WO2013186916A1 - Organic electroluminescence device - Google Patents

Organic electroluminescence device Download PDF

Info

Publication number
WO2013186916A1
WO2013186916A1 PCT/JP2012/065370 JP2012065370W WO2013186916A1 WO 2013186916 A1 WO2013186916 A1 WO 2013186916A1 JP 2012065370 W JP2012065370 W JP 2012065370W WO 2013186916 A1 WO2013186916 A1 WO 2013186916A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic
light
translucent
refractive index
electrode
Prior art date
Application number
PCT/JP2012/065370
Other languages
French (fr)
Japanese (ja)
Inventor
黒田 和男
秀雄 工藤
浩 大畑
敏治 内田
Original Assignee
パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社 filed Critical パイオニア株式会社
Priority to PCT/JP2012/065370 priority Critical patent/WO2013186916A1/en
Publication of WO2013186916A1 publication Critical patent/WO2013186916A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/879Arrangements for extracting light from the devices comprising refractive means, e.g. lenses

Definitions

  • the present invention relates to an organic electroluminescence device (hereinafter referred to as an organic EL device) including at least one organic electroluminescence element.
  • the organic electroluminescence element is configured by, for example, sequentially laminating an organic layer including an anode, a light emitting layer, and a cathode on a transparent glass substrate, and electroluminescence (hereinafter, referred to as “electroluminescence” by injecting current into the organic layer through the anode and the cathode).
  • EL element electroluminescence
  • the emitted light from the light emitting layer is taken out through the transparent electrode and the substrate by making the electrode on the substrate side transparent.
  • about 20% of the light emitted from the light emitting layer is about 20%. Only light can be taken out.
  • a bank that partitions an organic layer on a transparent substrate on the light extraction side is made of a transparent material, and a reflection unit that extracts light propagating in the light-transmitting bank to the transparent substrate side in the viewing direction. It discloses a technology that is provided to increase the light extraction efficiency.
  • the organic EL device of the present invention is an organic EL device having a translucent substrate and at least one organic EL element carried on the translucent substrate,
  • the organic EL element is formed on the insulating bank disposed on the translucent substrate, the translucent electrode disposed on the translucent substrate and in contact with the bank, and the translucent electrode.
  • the bank has a low refractive index material film that is made of a light transmissive material having a low refractive index equal to or lower than the refractive index of the light transmissive electrode and is in contact with the light transmissive electrode and the light transmissive substrate.
  • the translucent electrode has an uneven side surface that is in contact with the low refractive index material film and intersects the main surface of the translucent substrate.
  • FIG. 1 is a plan view of an organic EL device according to an embodiment of the present invention.
  • FIG. 2 is a sectional view taken along the line CC in FIG.
  • FIG. 3 is a schematic cross-sectional view schematically showing a laminated structure of the light emitting portion of the organic EL device shown in FIG.
  • FIG. 4 is an enlarged partial sectional view showing a part of the organic EL device shown in FIG.
  • FIG. 5 is a partially enlarged plan view showing adjacent translucent electrodes in the organic EL device shown in FIG. 1 and a low refractive index material film therebetween.
  • FIG. 6 is a partially cutaway perspective view of an organic EL device according to another embodiment of the present invention.
  • FIG. 7 is a partially cutaway perspective view of an organic EL device according to one modification.
  • an organic EL device OELD includes a plurality of strip-shaped organic EL elements OELE which are partitioned by a plurality of banks BK on a light-transmitting flat substrate 1 such as glass or resin and extend in the y direction. Yes.
  • the plurality of organic EL elements OELE are juxtaposed with each other, for example, exhibiting different emission colors of red light emission R, green light emission G, and blue light emission B.
  • the organic EL elements of RGB emission colors are arranged as a set in the x direction for each set.
  • each of the organic EL elements of the organic EL device is configured by laminating a translucent electrode 2, an organic layer 3 including a light emitting layer, and a reflective electrode 4 on a substrate 1 between banks BK.
  • the This organic EL device is a so-called bottom emission type organic EL panel that takes out light generated in the organic layer 3 from the surface of the substrate 1 by applying a voltage between the translucent electrode 2 and the reflective electrode 4.
  • the bank BK includes a low refractive index material film LRM that is in contact with the translucent electrode 2 and a bank body BKB formed thereon.
  • the bank body BKB is formed from a dielectric material.
  • the low refractive index material film LRM is formed of a light transmissive dielectric material having a low refractive index equal to or lower than the refractive index of the light transmissive electrode 2.
  • the low refractive index material film LRM has a bottom surface BOM1 that contacts the translucent electrode 2 and a bottom surface BOM2 that contacts the translucent substrate 1.
  • the low-refractive index material film LRM has a film thickness on the translucent electrode 2 that is 1 ⁇ 4 or more of the wavelength of the light emitted from the light-emitting layer 3c. This is because the emitted light passes through the low refractive index material film LRM as it is when the wavelength is less than 1 ⁇ 4 of the wavelength.
  • “equivalent refractive index” means that the difference between one refractive index and the other refractive index is less than 0.3, preferably 0.2 or less, particularly preferably 0.1 or less. That means. Further, the refractive index “low” or “high” may be “low” or “high” to such an extent that a difference in measurement occurs, but in practice, it exceeds 0.1, preferably exceeds 0.2. More preferably 0.3 or more, still more preferably 0.4 or more, particularly preferably 0.5 or more, indicating a low or high difference.
  • the plurality of translucent electrodes 2 constituting the anode each have a band shape, extend along the y direction on the substrate 1, and are juxtaposed in parallel with each other at a constant interval in the x direction.
  • a bank BK is formed extending along the y direction so as to cover them.
  • the bank BK rectangular openings each extending in the y direction are formed.
  • An organic layer 3 is disposed in each of the openings. The organic layer 3 is juxtaposed in a state of being separated from each other by the bank BK, and partitions a plurality of light emitting regions separated by the bank BK.
  • the bank BK is covered with at least a part of the reflective electrode 4.
  • a hole injection layer 3a, a hole transport layer 3b, a light emitting layer 3c, an electron transport layer 3d, and an electron is laminated in order.
  • the organic layer 3 sandwiched between the translucent electrode 2 and the reflective electrode 4 is a light emitting laminated body, and is not limited to these laminated structures.
  • a hole blocking layer between the light emitting layer 3c and the electron transporting layer 3d (
  • a layered structure including at least a light emitting layer or a charge transport layer that can also be used may be used.
  • the organic layer 3 may be configured by omitting the hole transport layer 3b, the hole injection layer 3a, or the hole injection layer 3a and the electron transport layer 3d from the stacked structure. May be.
  • any known light emitting material such as a fluorescent material or a phosphorescent material can be applied.
  • Examples of fluorescent materials that emit blue light include naphthalene, perylene, and pyrene.
  • fluorescent materials that give green light emission include quinacridone derivatives, coumarin derivatives, and aluminum complexes such as Alq3 (tris (8-hydroxy-quinoline) aluminum).
  • Examples of fluorescent materials that give yellow light include rubrene derivatives.
  • Examples of fluorescent materials that give red light emission include DCM (4- (dicyanomethylene) -2-methyl-6- (p-dimethylaminostyryl) -4H-pyran) compounds, benzopyran derivatives, rhodamine derivatives, and the like.
  • Examples of the phosphorescent material include iridium, platinum, ruthenium, rhodium, and palladium complex compounds. Specific examples of the phosphorescent material include tris (2-phenylpyridine) iridium (so-called Ir (ppy) 3), tris (2-phenylpyridine) ruthenium, and the like.
  • the organic layers 3 that emit red, green, and blue emission colors are repeatedly arranged in parallel, and red, green, and blue light are arbitrarily emitted from the surface of the substrate 1 that serves as a light extraction surface. Light that is mixed in proportion and recognized as a single emission color is emitted.
  • Known methods for forming the organic layer 3 include dry coating methods such as sputtering and vacuum deposition, and wet coating methods such as screen printing, spraying, ink jetting, spin coating, gravure printing, and roll coater. ing.
  • dry coating methods such as sputtering and vacuum deposition
  • wet coating methods such as screen printing, spraying, ink jetting, spin coating, gravure printing, and roll coater.
  • the hole injection layer, the hole transport layer, and the light emitting layer are uniformly formed by a wet coating method
  • the electron transport layer and the electron injection layer are sequentially formed uniformly by a dry coating method.
  • a film may be formed.
  • all the functional layers may be sequentially formed in a uniform film thickness by a wet coating method.
  • the anode translucent electrode 2 for supplying holes to the functional layers up to the light emitting layer 3c includes ITO (Indium-tin-oxide), ZnO, ZnO—Al 2 O 3 (so-called AZO), In 2 O 3 ⁇ . It may be composed of ZnO (so-called IZO), SnO 2 —Sb 2 O 3 (so-called ATO), RuO 2 or the like. Furthermore, for the translucent electrode 2, it is preferable to select a material having a transmittance of at least 10% at the emission wavelength obtained from the light emitting layer.
  • the translucent electrode 2 usually has a single-layer structure, but it can also have a laminated structure made of a plurality of materials if desired.
  • the cathode reflective electrode 4 that supplies electrons to the functional layers up to the light emitting layer 3c is not limited, and for example, metals such as aluminum, silver, copper, nickel, chromium, gold, and platinum are used. In addition, these materials may be used only by 1 type and may use 2 or more types together by arbitrary combinations and a ratio.
  • the material of the reflective electrode 4 preferably includes a metal having a low work function in order to efficiently inject electrons.
  • a suitable metal such as tin, magnesium, indium, calcium, aluminum, silver, or an alloy thereof may be used. Used. Specific examples include low work function alloy electrodes such as magnesium-silver alloy, magnesium-indium alloy, and aluminum-lithium alloy.
  • the silver thin film with a thickness of 20 nm of the reflective electrode 4 has a transmittance of 50%.
  • An Al film having a thickness of 10 nm as the metal thin film has a transmittance of 50%.
  • the 20 nm-thick MgAg alloy film as the metal thin film has a transmittance of 50%.
  • electroconductivity can be ensured if the lower limit of the film thickness is 5 nm.
  • the reflective electrode 4 can be formed as a single layer film or a multilayer film on the organic layer 3 by sputtering or vacuum deposition.
  • the translucent electrode 2 in the organic EL device shown in FIG. 4 has an uneven side surface BSS including a group of inclined surfaces that are in contact with the low refractive index material film LRM and intersect the main surface of the substrate 1 between the bank BK and the substrate 1. It has as an end face.
  • the uneven side surface BSS extends zigzag along the longitudinal direction of the bank BK, that is, the y direction.
  • the slope group of the concavo-convex side surface BSS includes a slope that is inclined with respect to the direction perpendicular to the longitudinal direction of the bank BK, that is, the x direction, as a refractive surface.
  • this organic EL device is configured such that light totally reflected at the interface between the transparent electrode 2 and the substrate 1 is totally reflected at the interface of the low refractive index material film LRM.
  • Light L1 having an incident angle greater than or equal to the first critical angle to the glass is totally reflected in the light directed directly from the light emitting point of the light emitting layer 3c to the translucent electrode 2. Therefore, since the totally reflected light L1 has the low refractive index material film LRM below the bank BK, it is totally reflected at the same angle at the interface with the translucent electrode 2 and propagates.
  • the light L1 repeats total reflection between the interface between the low refractive index material film LRM of the translucent electrode 2 and the substrate 1, reaches the uneven side surface BSS of the translucent electrode 2, enters the low refractive index material film LRM, and Propagates to the substrate 1. Since the light L1 enters the low refractive index material film LRM from the concavo-convex side surface BSS of the translucent electrode 2, it enters the substrate 1 with the second critical angle standing. Therefore, as shown in FIG. 4, the angle at which the light at the end face of the translucent electrode 2 is extracted to the external air layer can be changed.
  • FIG. 5 is a partially enlarged plan view showing adjacent translucent electrodes 2 of this organic EL device and a low refractive index material film LRM therebetween.
  • the concavo-convex side surface BSS extends in a zigzag along the longitudinal direction of the bank BK, that is, the y direction, that is, includes a plurality of refractive surfaces having different inclination angles with respect to the x direction.
  • the propagating light L1 is deflected by being deflected in the y direction by the refracting surface.
  • FIG. 6 is a perspective view showing the periphery of the bank BK by partially cutting away the organic EL device of another embodiment.
  • the uneven side surface BSS a random inclined surface
  • the emitted light from the uneven side surface BSS of the translucent electrode 2 can be refracted in various directions. That is, of the light confined in the translucent electrode 2, the light hitting the interface of the low refractive index material film LRM enters the low refractive index material film LRM at a different angle.
  • the uneven side surfaces BSS of the adjacent translucent electrodes 2 are each formed by arranging a plurality of refracting surfaces in the longitudinal direction (y direction).
  • Each refracting surface is an end surface that intersects at various angles in the xy plane where the translucent electrode 2 extends.
  • the bottom surface BOM reflects the light from the light emitting layer 3c in various directions.
  • the translucent electrode 2 portion under the bank is provided with an uneven groove composed of a plurality of planes.
  • the translucent bank BK can change the traveling direction of the light to the light extraction surface to the low refractive index material film LRM4 in various ways and has low refraction in contact with the organic layer 3.
  • Light emitted from the bank interface of the refractive index material film LRM can be taken into the translucent electrode 2 through the low refractive index material film LRM.
  • the concave and convex groove shape can be changed by patterning the translucent electrode 2, and therefore, it can be easily formed only by changing the mask shape.
  • the uneven side surface that refracts the light entering the translucent electrode 2 in various directions. BSS is provided.
  • the light extraction efficiency can be improved and the light is refracted to the adjacent light emitting area, so that the non-light emitting portion between the colors can be made inconspicuous.
  • the light transmissive electrode 2 is arranged so that the light totally reflected at the interface between the light extraction side light transmissive substrate 1 and the low refractive index material film LRM is not easily absorbed by the bank BK of the non-light emitting portion. Is provided with an uneven side surface BSS.
  • FIG. 7 is a perspective view showing the periphery of the bank BK by partially cutting away the organic EL device of the modification.
  • the uneven side surface BSS of the translucent electrode 2 under the bank BK is configured as a zigzag inclined surface connected as a plurality of inclined surface groups. It is comprised by the inner surface of each of several through-holes. The propagation light in the translucent electrode 2 may be scattered by the uneven side surface BSSy, and the end surface of the translucent electrode 2 may not be continuous.
  • a plurality of through holes are provided in place of the zigzag grooves separating the two light emitting units between the adjacent light emitting units, so that the light transmissive electrodes 2 are common to the adjacent light emitting units. Therefore, the reflective electrode 4 on the bank BK is separated by providing a slit to prevent a short circuit between adjacent light emitting portions.
  • a hole is formed in the translucent electrode 2 so that the uneven side surface BSSy is formed. May be provided.
  • the plurality of slope groups on the uneven side surface BSS of the translucent electrode 2 may scatter the propagation light in the translucent electrode 2, and for example, the normal direction of the slope group is distributed in a three-dimensional direction. May be formed.
  • a low refractive index material is used as a material on the light extraction side of a non-light-emitting area such as a bank, and the light-transmitting electrode 2 in contact with the non-light-emitting area is used.
  • a concave / convex side surface BSSy is formed by opening a gap between a through-hole or a hole.
  • the translucent substrate 1 a quartz or glass plate, a metal plate or a metal foil, a resin substrate that can be bent, a plastic film, a sheet, or the like is used.
  • a glass plate or a transparent plate made of a synthetic resin such as polyester, polymethacrylate, polycarbonate, or polysulfone is preferable.
  • a synthetic resin substrate it is necessary to pay attention to gas barrier properties. If the gas barrier property of the substrate is too small, the organic EL device may be deteriorated by outside air that has passed through the substrate, which is not preferable. Therefore, a method of securing a gas barrier property by providing a dense silicon oxide film or the like on at least one surface of the synthetic resin substrate is also a preferable method.
  • a sealing can for covering and sealing the light emitting portions juxtaposed in a strip shape of the organic EL device and the surrounding banks may be provided.
  • a light extraction film (not shown) may be attached to the outer surface of the substrate 1 so as to cover the light emitting portion.
  • the organic layer is a light emitting laminate, but the light emitting laminate can also be configured by laminating inorganic material films.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

An organic EL device is provided with: an insulating bank that is arranged on a translucent substrate; a translucent electrode that is arranged on the translucent substrate and that is in contact with the bank; an organic layer that is formed on the translucent electrode and that includes a light-emitting layer; and a reflective electrode that is formed on the organic layer. The bank is made from a translucent material having a refractive index that is equal to or less than the refractive index of the translucent electrode and comprises a film of a material having a low refractive index, said film being in contact with the translucent electrode and the translucent substrate. The translucent electrode comprises an uneven side surface that is in contact with the film of a material having a low refractive index and that intersects the main surface of the translucent substrate.

Description

有機エレクトロルミネッセンスデバイスOrganic electroluminescence device
 本発明は、少なくとも1つの有機エレクトロルミネッセンス素子を含む有機エレクトロルミネッセンスデバイス(以下、有機ELデバイスと称する)に関する。 The present invention relates to an organic electroluminescence device (hereinafter referred to as an organic EL device) including at least one organic electroluminescence element.
 有機エレクトロルミネッセンス素子は、例えば、透明ガラス基板上に陽極、発光層を含む有機層及び陰極を順次積層して構成され、陽極及び陰極を介して有機層への電流注入により、エレクトロルミネッセンス(以下、ELと称する)を発現する発光素子である。発光層からの発光光は基板側の電極を透明とすることによりこの透明電極と基板を介して取り出される。ところが、発光層からの発光光の一部は透明電極-ガラス界面間及びガラス-空気界面間での全反射により閉じ込められて消衰する故に、発光層からの発光光のうち約20%程度の光しか外部に取り出すことができない。 The organic electroluminescence element is configured by, for example, sequentially laminating an organic layer including an anode, a light emitting layer, and a cathode on a transparent glass substrate, and electroluminescence (hereinafter, referred to as “electroluminescence” by injecting current into the organic layer through the anode and the cathode). EL element). The emitted light from the light emitting layer is taken out through the transparent electrode and the substrate by making the electrode on the substrate side transparent. However, since a part of the emitted light from the light emitting layer is trapped and extinguished by total reflection between the transparent electrode-glass interface and between the glass-air interface, about 20% of the light emitted from the light emitting layer is about 20%. Only light can be taken out.
 特許文献1は、光取り出し側の透明基板上の有機層を区画するバンク(土手)を透明材料で構成し、透光性バンク内を伝搬する光を視認方向の透明基板側に取り出す反射部を設けて光取り出し効率を高めた技術を開示している。 In Patent Document 1, a bank (bank) that partitions an organic layer on a transparent substrate on the light extraction side is made of a transparent material, and a reflection unit that extracts light propagating in the light-transmitting bank to the transparent substrate side in the viewing direction. It discloses a technology that is provided to increase the light extraction efficiency.
特開2005-310591号公報Japanese Patent Laid-Open No. 2005-310591
 特許文献1の技術においては、透光性バンク側面に接する発光層の光をバンクに取り出すけれども、バンク内で伝搬する光がバンク内で減衰してしまうという問題があった。 In the technique of Patent Document 1, although light from the light emitting layer in contact with the side surface of the translucent bank is taken out into the bank, there is a problem that light propagating in the bank is attenuated in the bank.
 そこで、本発明では、透明電極を伝搬する光の取り出し効率を高めることができる有機ELデバイスを提供することが課題の一例としてあげられる。 Therefore, in the present invention, providing an organic EL device that can increase the extraction efficiency of light propagating through the transparent electrode is an example of a problem.
 本発明の有機ELデバイスは、透光性基板と前記透光性基板上に担持された少なくとも1つの有機EL素子とを有する有機ELデバイスであって、
 前記有機EL素子は、前記透光性基板上に配置された絶縁性のバンクと、前記透光性基板上に配置され前記バンクに接する透光性電極と、前記透光性電極上に形成され発光層を含む有機層と、前記有機層上に形成された反射電極と、を含み、
 前記バンクは、前記透光性電極の屈折率と同等以下の低い屈折率を有する透光性材料からなり前記透光性電極及び前記透光性基板に接触する低屈折率材料膜を有し、
 前記透光性電極は、前記低屈折率材料膜に接しかつ前記透光性基板の主面に対して交叉する凹凸側面を有することを特徴とする。
The organic EL device of the present invention is an organic EL device having a translucent substrate and at least one organic EL element carried on the translucent substrate,
The organic EL element is formed on the insulating bank disposed on the translucent substrate, the translucent electrode disposed on the translucent substrate and in contact with the bank, and the translucent electrode. An organic layer including a light emitting layer, and a reflective electrode formed on the organic layer,
The bank has a low refractive index material film that is made of a light transmissive material having a low refractive index equal to or lower than the refractive index of the light transmissive electrode and is in contact with the light transmissive electrode and the light transmissive substrate.
The translucent electrode has an uneven side surface that is in contact with the low refractive index material film and intersects the main surface of the translucent substrate.
図1は本発明の実施例の有機ELデバイスの平面図である。FIG. 1 is a plan view of an organic EL device according to an embodiment of the present invention. 図2は図1中のC-C線に沿った断面図である。FIG. 2 is a sectional view taken along the line CC in FIG. 図3は図1に示す有機ELデバイスの発光部の積層構成を模式的に示す概略断面図である。FIG. 3 is a schematic cross-sectional view schematically showing a laminated structure of the light emitting portion of the organic EL device shown in FIG. 図4は図1に示す有機ELデバイスの一部を示す拡大部分断面図である。FIG. 4 is an enlarged partial sectional view showing a part of the organic EL device shown in FIG. 図5は図1に示す有機ELデバイスにおける隣接する透光性電極とその間の低屈折率材料膜を示す部分拡大平面図である。FIG. 5 is a partially enlarged plan view showing adjacent translucent electrodes in the organic EL device shown in FIG. 1 and a low refractive index material film therebetween. 図6は本発明の他の実施例の有機ELデバイスの一部切り欠き斜視図である。FIG. 6 is a partially cutaway perspective view of an organic EL device according to another embodiment of the present invention. 図7は1つの変形例の有機ELデバイスの一部切り欠き斜視図である。FIG. 7 is a partially cutaway perspective view of an organic EL device according to one modification.
 以下に本発明による実施例を図面を参照しつつ説明する。 Embodiments according to the present invention will be described below with reference to the drawings.
 図1において、有機ELデバイスOELDは、ガラスや樹脂などの光透過性平板の基板1上に複数のバンクBKによって区切られて、y方向に伸長するストリップ状の複数の有機EL素子OELEを含んでいる。複数の有機EL素子OELEは互いに並置され、例えば、赤色発光R、緑色発光G及び青色発光Bの互いに異なる発光色を呈する。RGB発光色の有機EL素子を一組としてx方向に組毎に並べられている。 In FIG. 1, an organic EL device OELD includes a plurality of strip-shaped organic EL elements OELE which are partitioned by a plurality of banks BK on a light-transmitting flat substrate 1 such as glass or resin and extend in the y direction. Yes. The plurality of organic EL elements OELE are juxtaposed with each other, for example, exhibiting different emission colors of red light emission R, green light emission G, and blue light emission B. The organic EL elements of RGB emission colors are arranged as a set in the x direction for each set.
 図2に示すように、有機ELデバイスの有機EL素子の各々は、バンクBK間の基板1上に、透光性電極2、発光層を含む有機層3、反射電極4が積層されて構成される。この有機ELデバイスは、透光性電極2と反射電極4との間に電圧を印加することにより有機層3において生成される光を基板1の表面から取り出す所謂ボトムエミッション型の有機ELパネルである。バンクBKは、透光性電極2に接する低屈折率材料膜LRMとその上に形成されたバンク本体BKBとからなる。バンク本体BKBは誘電体材料から形成される。低屈折率材料膜LRMは、透光性電極2の屈折率と同等以下の低い屈折率を有する透光性誘電体材料から形成されている。低屈折率材料膜LRMは、透光性電極2に接触する底面BOM1と透光性基板1に接触する底面BOM2を有する。低屈折率材料膜LRMは、透光性電極2上にて発光層3cの発光光の波長の1/4以上の膜厚を有する。当該波長の1/4未満であると当該発光光が低屈折率材料膜LRMをそのまま透過してしまうからである。なお、本明細書において、「屈折率が同等」とは、一方の屈折率と他方の屈折率との差が0.3未満、好ましくは0.2以下、とりわけ好ましくは0.1以下であることをいう。また屈折率が「低い」又は「高い」とは、測定上差が生じる程度に「低く」又は「高」ければよいが、実際上は0.1を超えて、好ましくは0.2を超えて、より好ましくは0.3以上、更に好ましくは0.4以上、とりわけ好ましくは0.5以上差があって低い又は高いことを示す。 As shown in FIG. 2, each of the organic EL elements of the organic EL device is configured by laminating a translucent electrode 2, an organic layer 3 including a light emitting layer, and a reflective electrode 4 on a substrate 1 between banks BK. The This organic EL device is a so-called bottom emission type organic EL panel that takes out light generated in the organic layer 3 from the surface of the substrate 1 by applying a voltage between the translucent electrode 2 and the reflective electrode 4. . The bank BK includes a low refractive index material film LRM that is in contact with the translucent electrode 2 and a bank body BKB formed thereon. The bank body BKB is formed from a dielectric material. The low refractive index material film LRM is formed of a light transmissive dielectric material having a low refractive index equal to or lower than the refractive index of the light transmissive electrode 2. The low refractive index material film LRM has a bottom surface BOM1 that contacts the translucent electrode 2 and a bottom surface BOM2 that contacts the translucent substrate 1. The low-refractive index material film LRM has a film thickness on the translucent electrode 2 that is ¼ or more of the wavelength of the light emitted from the light-emitting layer 3c. This is because the emitted light passes through the low refractive index material film LRM as it is when the wavelength is less than ¼ of the wavelength. In the present specification, “equivalent refractive index” means that the difference between one refractive index and the other refractive index is less than 0.3, preferably 0.2 or less, particularly preferably 0.1 or less. That means. Further, the refractive index “low” or “high” may be “low” or “high” to such an extent that a difference in measurement occurs, but in practice, it exceeds 0.1, preferably exceeds 0.2. More preferably 0.3 or more, still more preferably 0.4 or more, particularly preferably 0.5 or more, indicating a low or high difference.
 陽極を構成する複数の透光性電極2は、それぞれ帯状をなしており、基板1上においてy方向に沿って伸長し、互いに一定間隔おいてx方向に平行に並置されている。 The plurality of translucent electrodes 2 constituting the anode each have a band shape, extend along the y direction on the substrate 1, and are juxtaposed in parallel with each other at a constant interval in the x direction.
 基板1及び透光性電極2の端縁上にはこれらを覆うようにバンクBKがy方向に沿って伸長して形成されている。バンクBKには、各々がy方向に伸張する長方形の開口部が形成されている。開口部の各々に有機層3が配置されている。有機層3は、バンクBKによって互いに隔てられた状態で並置されて、バンクBKによって隔てられた複数の発光領域を区画している。バンクBKは反射電極4の少なくとも一部分により覆われている。 On the edges of the substrate 1 and the translucent electrode 2, a bank BK is formed extending along the y direction so as to cover them. In the bank BK, rectangular openings each extending in the y direction are formed. An organic layer 3 is disposed in each of the openings. The organic layer 3 is juxtaposed in a state of being separated from each other by the bank BK, and partitions a plurality of light emitting regions separated by the bank BK. The bank BK is covered with at least a part of the reflective electrode 4.
 図3に示すように、バンクBKの各開口部内における透光性電極2上には、有機層3として、正孔注入層3a、正孔輸送層3b、発光層3c、電子輸送層3d及び電子注入層3eが順に積層されている。透光性電極2と反射電極4の間に挟持有機層3は発光積層体であり、これら積層構成に限定されることなく、例えば発光層3cと電子輸送層3dの間に正孔阻止層(図示せず)を追加するなど、少なくとも発光層を含み、或いは兼用できる電荷輸送層を含む積層構成であってもよい。有機層3は、上記積層構造から正孔輸送層3bを省いて構成しても、正孔注入層3aを省いて構成しても、正孔注入層3aと電子輸送層3dを省いて構成してもよい。 As shown in FIG. 3, on the translucent electrode 2 in each opening of the bank BK, as the organic layer 3, a hole injection layer 3a, a hole transport layer 3b, a light emitting layer 3c, an electron transport layer 3d, and an electron The injection layer 3e is laminated in order. The organic layer 3 sandwiched between the translucent electrode 2 and the reflective electrode 4 is a light emitting laminated body, and is not limited to these laminated structures. For example, a hole blocking layer (between the light emitting layer 3c and the electron transporting layer 3d ( For example, a layered structure including at least a light emitting layer or a charge transport layer that can also be used may be used. The organic layer 3 may be configured by omitting the hole transport layer 3b, the hole injection layer 3a, or the hole injection layer 3a and the electron transport layer 3d from the stacked structure. May be.
 例えば、発光層3cの発光材料としては、例えば、蛍光材料や燐光材料など、任意の公知の発光材料が適用可能である。 For example, as the light emitting material of the light emitting layer 3c, any known light emitting material such as a fluorescent material or a phosphorescent material can be applied.
 青色発光を与える蛍光材料としては、例えば、ナフタレン、ペリレン、ピレンなどが挙げられる。緑色発光を与える蛍光材料としては、例えば、キナクリドン誘導体、クマリン誘導体、Alq3(tris (8-hydroxy-quinoline) aluminum) などのアルミニウム錯体などが挙げられる。黄色発光を与える蛍光材料としては、例えば、ルブレン誘導体などが挙げられる。赤色発光を与える蛍光材料としては、例えば、DCM(4-(dicyanomethylene)-2-methyl-6-(p-dimethylaminostyryl)-4H-pyran)系化合物、ベンゾピラン誘導体、ローダミン誘導体などが挙げられる。燐光材料としては、例えば、イリジウム、白金、ルテニウム、ロジウム、パラジウムの錯体化合物などが挙げられる。燐光材料として、具体的には、トリス(2-フェニルピリジン)イリジウム(所謂、Ir(ppy)3)、トリス(2-フェニルピリジン)ルテニウムなどが挙げられる。 Examples of fluorescent materials that emit blue light include naphthalene, perylene, and pyrene. Examples of fluorescent materials that give green light emission include quinacridone derivatives, coumarin derivatives, and aluminum complexes such as Alq3 (tris (8-hydroxy-quinoline) aluminum). Examples of fluorescent materials that give yellow light include rubrene derivatives. Examples of fluorescent materials that give red light emission include DCM (4- (dicyanomethylene) -2-methyl-6- (p-dimethylaminostyryl) -4H-pyran) compounds, benzopyran derivatives, rhodamine derivatives, and the like. Examples of the phosphorescent material include iridium, platinum, ruthenium, rhodium, and palladium complex compounds. Specific examples of the phosphorescent material include tris (2-phenylpyridine) iridium (so-called Ir (ppy) 3), tris (2-phenylpyridine) ruthenium, and the like.
 このように、赤、緑、青の発光色をそれぞれ発する有機層3は、平行に繰り返し配置されており、光取り出し面となる基板1の表面からは、赤、緑、青の光が任意の割合で混色されて単一の発光色として認識される光が放出される。 In this way, the organic layers 3 that emit red, green, and blue emission colors are repeatedly arranged in parallel, and red, green, and blue light are arbitrarily emitted from the surface of the substrate 1 that serves as a light extraction surface. Light that is mixed in proportion and recognized as a single emission color is emitted.
 有機層3を成膜する手法として、スパッタリング法や真空蒸着法などの乾式塗布法や、スクリーン印刷、スプレー法、インクジェット法、スピンコート法、グラビア印刷、ロールコータ法などの湿式塗布法が知られている。例えば、正孔注入層、正孔輸送層、発光層を湿式塗布法で膜厚を均一に成膜して、電子輸送層及び電子注入層を、それぞれ乾式塗布法で膜厚を均一に順次成膜してもよい。また、すべての機能層を湿式塗布法で膜厚を均一に順次成膜してもよい。 Known methods for forming the organic layer 3 include dry coating methods such as sputtering and vacuum deposition, and wet coating methods such as screen printing, spraying, ink jetting, spin coating, gravure printing, and roll coater. ing. For example, the hole injection layer, the hole transport layer, and the light emitting layer are uniformly formed by a wet coating method, and the electron transport layer and the electron injection layer are sequentially formed uniformly by a dry coating method. A film may be formed. Further, all the functional layers may be sequentially formed in a uniform film thickness by a wet coating method.
 発光層3cまでの機能層に正孔を供給する陽極の透光性電極2は、ITO(Indium-tin-oxide)やZnO、ZnO-Al(所謂、AZO)、In-ZnO(所謂、IZO)、SnO-Sb(所謂、ATO)、RuOなどにより構成され得る。さらに、透光性電極2は、発光層から得られる発光波長において少なくとも10%以上の透過率を持つ材料を選択することが好ましい。 The anode translucent electrode 2 for supplying holes to the functional layers up to the light emitting layer 3c includes ITO (Indium-tin-oxide), ZnO, ZnO—Al 2 O 3 (so-called AZO), In 2 O 3 −. It may be composed of ZnO (so-called IZO), SnO 2 —Sb 2 O 3 (so-called ATO), RuO 2 or the like. Furthermore, for the translucent electrode 2, it is preferable to select a material having a transmittance of at least 10% at the emission wavelength obtained from the light emitting layer.
 透光性電極2は通常は単層構造であるが、所望により複数の材料からなる積層構造とすることも可能である。 The translucent electrode 2 usually has a single-layer structure, but it can also have a laminated structure made of a plurality of materials if desired.
 発光層3cまでの機能層に電子を供給する陰極の反射電極4には、限定されないが、例えば、アルミニウム、銀、銅、ニッケル、クロム、金、白金などの金属が使われる。なお、これらの材料は、1種のみで用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。 The cathode reflective electrode 4 that supplies electrons to the functional layers up to the light emitting layer 3c is not limited, and for example, metals such as aluminum, silver, copper, nickel, chromium, gold, and platinum are used. In addition, these materials may be used only by 1 type and may use 2 or more types together by arbitrary combinations and a ratio.
 反射電極4の材料としては、効率良く電子注入を行う為に仕事関数の低い金属が含まれること好ましく、例えば、スズ、マグネシウム、インジウム、カルシウム、アルミニウム、銀などの適当な金属又はそれらの合金が用いられる。具体例としては、マグネシウム-銀合金、マグネシウム-インジウム合金、アルミニウム-リチウム合金などの低仕事関数合金電極が挙げられる。反射電極4の膜厚20nmの銀薄膜は透過率50%を有する。同金属薄膜としての膜厚10nmのAl膜は透過率50%を有する。同金属薄膜としての膜厚20nmのMgAg合金膜は透過率50%を有する。なお、金属薄膜で反射電極4を構成する場合、その膜厚の下限値は5nmあれば導電性を確保することができる。 The material of the reflective electrode 4 preferably includes a metal having a low work function in order to efficiently inject electrons. For example, a suitable metal such as tin, magnesium, indium, calcium, aluminum, silver, or an alloy thereof may be used. Used. Specific examples include low work function alloy electrodes such as magnesium-silver alloy, magnesium-indium alloy, and aluminum-lithium alloy. The silver thin film with a thickness of 20 nm of the reflective electrode 4 has a transmittance of 50%. An Al film having a thickness of 10 nm as the metal thin film has a transmittance of 50%. The 20 nm-thick MgAg alloy film as the metal thin film has a transmittance of 50%. In addition, when the reflective electrode 4 is comprised with a metal thin film, electroconductivity can be ensured if the lower limit of the film thickness is 5 nm.
 反射電極4はスパッタ法や真空蒸着法などにより有機層3上に、単層膜、又は多層膜として形成され得る。 The reflective electrode 4 can be formed as a single layer film or a multilayer film on the organic layer 3 by sputtering or vacuum deposition.
 この有機ELデバイスにおいては、有機層3は透光性電極2及び反射電極4の間に接して挟持されている故に、透光性電極2と反射電極4とを介して有機層3に駆動電圧が印加されることにより、有機層3内の発光層3cにおいて生成された光は透光性電極2を通過して、さらに反射電極4で反射した後に透光性電極2を通過して透光性基板1の表面から取り出される。 In this organic EL device, since the organic layer 3 is sandwiched between the translucent electrode 2 and the reflective electrode 4, a driving voltage is applied to the organic layer 3 via the translucent electrode 2 and the reflective electrode 4. Is applied, the light generated in the light emitting layer 3c in the organic layer 3 passes through the translucent electrode 2 and is further reflected by the reflective electrode 4 and then passes through the translucent electrode 2 to transmit the light. It is taken out from the surface of the conductive substrate 1.
 [有機ELデバイスの動作]
 次に、図4~図6を用いて、上記の有機ELデバイスの動作を説明する。なお、上記実施例と同一符号で示した構成部分は、上記実施例の有機ELデバイスと同様であるので、それらの詳しい説明は省略する。図に示す有機ELデバイスにおいて、ガラス基板1の屈折率をn1=1.5とし、透光性電極2の屈折率をn2=1.8とし、低屈折率材料膜LRMの屈折率をn1=1.5とし、有機層3の屈折率は透光性電極2の屈折率に同等以下であるものとして説明する。
[Operation of organic EL device]
Next, the operation of the organic EL device will be described with reference to FIGS. In addition, since the component shown with the same code | symbol as the said Example is the same as that of the organic EL device of the said Example, those detailed description is abbreviate | omitted. In the organic EL device shown in the figure, the refractive index of the glass substrate 1 is n1 = 1.5, the refractive index of the translucent electrode 2 is n2 = 1.8, and the refractive index of the low refractive index material film LRM is n1 = In the following description, it is assumed that the refractive index of the organic layer 3 is equal to or less than the refractive index of the translucent electrode 2.
 図4に示す有機ELデバイスにおける透光性電極2は、バンクBKと基板1の間において、低屈折率材料膜LRMに接し基板1の主面に対して交叉する斜面群を含む凹凸側面BSSを端面として有する。凹凸側面BSSは、バンクBKの長手方向即ちy方向に沿ってジグザグに延在している。凹凸側面BSSの斜面群は、バンクBKの長手方向に垂直な方向即ちx方向に対して傾斜する斜面を屈折面として含む。 The translucent electrode 2 in the organic EL device shown in FIG. 4 has an uneven side surface BSS including a group of inclined surfaces that are in contact with the low refractive index material film LRM and intersect the main surface of the substrate 1 between the bank BK and the substrate 1. It has as an end face. The uneven side surface BSS extends zigzag along the longitudinal direction of the bank BK, that is, the y direction. The slope group of the concavo-convex side surface BSS includes a slope that is inclined with respect to the direction perpendicular to the longitudinal direction of the bank BK, that is, the x direction, as a refractive surface.
 図4に示すように、発光層3cから出た光L0は透光性電極2(n2=1.8)を通過する。透光性電極2とガラス基板1(n1=1.5)との屈折率差がある故に、ここでは第1臨界角がθc=arcsin(1.5/1.8)であるので入射角±56.44度以上の光は全反射し、±56.44度未満の光L0はガラス基板1へ入る。したがって、透光性電極2とガラス基板1の界面では、±56.44度以上の光L1は透光性電極2のガラス界面と反射電極間に閉じこめられる。なお、ガラス基板1から外部の空気層(屈折率n=1.0)においても全反射が生じ、ここでは第2臨界角がθc=arcsin(1.0/1.5)であるので、入射角±41.8以上の光は全反射し、±41.8度未満の光L0はガラス基板1から放射される。 As shown in FIG. 4, the light L0 emitted from the light emitting layer 3c passes through the translucent electrode 2 (n2 = 1.8). Since there is a difference in refractive index between the translucent electrode 2 and the glass substrate 1 (n1 = 1.5), the first critical angle is θc = arcsin (1.5 / 1.8) here, so that the incident angle ± Light of 56.44 degrees or more is totally reflected, and light L0 of less than ± 56.44 degrees enters the glass substrate 1. Therefore, at the interface between the translucent electrode 2 and the glass substrate 1, the light L1 of ± 56.44 degrees or more is confined between the glass interface of the translucent electrode 2 and the reflective electrode. It should be noted that total reflection also occurs from the glass substrate 1 in the external air layer (refractive index n = 1.0). Here, the second critical angle is θc = arcsin (1.0 / 1.5). Light having an angle of ± 41.8 or more is totally reflected, and light L0 of less than ± 41.8 degrees is emitted from the glass substrate 1.
 図4に示すように、この有機ELデバイスでは、透光性電極2-基板1界面での全反射した光を低屈折率材料膜LRMの界面で全反射するように構成している。発光層3cの或る発光点から透光性電極2へ直接向かう光の中でガラスへの第1臨界角以上の入射角の光L1は全反射される。よって、全反射した光L1はバンクBK下に低屈折率材料膜LRMがあるので、これと透光性電極2界面で同じ角度で全反射して伝搬する。光L1は透光性電極2の低屈折率材料膜LRMと基板1の界面間で全反射を繰り返して、透光性電極2の凹凸側面BSSに達し、低屈折率材料膜LRMへ入り、さらに基板1へと伝播する。光L1が透光性電極2の凹凸側面BSSから低屈折率材料膜LRMに入るので、第2臨界角の角度が立った状態で基板1へ入射する。そのため、図4に示すように透光性電極2端面の光を外部の空気層に取り出す角度に変化を付けることができる。 As shown in FIG. 4, this organic EL device is configured such that light totally reflected at the interface between the transparent electrode 2 and the substrate 1 is totally reflected at the interface of the low refractive index material film LRM. Light L1 having an incident angle greater than or equal to the first critical angle to the glass is totally reflected in the light directed directly from the light emitting point of the light emitting layer 3c to the translucent electrode 2. Therefore, since the totally reflected light L1 has the low refractive index material film LRM below the bank BK, it is totally reflected at the same angle at the interface with the translucent electrode 2 and propagates. The light L1 repeats total reflection between the interface between the low refractive index material film LRM of the translucent electrode 2 and the substrate 1, reaches the uneven side surface BSS of the translucent electrode 2, enters the low refractive index material film LRM, and Propagates to the substrate 1. Since the light L1 enters the low refractive index material film LRM from the concavo-convex side surface BSS of the translucent electrode 2, it enters the substrate 1 with the second critical angle standing. Therefore, as shown in FIG. 4, the angle at which the light at the end face of the translucent electrode 2 is extracted to the external air layer can be changed.
 図5はこの有機ELデバイスの隣接する透光性電極2とその間の低屈折率材料膜LRMを示す部分拡大平面図である。図5に示すように、凹凸側面BSSは、バンクBKの長手方向即ちy方向に沿ってジグザグに延在し、即ちx方向に対して傾斜角の異なる複数の屈折面を含む故に、xz平面において伝搬する光L1が当該屈折面によりy方向に逸れて偏向される。 FIG. 5 is a partially enlarged plan view showing adjacent translucent electrodes 2 of this organic EL device and a low refractive index material film LRM therebetween. As shown in FIG. 5, the concavo-convex side surface BSS extends in a zigzag along the longitudinal direction of the bank BK, that is, the y direction, that is, includes a plurality of refractive surfaces having different inclination angles with respect to the x direction. The propagating light L1 is deflected by being deflected in the y direction by the refracting surface.
 図6は他の実施例の有機ELデバイスを一部切り欠いてバンクBK周辺を示す斜視図である。図6に示すように透光性電極2の斜面群からなる凹凸側面BSSの各斜面面の角度やその向きをランダムに構成しているだけで、他の構成は上記の実施例と同一である。凹凸側面BSSをランダムな傾斜面とすることにより、透光性電極2の凹凸側面BSSからの放射光を様々な方向へ屈折することができる。すなわち、透光性電極2内に閉じ込められる光のうち、低屈折率材料膜LRMの界面に当たる光は、角度をかえて低屈折率材料膜LRMへ進入する。なお、図5に示すように、凹凸側面BSSを、y方向において周期的に各屈折面の角度やその向きを変化させて設定してもよい。 FIG. 6 is a perspective view showing the periphery of the bank BK by partially cutting away the organic EL device of another embodiment. As shown in FIG. 6, only the angles and orientations of the inclined surfaces of the concavo-convex side surface BSS formed of the inclined group of the translucent electrode 2 are randomly configured, and the other configurations are the same as those in the above embodiment. . By making the uneven side surface BSS a random inclined surface, the emitted light from the uneven side surface BSS of the translucent electrode 2 can be refracted in various directions. That is, of the light confined in the translucent electrode 2, the light hitting the interface of the low refractive index material film LRM enters the low refractive index material film LRM at a different angle. In addition, as shown in FIG. 5, you may set the uneven | corrugated side surface BSS by changing the angle of each refractive surface and its direction periodically in ay direction.
 図5及び図6に示すように、隣合う透光性電極2の凹凸側面BSSは、それぞれ長手方向(y方向)に複数の屈折面の配置して結合したものである。各屈折面は、透光性電極2が拡がるxy平面において様々な角度で交差する端面である。これにより、底面BOMは発光層3cのからの光を様々な方向へ光を反射する。換言すれば、バンク下の透光性電極2部分は複数の平面から構成されている凹凸溝が配置されることになる。バンクBKの長手方向に延びる直線状の溝であると当該溝に平行または平行に近い光線を取り出すことが困難なためであり、凹凸溝の間の低屈折率材料膜LRMへ多量の透光性電極伝搬光が散乱されるからである。 As shown in FIGS. 5 and 6, the uneven side surfaces BSS of the adjacent translucent electrodes 2 are each formed by arranging a plurality of refracting surfaces in the longitudinal direction (y direction). Each refracting surface is an end surface that intersects at various angles in the xy plane where the translucent electrode 2 extends. Thereby, the bottom surface BOM reflects the light from the light emitting layer 3c in various directions. In other words, the translucent electrode 2 portion under the bank is provided with an uneven groove composed of a plurality of planes. This is because a straight groove extending in the longitudinal direction of the bank BK makes it difficult to take out light rays that are parallel or nearly parallel to the groove, and a large amount of light is transmitted to the low refractive index material film LRM between the concave and convex grooves. This is because the electrode propagation light is scattered.
 本実施例によれば透光性のバンクBKは、バンクBKへの光を低屈折率材料膜LRM4へ取り出し面へ光の進行方向を様々に変えることができるとともに、有機層3に接する低屈折率材料膜LRMのバンク界面からの発光光を低屈折率材料膜LRMを介して透光性電極2内に取り込むことができる。 According to the present embodiment, the translucent bank BK can change the traveling direction of the light to the light extraction surface to the low refractive index material film LRM4 in various ways and has low refraction in contact with the organic layer 3. Light emitted from the bank interface of the refractive index material film LRM can be taken into the translucent electrode 2 through the low refractive index material film LRM.
 本実施例は透光性電極2のパターンニングで凹凸の溝形状を変えられるので、マスクの形状を変えるだけで、容易に作成することができる。 In the present embodiment, the concave and convex groove shape can be changed by patterning the translucent electrode 2, and therefore, it can be easily formed only by changing the mask shape.
 従来では透光性電極の伝搬光はバンクBKに入ると多くが吸収されるため光の取り出し効率が落ちるが、本実施例では透光性電極2に入る光を様々な方向に屈折させる凹凸側面BSSを設けている。これにより、光の取り出し効率を向上させるとともに、隣の発光エリアにも光を屈折させるので各色間の発光していない部分を目立たないようにすることができる。すなわち、本実施例では、光取り出し側透光性基板1と低屈折率材料膜LRMとの界面で全反射した光を非発光部分のバンクBKで吸収され難くなるように、透光性電極2に凹凸側面BSSを設けている。 Conventionally, a large amount of propagating light from the translucent electrode is absorbed when entering the bank BK, so that the light extraction efficiency is lowered. In this embodiment, however, the uneven side surface that refracts the light entering the translucent electrode 2 in various directions. BSS is provided. As a result, the light extraction efficiency can be improved and the light is refracted to the adjacent light emitting area, so that the non-light emitting portion between the colors can be made inconspicuous. That is, in this embodiment, the light transmissive electrode 2 is arranged so that the light totally reflected at the interface between the light extraction side light transmissive substrate 1 and the low refractive index material film LRM is not easily absorbed by the bank BK of the non-light emitting portion. Is provided with an uneven side surface BSS.
 [変形例]
 図7は変形例の有機ELデバイスを一部切り欠いてバンクBK周辺を示す斜視図である。なお、上記実施例と同一符号で示した構成部分は、上記実施例の有機ELデバイスと同様であるので、それらの詳しい説明は省略する。上記実施例ではバンクBKの下の透光性電極2の凹凸側面BSSを複数の斜面群として連なったジグザグの斜面で構成したが、この変形例では凹凸側面BSSyが透光性電極2を貫通する複数の貫通孔の各々の内側面で構成されている。透光性電極2内の伝搬光が凹凸側面BSSyにて散乱されればよく、透光性電極2の端面が連続していなくともよい。この変形例では隣接する発光部の間で両者を分離するジグザグ溝に代えて複数の貫通孔を設けている故に、隣接する発光部で透光性電極2が共通する。従って、バンクBKの上の反射電極4にスリットを設けて分離し、隣接する発光部の短絡を防止する。このように、隣接する発光部で陰極の反射電極4を分離し、陽極の透光性電極2を一体型にした有機ELデバイスおいては、透光性電極2に穴を開けて凹凸側面BSSyを設けても良い。
[Modification]
FIG. 7 is a perspective view showing the periphery of the bank BK by partially cutting away the organic EL device of the modification. In addition, since the component shown with the same code | symbol as the said Example is the same as that of the organic EL device of the said Example, those detailed description is abbreviate | omitted. In the above-described embodiment, the uneven side surface BSS of the translucent electrode 2 under the bank BK is configured as a zigzag inclined surface connected as a plurality of inclined surface groups. It is comprised by the inner surface of each of several through-holes. The propagation light in the translucent electrode 2 may be scattered by the uneven side surface BSSy, and the end surface of the translucent electrode 2 may not be continuous. In this modification, a plurality of through holes are provided in place of the zigzag grooves separating the two light emitting units between the adjacent light emitting units, so that the light transmissive electrodes 2 are common to the adjacent light emitting units. Therefore, the reflective electrode 4 on the bank BK is separated by providing a slit to prevent a short circuit between adjacent light emitting portions. As described above, in the organic EL device in which the cathode reflective electrode 4 is separated by the adjacent light emitting portion and the anode translucent electrode 2 is integrated, a hole is formed in the translucent electrode 2 so that the uneven side surface BSSy is formed. May be provided.
 また、透光性電極2の凹凸側面BSSの複数の斜面群は、透光性電極2内の伝搬光を散乱させればよく、例えば、斜面群の法線方向が三次元方向に分布するように形成されてもよい。 Further, the plurality of slope groups on the uneven side surface BSS of the translucent electrode 2 may scatter the propagation light in the translucent electrode 2, and for example, the normal direction of the slope group is distributed in a three-dimensional direction. May be formed.
 なお、上記の何れの実施例では、有機ELデバイスおいて、バンクなど非発光エリアの光取り出し側の素材に低屈折率材料を使用し、さらに、その非発光エリアに接する透光性電極2に貫通する溝や孔の隙間をあけ凹凸側面BSSyを形成している。これにより、当該隙間に上記低屈折率材料を充填することにより、透光性電極2部分で全反射をしていた光が凹凸側面BSSyを経て隙間部分にはいると、その屈折角度が変わり基板1へ様々な放射角度で放射させ、透明電極を伝搬する光の光取り出し効率を高めることができる。 In any of the above embodiments, in the organic EL device, a low refractive index material is used as a material on the light extraction side of a non-light-emitting area such as a bank, and the light-transmitting electrode 2 in contact with the non-light-emitting area is used. A concave / convex side surface BSSy is formed by opening a gap between a through-hole or a hole. Thus, by filling the gap with the low refractive index material, if the light totally reflected by the translucent electrode 2 part enters the gap part through the uneven side surface BSSy, the refraction angle changes and the substrate 1 can be emitted at various radiation angles, and the light extraction efficiency of light propagating through the transparent electrode can be increased.
 なお、透光性基板1として、石英やガラスの板、金属板や金属箔、曲げられる樹脂基板、プラスチックフィルムやシートなどが用いられる。特にガラス板や、ポリエステル、ポリメタクリレート、ポリカーボネート、ポリスルホンなどの合成樹脂の透明板が好ましい。合成樹脂基板を使用する場合にはガスバリア性に留意する必要がある。基板のガスバリア性が小さすぎると、基板を通過した外気により有機ELデバイスが劣化することがあるので好ましくない。よって、合成樹脂基板の少なくとも片面に緻密なシリコン酸化膜などを設けてガスバリア性を確保する方法も好ましい方法の一つである。 As the translucent substrate 1, a quartz or glass plate, a metal plate or a metal foil, a resin substrate that can be bent, a plastic film, a sheet, or the like is used. In particular, a glass plate or a transparent plate made of a synthetic resin such as polyester, polymethacrylate, polycarbonate, or polysulfone is preferable. When using a synthetic resin substrate, it is necessary to pay attention to gas barrier properties. If the gas barrier property of the substrate is too small, the organic EL device may be deteriorated by outside air that has passed through the substrate, which is not preferable. Therefore, a method of securing a gas barrier property by providing a dense silicon oxide film or the like on at least one surface of the synthetic resin substrate is also a preferable method.
 また、有機ELデバイスの帯状に並置された発光部とその周りのバンクを覆いこれらを封止する封止缶(図示せず)を設けてもよい。さらに、出力光の取り出し効率を上げるために、基板1の外部面に、発光部を覆うように、これを超える面積で光取り出しフィルム(図示せず)を取り付けてもよい。 Further, a sealing can (not shown) for covering and sealing the light emitting portions juxtaposed in a strip shape of the organic EL device and the surrounding banks may be provided. Furthermore, in order to increase the output light extraction efficiency, a light extraction film (not shown) may be attached to the outer surface of the substrate 1 so as to cover the light emitting portion.
 さらに、上記の何れの実施例では有機層を発光積層体としているが、無機材料膜の積層によっても発光積層体を構成できる。 Furthermore, in any of the above-described embodiments, the organic layer is a light emitting laminate, but the light emitting laminate can also be configured by laminating inorganic material films.
 1 基板
 2 透光性電極
 3 有機層
 3a 正孔注入層
 3b 正孔輸送層
 3c 発光層
 3d 電子輸送層
 3e 電子注入層
 4 反射電極
 BK バンク
 BOM 底面
 LRM 低屈折率材料膜
DESCRIPTION OF SYMBOLS 1 Substrate 2 Translucent electrode 3 Organic layer 3a Hole injection layer 3b Hole transport layer 3c Light emitting layer 3d Electron transport layer 3e Electron injection layer 4 Reflective electrode BK Bank BOM Bottom surface LRM Low refractive index material film

Claims (5)

  1.  透光性基板と前記透光性基板上に担持された少なくとも1つの有機EL素子とを有する有機ELデバイスであって、
     前記有機EL素子は、前記透光性基板上に配置された少なくとも1つの絶縁性のバンクと、前記バンクに接する透光性電極と、前記透光性電極上に形成され発光層を含む有機層と、前記有機層上に形成された反射電極と、を含み、
     前記バンクは、前記透光性電極の屈折率と同等以下の低い屈折率を有する透光性材料からなり前記透光性電極及び前記透光性基板に接触する低屈折率材料膜を有し、
     前記透光性電極は、前記低屈折率材料膜に接しかつ前記透光性基板の主面に対して交叉する凹凸側面を有することを特徴とする有機ELデバイス。
    An organic EL device having a translucent substrate and at least one organic EL element carried on the translucent substrate,
    The organic EL element includes an organic layer including at least one insulating bank disposed on the translucent substrate, a translucent electrode in contact with the bank, and a light emitting layer formed on the translucent electrode. And a reflective electrode formed on the organic layer,
    The bank has a low refractive index material film that is made of a light transmissive material having a low refractive index equal to or lower than the refractive index of the light transmissive electrode and is in contact with the light transmissive electrode and the light transmissive substrate.
    The organic EL device, wherein the translucent electrode has a concavo-convex side surface in contact with the low refractive index material film and intersecting with a main surface of the translucent substrate.
  2.  前記凹凸側面は、前記バンクの長手方向に垂直な方向に対して傾斜する斜面群を含むことを特徴とする請求項1に記載の有機ELデバイス。 2. The organic EL device according to claim 1, wherein the uneven side surface includes a group of slopes inclined with respect to a direction perpendicular to a longitudinal direction of the bank.
  3.  前記凹凸側面は、前記バンクの長手方向に沿って延在することを特徴とする請求項2に記載の有機ELデバイス。 3. The organic EL device according to claim 2, wherein the uneven side surface extends along a longitudinal direction of the bank.
  4.  前記凹凸側面は、前記透光性電極を貫通する孔の内側面であることを特徴とする請求項2に記載の有機ELデバイス。 The organic EL device according to claim 2, wherein the uneven side surface is an inner side surface of a hole penetrating the translucent electrode.
  5.  前記低屈折率材料膜は前記透光性電極上にて前記発光層の発光光の波長の1/4以上の膜厚を有することを特徴とする請求項1に記載の有機ELデバイス。 2. The organic EL device according to claim 1, wherein the low refractive index material film has a film thickness of ¼ or more of the wavelength of the light emitted from the light emitting layer on the translucent electrode.
PCT/JP2012/065370 2012-06-15 2012-06-15 Organic electroluminescence device WO2013186916A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/065370 WO2013186916A1 (en) 2012-06-15 2012-06-15 Organic electroluminescence device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/065370 WO2013186916A1 (en) 2012-06-15 2012-06-15 Organic electroluminescence device

Publications (1)

Publication Number Publication Date
WO2013186916A1 true WO2013186916A1 (en) 2013-12-19

Family

ID=49757777

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/065370 WO2013186916A1 (en) 2012-06-15 2012-06-15 Organic electroluminescence device

Country Status (1)

Country Link
WO (1) WO2013186916A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017530539A (en) * 2014-09-05 2017-10-12 京東方科技集團股▲ふん▼有限公司Boe Technology Group Co.,Ltd. Organic light emitting diode display panel, manufacturing method thereof, and display device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000123978A (en) * 1998-10-20 2000-04-28 Chisso Corp Organic el element and manufacture thereof
JP2002246181A (en) * 2000-12-12 2002-08-30 Fuji Photo Film Co Ltd Organic light-emitting element
JP2006324600A (en) * 2005-05-20 2006-11-30 Toyota Industries Corp Light emitting device and liquid crystal display device
JP2010524153A (en) * 2007-03-30 2010-07-15 ザ・リージェンツ・オブ・ザ・ユニバーシティ・オブ・ミシガン OLED with improved light outcoupling

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000123978A (en) * 1998-10-20 2000-04-28 Chisso Corp Organic el element and manufacture thereof
JP2002246181A (en) * 2000-12-12 2002-08-30 Fuji Photo Film Co Ltd Organic light-emitting element
JP2006324600A (en) * 2005-05-20 2006-11-30 Toyota Industries Corp Light emitting device and liquid crystal display device
JP2010524153A (en) * 2007-03-30 2010-07-15 ザ・リージェンツ・オブ・ザ・ユニバーシティ・オブ・ミシガン OLED with improved light outcoupling

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017530539A (en) * 2014-09-05 2017-10-12 京東方科技集團股▲ふん▼有限公司Boe Technology Group Co.,Ltd. Organic light emitting diode display panel, manufacturing method thereof, and display device
EP3190623B1 (en) * 2014-09-05 2020-05-06 Boe Technology Group Co. Ltd. Organic light-emitting diode display panel, manufacturing method therefor, and display apparatus

Similar Documents

Publication Publication Date Title
JP6074423B2 (en) Organic electroluminescence device
JP6704028B2 (en) OLED display
JP2017054601A (en) Organic el element, organic el display panel using the same, and manufacturing method for organic el display panel
US20140191202A1 (en) Oled micro-cavity structure and method of making
JP2000231985A (en) Organic electroluminescence element
US20130234590A1 (en) Display device and method for manufacturing the same
TW201419615A (en) Thin film transistor array panel and organic light emitting diode display including the same
US9614175B2 (en) Organic light-emitting diode device
US9123682B2 (en) Light-emitting device
WO2013186919A1 (en) Organic electroluminescence device
KR20150070544A (en) Organic Light Emitting Display Device and Method of manufacturing the same
WO2013186916A1 (en) Organic electroluminescence device
JP6484702B2 (en) Light emitting device
KR20140141571A (en) Method for manufacturing light-emitting device, and light-emitting device
CN111584611B (en) Display panel, transparent display panel and manufacturing method thereof
WO2013186918A1 (en) Organic electroluminescence device
US8531101B2 (en) Organic electroluminescent lighting element array and organic electroluminescent lighting element
WO2017029889A1 (en) Organic el panel, illuminating device, and method for manufacturing organic el panel
WO2013186917A1 (en) Organic electroluminescence device
WO2013190621A1 (en) Electroluminescence element
JP6555911B2 (en) Light emitting device
WO2013190622A1 (en) Electroluminescence element
KR100839379B1 (en) Organic light emitting diode display device
WO2014083693A1 (en) Light emitting device
WO2013190623A1 (en) Electroluminescence element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12878852

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12878852

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP