming out of the slope, it reaches an inclined portion 120d (an inclined portion along the plane A2) that is obliquely opposed to the inclined portion 120c and is adjacent to the inclined portion 120c. And the advancing direction is converted upwards by totally reflecting in the inclination part 120d. Specifically, the inclination angle θ is converted to 45.1 degrees or more and 88.8 degrees or less. For this reason, the light then passes through the first portion 111 and the light extraction film 130 in this order, and is emitted to the light emission space 200.
 また、傾斜角θが91.2度以上134.9度以下の光(図9(b)に示す光線L23、L24等)は、傾斜部120cの下面にて全反射する。なぜなら、傾斜角θが91.2度以上134.9度以下の光の傾斜部120cに対する入射角は、(135-90-134.9)度以上(135-90-91.2)度以下、すなわち-89.9度以上-46.2度以下となって、何れの絶対値も上記臨界角(46.2度)以上となるためである。傾斜角θが91.2度以上134.9度以下の光は、傾斜部120cの下面にて全反射することにより、傾斜角θが135.1度以上178.8度以下に変換される。
 傾斜部120cにて全反射した後の光は、傾斜部120cに対して隣接(傾斜部120dとは反対側に隣接)する傾斜部120gを透過して、第1部分111に入射する。
 このうち、一部の光(図9(b)に示す光線L23等)は、その後、第1部分111および光取り出しフィルム130をこの順に透過して、光放出空間200へ放射される。
 また、他の一部の光(図9(b)に示す光線L24等)は、その後、傾斜部120gに対して隣接(傾斜部120cとは反対側に隣接)する傾斜部120hの上面にて全反射した後、光放出空間200へ放射される。
Further, light having an inclination angle θ of 91.2 degrees or more and 134.9 degrees or less (light rays L23 and L24 shown in FIG. 9B) is totally reflected on the lower surface of the inclined portion 120c. This is because the incident angle of the light having the inclination angle θ of 91.2 degrees or more and 134.9 degrees or less to the inclined portion 120c is (135-90-134.9) degrees or more and (135-90-91.2) degrees or less. That is, it is -89.9 degrees or more and -46.2 degrees or less, and any absolute value becomes the critical angle (46.2 degrees) or more. Light having an inclination angle θ of 91.2 degrees or more and 134.9 degrees or less is converted to an inclination angle θ of 135.1 degrees or more and 178.8 degrees or less by being totally reflected by the lower surface of the inclined portion 120c.
The light after being totally reflected by the inclined portion 120c passes through the inclined portion 120g adjacent to the inclined portion 120c (adjacent to the opposite side to the inclined portion 120d) and enters the first portion 111.
Among these, a part of the light (the light beam L23 shown in FIG. 9B, etc.) is then transmitted through the first portion 111 and the light extraction film 130 in this order, and is emitted to the light emission space 200.
Further, another part of light (such as the light beam L24 shown in FIG. 9B) is then adjacent to the inclined portion 120g (adjacent to the side opposite to the inclined portion 120c) on the upper surface of the inclined portion 120h. After total reflection, the light is emitted to the light emission space 200.
 なお、傾斜角θが135度の光(図9(c)に示す光線L25等)は、傾斜部120cには入射せず、傾斜部120gを透過した後、光放出空間200へ放射される。 Note that light having an inclination angle θ of 135 degrees (such as the light beam L25 shown in FIG. 9C) does not enter the inclined portion 120c but is transmitted to the light emitting space 200 after passing through the inclined portion 120g.
 以上において、第2透光層120が存在しない場合と比べて、図9(a)に示す光線L22の取り出し効率が向上する。 In the above, compared with the case where the 2nd light transmission layer 120 does not exist, the taking-out efficiency of the light ray L22 shown to Fig.9 (a) improves.
 また、図7に示す断面内を通過する光以外の光についても、同様に、第2透光層120の何れかの傾斜部(面B0、B1、D0、D1等に沿った傾斜部など)にて全反射したり又は何れかの傾斜部を透過したりすることにより、その一部が発光素子の外部に取り出される。この際に、図9(a)~(c)にて説明したメカニズムと同様のメカニズムにより、第2透光層120が光取り出し効率の向上に寄与する。 Similarly, with respect to light other than the light passing through the cross section shown in FIG. 7, any one of the inclined portions of the second light transmitting layer 120 (inclined portions along the planes B0, B1, D0, D1, etc.). A part of the light is reflected from the surface of the light-emitting element or is transmitted through one of the inclined portions. At this time, the second light-transmitting layer 120 contributes to the improvement of the light extraction efficiency by a mechanism similar to the mechanism described in FIGS. 9A to 9C.
 なお、傾斜部の傾斜角度が45°よりも小さい(浅い)場合、一部の光については、第2透光層120にて第2電極60側に向けて全反射した後、第2電極にて第2透光層120側に反射する。その結果、第2透光層120の傾斜部のうち、当該一部の光が以前に当たった傾斜部とは異なる向きの傾斜部に当たるようにできる。これにより、当該一部の光のうちの更に一部について、上記と同様のメカニズムにより、発光素子から取り出すことができる。 When the inclination angle of the inclined part is smaller than 45 ° (shallow), a part of the light is totally reflected toward the second electrode 60 side by the second light-transmitting layer 120 and then applied to the second electrode. Then, the light is reflected to the second light transmitting layer 120 side. As a result, among the inclined portions of the second light-transmitting layer 120, it is possible to hit the inclined portion in a direction different from the inclined portion where the part of light hits before. Thereby, a part of the part of the light can be extracted from the light emitting element by the same mechanism as described above.
 本実施例においても、第2透光層120の少なくとも一部分は、発光層に対して傾斜した傾斜部である。そして、この傾斜部における有機機能層50側の面と光取り出し側の面とが第1透光層110に接している。このため、上記の実施形態と同様の効果が得られる。 Also in this embodiment, at least a part of the second light transmitting layer 120 is an inclined portion inclined with respect to the light emitting layer. The surface on the organic functional layer 50 side and the surface on the light extraction side in the inclined portion are in contact with the first light transmissive layer 110. For this reason, the effect similar to said embodiment is acquired.
 また、第2透光層120は、互いに同じ方向に発光層に対して傾斜した複数の傾斜部を有している。このため、上記の実施例1と同様の効果が得られる。 Further, the second light transmitting layer 120 has a plurality of inclined portions inclined with respect to the light emitting layer in the same direction. For this reason, the effect similar to said Example 1 is acquired.
 また、第2透光層120は、互いに反対方向に発光層に対して傾斜した複数の傾斜部を有している。このため、上記の実施例2と同様の効果が得られる。 Further, the second light transmitting layer 120 has a plurality of inclined portions inclined with respect to the light emitting layer in opposite directions. For this reason, the same effect as in the second embodiment can be obtained.
 また、第2透光層120は、平面視において第1方向に延在する第1軸周りに発光層に対して傾斜した第1傾斜部と、平面視において第1方向に対して交差(例えば直交)する第2軸周りに発光層に対して傾斜した第2傾斜部と、を含む。よって、平面視において様々な方向に進む光の取り出し効率を向上することができる。 In addition, the second light transmitting layer 120 intersects the first inclined portion inclined with respect to the light emitting layer around the first axis extending in the first direction in a plan view (for example, the first direction in the plan view (for example, And a second inclined portion inclined with respect to the light emitting layer around a second axis that is orthogonal to each other. Therefore, the extraction efficiency of light traveling in various directions in plan view can be improved.
 また、第2透光層120は、光取り出し側又は発光層側のうち何れか一方に向けて断面積が縮小する角錐台の各側面と、この角錐台と同じ数の側面を有するとともに、この角錐台の上底と一致する下底を有し、光取り出し側又は発光層側の何れか他方に向けて断面積が縮小する角錐の各側面と、に沿ってそれぞれ配置された傾斜部からなるユニット121を、発光層に対して平行な方向に複数並べることにより構成されている。このため、本実施例の場合、第2透光層120は、上記の実施例1と比べてより多くの向きの傾斜部を含む。これにより、上記の実施例1と比べて、より様々な向きの光の取り出し効率を向上することができる。同様に、本実施例の場合、第2透光層120は、上記の実施例2と比べてより多くの向きの傾斜部を含む。これにより、上記の実施例2と比べて、より様々な向きの光の取り出し効率を向上することができる。例えば、図9を用いて上述した効果又はそれと同等の効果が得られる。 The second light transmitting layer 120 has each side surface of the truncated pyramid whose cross-sectional area is reduced toward either the light extraction side or the light emitting layer side, and the same number of side surfaces as the truncated pyramid. Each of the side surfaces of the pyramid having a lower base coinciding with the upper base of the pyramid frustum and reducing the cross-sectional area toward either the light extraction side or the light emitting layer side, and each of the inclined portions disposed along the side surfaces. A plurality of units 121 are arranged in a direction parallel to the light emitting layer. For this reason, in the case of the present embodiment, the second light transmissive layer 120 includes inclined portions having more directions as compared with the first embodiment. Thereby, the extraction efficiency of light in various directions can be improved as compared with the first embodiment. Similarly, in the case of the present embodiment, the second light transmissive layer 120 includes inclined portions having more directions as compared to the second embodiment. Thereby, the extraction efficiency of light in various directions can be improved as compared with the second embodiment. For example, the effect described above with reference to FIG. 9 or an equivalent effect can be obtained.
 また、このユニット121の形状を画定する角錐台の高さと角錐の高さとが互いに等しい。これによって、角錐台の高さと角錐の高さとが互いに異なる場合と比べて、ユニット121が占める領域(発光素子の厚み方向における領域)内の傾斜部の総量(傾斜部の面積総量)をより多くすることができる。よって、限られた領域(発光素子の厚み方向における領域)に配置された第2透光層120によって、より効率的に光取り出し効率を高めることができる。 Also, the height of the truncated pyramid defining the shape of the unit 121 is equal to the height of the pyramid. Thereby, compared with the case where the height of the truncated pyramid and the height of the pyramid are different from each other, the total amount of the inclined portion (total amount of the inclined portion) in the region occupied by the unit 121 (region in the thickness direction of the light emitting element) is increased. can do. Therefore, the light extraction efficiency can be increased more efficiently by the second light transmitting layer 120 disposed in a limited region (region in the thickness direction of the light emitting element).
 また、ユニット121の形状を画定する角錐台は、平面視矩形状の四角錐台であるため、複数のユニット121を互いに隙間無く配置することができる。これにより、より多くの傾斜部を限られた領域内に配置することができる。 Further, since the truncated pyramid that defines the shape of the unit 121 is a rectangular truncated pyramid having a rectangular shape in plan view, a plurality of units 121 can be arranged with no gap therebetween. Thereby, more inclined parts can be arrange | positioned in the limited area | region.
 具体的には、複数のユニット121は、互いの形状を画定する角錐台の下底の一辺どうしが互いに一致するように、隙間無く並んで配置することができる。このようにすることにより、複数の傾斜部を規則的に配置することが可能となるため、発光素子の面内における各領域において、均一に、光取り出し効率を向上することができる。 Specifically, the plurality of units 121 can be arranged side by side without a gap so that the sides of the lower base of the truncated pyramid defining the shape of each other coincide with each other. By doing so, it is possible to regularly arrange a plurality of inclined portions, so that the light extraction efficiency can be improved uniformly in each region in the plane of the light emitting element.
 なお、ユニット121の形状を画定する角錐台が三角錐台の場合でも、複数のユニット121を隙間無く配置することができる場合がある(底面が正三角形や直角二等辺三角形などの場合)。
 また、ユニット121の形状を画定する角錐台は、五角錐台以上の数の側面を有する多角錐台であっても良い。また、ユニット121の形状を画定する角錐台は、平面形状が矩形以外の四角錐台であっても良い。
 なお、これらの場合には、上記の第1軸と第2軸とが直交以外の関係で互いに交差する場合が含まれる。
Note that even when the truncated pyramid that defines the shape of the unit 121 is a triangular truncated pyramid, there are cases where a plurality of units 121 can be arranged without gaps (when the bottom surface is an equilateral triangle, a right isosceles triangle, or the like).
Further, the truncated pyramid defining the shape of the unit 121 may be a polygonal truncated pyramid having a number of side faces equal to or larger than a pentagonal truncated pyramid. Further, the truncated pyramid that defines the shape of the unit 121 may be a truncated pyramid having a plane shape other than a rectangle.
In these cases, the case where the first axis and the second axis intersect with each other in a relationship other than orthogonal is included.
 また、本実施例において、各ユニット121は図8に示すものとは上下が反転していても良い。
 また、ユニット121毎に、上下の向きが異なっていても(個別に設定されていても)良い。すなわち、図8に示す向きのユニット121と、図8とは上下が反転したユニット121と、が混在していても良い。例えば、そのように互いに上下が反転したユニット121を交互に配置(平面視において千鳥状に配置する等)しても良い。
In the present embodiment, each unit 121 may be turned upside down from that shown in FIG.
Further, the vertical direction of each unit 121 may be different (can be set individually). In other words, the unit 121 in the direction shown in FIG. 8 and the unit 121 that is upside down from FIG. 8 may be mixed. For example, the units 121 whose tops and bottoms are inverted in this manner may be alternately arranged (arranged in a staggered manner in a plan view).
 (実施例4)
 図10(a)は本実施例に係る発光素子の平面図であり、図10(b)は図10(a)におけるC-C線に沿った断面図である。本実施例では、実施例3に係る発光素子のより具体的な構成の例を説明する。なお、図10(b)及び図10(a)においては、図7とは上下が反転している。
Example 4
FIG. 10A is a plan view of the light emitting device according to this example, and FIG. 10B is a cross-sectional view taken along the line CC in FIG. 10A. In this example, an example of a more specific configuration of the light emitting device according to Example 3 will be described. In FIGS. 10B and 10A, the upper and lower sides are inverted with respect to FIG.
 第1電極40は、陽極を構成する。複数の第1電極40が、発光層に対して平行なY方向にそれぞれ帯状に延在している。隣り合う第1電極40同士は、発光層に対して平行で且つY方向に対して直交するX方向において一定間隔ずつ離間している。第1電極40の各々は、例えばITOやIZO等の金属酸化物導電体等からなる。なお、第1電極40は、透光性を有する程度の厚さを有する金属薄膜であっても良い。第1電極40の屈折率は、例えば、第1透光層110と同程度(例えば屈折率1.8程度)である。第1電極40の各々の表面には、第1電極40に電源電圧を供給するためのバスライン(バス電極)72が形成されている。第1透光層110及び第1電極40上には絶縁膜が形成されている。この絶縁膜には、それぞれY方向に延在するストライプ状の開口部が複数形成されている。これにより、絶縁膜からなる複数の隔壁部71が形成されている。また、この絶縁膜に形成された開口部の各々は、第1電極40に達しており、開口部の底部において各第1電極40の表面が露出している。絶縁膜の各開口部内において、第1電極40上には、有機機能層50が形成されている。有機機能層50は、正孔注入層51、正孔輸送層52、発光層53(発光層53R、53G、53B)、電子輸送層54がこの順序で積層されることにより構成されている。正孔注入層51及び正孔輸送層52の材料としては、芳香族アミン誘導体、フタロシアニン誘導体、ポルフィリン誘導体、オリゴチオフェン誘導体、ポリチオフェン誘導体、ベンジルフェニル誘導体、フルオレン基で3級アミンを連結した化合物、ヒドラゾン誘導体、シラザン誘導体、シラナミン誘導体、ホスファミン誘導体、キナクリドン誘導体、ポリアニリン誘導体、ポリピロール誘導体、ポリフェニレンビニレン誘導体、ポリチエニレンビニレン誘導体、ポリキノリン誘導体、ポリキノキサリン誘導体、カーボン等が挙げられる。発光層53R、53G、53Bは、それぞれ、赤色発光、緑色発光、青色発光を行う蛍光性有機金属化合物等からなる。発光層53R、53G、53Bは、隔壁部71によって互いに隔てられた状態で並んで配置されている。すなわち、有機機能層50は、隔壁部71によって隔てられた複数の発光領域を形成している。発光層53R、53G、53Bおよび隔壁部71の表面を覆うように電子輸送層54が形成されている。電子輸送層54の表面を覆うように第2電極60が形成されている。第2電極60は、陰極を構成する。第2電極60は、帯状に形成されている。第2電極60は、仕事関数が低く且つ高反射率を有するAg、Au、Alなどの金属または合金等からなる。尚、有機機能層50の屈折率は、第1電極40および第1透光層110と同程度(例えば屈折率1.8程度)である。 The first electrode 40 constitutes an anode. The plurality of first electrodes 40 each extend in a band shape in the Y direction parallel to the light emitting layer. Adjacent first electrodes 40 are parallel to the light emitting layer and spaced apart from each other in the X direction perpendicular to the Y direction. Each of the first electrodes 40 is made of, for example, a metal oxide conductor such as ITO or IZO. In addition, the 1st electrode 40 may be a metal thin film which has the thickness of the grade which has translucency. The refractive index of the first electrode 40 is, for example, about the same as that of the first light-transmitting layer 110 (for example, the refractive index is about 1.8). A bus line (bus electrode) 72 for supplying a power supply voltage to the first electrode 40 is formed on each surface of the first electrode 40. An insulating film is formed on the first light transmitting layer 110 and the first electrode 40. In this insulating film, a plurality of stripe-shaped openings each extending in the Y direction are formed. Thereby, a plurality of partition walls 71 made of an insulating film are formed. Each opening formed in the insulating film reaches the first electrode 40, and the surface of each first electrode 40 is exposed at the bottom of the opening. An organic functional layer 50 is formed on the first electrode 40 in each opening of the insulating film. The organic functional layer 50 is configured by laminating a hole injection layer 51, a hole transport layer 52, a light emitting layer 53 ( light emitting layers 53R, 53G, 53B), and an electron transport layer 54 in this order. Examples of materials for the hole injection layer 51 and the hole transport layer 52 include aromatic amine derivatives, phthalocyanine derivatives, porphyrin derivatives, oligothiophene derivatives, polythiophene derivatives, benzylphenyl derivatives, compounds in which tertiary amines are linked by fluorene groups, hydrazones. Derivatives, silazane derivatives, silanamine derivatives, phosphamine derivatives, quinacridone derivatives, polyaniline derivatives, polypyrrole derivatives, polyphenylene vinylene derivatives, polythienylene vinylene derivatives, polyquinoline derivatives, polyquinoxaline derivatives, carbon and the like. The light emitting layers 53R, 53G, and 53B are made of a fluorescent organometallic compound that emits red light, green light, and blue light, respectively. The light emitting layers 53R, 53G, and 53B are arranged side by side in a state of being separated from each other by the partition wall portion 71. That is, the organic functional layer 50 forms a plurality of light emitting regions separated by the partition wall 71. An electron transport layer 54 is formed so as to cover the surfaces of the light emitting layers 53R, 53G, 53B and the partition wall 71. A second electrode 60 is formed so as to cover the surface of the electron transport layer 54. The second electrode 60 constitutes a cathode. The second electrode 60 is formed in a strip shape. The second electrode 60 is made of a metal or alloy such as Ag, Au, or Al having a low work function and high reflectivity. The refractive index of the organic functional layer 50 is about the same as that of the first electrode 40 and the first light transmitting layer 110 (for example, the refractive index is about 1.8).
 このように、赤、緑、青の光をそれぞれ発する発光層53R、53G、53Bは、ストライプ状に繰り返し配置されており、光取り出し面dからは、赤、緑、青の光が任意の割合で混色されて単一の発光色(例えば白色)として認識される光が放出される。 In this manner, the light emitting layers 53R, 53G, and 53B that emit red, green, and blue light, respectively, are repeatedly arranged in a stripe shape, and red, green, and blue light are arbitrarily mixed from the light extraction surface d. In this way, light that is recognized as a single emission color (for example, white) is emitted.
 ここで、第1透光層110および第2透光層120の形成方法を説明する。 Here, a method of forming the first light transmissive layer 110 and the second light transmissive layer 120 will be described.
 先ず、第1透光層110の第1部分111を有機材料などにより成膜した後、第1部分111の一方の面に、上記ユニット120(図8)と同形状の凹凸形状を形成する。この凹凸形状は、例えば、切削研磨、レーザー加工、化学的エッチング、熱インプリントなどの公知の表面加工技術を用いて第1部分111の表面を加工することにより形成することができる。なお、後述する他の実施例のように、第1透光層110の第1部分111は、ガラスなどにより形成されていても良い。 First, after the first portion 111 of the first light transmitting layer 110 is formed with an organic material or the like, an uneven shape having the same shape as the unit 120 (FIG. 8) is formed on one surface of the first portion 111. The uneven shape can be formed by processing the surface of the first portion 111 using a known surface processing technique such as cutting and polishing, laser processing, chemical etching, or thermal imprinting. Note that, as in other embodiments described later, the first portion 111 of the first light-transmissive layer 110 may be formed of glass or the like.
 次に、第1部分111の一方の面の凹凸形状を覆うように、蒸着又はスパッタなどにより第2透光層120を成膜する。これにより、第2透光層120は、第1部分111の凹凸形状を反映した立体形状の膜として形成される。 Next, the second light transmitting layer 120 is formed by vapor deposition or sputtering so as to cover the uneven shape of one surface of the first portion 111. Accordingly, the second light transmitting layer 120 is formed as a three-dimensional film reflecting the uneven shape of the first portion 111.
 次に、第2透光層120を覆うように、第2部分112を有機材料などにより成膜する。これにより、第1透光層110内に第2透光層120が埋設された構造を実現することができる。 Next, the second portion 112 is formed of an organic material or the like so as to cover the second light transmitting layer 120. Thereby, it is possible to realize a structure in which the second light transmissive layer 120 is embedded in the first light transmissive layer 110.
 なお、第1部分111の凹凸形状と噛み合う形状の凹凸形状が一方の面に形成された第2部分112を予め成形し、第2透光層120の成膜後、第2部分112を第2透光層120に貼り付けても良い。 In addition, after forming the second portion 112 in which the concavo-convex shape that meshes with the concavo-convex shape of the first portion 111 is formed on one surface in advance, after the second light-transmitting layer 120 is formed, the second portion 112 is changed to the second portion 112. You may affix on the translucent layer 120. FIG.
 また、第2透光層120についても、予め第1部分111とは別に成形しておき、第1部分111に対して第2透光層120を貼り付けても良い。 Also, the second light transmissive layer 120 may be formed in advance separately from the first portion 111, and the second light transmissive layer 120 may be attached to the first portion 111.
 本実施例によっても、上記実施例3と同様の効果が得られる。 Also in this embodiment, the same effect as in the third embodiment can be obtained.
 (実施例5)
 図11(a)は本実施例に係る発光素子の断面図、図11(b)は本実施例に係る発光素子の第2透光層120の斜視図である。本実施例に係る発光素子は、以下に説明する点で、上記の実施例3に係る発光素子(図7、図8)と相違し、その他の点では実施例3に係る発光素子と同様に構成されている。
(Example 5)
FIG. 11A is a cross-sectional view of the light emitting device according to this example, and FIG. 11B is a perspective view of the second light transmitting layer 120 of the light emitting device according to this example. The light emitting device according to this example is different from the light emitting device according to Example 3 (FIGS. 7 and 8) in the points described below, and is otherwise the same as the light emitting device according to Example 3. It is configured.
 図11(b)に示すように、本実施例の場合、第2透光層120は、光取り出し側又は発光層側のうち何れか一方に向けて断面積が縮小する角錐台の各側面と、この角錐台と同じ数の側面を有するとともに、この角錐台の上底と一致する下底を有し、光取り出し側又は発光層側のうち何れか他方に向けて断面積が縮小する第2角錐台の各側面と、に沿ってそれぞれ配置された傾斜部からなるユニット121を、発光層に対して平行な方向に複数並べることにより構成されている。このため、各ユニット121には、第2透光層120を発光層側から光取り出し側へ貫通する多角形状の開口125が形成されている。 As shown in FIG. 11B, in the case of the present embodiment, the second light-transmitting layer 120 includes each side surface of the truncated pyramid whose cross-sectional area decreases toward either the light extraction side or the light emitting layer side. Second side having the same number of side surfaces as the truncated pyramid and having a lower base coinciding with the upper base of the truncated pyramid and having a cross-sectional area that is reduced toward either the light extraction side or the light emitting layer side. Each unit 121 is formed by arranging a plurality of units 121 each having a slope portion arranged along each side surface of the truncated pyramid in a direction parallel to the light emitting layer. Therefore, each unit 121 is formed with a polygonal opening 125 that penetrates the second light transmitting layer 120 from the light emitting layer side to the light extraction side.
 なお、本実施例の場合も、実施例3と同様に、第2透光層120は、自ずと、互いに反対方向に発光層に対して傾斜した複数の傾斜部を含むとともに、互いに同じ方向に発光層に対して傾斜した複数の傾斜部を含む。 In the case of the present embodiment as well, similarly to the third embodiment, the second light transmitting layer 120 naturally includes a plurality of inclined portions inclined with respect to the light emitting layer in opposite directions and emits light in the same direction. A plurality of inclined portions inclined with respect to the layer are included.
 更に、本実施例の場合も、実施例3と同様に、第2透光層120は、自ずと、平面視において第1方向に延在する第1軸周りに発光層に対して傾斜した第1傾斜部と、平面視において第1方向に対して交差(具体的には直交)する第2軸周りに発光層に対して傾斜した第2傾斜部と、を含む。 Further, in the case of this example as well, as in Example 3, the second light-transmitting layer 120 is naturally the first inclined with respect to the light emitting layer around the first axis extending in the first direction in plan view. And an inclined portion and a second inclined portion that is inclined with respect to the light emitting layer around a second axis that intersects (specifically, is orthogonal to) the first direction in plan view.
 例えば、このユニット121の形状を画定する角錐台の高さ(下底から上底までの距離)と第2角錐台の高さ(下底から上底までの距離)とが互いに等しい。 For example, the height of the truncated pyramid that defines the shape of the unit 121 (the distance from the lower base to the upper base) and the height of the second truncated pyramid (the distance from the lower base to the upper base) are equal to each other.
 図11(b)には第2透光層120の1つのユニット121を示している。
 このユニット121は、光取り出し側に向けて断面積が縮小する四角錐台の4つの側面A0、B0、C1、D1に沿ってそれぞれ配置された4つの傾斜部と、この四角錐台の上底と一致する下底を有し、発光層側に向けて断面積が縮小する第2四角錐台の4つの側面C0、D0、A1、B1に沿ってそれぞれ配置された4つの傾斜部と、の合計8つの傾斜部を含んでいる。このため、ユニット121には、第2透光層120を発光層側から光取り出し側へ貫通する四角形状の開口125が形成されている。なお、第1透光層110の第1部分111と第2部分112とは、開口125を介して相互に接している。また、第1部分111と第2部分112との界面は、例えば、発光層に対して平行に形成されている。
 ここで、ユニット121の形状を画定する四角錐台および第2四角錐台は、平面視矩形状である。より具体的には、この四角錐台および第2四角錐台は、正四角錐台である。
 なお、開口125の一辺の長さをL(図11(a)参照)とすると、Lの値を0にしたものが、上記の実施例3(図7、図8)である。
FIG. 11B shows one unit 121 of the second light transmissive layer 120.
The unit 121 includes four inclined portions arranged along four side surfaces A0, B0, C1, and D1 of the quadrangular pyramid whose cross-sectional area is reduced toward the light extraction side, and an upper base of the quadrangular pyramid. And four inclined portions respectively disposed along the four side surfaces C0, D0, A1, and B1 of the second quadrangular pyramid having a lower base that coincides with the light emitting layer side and whose cross-sectional area decreases toward the light emitting layer side. A total of eight ramps are included. For this reason, the unit 121 is formed with a rectangular opening 125 that penetrates the second light transmitting layer 120 from the light emitting layer side to the light extraction side. Note that the first portion 111 and the second portion 112 of the first light transmitting layer 110 are in contact with each other through the opening 125. Further, the interface between the first portion 111 and the second portion 112 is formed in parallel to the light emitting layer, for example.
Here, the quadrangular frustum and the second quadrangular frustum that define the shape of the unit 121 have a rectangular shape in plan view. More specifically, the square frustum and the second square frustum are regular square frustums.
In addition, when the length of one side of the opening 125 is L (see FIG. 11A), the value of L is 0 in the third embodiment (FIGS. 7 and 8).
 本実施例の場合、マスク等を用いることにより、第1部分111の下面における開口125以外の領域に選択的に第2透光層120を成膜することによって、開口125を有する第2透光層120を形成することができる。或いは、第2透光層120を第1部分111の下面の全面に成膜した後、第2透光層120を部分的にエッチングすることによっても、開口125を有する第2透光層120を形成することができる。 In the case of the present embodiment, by using a mask or the like, the second light-transmitting layer 120 is selectively formed in a region other than the opening 125 on the lower surface of the first portion 111 to thereby form the second light-transmitting light having the opening 125. Layer 120 can be formed. Alternatively, the second light-transmitting layer 120 having the opening 125 may be formed by forming the second light-transmitting layer 120 on the entire lower surface of the first portion 111 and then partially etching the second light-transmitting layer 120. Can be formed.
 また、上記実施例3と同様に、複数のユニット121が、互いの形状を画定する角錐台の下底の一辺どうしが互いに一致するように、隙間無く並んでいる。 Further, as in the third embodiment, the plurality of units 121 are arranged without a gap so that one side of the bottom base of the truncated pyramid defining the shape of each other coincides with each other.
 本実施例では、第2透光層120は、光取り出し側又は発光層側のうち何れか一方に向けて断面積が縮小する角錐台の各側面と、この角錐台と同じ数の側面を有するとともに、この角錐台の上底と一致する下底を有し、光取り出し側又は発光層側のうち何れか他方に向けて断面積が縮小する第2角錐台の各側面と、に沿ってそれぞれ配置された傾斜部からなるユニット121を、発光層に対して平行な方向に複数並べることにより構成されている。各ユニット121が有する傾斜部の数および配置は、実施例3と同様である。このため、本実施例によっても、実施例3と同様の効果が得られる。 In the present embodiment, the second light transmitting layer 120 has each side surface of the truncated pyramid whose cross-sectional area decreases toward either the light extraction side or the light emitting layer side, and the same number of side surfaces as the truncated pyramid. And each side surface of the second truncated pyramid that has a lower base that coincides with the upper base of the truncated pyramid and whose cross-sectional area decreases toward the other of the light extraction side and the light emitting layer side, respectively. It is configured by arranging a plurality of units 121 each having an inclined portion arranged in a direction parallel to the light emitting layer. The number and arrangement of the inclined portions included in each unit 121 are the same as those in the third embodiment. For this reason, the same effect as that of the third embodiment can be obtained by this embodiment.
 また、ユニット121の形状を画定する角錐台の高さと第2角錐台の高さとが互いに等しい。これによって、角錐台の高さと第2角錐台の高さとが互いに異なる場合と比べて、ユニット121が占める領域(発光素子の厚み方向における領域)内に、より多くの傾斜部を形成することができる。 Also, the height of the truncated pyramid that defines the shape of the unit 121 is equal to the height of the second truncated pyramid. As a result, more inclined portions can be formed in the region occupied by the unit 121 (region in the thickness direction of the light emitting element) than when the height of the truncated pyramid and the height of the second truncated pyramid are different from each other. it can.
 本実施例によれば、その他についても、上記の実施例3と同様の効果が得られる。 According to the present embodiment, the same effects as those of the above-described third embodiment can be obtained in other respects.
 なお、本実施例においても、実施例3と同様に、各ユニット121は図11(a)に示すものとは上下が反転していても良い。また、実施例3と同様に、ユニット121毎に上下の向きが異なっていても(個別に設定されていても)良い。 In this embodiment, as in the third embodiment, each unit 121 may be turned upside down from that shown in FIG. Similarly to the third embodiment, the vertical direction of each unit 121 may be different (set individually).
 (実施例6)
 図12は本実施例に係る発光素子の断面図である。本実施例に係る発光素子は、第1透光層110の構成が、以下に説明する点で、上記において説明した何れかの発光素子と相違し、その他の点では上記において説明した何れかの発光素子と同様に構成されている。
(Example 6)
FIG. 12 is a cross-sectional view of the light emitting device according to this example. The light-emitting element according to this example is different from any of the light-emitting elements described above in the configuration described below in the configuration of the first light-transmitting layer 110. The configuration is the same as that of the light emitting element.
 本実施例の場合、第1透光層110は、第2透光層120よりも光取り出し側に配置された透光性基板140を含んで構成されている。透光性基板140は、例えば、ガラス又は樹脂などの透光性の材料により平板状に形成されている。透光性基板140がガラスにより構成される場合、透光性基板140の屈折率は、例えば、1.5程度である。透光性基板140は、透光性のフィルムであっても良い。透光性基板140の屈折率は、第1透光層110の少なくとも第2部分112の屈折率よりも低い。 In the case of the present embodiment, the first light transmissive layer 110 includes the light transmissive substrate 140 disposed on the light extraction side with respect to the second light transmissive layer 120. The translucent substrate 140 is formed in a flat plate shape with a translucent material such as glass or resin. When the translucent substrate 140 is made of glass, the refractive index of the translucent substrate 140 is, for example, about 1.5. The translucent substrate 140 may be a translucent film. The refractive index of the translucent substrate 140 is lower than the refractive index of at least the second portion 112 of the first translucent layer 110.
 なお、第2透光層120の構成は、上記の何れの構成でも良い。一例として、図12には、第2透光層120の構成として、上記の実施例5の構成を採用した例を示している。なお、図12に示すように第2透光層120の上端(ユニット121の上端)と透光性基板140の下面とが相互に接していても良いし、第2透光層120の上端と透光性基板140との間に第1部分111が介在していても良い。 The configuration of the second light transmissive layer 120 may be any of the above configurations. As an example, FIG. 12 shows an example in which the configuration of the fifth embodiment is adopted as the configuration of the second light transmitting layer 120. As shown in FIG. 12, the upper end of the second light transmissive layer 120 (the upper end of the unit 121) and the lower surface of the light transmissive substrate 140 may be in contact with each other, or the upper end of the second light transmissive layer 120 may be The first portion 111 may be interposed between the translucent substrate 140.
 本実施例の場合、予め形成した透光性基板140を支持基板として、該透光性基板140上に(図12の下面に)、第1部分111から第2電極60までの構成を順次に形成することによって、発光素子を製造することができる。 In the case of the present embodiment, the structure from the first portion 111 to the second electrode 60 is sequentially formed on the translucent substrate 140 (on the lower surface in FIG. 12) using the previously formed translucent substrate 140 as a support substrate. By forming, a light emitting element can be manufactured.
 ここで、第1透光層110における第2透光層120と透光性基板140との間の部分(つまり第1部分111)の屈折率は、透光性基板140の屈折率と等しくすることができる。このようにすることにより、第1透光層110における第2透光層120と透光性基板140との間の部分と、透光性基板140と、の間における光の反射等を抑制できる。これにより、光の全反射が生じる領域は、第1透光層110の第2部分112と透光性基板140と間に位置し、且つ、発光層に対して平行な領域となる。この領域の面積は、第1部分111と透光性基板140との接触面積よりも小さいので、光取り出し効率の向上が期待できる。 Here, the refractive index of the portion of the first light transmitting layer 110 between the second light transmitting layer 120 and the light transmitting substrate 140 (that is, the first portion 111) is made equal to the refractive index of the light transmitting substrate 140. be able to. By doing in this way, the reflection of the light etc. between the part between the 2nd translucent layer 120 and the translucent board | substrate 140 in the 1st translucent layer 110, and the translucent board | substrate 140 can be suppressed. . As a result, a region where total reflection of light occurs is located between the second portion 112 of the first light transmissive layer 110 and the light transmissive substrate 140 and is a region parallel to the light emitting layer. Since the area of this region is smaller than the contact area between the first portion 111 and the translucent substrate 140, an improvement in light extraction efficiency can be expected.
 本実施例の場合、第1透光層が透光性基板140を含んで構成されているので、発光素子の剛性(機械的強度)を向上することができる。また、透光性基板140を支持基板として発光素子を製造することができるため、発光素子の製造が容易になる。 In the case of this example, since the first light-transmitting layer is configured to include the light-transmitting substrate 140, the rigidity (mechanical strength) of the light-emitting element can be improved. In addition, since the light-emitting element can be manufactured using the light-transmitting substrate 140 as a support substrate, the light-emitting element can be easily manufactured.
 (実施例7)
 図13は本実施例に係る発光素子の断面図である。本実施例に係る発光素子は、以下に説明する点で、上記の実施例6に係る発光素子(図12)と相違し、その他の点では実施例6に係る発光素子と同様に構成されている。
(Example 7)
FIG. 13 is a cross-sectional view of the light emitting device according to this example. The light emitting device according to this example is different from the light emitting device according to Example 6 described above (FIG. 12) in the points described below, and is otherwise configured in the same manner as the light emitting device according to Example 6. Yes.
 上記の実施例6では、第1透光層110における第2透光層120と透光性基板140との間の部分の屈折率が、透光性基板140の屈折率に等しい例を説明した。 In Example 6 described above, an example in which the refractive index of the portion of the first light transmissive layer 110 between the second light transmissive layer 120 and the light transmissive substrate 140 is equal to the refractive index of the light transmissive substrate 140 has been described. .
 これに対し、本実施例の場合、第1透光層110における第2透光層120よりも光取り出し側の部分は、透光性基板140からなる。そして、透光性基板140は、第2透光層120における光取り出し側の面(図13における上側の面)に接している。換言すれば、第1部分111は、透光性基板140により構成されている。
 本実施例によれば、第1部分111を2つの部分により構成する必要がないため、上記の実施例6と比べて、発光素子の構成を簡略化することができる。
On the other hand, in the case of the present embodiment, the portion of the first light transmissive layer 110 on the light extraction side with respect to the second light transmissive layer 120 is composed of the light transmissive substrate 140. The light transmissive substrate 140 is in contact with the light extraction side surface (the upper surface in FIG. 13) of the second light transmissive layer 120. In other words, the first portion 111 is configured by the translucent substrate 140.
According to the present embodiment, since the first portion 111 does not need to be configured by two portions, the configuration of the light emitting element can be simplified as compared with the above-described Embodiment 6.
 (実施例8)
 図14(a)は本実施例に係る発光素子の断面図、図14(b)は本実施例に係る発光素子の第2透光層120の斜視図である。本実施例に係る発光素子は、以下に説明する点で、上記の実施形態に係る発光素子と相違し、その他の点では上記の実施形態に係る発光素子と同様に構成されている。
(Example 8)
FIG. 14A is a cross-sectional view of the light emitting device according to this example, and FIG. 14B is a perspective view of the second light transmitting layer 120 of the light emitting device according to this example. The light-emitting element according to this example is different from the light-emitting element according to the above-described embodiment in the points described below, and is otherwise configured in the same manner as the light-emitting element according to the above-described embodiment.
 図14に示すように、本実施例の場合、第2透光層120は、互いに反対方向に発光層に対して傾斜した複数の傾斜部を含む。また、第2透光層120は、互いに同じ方向に発光層に対して傾斜した複数の傾斜部を含む。 As shown in FIG. 14, in the case of the present embodiment, the second light transmitting layer 120 includes a plurality of inclined portions inclined with respect to the light emitting layer in opposite directions. The second light transmissive layer 120 includes a plurality of inclined portions that are inclined with respect to the light emitting layer in the same direction.
 図14(b)に示すように、第2透光層120は、第1ユニット201と第2ユニット202とを発光層に対して平行な方向に複数並べることにより構成されている。
 第1ユニット201は、第1切妻屋根形状221の2つの傾斜面である第1および第2傾斜面に沿ってそれぞれ配置された傾斜部からなる。第1切妻屋根形状221は、発光層に対して平行な第1軸211を頂部とし、光取り出し側又は発光層側に向けて凸な形状となっている。なお、切妻屋根形状とは、互いに同一の形状および寸法の2つの矩形状の面を、それらの互いに共通の長さを有する一辺どうしの位置を一致させ、且つ、この一辺を回転軸として互いに傾斜させて、これら2つの矩形状の面を互いに斜向かい(互いに直交する状態を含む)にすることによって形成される形状である。
 また、第2ユニット202は、第2切妻屋根形状222の2つの傾斜面である第3および第4傾斜面に沿ってそれぞれ配置された傾斜部からなる。第2切妻屋根形状222は、発光層に対して平行で且つ第1軸211に対して直交する第2軸212を頂部とし、光取り出し側又は発光層側に向けて凸な形状となっている。
As shown in FIG. 14B, the second light transmitting layer 120 is configured by arranging a plurality of first units 201 and second units 202 in a direction parallel to the light emitting layer.
The 1st unit 201 consists of a slope part arranged along the 1st and 2nd slope which is two slopes of the 1st gable roof shape 221, respectively. The first gable roof shape 221 has a first axis 211 parallel to the light emitting layer as a top, and is convex toward the light extraction side or the light emitting layer side. Note that the gable roof shape means that two rectangular surfaces having the same shape and dimensions are aligned with each other and the positions of the sides having a common length are inclined with respect to each other as the axis of rotation. Thus, the two rectangular surfaces are formed so as to be diagonally opposed to each other (including a state in which they are orthogonal to each other).
In addition, the second unit 202 includes inclined portions respectively disposed along the third and fourth inclined surfaces that are the two inclined surfaces of the second gable roof shape 222. The second gable roof shape 222 has a second axis 212 that is parallel to the light emitting layer and orthogonal to the first axis 211 as a top, and is convex toward the light extraction side or the light emitting layer side. .
 このため、本実施例の場合も、第2透光層120は、自ずと、平面視において第1方向に延在する第1軸周りに発光層に対して傾斜した第1傾斜部と、平面視において第1方向に対して交差(具体的には直交)する第2軸周りに発光層に対して傾斜した第2傾斜部と、を含む。 For this reason, also in the case of the present embodiment, the second light-transmitting layer 120 naturally has a first inclined portion inclined with respect to the light emitting layer around the first axis extending in the first direction in plan view, and in plan view. And a second inclined portion inclined with respect to the light emitting layer around a second axis that intersects (specifically, orthogonally) with respect to the first direction.
 より具体的には、例えば、第1ユニット201と第2ユニット202とが第1軸211の長手方向において交互に配置されているとともに、第1ユニット201と第2ユニット202とが第2軸212の長手方向において交互に配置されている。 More specifically, for example, the first unit 201 and the second unit 202 are alternately arranged in the longitudinal direction of the first shaft 211, and the first unit 201 and the second unit 202 are connected to the second shaft 212. Are alternately arranged in the longitudinal direction.
 より具体的には、例えば、第1切妻屋根形状221と第2切妻屋根形状222とが互いに同じ方向に向けて凸であり、2つの第1ユニット201と2つの第2ユニット202とからなる4つのユニットにおける発光層側又は光取り出し側の端部が、平面視における1つの点P201において互いに接している。図14の例では、第1切妻屋根形状221と第2切妻屋根形状222とが光取り出し側に向けて凸であり、2つの第1ユニット201と2つの第2ユニット202とからなる4つのユニットにおける発光層側の端部が、点P201において互いに接している。つまり、互いに隣り合う4つのユニットが、平面視における一点において互いに接するように、多数の第1ユニット201と多数の第2ユニット202とが平面視において千鳥状に、互いに隙間無く配置されている。 More specifically, for example, the first gable roof shape 221 and the second gable roof shape 222 are convex in the same direction, and are composed of two first units 201 and two second units 202 4. The ends of the light emitting layer side or the light extraction side of the two units are in contact with each other at one point P201 in plan view. In the example of FIG. 14, the first gable roof shape 221 and the second gable roof shape 222 are convex toward the light extraction side, and four units including two first units 201 and two second units 202 are provided. The ends on the light emitting layer side are in contact with each other at a point P201. That is, a large number of first units 201 and a large number of second units 202 are arranged in a zigzag shape in a plan view without any gaps so that four units adjacent to each other are in contact with each other at one point in a plan view.
 より具体的には、例えば、発光層に対して直交する方向における第1ユニット201の寸法と、発光層に対して直交する方向における第2ユニット202の寸法と、が互いに等しい。 More specifically, for example, the dimension of the first unit 201 in the direction orthogonal to the light emitting layer is equal to the dimension of the second unit 202 in the direction orthogonal to the light emitting layer.
 本実施例の場合も、第2透光層120の各傾斜部の、発光層に対する角度の絶対値は、例えば、45度となっている。つまり、上記第1傾斜面、第2傾斜面、第3傾斜面および第4傾斜面は、それぞれ発光層に対して45度の角度で傾斜している。 Also in this example, the absolute value of the angle of each inclined portion of the second light transmitting layer 120 with respect to the light emitting layer is, for example, 45 degrees. That is, the first inclined surface, the second inclined surface, the third inclined surface, and the fourth inclined surface are inclined at an angle of 45 degrees with respect to the light emitting layer.
 なお、第1透光層110が第1部分111と第2部分112とからなる点、第1透光層110と第1電極40との間にバリア膜70が形成されている点、第1透光層110の上面には光取り出しフィルム130が貼り付けられている点は、上記の実施例3等と同様である。また、第1透光層110が透光性基板140を有する点は、上記の実施例6等と同様である。なお、図14には、第2透光層120の上端と透光性基板140との間に第1部分111が介在している例を示しているが、第2透光層120の上端(第1ユニット201および第2ユニット202の上端)と透光性基板140の下面とが相互に接していても良い。 The first light-transmitting layer 110 is composed of a first portion 111 and a second portion 112, the barrier film 70 is formed between the first light-transmitting layer 110 and the first electrode 40, and the first The point that the light extraction film 130 is affixed on the upper surface of the light transmissive layer 110 is the same as in the third embodiment. Further, the point that the first light transmissive layer 110 includes the light transmissive substrate 140 is the same as that in the sixth embodiment. FIG. 14 shows an example in which the first portion 111 is interposed between the upper end of the second light-transmitting layer 120 and the light-transmitting substrate 140, but the upper end of the second light-transmitting layer 120 ( The upper ends of the first unit 201 and the second unit 202) and the lower surface of the translucent substrate 140 may be in contact with each other.
 本実施例においても、第2透光層120の少なくとも一部分は、発光層に対して傾斜した傾斜部である。そして、この傾斜部における有機機能層50側の面と光取り出し側の面とが第1透光層110に接している。このため、上記の実施形態と同様の効果が得られる。 Also in this embodiment, at least a part of the second light transmitting layer 120 is an inclined portion inclined with respect to the light emitting layer. The surface on the organic functional layer 50 side and the surface on the light extraction side in the inclined portion are in contact with the first light transmissive layer 110. For this reason, the effect similar to said embodiment is acquired.
 また、第2透光層120は、互いに同じ方向に発光層に対して傾斜した複数の傾斜部を有している。このため、上記の実施例1と同様の効果が得られる。 Further, the second light transmitting layer 120 has a plurality of inclined portions inclined with respect to the light emitting layer in the same direction. For this reason, the effect similar to said Example 1 is acquired.
 また、第2透光層120は、互いに反対方向に発光層に対して傾斜した複数の傾斜部を有している。このため、上記の実施例2と同様の効果が得られる。 Further, the second light transmitting layer 120 has a plurality of inclined portions inclined with respect to the light emitting layer in opposite directions. For this reason, the same effect as in the second embodiment can be obtained.
 また、第2透光層120は、平面視において第1方向に延在する第1軸周りに発光層に対して傾斜した第1傾斜部と、平面視において第1方向に対して交差(例えば直交)する第2軸周りに発光層に対して傾斜した第2傾斜部と、を含む。よって、平面視において様々な方向に進む光の取り出し効率を向上することができる。 In addition, the second light transmitting layer 120 intersects the first inclined portion inclined with respect to the light emitting layer around the first axis extending in the first direction in a plan view (for example, the first direction in the plan view (for example, And a second inclined portion inclined with respect to the light emitting layer around a second axis that is orthogonal to each other. Therefore, the extraction efficiency of light traveling in various directions in plan view can be improved.
 また、第2透光層120は、発光層に対して平行な第1軸211を頂部とし光取り出し側又は発光層側に向けて凸な第1切妻屋根形状221の、2つの傾斜面である第1および第2傾斜面に沿ってそれぞれ配置された傾斜部からなる第1ユニット201と、発光層に対して平行で且つ第1軸211に対して直交する第2軸212を頂部とし光取り出し側又は発光層側に向けて凸な第2切妻屋根形状222の、2つの傾斜面である第3および第4傾斜面に沿ってそれぞれ配置された傾斜部からなる第2ユニット202と、を発光層に対して平行な方向に複数ずつ並べることにより構成されている。このため、本実施例の場合、第2透光層120は、上記の実施例1と比べてより多くの向きの傾斜部を含む。これにより、上記の実施例1と比べて、より様々な向きの光の取り出し効率を向上することができる。また切妻屋根形状を構成している第2透光層120に当たらない光はそのまま第1透光層110の第1部分111へ通過することができ、隣接する切妻屋根形状の第2透光層120の上面で全反射することによって光取り出し側へ向かう。同様に、本実施例の場合、第2透光層120は、上記の実施例2と比べてより多くの向きの傾斜部を含む。これにより、上記の実施例2と比べて、より様々な向きの光の取り出し効率を向上することができる。 The second light transmissive layer 120 has two inclined surfaces of a first gable roof shape 221 that has a first axis 211 parallel to the light emitting layer as a top and is convex toward the light extraction side or the light emitting layer side. Light extraction with the first unit 201 formed of inclined portions arranged along the first and second inclined surfaces and the second axis 212 parallel to the light emitting layer and orthogonal to the first axis 211 as the top. Of the second gable roof shape 222 convex toward the side or the light emitting layer side, and the second unit 202 composed of inclined portions respectively arranged along the third and fourth inclined surfaces which are two inclined surfaces. The plurality of layers are arranged in a direction parallel to the layer. For this reason, in the case of the present embodiment, the second light transmissive layer 120 includes inclined portions having more directions as compared with the first embodiment. Thereby, the extraction efficiency of light in various directions can be improved as compared with the first embodiment. Further, light that does not hit the second light transmissive layer 120 that forms the gable roof shape can pass directly to the first portion 111 of the first light transmissive layer 110, and the adjacent second light transmissive layer having the gable roof shape. The light is totally reflected on the upper surface of 120 and then travels toward the light extraction side. Similarly, in the case of the present embodiment, the second light transmissive layer 120 includes inclined portions having more directions as compared to the second embodiment. Thereby, the extraction efficiency of light in various directions can be improved as compared with the second embodiment.
 また、第1ユニット201と第2ユニット202とが第1軸211の長手方向において交互に配置されているとともに、第1ユニット201と第2ユニット202とが第2軸212の長手方向において交互に配置されている。これにより、第2透光層120における傾斜部の配置に規則性を持たせることができる。その結果、発光素子の面内における各領域において、より均一に、光取り出し効率を向上することができる。 The first unit 201 and the second unit 202 are alternately arranged in the longitudinal direction of the first shaft 211, and the first unit 201 and the second unit 202 are alternately arranged in the longitudinal direction of the second shaft 212. Has been placed. Thereby, regularity can be given to arrangement | positioning of the inclination part in the 2nd translucent layer 120. FIG. As a result, the light extraction efficiency can be improved more uniformly in each region in the plane of the light emitting element.
 また、第1切妻屋根形状221と第2切妻屋根形状222とが互いに同じ方向に向けて凸であり、2つの第1ユニット201と2つの第2ユニット202とからなる4つのユニットにおける発光層側又は光取り出し側の端部が、平面視における1つの点P201において互いに接している。これにより、第2透光層120における傾斜部の配置の規則性を更に高めることができるとともに、第1ユニット201および第2ユニット202の平面的な配置密度を高めることができる。その結果、発光素子の面内における各領域において、更に均一に光取り出し効率を向上することができるとともに、光取り出し効率を更に高めることができる。 In addition, the first gable roof shape 221 and the second gable roof shape 222 are convex in the same direction, and the light emitting layer side in the four units including the two first units 201 and the two second units 202. Alternatively, the end portions on the light extraction side are in contact with each other at one point P201 in plan view. Thereby, while the regularity of arrangement | positioning of the inclination part in the 2nd translucent layer 120 can further be improved, the planar arrangement density of the 1st unit 201 and the 2nd unit 202 can be raised. As a result, the light extraction efficiency can be improved more uniformly in each region in the plane of the light emitting element, and the light extraction efficiency can be further increased.
 また、発光層に対して直交する方向における第1ユニット201の寸法と、発光層に対して直交する方向における第2ユニット202の寸法と、が互いに等しい。これによって、第1ユニット201の高さと第2ユニット202の高さとが互いに異なる場合と比べて、第2透光層120が占める領域(発光素子の厚み方向における領域)内の傾斜部の総量(傾斜部の面積総量)をより多くすることができる。よって、限られた領域(発光素子の厚み方向における領域)に配置された第2透光層120によって、より効率的に光取り出し効率を高めることができる。 Further, the dimension of the first unit 201 in the direction orthogonal to the light emitting layer is equal to the dimension of the second unit 202 in the direction orthogonal to the light emitting layer. Thereby, compared with the case where the height of the 1st unit 201 and the height of the 2nd unit 202 mutually differ, the total amount (the area | region in the thickness direction of a light emitting element) which the 2nd light transmission layer 120 occupies (the amount of inclination parts) The total area of the inclined portion) can be increased. Therefore, the light extraction efficiency can be increased more efficiently by the second light transmitting layer 120 disposed in a limited region (region in the thickness direction of the light emitting element).
 なお、本実施例において、第1ユニット201は図14に示すものとは上下が反転していても良い。同様に、第2ユニット202は図14に示すものとは上下が反転していても良い。
 また、複数の第1ユニット201の各々について、個別に上下の向きが異なっていても良い(上下の向きが個別に設定されていても良い)。同様に、複数の第2ユニット202の各々について、個別に上下の向きが異なっていても良い(上下の向きが個別に設定されていても良い)。
In the present embodiment, the first unit 201 may be reversed upside down from that shown in FIG. Similarly, the second unit 202 may be inverted from that shown in FIG.
In addition, the vertical direction of each of the plurality of first units 201 may be individually different (the vertical direction may be set individually). Similarly, the vertical direction of each of the plurality of second units 202 may be individually different (the vertical direction may be set individually).
 (実施例9)
 図15(a)は本実施例に係る発光素子の第2透光層120の斜視図、図15(b)は実施例9に係る発光素子の断面図である。本実施例に係る発光素子は、以下に説明する点で、上記の実施形態に係る発光素子と相違し、その他の点では上記の実施形態に係る発光素子と同様に構成されている。
Example 9
FIG. 15A is a perspective view of the second light transmitting layer 120 of the light emitting device according to this example, and FIG. 15B is a cross-sectional view of the light emitting device according to Example 9. The light-emitting element according to this example is different from the light-emitting element according to the above-described embodiment in the points described below, and is otherwise configured in the same manner as the light-emitting element according to the above-described embodiment.
 本実施例の場合、第2透光層120は、図15(a)に示すユニット340を、発光層に対して平行な方向に複数並べることにより構成されている。
 図15(a)において、第1切妻屋根形状321は、発光層に対して平行な第1方向(矢印A方向)に延在し所定の長さを有する第1軸311を頂部とし光取り出し側又は発光層側の何れか一方に向けて凸となっている。第1切妻屋根形状321の2つの傾斜面をそれぞれ第1および第2傾斜面と称する。第1および第2傾斜面は、互いに同形状となっている。
 第2切妻屋根形状322は、第2軸312を頂部としている。第2切妻屋根形状322は、第1切妻屋根形状321と同形状に形成され且つ第1切妻屋根形状321と同じ向きに凸となっている。第2軸312は、発光層に対して平行で且つ第1方向に対して直交する第2方向(矢印B方向)に、第2方向における第1切妻屋根形状321の幅と同じだけ第1軸311をシフトすることにより得られる軸である。第2切妻屋根形状322の2つの傾斜面をそれぞれ第3および第4傾斜面と称する。
 第3切妻屋根形状323は、第3軸313を頂部としている。第3切妻屋根形状323は、第1切妻屋根形状321と同形状に形成され且つ第1切妻屋根形状321と同じ向きに凸となっている。第3軸313は、第1軸311および第2軸312を含む平面内に位置するとともに、第1軸311(および第2軸312)に対して直交している。第3軸313は、第1軸311上において当該第1軸311の一端311aから第1切妻屋根形状321の上記幅(第2方向における第1切妻屋根形状321の幅)の1/2だけ離れた点P301を通過している。平面視において、第3軸313は、第2方向(矢印B方向)に対する反対方向である第3方向(矢印C方向)における第1切妻屋根形状321の端部から第2方向(矢印B方向)における第2切妻屋根形状322の端部に亘って延在している。第3切妻屋根形状323の2つの傾斜面をそれぞれ第5および第6傾斜面と称する。
 第4切妻屋根形状324は、第4軸314を頂部としている。第4切妻屋根形状324は、第1切妻屋根形状321と同形状に形成され且つ第1切妻屋根形状321と同じ向きに凸となっている。第4軸314は、第1切妻屋根形状321の上記幅(第2方向における第1切妻屋根形状321の幅)と同じだけ第3軸313を第1方向(矢印A方向)にシフトすることにより得られる軸である。第4切妻屋根形状324の2つの傾斜面をそれぞれ第7および第8傾斜面と称する。
 なお、各切妻屋根形状321~324は、軸方向が互いに直交する他の2つの切妻屋根形状を突き抜けている(例えば第1切妻屋根形状321は、第3切妻屋根形状323および第4切妻屋根形状324を突き抜けている)
 上記ユニット340は、これら8つの傾斜面(第1~第8傾斜面)の各々のうち、第1~第4切妻屋根形状321~324の凸方向から見たときに、他の7つの傾斜面の何れにも覆われない部分に沿ってそれぞれ配置された傾斜部からなる。
In the case of this example, the second light transmitting layer 120 is configured by arranging a plurality of units 340 shown in FIG. 15A in a direction parallel to the light emitting layer.
In FIG. 15 (a), the first gable roof shape 321 has a first axis 311 extending in a first direction (arrow A direction) parallel to the light emitting layer and having a predetermined length as a top, on the light extraction side. Or it is convex toward either one of the light emitting layer side. The two inclined surfaces of the first gable roof shape 321 are referred to as first and second inclined surfaces, respectively. The first and second inclined surfaces have the same shape.
The second gable roof shape 322 has the second axis 312 as the top. The second gable roof shape 322 is formed in the same shape as the first gable roof shape 321 and is convex in the same direction as the first gable roof shape 321. The second axis 312 is the first axis in the second direction (arrow B direction) parallel to the light emitting layer and orthogonal to the first direction, as much as the width of the first gable roof shape 321 in the second direction. This is the axis obtained by shifting 311. The two inclined surfaces of the second gable roof shape 322 are referred to as third and fourth inclined surfaces, respectively.
The third gable roof shape 323 has the third axis 313 as the top. The third gable roof shape 323 is formed in the same shape as the first gable roof shape 321 and is convex in the same direction as the first gable roof shape 321. The third axis 313 is located in a plane including the first axis 311 and the second axis 312 and is orthogonal to the first axis 311 (and the second axis 312). The third shaft 313 is separated from the one end 311a of the first shaft 311 on the first shaft 311 by ½ of the width of the first gable roof shape 321 (the width of the first gable roof shape 321 in the second direction). It passes through the point P301. In plan view, the third axis 313 is in the second direction (arrow B direction) from the end of the first gable roof shape 321 in the third direction (arrow C direction) which is the opposite direction to the second direction (arrow B direction). Extending across the end of the second gable roof shape 322. The two inclined surfaces of the third gable roof shape 323 are referred to as fifth and sixth inclined surfaces, respectively.
The fourth gable roof shape 324 has the fourth axis 314 as the top. The fourth gable roof shape 324 is formed in the same shape as the first gable roof shape 321 and is convex in the same direction as the first gable roof shape 321. The fourth axis 314 is formed by shifting the third axis 313 in the first direction (arrow A direction) by the same width as the width of the first gable roof shape 321 (the width of the first gable roof shape 321 in the second direction). The resulting axis. The two inclined surfaces of the fourth gable roof shape 324 are referred to as seventh and eighth inclined surfaces, respectively.
Each of the gable roof shapes 321 to 324 penetrates the other two gable roof shapes whose axial directions are orthogonal to each other (for example, the first gable roof shape 321 is the third gable roof shape 323 and the fourth gable roof shape). 324)
Of the eight inclined surfaces (first to eighth inclined surfaces), the unit 340 has the other seven inclined surfaces when viewed from the convex direction of the first to fourth gable roof shapes 321 to 324. It consists of the inclination part each arrange | positioned along the part which is not covered by any of these.
 従って、本実施例の場合、第2透光層120は、自ずと、互いに反対方向に発光層に対して傾斜した複数の傾斜部を含む。また、第2透光層120は、互いに同じ方向に発光層に対して傾斜した複数の傾斜部を含む。 Therefore, in the case of the present embodiment, the second light transmissive layer 120 naturally includes a plurality of inclined portions inclined with respect to the light emitting layer in opposite directions. The second light transmissive layer 120 includes a plurality of inclined portions that are inclined with respect to the light emitting layer in the same direction.
 更に、第2透光層120は、自ずと、平面視において第1方向に延在する第1軸周りに発光層に対して傾斜した第1傾斜部と、平面視において第1方向に対して交差(具体的には直交)する第2軸周りに発光層に対して傾斜した第2傾斜部と、を含む。 Furthermore, the second light-transmitting layer 120 naturally intersects the first inclined portion inclined with respect to the light emitting layer around the first axis extending in the first direction in plan view and the first direction in plan view. And a second inclined portion inclined with respect to the light emitting layer around a second axis (specifically orthogonal).
 図15(a)に示すユニット340は、例えば、互いに隙間無く複数並べて配置されている。 For example, a plurality of units 340 shown in FIG. 15A are arranged side by side without any gap.
 本実施例の場合、発光層に対する上記第1~第8傾斜面の角度の絶対値は、例えば、45度となっている。 In this example, the absolute value of the angle of the first to eighth inclined surfaces with respect to the light emitting layer is, for example, 45 degrees.
 なお、第1透光層110が第1部分111と第2部分112とからなる点、第1透光層110と第1電極40との間にバリア膜70が形成されている点、第1透光層110の上面には光取り出しフィルム130が貼り付けられている点は、上記の実施例3等と同様である。 The first light-transmitting layer 110 is composed of a first portion 111 and a second portion 112, the barrier film 70 is formed between the first light-transmitting layer 110 and the first electrode 40, and the first The point that the light extraction film 130 is affixed on the upper surface of the light transmissive layer 110 is the same as in the third embodiment.
 図15(b)は、例えば、第3軸313の両端の中点P311と、第4軸314の両端の中点P312と、を通過し、且つ、発光層に対して直交する面で発光素子を切断したときの断面図である。この断面は、上記の実施例3の断面形状(図7)と同様となることが分かる。このため、本実施例によっても、実施例3と同様の、光取り出し効率の向上効果が得られる。 FIG. 15B shows, for example, a light emitting element that passes through a midpoint P311 at both ends of the third axis 313 and a midpoint P312 at both ends of the fourth axis 314 and is orthogonal to the light emitting layer. It is sectional drawing when cutting. It can be seen that this cross section is the same as the cross sectional shape of the third embodiment (FIG. 7). For this reason, also in the present embodiment, the same effect of improving the light extraction efficiency as in the third embodiment can be obtained.
 本実施例においても、第2透光層120の少なくとも一部分は、発光層に対して傾斜した傾斜部である。そして、この傾斜部における有機機能層50側の面と光取り出し側の面とが第1透光層110に接している。このため、上記の実施形態と同様の効果が得られる。 Also in this embodiment, at least a part of the second light transmitting layer 120 is an inclined portion inclined with respect to the light emitting layer. The surface on the organic functional layer 50 side and the surface on the light extraction side in the inclined portion are in contact with the first light transmissive layer 110. For this reason, the effect similar to said embodiment is acquired.
 また、第2透光層120は、互いに同じ方向に発光層に対して傾斜した複数の傾斜部を有している。このため、上記の実施例1と同様の効果が得られる。 Further, the second light transmitting layer 120 has a plurality of inclined portions inclined with respect to the light emitting layer in the same direction. For this reason, the effect similar to said Example 1 is acquired.
 また、第2透光層120は、互いに反対方向に発光層に対して傾斜した複数の傾斜部を有している。このため、上記の実施例2と同様の効果が得られる。 Further, the second light transmitting layer 120 has a plurality of inclined portions inclined with respect to the light emitting layer in opposite directions. For this reason, the same effect as in the second embodiment can be obtained.
 また、第2透光層120は、平面視において第1方向に延在する第1軸周りに発光層に対して傾斜した第1傾斜部と、平面視において第1方向に対して交差(例えば直交)する第2軸周りに発光層に対して傾斜した第2傾斜部と、を含む。よって、平面視において様々な方向に進む光の取り出し効率を向上することができる。 In addition, the second light transmitting layer 120 intersects the first inclined portion inclined with respect to the light emitting layer around the first axis extending in the first direction in a plan view (for example, the first direction in the plan view (for example, And a second inclined portion inclined with respect to the light emitting layer around a second axis that is orthogonal to each other. Therefore, the extraction efficiency of light traveling in various directions in plan view can be improved.
 また、第2透光層120は、上述した構成のユニット340を発光層に対して平行な方向に複数並べることにより構成されているため、例えば、図15(b)に示すような断面形状となる。この断面形状は、上記の実施例3(図7)と同様である。このため、本実施例によっても、実施例3と同様の効果が得られる。 Further, since the second light transmitting layer 120 is configured by arranging a plurality of units 340 having the above-described configuration in a direction parallel to the light emitting layer, for example, a cross-sectional shape as illustrated in FIG. Become. This cross-sectional shape is the same as that in the third embodiment (FIG. 7). For this reason, the same effect as that of the third embodiment can be obtained by this embodiment.
 なお、本実施例において、ユニット340は図15(a)に示すものとは上下が反転していても良い。
 また、複数のユニット340の各々について、個別に上下の向きが異なっていても良い(上下の向きが個別に設定されていても良い)。
In this embodiment, the unit 340 may be turned upside down from that shown in FIG.
Further, the vertical direction of each of the plurality of units 340 may be different (the vertical direction may be set individually).
 (実施例10)
 図16(a)は本実施例に係る発光素子の第2透光層120の周辺の断面図、図16(b)は本実施例に係る発光素子の効果を説明するための図である。
(Example 10)
FIG. 16A is a cross-sectional view of the periphery of the second light transmitting layer 120 of the light emitting device according to this example, and FIG. 16B is a diagram for explaining the effect of the light emitting device according to this example.
 本実施例の場合、第2透光層120の屈折率は、発光層側に向けて高くなっている。 In the case of the present example, the refractive index of the second light transmitting layer 120 is higher toward the light emitting layer side.
 より具体的には、第2透光層120は、例えば、複数の層を積層することにより構成されている。そして、これら複数の層の屈折率は、発光層側の層になるほど高くなっている。 More specifically, the second light transmitting layer 120 is configured by, for example, laminating a plurality of layers. And the refractive index of these several layers is so high that it becomes a layer by the side of a light emitting layer.
 図16(a)では、第2透光層120は、光取り出し側から順に、第1層401、第2層402、第3層403および第4層404を有している。例えば、第1層401の屈折率は1.3、第2層402の屈折率は1.4、第3層403の屈折率は1.5、第4層404の屈折率は1.6となっている。また、第1部分111および第2部分112の屈折率は、例えば、それぞれ1.8となっている。 In FIG. 16A, the second light transmitting layer 120 includes a first layer 401, a second layer 402, a third layer 403, and a fourth layer 404 in order from the light extraction side. For example, the refractive index of the first layer 401 is 1.3, the refractive index of the second layer 402 is 1.4, the refractive index of the third layer 403 is 1.5, and the refractive index of the fourth layer 404 is 1.6. It has become. Further, the refractive indexes of the first portion 111 and the second portion 112 are, for example, 1.8, respectively.
 このため、第2部分112と第2透光層120との界面においては屈折率の変化量が相対的に小さく、且つ、第2透光層120の内部において、光取り出し側に向けて屈折率が低くなるが、第2透光層120と第1透光層110の第1部分111との界面においては屈折率が急峻に変化する。換言すれば、発光層側から光取り出し側に向けて第2透光層120をまたぐ際、屈折率が徐々に低くなった後、急峻に高くなる。 For this reason, the amount of change in the refractive index is relatively small at the interface between the second portion 112 and the second light transmissive layer 120, and the refractive index toward the light extraction side in the second light transmissive layer 120. However, the refractive index changes sharply at the interface between the second light transmitting layer 120 and the first portion 111 of the first light transmitting layer 110. In other words, when straddling the second light transmitting layer 120 from the light emitting layer side toward the light extraction side, the refractive index gradually decreases and then increases rapidly.
 このような構成とすることにより、光取り出し側から第2透光層120に到達する光(下向き成分を含む光)は、第1部分111と第2透光層120との界面において全反射しやすくなる。
 一方、発光層側から第2透光層120に到達する光(上向き成分を含む光)は、第2部分112から第2透光層120内に入射しやすくなり、ひいては第2透光層120および第1透光層110を透過して光取り出し面dから外部に放射されやすくなる。
 よって、発光素子の光取り出し効率が向上する。
With this configuration, light (light including a downward component) reaching the second light transmitting layer 120 from the light extraction side is totally reflected at the interface between the first portion 111 and the second light transmitting layer 120. It becomes easy.
On the other hand, light reaching the second light transmissive layer 120 from the light emitting layer side (light including an upward component) is likely to enter the second light transmissive layer 120 from the second portion 112, and consequently the second light transmissive layer 120. In addition, the light passes through the first light transmissive layer 110 and is easily emitted to the outside from the light extraction surface d.
Therefore, the light extraction efficiency of the light emitting element is improved.
 図16(b)は、第2透光層120に対する光の入射角度(横軸)と透過率(縦軸)との関係を示している。屈折率が急峻に変化する界面(第1部分111と第2透光層120との界面)においては、図16(b)の曲線A401に示されるように、臨界角になる前の角度から徐々に反射が生じる。一方、徐々に屈折率が変化する場合(第2部分112側から第2透光層120に入射する場合)は、透過率の割合が図16(b)の矢印Dの方向に変わっていき、反射量が減少する。このため、図16(a)のような構造とすることにより、光取り出し側から第2透光層120に向かう光は臨界角付近での反射が多くなり、発光層側から第2透光層120に向かう光については臨界角付近での透過を多くすることが可能になる。 FIG. 16B shows the relationship between the incident angle (horizontal axis) of light and the transmittance (vertical axis) with respect to the second light transmitting layer 120. At the interface where the refractive index changes sharply (interface between the first portion 111 and the second light transmitting layer 120), as shown by the curve A401 in FIG. 16B, gradually from the angle before the critical angle is reached. Reflection occurs. On the other hand, when the refractive index gradually changes (when entering the second light transmitting layer 120 from the second portion 112 side), the transmittance ratio changes in the direction of the arrow D in FIG. The amount of reflection decreases. For this reason, by adopting the structure as shown in FIG. 16A, the light traveling from the light extraction side toward the second light transmissive layer 120 has more reflection near the critical angle, and the second light transmissive layer from the light emitting layer side. With respect to light directed to 120, it becomes possible to increase the transmission near the critical angle.
 本実施例によれば、第2透光層120の屈折率は、発光層側に向けて高くなっている。これにより、発光素子の光取り出し効率が向上する。 According to the present example, the refractive index of the second light transmitting layer 120 is higher toward the light emitting layer side. Thereby, the light extraction efficiency of the light emitting element is improved.
 なお、本実施例において、第2透光層120の屈折率は、段階的でなく連続的に、発光層側に向けて高くなっていても良い。 In the present embodiment, the refractive index of the second light transmissive layer 120 may increase continuously toward the light emitting layer instead of stepwise.
 (実施例11)
 図17は本実施例に係る発光素子の断面図である。本実施例に係る発光素子は、以下に説明する点で、上記の実施例4に係る発光素子(図10)と相違し、その他の点では実施例4に係る発光素子と同様に構成されている。
(Example 11)
FIG. 17 is a cross-sectional view of the light emitting device according to this example. The light emitting device according to this example is different from the light emitting device according to Example 4 described above (FIG. 10) in the points described below, and is otherwise configured in the same manner as the light emitting device according to Example 4. Yes.
 本実施例の場合、発光素子は、光取り出しフィルム130を有していても良いが、図17に示すように有していなくても良い。そして、第1透光層110の上方に、透光性の保護部材(例えば保護ガラス)160が配置されている。保護部材160は、例えば支持部材84を介してベース部材80上に支持されている。ベース部材80上には上記の実施例4で説明した構造の発光素子が固定されている。そして、ベース部材80、保護部材160、及び支持部材84で囲まれた空間は密閉されている。なお、保護部材160と第1透光層110との間には、気体(例えば空気や不活性ガス)が充填されている。本実施例の場合、保護部材160の上面が光取り出し面dを構成している。 In the case of the present embodiment, the light emitting element may have the light extraction film 130 but may not have the light extraction film 130 as shown in FIG. A translucent protective member (for example, protective glass) 160 is disposed above the first translucent layer 110. The protection member 160 is supported on the base member 80 via the support member 84, for example. On the base member 80, the light emitting element having the structure described in the fourth embodiment is fixed. The space surrounded by the base member 80, the protection member 160, and the support member 84 is sealed. Note that a gas (for example, air or inert gas) is filled between the protective member 160 and the first light transmissive layer 110. In the case of the present embodiment, the upper surface of the protection member 160 constitutes the light extraction surface d.
 ベース部材80は、例えば、封止体(封止層)とすることができる。ベース部材80において、隔壁部71を被覆する部位には、第2電極60を外部に電気的に接続するための導電体191が、ベース部材80を貫通して設けられている。 The base member 80 can be a sealing body (sealing layer), for example. In the base member 80, a conductor 191 for electrically connecting the second electrode 60 to the outside is provided through the base member 80 at a portion covering the partition wall 71.
 本実施例によっても、実施例4と同様の効果を得ることができる。また、第1透光層110を保護部材160で保護しているため、発光素子の耐久性を向上させることができる。 Also in this embodiment, the same effect as that of Embodiment 4 can be obtained. Moreover, since the 1st translucent layer 110 is protected by the protection member 160, durability of a light emitting element can be improved.
 (実施例12)
 図18は本実施例に係る発光素子の断面図である。上記においては、第1透光層110と第1電極40とを別々に設ける例を説明したが、図18に示すように、第1透光層110の第2部分112は透光性電極の機能を兼ね備えていてもよい。すなわち、この場合、第2部分112は、ITOなどの金属酸化物導電体などの透光性導電体により構成される。本実施例によれば、第1透光層110の第2部分112は透光性電極の機能を兼ねるので、発光素子の部品点数の低減が可能である。
Example 12
FIG. 18 is a cross-sectional view of the light emitting device according to this example. In the above description, an example in which the first light transmissive layer 110 and the first electrode 40 are provided separately has been described. However, as shown in FIG. 18, the second portion 112 of the first light transmissive layer 110 is formed of a light transmissive electrode. You may have a function. That is, in this case, the second portion 112 is configured by a light-transmitting conductor such as a metal oxide conductor such as ITO. According to the present embodiment, since the second portion 112 of the first light transmissive layer 110 also functions as a light transmissive electrode, it is possible to reduce the number of parts of the light emitting element.
 (実施例13)
 図19は本実施例に係る発光素子の断面図である。図19に示すように、第1透光層110の上面には、透光性の保護膜170を形成しても良い。保護膜170は、例えば酸化シリコン膜などの無機材料により構成されていてもよいし、第1電極40と同様の材料により構成されていてもよい。保護膜170は、例えば、CVD法又はスパッタリング法などの気相成長法を用いて形成される。本実施例の場合、保護膜170の上面が光取り出し面dを構成している。
(Example 13)
FIG. 19 is a cross-sectional view of the light emitting device according to this example. As shown in FIG. 19, a light-transmitting protective film 170 may be formed on the upper surface of the first light-transmitting layer 110. The protective film 170 may be made of an inorganic material such as a silicon oxide film, or may be made of the same material as the first electrode 40. The protective film 170 is formed by using, for example, a vapor phase growth method such as a CVD method or a sputtering method. In this embodiment, the upper surface of the protective film 170 constitutes the light extraction surface d.
 本実施例によっても、上記の実施形態と同様の効果を得ることができる。また、第1透光層110が保護膜170により保護されているので、発光素子の耐久性を向上させることができる。 Also in this example, the same effect as in the above embodiment can be obtained. In addition, since the first light transmissive layer 110 is protected by the protective film 170, the durability of the light emitting element can be improved.
 以上、図面を参照して実施形態及び実施例について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。 As mentioned above, although embodiment and the Example were described with reference to drawings, these are the illustrations of this invention, Various structures other than the above are also employable.

Claims (15)

  1.  発光層を含む有機機能層と、
     前記有機機能層を基準として光取り出し側に配置された第1透光層と、
     前記第1透光層よりも屈折率が低く、前記第1透光層内に埋設された第2透光層と、
     を備え、
     前記第2透光層の少なくとも一部分は、前記発光層に対して傾斜した傾斜部であり、
     前記傾斜部における前記有機機能層側の面と前記光取り出し側の面とが、それぞれ前記発光層に対して傾斜しているとともに、
     前記傾斜部における前記有機機能層側の面と前記光取り出し側の面とが、それぞれ前記第1透光層に接している発光素子。
    An organic functional layer including a light emitting layer;
    A first light transmissive layer disposed on the light extraction side with respect to the organic functional layer;
    A second light-transmitting layer having a refractive index lower than that of the first light-transmitting layer and embedded in the first light-transmitting layer;
    With
    At least a part of the second light transmissive layer is an inclined portion inclined with respect to the light emitting layer,
    The surface on the organic functional layer side and the surface on the light extraction side in the inclined portion are inclined with respect to the light emitting layer, respectively.
    The light emitting element in which the surface by the side of the said organic functional layer in the said inclination part and the surface by the side of the said light extraction are in contact with the said 1st light transmission layer, respectively.
  2.  前記第2透光層は、互いに異なる傾斜角で前記発光層に対して傾斜した複数の前記傾斜部を含む請求項1に記載の発光素子。 The light emitting device according to claim 1, wherein the second light transmitting layer includes a plurality of the inclined portions inclined with respect to the light emitting layer at different inclination angles.
  3.  前記第2透光層は、互いに反対方向に前記発光層に対して傾斜した複数の前記傾斜部を含む請求項1又は2に記載の発光素子。 The light emitting device according to claim 1 or 2, wherein the second light transmitting layer includes a plurality of the inclined portions inclined with respect to the light emitting layer in opposite directions.
  4.  前記第2透光層は、互いに同じ方向に前記発光層に対して傾斜した複数の前記傾斜部を含む請求項1~3の何れか一項に記載の発光素子。 4. The light emitting device according to claim 1, wherein the second light transmitting layer includes a plurality of the inclined portions inclined with respect to the light emitting layer in the same direction.
  5.  前記第2透光層は、平面視において第1方向に延在する第1軸周りに前記発光層に対して傾斜した第1傾斜部と、平面視において前記第1方向に対して交差する第2軸周りに前記発光層に対して傾斜した第2傾斜部と、を含む請求項1~4の何れか一項に記載の発光素子。 The second light-transmitting layer intersects the first inclined portion inclined with respect to the light emitting layer around a first axis extending in the first direction in plan view, and intersects the first direction in plan view. The light emitting device according to any one of claims 1 to 4, further comprising a second inclined portion inclined about the two light axes with respect to the light emitting layer.
  6.  前記第2透光層は、
     前記光取り出し側又は前記発光層側のうち何れか一方に向けて断面積が縮小する角錐台の各側面と、
     前記角錐台と同じ数の側面を有するとともに、前記角錐台の上底と一致する下底を有し、前記光取り出し側又は前記発光層側のうち何れか他方に向けて断面積が縮小する角錐の各側面と、
     に沿ってそれぞれ配置された前記傾斜部からなるユニットを、
     前記発光層に対して平行な方向に複数並べることにより構成されている請求項1に記載の発光素子。
    The second translucent layer is
    Each side surface of the truncated pyramid whose cross-sectional area is reduced toward either the light extraction side or the light emitting layer side;
    A pyramid having the same number of side faces as the pyramid frustum and having a lower base coinciding with the upper base of the frustum frustum, the cross-sectional area of which decreases toward either the light extraction side or the light emitting layer side Each side of
    A unit composed of the inclined portions respectively disposed along
    The light emitting device according to claim 1, wherein a plurality of light emitting elements are arranged in a direction parallel to the light emitting layer.
  7.  前記角錐台の高さと前記角錐の高さとが互いに等しい請求項6に記載の発光素子。 The light emitting device according to claim 6, wherein the height of the truncated pyramid and the height of the truncated pyramid are equal to each other.
  8.  前記第2透光層は、
     前記光取り出し側又は前記発光層側のうち何れか一方に向けて断面積が縮小する角錐台の各側面と、
     前記角錐台と同じ数の側面を有するとともに、前記角錐台の上底と一致する下底を有し、前記光取り出し側又は前記発光層側のうち何れか他方に向けて断面積が縮小する第2角錐台の各側面と、
     に沿ってそれぞれ配置された前記傾斜部からなるユニットを、
     前記発光層に対して平行な方向に複数並べることにより構成されている請求項1に記載の発光素子。
    The second translucent layer is
    Each side surface of the truncated pyramid whose cross-sectional area is reduced toward either the light extraction side or the light emitting layer side;
    A first base having the same number of side surfaces as the truncated pyramid and having a lower base coinciding with the upper base of the truncated pyramid, the cross-sectional area being reduced toward either the light extraction side or the light emitting layer side; Each side of the truncated pyramid,
    A unit composed of the inclined portions respectively disposed along
    The light emitting device according to claim 1, wherein a plurality of light emitting elements are arranged in a direction parallel to the light emitting layer.
  9.  前記角錐台の高さと前記第2角錐台の高さとが互いに等しい請求項8に記載の発光素子。 The light emitting device according to claim 8, wherein a height of the truncated pyramid and a height of the second truncated pyramid are equal to each other.
  10.  前記角錐台は平面視矩形状の四角錐台である請求項6~9の何れか一項に記載の発光素子。 10. The light emitting device according to claim 6, wherein the truncated pyramid is a rectangular truncated pyramid having a rectangular shape in plan view.
  11.  複数の前記ユニットは、互いの形状を画定する前記角錐台の下底の一辺どうしが互いに一致するように、隙間無く並んでいる請求項6~10の何れか一項に記載の発光素子。 The light emitting device according to any one of claims 6 to 10, wherein the plurality of units are arranged without a gap so that one side of the lower base of the truncated pyramid defining the shape of each other coincides with each other.
  12.  前記第2透光層の屈折率は、前記発光層側に向けて高くなっている請求項1~11の何れか一項に記載の発光素子。 The light emitting device according to any one of claims 1 to 11, wherein a refractive index of the second light transmitting layer is increased toward the light emitting layer side.
  13.  前記第1透光層は、前記第2透光層よりも前記光取り出し側に配置された透光性基板を含む請求項1~12の何れか一項に記載の発光素子。 The light-emitting element according to any one of claims 1 to 12, wherein the first light-transmitting layer includes a light-transmitting substrate disposed closer to the light extraction side than the second light-transmitting layer.
  14.  前記第1透光層における前記第2透光層と前記透光性基板との間の部分の屈折率が、前記透光性基板の屈折率に等しい請求項13に記載の発光素子。 The light emitting element according to claim 13, wherein a refractive index of a portion of the first light transmissive layer between the second light transmissive layer and the light transmissive substrate is equal to a refractive index of the light transmissive substrate.
  15.  前記第1透光層における前記第2透光層よりも前記光取り出し側の部分は、透光性基板からなり、
     前記透光性基板は、前記第2透光層における前記光取り出し側の面に接している請求項13に記載の発光素子。
    The portion on the light extraction side of the first light transmissive layer with respect to the second light transmissive layer is made of a light transmissive substrate.
    The light-emitting element according to claim 13, wherein the light-transmitting substrate is in contact with the light extraction side surface of the second light-transmitting layer.
PCT/JP2013/050284 2013-01-10 2013-01-10 Light-emitting element WO2014109028A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/050284 WO2014109028A1 (en) 2013-01-10 2013-01-10 Light-emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/050284 WO2014109028A1 (en) 2013-01-10 2013-01-10 Light-emitting element

Publications (1)

Publication Number Publication Date
WO2014109028A1 true WO2014109028A1 (en) 2014-07-17

Family

ID=51166698

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/050284 WO2014109028A1 (en) 2013-01-10 2013-01-10 Light-emitting element

Country Status (1)

Country Link
WO (1) WO2014109028A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002359068A (en) * 2001-05-31 2002-12-13 Seiko Epson Corp El device, el display, el lighting system, liquid crystal device using this lighting system and electronic equipment
JP2003282260A (en) * 2002-03-26 2003-10-03 Dainippon Printing Co Ltd Electroluminescent (el) display device
JP2004146121A (en) * 2002-10-22 2004-05-20 Matsushita Electric Works Ltd Organic electroluminescent element
JP2004521475A (en) * 2001-06-25 2004-07-15 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Substrate for electroluminescent display device and method of manufacturing the substrate
JP2009211868A (en) * 2008-03-03 2009-09-17 Dainippon Printing Co Ltd Structure for extracting light from light emitting element
JP2011090891A (en) * 2009-10-22 2011-05-06 Toppan Printing Co Ltd Organic electroluminescent element
JP2011095563A (en) * 2009-10-30 2011-05-12 Toppan Printing Co Ltd Optical member, and el (electroluminescent) display apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002359068A (en) * 2001-05-31 2002-12-13 Seiko Epson Corp El device, el display, el lighting system, liquid crystal device using this lighting system and electronic equipment
JP2004521475A (en) * 2001-06-25 2004-07-15 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Substrate for electroluminescent display device and method of manufacturing the substrate
JP2003282260A (en) * 2002-03-26 2003-10-03 Dainippon Printing Co Ltd Electroluminescent (el) display device
JP2004146121A (en) * 2002-10-22 2004-05-20 Matsushita Electric Works Ltd Organic electroluminescent element
JP2009211868A (en) * 2008-03-03 2009-09-17 Dainippon Printing Co Ltd Structure for extracting light from light emitting element
JP2011090891A (en) * 2009-10-22 2011-05-06 Toppan Printing Co Ltd Organic electroluminescent element
JP2011095563A (en) * 2009-10-30 2011-05-12 Toppan Printing Co Ltd Optical member, and el (electroluminescent) display apparatus

Similar Documents

Publication Publication Date Title
WO2014045597A1 (en) Organic electroluminescent element and light emitting device
JP2007234591A (en) Double emission white pled for illumination
WO2018061102A1 (en) Light-emitting device
WO2013065177A1 (en) Light-emitting device
KR20140130734A (en) Light emitting panel
WO2014109028A1 (en) Light-emitting element
JP5138569B2 (en) Organic EL light emitting device
WO2014103043A1 (en) Light-emitting device
WO2014083693A1 (en) Light emitting device
WO2014103042A1 (en) Light-emitting device
WO2013065178A1 (en) Light-emitting device
WO2013065172A1 (en) Light-emitting device and method for producing light-emitting device
WO2013186919A1 (en) Organic electroluminescence device
WO2014103041A1 (en) Light-emitting device
JP5669525B2 (en) Semiconductor light emitting device
WO2017149733A1 (en) Light emitting device
WO2013186916A1 (en) Organic electroluminescence device
WO2014080477A1 (en) Light emitting device
US20150364723A1 (en) Light emitting element and method of manufacturing light emitting element
WO2013065170A1 (en) Light-emitting device
WO2014080479A1 (en) Light emitting device
WO2016084472A1 (en) Surface light-emitting module
JP6528513B2 (en) Surface emitting module
WO2014097383A1 (en) Light emission device, and production method for light emission device
WO2014128886A1 (en) Light emitting element and method for manufacturing light emitting element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13870652

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13870652

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP