WO2014080477A1 - Light emitting device - Google Patents

Light emitting device Download PDF

Info

Publication number
WO2014080477A1
WO2014080477A1 PCT/JP2012/080196 JP2012080196W WO2014080477A1 WO 2014080477 A1 WO2014080477 A1 WO 2014080477A1 JP 2012080196 W JP2012080196 W JP 2012080196W WO 2014080477 A1 WO2014080477 A1 WO 2014080477A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
refractive index
layer
light emitting
organic functional
Prior art date
Application number
PCT/JP2012/080196
Other languages
French (fr)
Japanese (ja)
Inventor
黒田 和男
秀雄 工藤
浩 大畑
敏治 内田
Original Assignee
パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社 filed Critical パイオニア株式会社
Priority to PCT/JP2012/080196 priority Critical patent/WO2014080477A1/en
Publication of WO2014080477A1 publication Critical patent/WO2014080477A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/858Arrangements for extracting light from the devices comprising refractive means, e.g. lenses

Definitions

  • the present invention relates to a light emitting device having an organic light emitting layer.
  • a light emitting device having an organic light emitting layer as one of the light emitting devices.
  • this light emitting device it is desired to improve the ratio of light emitted to the outside (light extraction efficiency) of the light generated in the organic light emitting layer.
  • Patent Document 1 As a technique for improving the light extraction efficiency, there is a technique described in Patent Document 1.
  • the light emitting device described in Patent Literature 1 includes a substrate, an organic functional layer, a cathode, and an anode.
  • An anode or a cathode is disposed between the substrate and the organic functional layer, and a cathode or an anode is disposed on the opposite side of the substrate from the organic functional layer.
  • Patent Document 1 describes that light extraction efficiency is improved by forming irregularities between the organic functional layer and the anode or between the organic functional layer and the cathode.
  • Patent Document 1 The inventor considered that the technique described in Patent Document 1 has the following problems.
  • the anode or the cathode has an uneven shape. For this reason, a leakage current may occur between the anode and the cathode.
  • An example of a problem to be solved by the present invention is to achieve both light extraction efficiency and reliability of a light emitting device.
  • the invention according to claim 1 includes an organic functional layer including at least a light emitting layer; An optical path changing layer that is disposed on one surface side of the organic functional layer and changes an optical path of light from the light emitting layer; With The optical path changing layer is The base region, The refractive index is different from that of the base region, and the refractive index changing portion disposed in the base region; Including When the peak wavelength of the emission spectrum of the light from the light emitting layer is ⁇ , the dimension of the refractive index changing portion is smaller than ⁇ / 2, The plurality of refractive index changing portions are arranged at equal intervals at a first interval in a first direction parallel to the organic functional layer, and are parallel to the organic functional layer and intersect with the first direction. It is the light-emitting device arrange
  • FIG. 1A is a cross-sectional view of the light emitting device according to the embodiment
  • FIG. 1B is an enlarged view of a portion A in FIG. 1A
  • FIG. 1C is an enlarged view of a B portion in FIG. FIG.
  • It is a top view of the optical path changing layer of the light-emitting device concerning an embodiment.
  • It is a figure which shows an example of the change characteristic of the refractive index in the optical path change layer of the light-emitting device which concerns on embodiment.
  • FIG. 6A is a plan view showing an example of a more specific structure of the light emitting device according to the embodiment
  • FIG. 6B is a cross-sectional view taken along the line BB in FIG. 6A. is there.
  • FIG. 7A is a plan view showing the light emitting layer and the partition wall
  • FIG. 7B is an example of an enlarged view of part A in FIG. 7A
  • FIG. 7C is A in FIG. It is another example of the enlarged view of a part.
  • FIG. 8B are cross-sectional views illustrating a part of the process of manufacturing the light emitting device according to the embodiment. It is sectional drawing which shows the 1st example of an organic functional layer. It is sectional drawing which shows the 2nd example of an organic functional layer.
  • 1 is a cross-sectional view of a light emitting device according to Example 1.
  • FIG. 6 is a cross-sectional view of a light emitting device according to Example 2.
  • FIG. 6 is a cross-sectional view of a light emitting device according to Example 3.
  • FIG. 12 is a cross-sectional view illustrating a part of the process of manufacturing the light-emitting device according to Example 3.
  • FIG. 6 is a cross-sectional view of a light emitting device according to Example 4.
  • FIG. 6 is a cross-sectional view of a light emitting device according to Example 5.
  • FIG. 6 is a cross-sectional view of a light emitting device according to Example 6.
  • FIG. 18A and FIG. 18B are cross-sectional views illustrating a part of the process of manufacturing the light emitting device according to the sixth embodiment.
  • 7 is a cross-sectional view of a light emitting device according to Example 7.
  • FIG. 10 is a cross-sectional view of a light emitting device according to Example 8.
  • FIG. 10 is a cross-sectional view of a light emitting device according to Example 9.
  • FIG. 12 is a sectional view of a light emitting device according to Example 11.
  • FIG. 12 is a sectional view of a light emitting device according to Example 11.
  • FIG. 1A is a cross-sectional view of the light emitting device 100 according to the embodiment
  • FIG. 1B is an enlarged view of a portion A in FIG. 1A
  • FIG. 1C is a view of a B portion in FIG. It is an enlarged view
  • FIG. 2 is a plan view of the optical path changing layer 120 of the light emitting device 100 according to the embodiment.
  • the light emitting device 100 includes an organic EL (Electro Luminescence) element.
  • the light emitting device 100 can be used as a light source of, for example, a display, a lighting device, or an optical communication device.
  • the light emitting device 100 includes an organic functional layer 140 including at least a light emitting layer, an optical path changing layer 120 that is disposed on one surface side of the organic functional layer 140, and changes an optical path of light from the light emitting layer, Is provided.
  • the optical path changing layer 120 includes a base region 122 and a refractive index changing portion 121 having a refractive index different from that of the base region 122 and disposed in the base region 122.
  • the dimension D of the refractive index changing portion 121 is smaller than ⁇ / 2.
  • a plurality of refractive index changing portions 121 are arranged at equal intervals at a first interval in a first direction parallel to the organic functional layer 140, and are parallel to the organic functional layer 140 and intersect with the first direction. They are arranged at equal intervals at second intervals in two directions. Note that the first direction and the second direction are, for example, directions orthogonal to each other. Further, the first interval and the second interval are equal to each other, for example. Examples of such an arrangement of the plurality of refractive index changing sections 121 include a regular lattice arrangement, a staggered lattice arrangement, and an orthorhombic lattice arrangement. Note that the first interval and the second interval may be different from each other.
  • the light emitting device 100 further includes a translucent substrate 110 disposed to face the organic functional layer 140, and a translucent first disposed between the translucent substrate 110 and the organic functional layer 140.
  • positioned on the opposite side to the 1st electrode 130 on the basis of the organic functional layer 140 are provided.
  • the optical path changing layer 120 is disposed between the translucent substrate 110 and the first electrode 130 and emits light from the light emitting device 100 to the outside (that is, the light extraction surface 110a side). Is the translucent substrate 110 side with respect to the optical path changing layer 120.
  • the translucent substrate 110 is a plate-like member made of a translucent material such as glass or resin.
  • the upper surface of the translucent substrate 110 that is, the surface of the translucent substrate 110 opposite to the organic functional layer 140 is a flat light extraction surface 110a.
  • the light extraction surface 110a is in contact with air (refractive index 1) filling the light emission space.
  • the light extraction film may be affixed on the upper surface of the translucent board
  • the first electrode 130 may be a transparent electrode made of a metal oxide conductor such as ITO (Indium Tin Oxide) or IZO (Indium Zinc Oxide). However, the first electrode 130 may be a metal thin film that is thin enough to transmit light.
  • a metal oxide conductor such as ITO (Indium Tin Oxide) or IZO (Indium Zinc Oxide).
  • the first electrode 130 may be a metal thin film that is thin enough to transmit light.
  • the second electrode 150 is a reflective electrode made of a metal film such as Al.
  • the second electrode 150 reflects light traveling from the organic functional layer 140 toward the second electrode 150 toward the translucent substrate 110.
  • the light emitting layer of the organic functional layer 140 When a voltage is applied between the first electrode 130 and the second electrode 150, the light emitting layer of the organic functional layer 140 emits light.
  • the first electrode 130, the base region 122 of the optical path changing layer 120, the refractive index changing portion 121 of the optical path changing layer 120, the translucent substrate 110, and the organic functional layer 140 are all the light emitting layer of the organic functional layer 140. Transmits at least part of the emitted light. Part of the light emitted from the light emitting layer is emitted (extracted) from the light extraction surface 110a of the translucent substrate 110 to the outside of the light emitting device 100 (that is, the light emission space).
  • the optical path changing layer 120 all regions other than the refractive index changing portion 121 are the base region 122.
  • the optical path changing layer 120 may include a region other than the refractive index changing portion 121 and the base region 122.
  • the optical path changing layer 120 is made of, for example, a dielectric material.
  • the optical path changing layer 120 has a plurality of (many) refractive index changing portions 121.
  • the peak wavelength (for example, the maximum peak wavelength) of the emission spectrum of light from the light emitting layer is ⁇
  • the dimension D (FIG. 1C) of each refractive index changing portion 121 is smaller than ⁇ / 2.
  • the dimension D of the refractive index changing portion 121 means the maximum dimension of the outer shape of each refractive index changing portion 121 in plan view.
  • the refractive index changing portion 121 may be spherical, and in this case, the dimension D is the outer diameter of the refractive index changing portion 121.
  • the plurality of refractive index changing portions 121 are arranged at equal intervals at a first interval in the first direction, and are arranged at equal intervals at a second interval in the second direction.
  • the interval between the refractive index changing portions 121 means the center-to-center distance d between adjacent refractive index changing portions 121 (FIG. 1C).
  • the center distance d between adjacent refractive index changing portions 121 is constant.
  • the plurality of refractive index changing portions 121 arranged in this way constitutes a photonic crystal.
  • a part of the light incident on the optical path changing layer 120 is almost equal to the organic functional layer 140 by the photonic crystal composed of the plurality of refractive index changing portions 121.
  • the direction (optical path) is changed in the orthogonal direction. Thereby, this light is radiated to the outside of the light emitting device 100 through the optical path changing layer 120 and the translucent substrate 110.
  • the center-to-center distance d between adjacent refractive index changing portions 121 is preferably ⁇ / 2 or more and ⁇ or less.
  • the dimension of the refractive index changing portion 121 is preferably ⁇ / 10 or more.
  • the refractive index of the refractive index changing portion 121 is smaller than the refractive index of the base region 122.
  • the refractive index difference between the refractive index changing portion 121 and the base region 122 increases as the distance from the boundary between the refractive index changing portion 121 and the base region 122 increases inward. That is, the refractive index of the refractive index changing portion 121 decreases as the distance from the boundary between the refractive index changing portion 121 and the base region 122 increases.
  • FIG. 3 is a diagram illustrating an example of a change characteristic of the refractive index in the optical path changing layer 120. That is, FIG. 3 shows an example of a change characteristic of the refractive index from one end C1 to the other end C2 of the line segment C shown in FIG.
  • the refractive index is constant regardless of the position (region R1 and region R4 in FIG. 3).
  • the refractive index of the boundary between the base region 122 and the refractive index changing portion 121 (the boundary between the region R1 and the region R2 and the boundary between the region R4 and the region R3 in FIG. 3) is the same as the refractive index of the base region 122.
  • the refractive index changing portion 121 gradually decreases as the distance from the boundary between the refractive index changing portion 121 and the base region 122 increases, that is, toward the center of the refractive index changing portion 121 (see FIG. 3). Region R2, region R3).
  • the refractive index of the refractive index changing portion 121 is the same as the refractive index of the base region 122 at the boundary with the base region 122, and gradually decreases as the distance from the boundary increases.
  • the refractive index changing portion 121 is formed by heating a part of the optical path changing layer 120 (base region 122), for example. Therefore, as the material of the optical path changing layer 120, for example, a material whose refractive index is lowered by heating can be used.
  • the material of the optical path changing layer 120 can be a material having a refractive index equal to or higher than the refractive index of the organic functional layer 140 and having a low refractive index when heated. Examples of such materials include phthalocyanine-based or azo-based organic materials used for DVDs or CDs.
  • the material of the optical path changing layer 120 the material used for the organic functional layer 140 may be used, and the refractive index changing portion 121 may be formed by heating a part of the optical path changing layer 120 in a short time.
  • the optical path changing layer 120 is made of a dielectric, for example. By heating a part of the optical path changing layer 120, the molecules are decomposed, and the refractive index of the heated part is lowered.
  • the refractive index changing portion 121 is a portion where the base region 122 is crystallized, and the refractive index of the refractive index changing portion 121 may be larger than the refractive index of the base region 122.
  • the refractive index difference between the refractive index changing portion 121 and the base region 122 increases as the distance from the boundary between the refractive index changing portion 121 and the base region 122 increases inward. . That is, the refractive index of the refractive index changing portion 121 increases as the distance from the boundary between the refractive index changing portion 121 and the base region 122 increases.
  • FIG. 4 is a diagram illustrating another example of the change characteristic of the refractive index in the optical path changing layer 120. That is, FIG.
  • the refractive index is constant regardless of the position (region R1 and region R4 in FIG. 4).
  • the refractive index of the boundary between the base region 122 and the refractive index changing portion 121 is the same as the refractive index of the base region 122.
  • the refractive index changing portion 121 gradually increases as the distance from the boundary between the refractive index changing portion 121 and the base region 122 increases, that is, toward the center of the refractive index changing portion 121 (see FIG. 4).
  • Region R2, region R3 the refractive index of the refractive index changing portion 121 is the same as the refractive index of the base region 122 at the boundary with the base region 122 and gradually increases as the distance from the boundary increases.
  • the material of the optical path changing layer 120 (base region 122)
  • a material whose refractive index is increased by heating can be used as the material of the optical path changing layer 120 (base region 122).
  • the material constituting the optical path changing layer 120 (base region 122) is crystallized.
  • the refractive index of the portion becomes higher than the refractive index of the surrounding portion (that is, the base region 122), and gradually increases as the refractive index of the portion moves away from the base region 122, for example.
  • NPB N, N-di (naphthalene-1-yl) -N, N-diphenyl-benzidine
  • the refractive index changing portion 121 may be a bubble.
  • bubbles can be partially formed in the optical path changing layer 120 by concentrically heating a part of the optical path changing layer 120 (base region 122) in a very short time to evaporate the material of the part.
  • FIG. 5 is a diagram showing still another example of the refractive index change characteristic in the optical path changing layer 120. That is, FIG. 5 shows still another example of the refractive index change characteristic from one end C1 to the other end C2 of the line segment C shown in FIG. For example, in the base region 122, the refractive index is constant regardless of the position (region R1 and region R4 in FIG. 5).
  • the refractive index changes sharply at the boundary between the base region 122 and the refractive index changing portion 121 (the boundary between the region R1 and the region R2 and the boundary between the region R4 and the region R3 in FIG. 4). Since the refractive index changing portion 121 is a bubble, the refractive index of the refractive index changing portion 121 (region R2 and region R3 in FIG. 4) is smaller than the refractive index of the base region 122 and is constant.
  • one surface (the lower surface in FIG. 1) of the translucent substrate 110 and one surface (the upper surface in FIG. 1) of the optical path changing layer 120 are in contact with each other.
  • the other surface (lower surface in FIG. 1) of the optical path changing layer 120 and one surface (upper surface in FIG. 1) of the first electrode 130 are in contact with each other.
  • the other surface (lower surface in FIG. 1) of the first electrode 130 and one surface (upper surface in FIG. 1) of the organic functional layer 140 are in contact with each other.
  • the other surface (lower surface in FIG. 1) of the organic functional layer 140 and one surface (upper surface in FIG. 1) of the second electrode 150 are in contact with each other.
  • another layer may exist between the translucent substrate 110 and the optical path changing layer 120.
  • another layer may exist between the optical path changing layer 120 and the first electrode 130.
  • another layer may exist between the first electrode 130 and the organic functional layer 140.
  • another layer may exist between the organic functional layer 140 and the second electrode 150.
  • FIG. 6A is a plan view showing an example of a more specific structure of the light emitting device 100 according to the embodiment, and FIG. 6B is a cross-sectional view taken along line BB in FIG. 6A. It is. In FIGS. 6B and 6A, the top and bottom are inverted from FIG. 1A.
  • the first electrode 130 constitutes an anode.
  • the plurality of first electrodes 130 each extend in the Y direction in a strip shape. Adjacent first electrodes 130 are spaced apart from each other at a constant interval in the X direction orthogonal to the Y direction.
  • Each of the first electrodes 130 is made of a metal oxide conductor such as ITO or IZO, for example.
  • the refractive index of the first electrode 130 is approximately the same as that of the optical path changing layer 120 (for example, approximately 1.8).
  • a bus line (bus electrode) 170 for supplying a power supply voltage to the first electrode 130 is formed on each surface of the first electrode 130.
  • An insulating film is formed on the optical path changing layer 120 and the first electrode 130.
  • a plurality of stripe-shaped openings each extending in the Y direction are formed.
  • a plurality of partition walls 180 made of an insulating film are formed.
  • Each of the openings formed in the insulating film reaches the first electrode 130, and the surface of each first electrode 130 is exposed at the bottom of the opening.
  • An organic functional layer 140 is formed on the first electrode 130 in each opening of the insulating film.
  • the organic functional layer 140 is configured by stacking a hole injection layer 141, a hole transport layer 142, a light emitting layer 143 (light emitting layers 143R, 143G, 143B), and an electron transport layer 144 in this order.
  • Materials for the hole injection layer 141 and the hole transport layer 142 include aromatic amine derivatives, phthalocyanine derivatives, porphyrin derivatives, oligothiophene derivatives, polythiophene derivatives, benzylphenyl derivatives, compounds in which tertiary amines are linked by fluorene groups, hydrazones. Derivatives, silazane derivatives, silanamine derivatives, phosphamine derivatives, quinacridone derivatives, polyaniline derivatives, polypyrrole derivatives, polyphenylene vinylene derivatives, polythienylene vinylene derivatives, polyquinoline derivatives, polyquinoxaline derivatives, carbon and the like.
  • the light emitting layers 143R, 143G, and 143B are made of a fluorescent organometallic compound that emits red light, green light, and blue light, respectively.
  • the light emitting layers 143R, 143G, and 143B are arranged side by side in a state of being separated from each other by the partition wall portion 180. That is, the organic functional layer 140 is partitioned into a plurality of regions by the partition wall portion 180.
  • An electron transport layer 144 is formed so as to cover the surfaces of the light emitting layers 143R, 143G, and 143B and the partition wall portion 180.
  • a second electrode 150 is formed so as to cover the surface of the electron transport layer 144.
  • the second electrode 150 constitutes a cathode.
  • the second electrode 150 is formed in a band shape.
  • the second electrode 150 is made of a metal such as Al or an alloy having a low work function and high reflectivity.
  • the refractive index of the organic functional layer 140 is approximately the same as that of the first electrode 130 and the optical path changing layer 120 (for example, a refractive index of approximately 1.8).
  • the light emitting layers 143R, 143G, and 143B that emit red, green, and blue light are repeatedly arranged in stripes, and the red, green, and green light is emitted from the surface of the translucent substrate 110 that serves as a light extraction surface.
  • Blue light is mixed at an arbitrary ratio to emit light that is recognized as a single emission color (for example, white).
  • FIG. 7A is a plan view showing the light emitting layers 143R, 143G, and 143B and the partition wall portion 180
  • FIG. 7B is an example of an enlarged view of a portion A in FIG. 7A
  • FIG. These are other examples of the enlarged view of the A section of Fig.7 (a).
  • 7B and 7C the refractive index changing portion 121 of the portion of the optical path changing layer 120 disposed above the light emitting layer 143R is illustrated, and the bus line 170 on the partition wall portion 180 is illustrated. It is shown.
  • the plurality of refractive index changing portions 121 are two-dimensionally dispersed at a uniform interval in the region above each light emitting layer 143R, 143G, 143B. Are arranged.
  • the refractive index change part 121 does not need to be arrange
  • the refractive index changing portion 121 may be disposed not only in the region above the partition wall portion 180, but also in the region above the partition wall portion 180.
  • each of the light emitting layers 143R, 143G, and 143B emits light having different emission spectra.
  • the peak wavelengths ⁇ of the emission spectra of light from the light emitting layers 143R, 143G, and 143B are different from each other.
  • the peak wavelength of the emission spectrum of red light emitted from the light emitting layer 143R is ⁇ R
  • the plurality of refractive index changing portions 121 arranged in the region on the light emitting layer 143R has a dimension of ⁇ R / 10 or more and ⁇ R / 2. Smaller than.
  • the center-to-center distance between adjacent refractive index changing portions 121 is not less than ⁇ R / 2 and not more than ⁇ R.
  • the plurality of refractive index changing portions 121 arranged in the region on the light emitting layer 143G have a dimension of ⁇ G / 10 or more and It is smaller than ⁇ G / 2.
  • the center-to-center distance between adjacent refractive index changing portions 121 is not less than ⁇ G / 2 and not more than ⁇ G.
  • the plurality of refractive index changing portions 121 arranged in the region on the light emitting layer 143B have a size of ⁇ B / 10 or more and It is smaller than ⁇ B / 2.
  • the center-to-center distance between adjacent refractive index changing portions 121 is not less than ⁇ B / 2 and not more than ⁇ B.
  • FIGS. 8A and 8B are cross-sectional views showing a part of this process.
  • an organic material such as phthalocyanine-based, azo-based, or NPB is formed on the lower surface of the translucent substrate 110 to form a portion that becomes the base region 122 in the optical path changing layer 120 (FIG. 8A).
  • the refractive index changing portion 121 is formed at an appropriate timing after the base region 122 is formed. The timing and method for forming the refractive index changing portion 121 will be described later.
  • a light-transmitting conductive film made of a metal oxide conductor such as ITO (Indium Tin Oxide) or IZO (Indium Zinc Oxide) is formed on the lower surface of the optical path changing layer 120 (base region 122) by sputtering or the like.
  • a first electrode 130 is formed by patterning the film by etching.
  • the organic functional layer 140 is formed by depositing an organic material on the lower surface of the first electrode 130.
  • a second electrode 150 is formed by depositing a metal material such as Al in a desired pattern on the lower surface of the organic functional layer 140 by vapor deposition using a mask or the like.
  • bus line 170 and the partition wall portion 180 are formed at appropriate timings as necessary. Further, a sealing layer may be formed on the lower surface of the second electrode 150 as necessary.
  • the refractive index changing portion 121 is formed by heating a part of the optical path changing layer 120 (base region 122) by irradiating light.
  • the wavelength of the light ray to irradiate is shorter than the light emission wavelength of a light emitting layer.
  • a part of the optical path changing layer 120 can be heated to form the refractive index changing portion 121 (FIG. 8B). )).
  • the molecular structure of the material constituting the optical path changing layer 120 is changed by heating a part of the optical path changing layer 120 (base region 122). Or the density distribution of the material constituting the optical path changing layer 120 changes (the density decreases). That is, the material constituting the optical path changing layer 120 is thermally changed. Thereby, the refractive index of the said part falls.
  • the optical path changing layer 120 is configured by heating and cooling a part of the optical path changing layer 120 (base region 122). Crystallization of the material occurs. Thereby, the refractive index of the said part becomes higher than the refractive index of the surrounding part (namely, base region 122).
  • the intensity distribution of the irradiated light is a Gaussian distribution, and the intensity at the center of the irradiation spot of the light is increased. For this reason, the closer to the center of the irradiation spot, the greater the influence on the molecular structure, density distribution, etc. of the material constituting the optical path changing layer 120. Therefore, the refractive index of the refractive index changing unit 121 is gradually reduced or increased toward the center of the irradiation spot, for example.
  • the timing for forming the refractive index changing portion 121 can be any timing after the optical path changing layer 120 (base region 122) is formed.
  • the refractive index changing portion 121 When the refractive index changing portion 121 is formed after the formation of the optical path changing layer 120 (base region 122) and before the formation of the first electrode 130, light is emitted from any surface side of the optical path changing layer 120 (base region 122). It may be irradiated.
  • a translucent substrate is used in order to suppress damage to the first electrode 130 due to light irradiation. Light is irradiated from the 110 side. In any of these cases, the organic functional layer 140 has not yet been formed. For this reason, since it is not necessary to consider the damage to the organic functional layer 140, either a CW laser (continuous wave oscillation operation laser) or a pulse laser may be used.
  • the refractive index changing portion 121 may be formed after the sealing is completed and the light emitting device 100 having a panel structure is constructed. In this case, light is irradiated from the translucent substrate 110 side. In this case, in order to use a CW laser or a pulse laser, it is preferable to consider that heat is not applied to the organic functional layer 140 as much as possible. Alternatively, a femtosecond laser or a nanosecond laser may be used.
  • the light irradiation for forming the refractive index changing portion 121 is not limited to the laser light irradiation.
  • the refractive index changing portion 121 can also be formed by allowing light having a single wavelength other than a laser to pass through a mask and condensing with a lens and forming an image on a part of the optical path changing layer 120. Can do.
  • FIG. 9 is a diagram illustrating a first example of the layer structure of the organic functional layer 140.
  • the organic functional layer 140 according to the first example has a structure in which a hole injection layer 141, a hole transport layer 142, a light emitting layer 143, an electron transport layer 144, and an electron injection layer 145 are stacked in this order. That is, the organic functional layer 140 is an organic electroluminescence light emitting layer. Note that instead of the hole injection layer 141 and the hole transport layer 142, one layer having the functions of these two layers may be provided. Similarly, instead of the electron transport layer 144 and the electron injection layer 145, one layer having the functions of these two layers may be provided (see FIG. 6B).
  • the light emitting layer 143 is, for example, a layer that emits red light, a layer that emits blue light, a layer that emits yellow light, or a layer that emits green light.
  • a region having a light emitting layer 143 that emits red light, a region having a light emitting layer 143 that emits green light, and a region having a light emitting layer 143 that emits blue light are repeatedly provided. (See FIG. 6B).
  • the light emitting device 100 emits light in a single light emission color such as white.
  • the light emitting layer 143 may be configured to emit light in a single light emission color such as white by mixing materials for emitting a plurality of colors.
  • FIG. 10 is a diagram illustrating a second example of the layer structure of the organic functional layer 140.
  • FIG. 6 illustrates an example in which the regions separated from each other by the partition wall portion 180 in the organic functional layer 140 emit red light, green light, and blue light, respectively.
  • the light emitting layer 143 of the organic functional layer 140 has a configuration in which the light emitting layers 143a, 143b, and 143c are stacked in this order.
  • the light emitting layers 143a, 143b, and 143c emit light of different colors (for example, red, green, and blue).
  • the light emitting layers 143a, 143b, and 143c emit light at the same time, so that the light emitting device 100 emits light in a single light emission color such as white.
  • the peak wavelength of the emission spectrum of the light (the peak wavelengths ⁇ R, ⁇ G, and ⁇ B described above).
  • the dimension of the refractive index changing portion 121 and the center-to-center distance between adjacent refractive index changing portions 121 are preferably larger than the area ratio of the portion corresponding to the peak wavelength of the other color.
  • the dimensions of the plurality of refractive index changing portions 121 are set to be ⁇ R / 10 or more and smaller than ⁇ R / 2, and adjacent refractions.
  • the area ratios of the portions in which the distance between the centers of the refractive index changing portions 121 is ⁇ R / 2 or more and ⁇ R or less correspond to the peak wavelengths of other colors, and the refractive index changing portions 121 adjacent to the dimensions of the refractive index changing portions 121 are adjacent to each other. It is possible to make it larger than the area ratio of the portion where the center-to-center distance is set.
  • the dimension of the refractive index changing portion 121 is smaller than ⁇ / 2.
  • the plurality of refractive index changing portions 121 are arranged at equal intervals at a first interval in the first direction, and are arranged at equal intervals at a second interval in the second direction.
  • the plurality of refractive index changing portions 121 constitutes a photonic crystal. Therefore, the direction of light reflected at the interface between the first electrode 130 and the translucent substrate 110 or the interface between the translucent substrate 110 and the light emission space (that is, light having a critical angle or more at each interface).
  • the center-to-center distance d between the adjacent refractive index changing portions 121 is not less than ⁇ / 2 and not more than ⁇ , the plurality of refractive index changing portions 121 can function more reliably as a photonic crystal.
  • the refractive index of the refractive index changing portion 121 is smaller than the refractive index of the base region 122.
  • the refractive index changing portion 121 can be formed by heating a part of the optical path changing layer 120.
  • the refractive index changing portion 121 is a portion where the base region 122 is crystallized, and the refractive index of the refractive index changing portion 121 is larger than the refractive index of the base region 122. Accordingly, for example, when a material that is crystallized by heating to increase the refractive index is used as the optical path changing layer 120, the refractive index changing portion 121 can be formed by heating a part of the optical path changing layer 120. it can.
  • the refractive index changing portion 121 is a bubble.
  • the refractive index changing portion 121 can be formed by heating a part of the optical path changing layer 120.
  • the light emitting device 100 includes a light transmissive substrate 110 disposed to face the organic functional layer 140, and a light transmissive first electrode 130 disposed between the light transmissive substrate 110 and the organic functional layer 140. And a second electrode 150 disposed on the side opposite to the first electrode 130 with respect to the organic functional layer 140.
  • the optical path changing layer 120 is disposed between the translucent substrate 110 and the first electrode 130, and the light extraction side that emits light from the light emitting device 100 to the outside (that is, the light extraction surface 110 a side)
  • the light transmitting substrate 110 side with respect to the layer 120 Therefore, the direction of the light from the light emitting layer toward the translucent substrate 110 side can be changed to the direction that can be extracted from the light extraction surface 110a by the photonic crystal including the plurality of refractive index changing portions 121.
  • FIG. 11 is a cross-sectional view of the light emitting device 100 according to the first embodiment.
  • a bottom emission type light emitting device that emits light from the translucent substrate 110 has been described.
  • a top emission type light emitting device is described.
  • the light-emitting device 100 according to Example 1 is different from the light-emitting device 100 according to the above-described embodiment in the points described below, and is configured in the same manner as the light-emitting device 100 according to the embodiment in other points.
  • a light reflecting film 160 is formed on the side opposite to the organic functional layer 140 side of the translucent substrate 110, that is, on the upper surface side of the translucent substrate 110.
  • the light reflecting film 160 is made of a metal film such as Al. Note that the upper surface of the light-transmitting substrate 110 and the lower surface of the light reflecting film 160 may be in contact with each other, or even if another layer exists between the light transmitting substrate 110 and the light reflecting film 160. good.
  • the second electrode 150 is translucent.
  • the second electrode 150 can be, for example, a transparent electrode made of a metal oxide conductor such as ITO or IZO. However, the second electrode 150 may be a metal thin film that is thin enough to transmit light.
  • the lower surface of the second electrode 150 is a light extraction surface 150a.
  • the anode has a work function higher than that of the cathode by selecting a material having a higher work function than that of the cathode or by performing a treatment such as activation.
  • Example 1 a part of the light traveling from the light emitting layer toward the second electrode 150 is radiated from the light extraction surface 150a through the second electrode 150.
  • the light traveling from the light emitting layer toward the first electrode 130 enters the optical path changing layer 120 from the first electrode 130 and then enters the light transmitting substrate 110 from the optical path changing layer 120. reflect. A part of this light is then radiated from the light extraction surface 150a through the transparent substrate 110, the optical path changing layer 120, the first electrode 130, the organic functional layer 140, and the second electrode 150 in this order.
  • the direction of light obliquely incident on the optical path changing layer 120 is changed to a substantially perpendicular direction with respect to the light extraction surface 150 a by the action of the plurality of refractive index changing portions 121.
  • the light extraction efficiency is improved as compared with the case where the plurality of refractive index changing portions 121 do not exist.
  • FIG. 12 is a cross-sectional view of the light emitting device 100 according to the second embodiment.
  • the light reflecting film 160 may be disposed between the translucent substrate 110 and the optical path changing layer 120. Note that the lower surface of the translucent substrate 110 and the upper surface of the light reflecting film 160 may be in contact with each other, or even if another layer exists between the translucent substrate 110 and the light reflecting film 160. good. In this case, the same effect as that of the first embodiment can be obtained.
  • the distance from the light emitting layer to the light reflecting film 160 is an odd multiple of ⁇ / 4 considering the refractive index of the optical path changing layer 120. Accordingly, the light extracted from the light extraction surface 150a after being reflected by the light reflection film 160 and the light extraction surface 150a from the light emitting layer toward the second electrode 150 (without being reflected by the light reflection film 160). Since the phases of the light extracted from each other match each other, it is possible to suppress a decrease in light extraction efficiency due to the cancellation of the light due to the phase shift of each other.
  • FIG. 13 is a cross-sectional view of the light emitting device 100 according to the third embodiment.
  • the light emitting device 100 according to Example 3 is different from the light emitting device 100 according to the above-described embodiment in the points described below, and is configured similarly to the light-emitting device 100 according to the embodiment in other points.
  • the optical path changing layer 120 is disposed not between the translucent substrate 110 and the first electrode 130 but between the organic functional layer 140 and the second electrode 150. That is, the light emitting device 100 includes a light transmissive substrate 110 disposed to face the organic functional layer 140 and a light transmissive first disposed between the light transmissive substrate 110 and the organic functional layer 140. The electrode 130 and the second electrode 150 disposed on the side opposite to the first electrode 130 with respect to the organic functional layer 140 are provided. The optical path changing layer 120 is disposed between the organic functional layer 140 and the second electrode 150, and the light extraction side (that is, the light extraction surface 110a side) that emits light from the light emitting device 100 to the outside is the optical path changing layer. 120 is the light-transmitting substrate 110 side.
  • the optical path changing layer 120 is disposed adjacent to the organic functional layer 140.
  • the optical path changing layer 120 is also disposed adjacent to the second electrode 150.
  • an N-type impurity is introduced into the optical path changing layer 120 so that the voltage can be easily applied from the second electrode 150 to the organic functional layer 140, and the optical path changing layer 120 is a conductive layer.
  • the optical path changing layer 120 is preferably an N-doped layer.
  • Example 3 part of the light traveling from the light emitting layer toward the first electrode 130 is radiated from the light extraction surface 110a through the first electrode 130 and the translucent substrate 110 in this order.
  • the light traveling from the light emitting layer toward the optical path changing layer 120 passes through the optical path changing layer 120 and is then reflected (totally reflected) by the second electrode 150 which is a reflective electrode.
  • a part of this light is emitted from the light extraction surface 110a through the optical path changing layer 120, the organic functional layer 140, the first electrode 130, and the translucent substrate 110 in this order.
  • the direction of light incident obliquely with respect to the optical path changing layer 120 is changed to a substantially perpendicular direction with respect to the light extraction surface 110 a by the action of the plurality of refractive index changing portions 121.
  • the light extraction efficiency is improved as compared with the case where the plurality of refractive index changing portions 121 do not exist.
  • Example 3 the same effect as the above-described embodiment can be obtained.
  • the light passing through the photonic crystal tends to have a narrow band.
  • the light that can be extracted from the light extraction surface 110a without going through the photonic crystal from the light emitting layer has a broad spectrum peculiar to the organic EL.
  • the light reflected by the second electrode 150 passes through the photonic crystal, it becomes a narrow band. Light in which narrow band light is superimposed on light having a broad spectrum is emitted from the light extraction surface 110a.
  • 14A and 14B are cross-sectional views illustrating a part of the process of manufacturing the light emitting device 100 according to the third embodiment.
  • a light-transmitting conductive film made of a metal oxide conductor such as ITO or IZO is formed on the lower surface of the light-transmitting substrate 110 by sputtering or the like, and patterned by etching to form the first electrode 130.
  • the organic functional layer 140 is formed by depositing an organic material on the lower surface of the first electrode 130. If necessary, the bus line 170 and the partition wall portion 180 are formed at appropriate timings.
  • an organic material such as phthalocyanine-based, azo-based, or NPB is formed on the lower surface of the organic functional layer 140 to form a portion that becomes the base region 122 in the optical path changing layer 120.
  • a first material 151 of the second electrode 150 is formed by depositing a metal material such as Al in a desired pattern on the lower surface of the base region 122 in the optical path changing layer 120 by vapor deposition using a mask or the like.
  • a refractive index changing portion 121 is formed in the base region 122 by irradiating the base region 122 of the optical path changing layer 120 with a light beam such as a laser from the first portion 151 side (FIG. 14A).
  • the first portion 151 of the second electrode 150 functions as a mask for suppressing the influence of light rays on the organic functional layer 140.
  • a metal material such as Al is deposited in a desired pattern on the lower surface of the first portion 151 of the second electrode 150 by vapor deposition using a mask or the like to form the second portion 152 of the second electrode 150.
  • FIG. 14B the second electrode 150 having a laminated structure of the first portion 151 and the second portion 152 is formed.
  • the hole formed in the first portion 151 by the irradiation of the light beam is filled with the second portion 152, so that the second electrode 150 can be formed in a desired pattern shape.
  • a sealing layer may be formed on the lower surface of the second electrode 150 as necessary.
  • the first portion 151 is made a uniform film (about 10 nm) thick enough to transmit light, and the laser is condensed and irradiated from above to change the refractive index of the refractive index changing section 121. .
  • the second portion 152 is formed, and a reflective film composed of the first portion 151 and the second portion 152 is formed.
  • the laser irradiation may be performed in a vacuum or in a specific gas. good.
  • FIG. 15 is a cross-sectional view of the light emitting device 100 according to the fourth embodiment.
  • the light emitting device 100 according to the fourth embodiment is different from the light emitting device 100 according to the third embodiment described above (FIG. 13) in the points described below, and is otherwise the same as the light emitting device 100 according to the third embodiment. It is configured.
  • a dielectric layer 190 is disposed between the first portion 151 and the second portion 152 of the second electrode 150.
  • the dielectric layer 190 is made of a light-transmitting material having a high refractive index.
  • the dielectric layer 190 is made of an organic material such as NPB, for example.
  • the first portion 151 is a thin metal film that is thin enough to transmit light.
  • Example 4 a part of the light traveling from the light emitting layer toward the first electrode 130 is radiated from the light extraction surface 110a through the first electrode 130 and the translucent substrate 110 in this order.
  • the light traveling from the light emitting layer toward the optical path changing layer 120 side passes through the optical path changing layer 120, the first portion 151 of the second electrode 150, and the dielectric layer 190 in this order, and then the second portion of the second electrode 150. Reflected at 152. Part of this light is radiated from the light extraction surface 110a through the dielectric layer 190, the first portion 151, the optical path changing layer 120, the organic functional layer 140, the first electrode 130, and the translucent substrate 110 in this order.
  • the same effect as that of the third embodiment can be obtained and the plasmon loss generated by the reflection film can be reduced.
  • FIG. 16 is a cross-sectional view of the light emitting device 100 according to the fifth embodiment.
  • the light emitting device 100 according to the fifth embodiment is different from the light emitting device 100 according to the first embodiment described above (FIG. 11) in the points described below, and is otherwise similar to the light emitting device 100 according to the first embodiment. It is configured.
  • the optical path changing layer 120 is disposed not between the translucent substrate 110 and the first electrode 130 but between the organic functional layer 140 and the second electrode 150.
  • an N-type impurity is introduced into the optical path changing layer 120 so that the voltage can be easily applied from the second electrode 150 to the organic functional layer 140, and the optical path changing layer 120 is a conductive layer.
  • the optical path changing layer 120 is preferably an N-doped layer.
  • the second electrode 150 may be an anode and the first electrode 130 may be a cathode. In this case, it is preferable to introduce a P-type impurity into the optical path changing layer 120 to make the optical path changing layer 120 a P-doped layer.
  • Example 5 a part of the light traveling from the light emitting layer toward the second electrode 150 is radiated from the light extraction surface 150a through the second electrode 150.
  • the light traveling from the light emitting layer toward the first electrode 130 is incident on the translucent substrate 110 from the first electrode 130 and reflected by the light reflecting film 160. A part of this light is then emitted from the light extraction surface 150a through the transparent substrate 110, the first electrode 130, the organic functional layer 140, the optical path changing layer 120, and the second electrode 150 in this order.
  • the direction of light obliquely incident on the optical path changing layer 120 is changed to a substantially perpendicular direction with respect to the light extraction surface 150 a by the action of the plurality of refractive index changing portions 121.
  • the light extraction efficiency is improved as compared with the case where the plurality of refractive index changing portions 121 do not exist.
  • the light reflecting film 160 may be disposed between the translucent substrate 110 and the first electrode 130 as in Example 2. Also in this case, for the same reason as in Example 2, it is preferable that the distance from the light emitting layer to the light reflecting film 160 is an odd multiple of ⁇ / 4.
  • FIG. 17 is a cross-sectional view of the light emitting device 100 according to the sixth embodiment.
  • the light emitting device 100 according to Example 6 is different from the light emitting device 100 according to Example 4 (FIG. 15) in the points described below, and is configured in the same manner as the light emitting device 100 according to Example 4 in other points. ing.
  • the high refractive index dielectric layer 190 made of an organic material such as NPB is disposed between the organic functional layer 140 and the first portion 151.
  • the first portion 151 is a thin metal film that is thin enough to transmit light.
  • the optical path changing layer 120 is disposed between the first portion 151 and the second portion 152.
  • Example 6 a part of the light traveling from the light emitting layer toward the first electrode 130 is radiated from the light extraction surface 110a through the first electrode 130 and the translucent substrate 110 in this order.
  • the light traveling from the light emitting layer toward the dielectric layer 190 side passes through the dielectric layer 190, the first portion 151 of the second electrode 150, and the optical path changing layer 120 in this order, and then the second portion of the second electrode 150. Reflected at 152.
  • a part of this light is emitted from the light extraction surface 110a through the optical path changing layer 120, the first portion 151, the dielectric layer 190, the organic functional layer 140, the first electrode 130, and the translucent substrate 110 in this order.
  • Example 6 the same effect as in Example 4 can be obtained.
  • 18A and 18B are cross-sectional views illustrating a part of the process of manufacturing the light emitting device 100 according to the sixth embodiment.
  • a light-transmitting conductive film made of a metal oxide conductor such as ITO or IZO is formed on the lower surface of the light-transmitting substrate 110 by sputtering or the like, and patterned by etching to form the first electrode 130.
  • the organic functional layer 140 is formed by depositing an organic material on the lower surface of the first electrode 130. If necessary, the bus line 170 and the partition wall portion 180 are formed at appropriate timings.
  • a dielectric layer 190 is formed by depositing an organic material such as NPB on the lower surface of the organic functional layer 140.
  • a first material 151 of the second electrode 150 is formed on the lower surface of the dielectric layer 190 by depositing a metal material such as Al in a desired pattern by vapor deposition using a mask.
  • an organic material such as phthalocyanine-based, azo-based, or NPB is formed on the lower surface of the first portion 151 to form a portion that becomes the base region 122 in the optical path changing layer 120.
  • the refractive index changing portion 121 is formed in the base region 122 by irradiating the base region 122 of the optical path changing layer 120 with a light beam such as a laser from the lower surface side of the optical path changing layer 120 (FIG. 18A).
  • the first portion 151 of the second electrode 150 functions as a mask for suppressing the influence of light rays on the organic functional layer 140.
  • the refractive index changing portion 121 is formed by irradiating the light path changing layer 120 with light rays in a state where the first portion 151 is disposed beyond the light path changing layer 120 as viewed from the light source. The effect of suppressing the influence on the organic functional layer 140 is high.
  • this focusing can be easily performed by focusing the irradiated light beam with the first portion 151 made of a thin film metal as a reference.
  • a metal material such as Al is deposited in a desired pattern on the lower surface of the first portion 151 of the second electrode 150 by vapor deposition using a mask or the like to form the second portion 152 of the second electrode 150.
  • FIG. 18 (b) the second electrode 150 composed of the first portion 151 and the second portion 152 is formed.
  • a sealing layer may be formed on the lower surface of the second portion 152 as necessary.
  • FIG. 19 is a cross-sectional view of the light emitting device 100 according to the seventh embodiment.
  • the light emitting device 100 according to the seventh embodiment is different from the light emitting device 100 according to the sixth embodiment (FIG. 17) in the points described below, and is configured in the same manner as the light emitting device 100 according to the sixth embodiment in other points. ing.
  • the second electrode 150 is a thin metal film that is thin enough to transmit light.
  • the second electrode 150 is made of a single metal thin film disposed between the dielectric layer 190 and the optical path changing layer 120, and is not disposed below the optical path changing layer 120.
  • the lower surface of the optical path changing layer 120 is a light extraction surface 120a.
  • a light reflection film 160 is formed on the upper side of the translucent substrate 110. Note that the end portion of the second electrode 150 is drawn to the outside of the light emitting device 100 at the end portion in the extending direction of the partition wall portion 180 (the front side or the back side in FIG. 19). Can be applied with a voltage.
  • Example 7 a part of the light traveling from the light emitting layer toward the dielectric layer 190 is emitted from the light extraction surface 120a through the dielectric layer 190, the second electrode 150, and the optical path changing layer 120 in this order.
  • part of the light traveling from the light emitting layer toward the first electrode 130 is transmitted through the first electrode 130 and the light-transmitting substrate 110 in this order, and then reflected by the light reflecting film 160, thereby transmitting the light-transmitting substrate 110, The light is emitted from the light extraction surface 120a through the first electrode 130, the organic functional layer 140, the dielectric layer 190, the second electrode 150, and the optical path changing layer 120 in this order.
  • Example 7 the same effect as in Example 6 can be obtained.
  • the light reflecting film 160 may be disposed between the translucent substrate 110 and the first electrode 130. Also in this case, for the same reason as in Example 2, it is preferable that the distance from the light emitting layer to the light reflecting film 160 is an odd multiple of ⁇ / 4. Accordingly, the light extracted from the light extraction surface 120a after being reflected by the light reflection film 160 and the light extraction surface 120a from the light emitting layer toward the optical path changing layer 120 side (without being reflected by the light reflection film 160). Decrease in light extraction efficiency due to cancellation of light extracted from each other can be suppressed.
  • FIG. 20 is a cross-sectional view of the light emitting device 100 according to the eighth embodiment.
  • the light emitting device 100 according to the eighth embodiment is different from the light emitting device 100 according to the first embodiment (FIG. 11) in the points described below, and is otherwise configured in the same manner as the light emitting device 100 according to the first embodiment. ing.
  • the optical path changing layer 120 is disposed on the side opposite to the light extraction side (that is, the light extraction surface 150a side) that emits light from the light emitting device 100 to the outside with the organic functional layer 140 as a reference.
  • the plurality of refractive index changing portions 121 are arranged at equal intervals at a first interval in the first direction, and are arranged at equal intervals at second intervals in the second direction (refractive index changing portion group shown in FIG. 20).
  • 123, 124 That is, a group (refractive index changing section groups 123, 124, etc.) composed of a plurality of refractive index changing sections 121 arranged in a planar manner is arranged in at least two stages.
  • FIG. 21 is a cross-sectional view of the light emitting device 100 according to the ninth embodiment.
  • the light emitting device 100 according to the ninth embodiment is different from the light emitting device 100 according to the sixth embodiment (FIG. 17) in the points described below, and is configured in the same manner as the light emitting device 100 according to the sixth embodiment in other points. ing.
  • the first portion 151 of the second electrode 150 is adjacent to the organic functional layer 140. That is, the thin film constituting the cathode is adjacent to the organic functional layer 140.
  • the optical path changing layer 120 is adjacent to the first portion 151.
  • the optical path changing layer 120 is the light extraction side (that is, the light extraction surface 110a side) that emits light from the light emitting device 100 to the outside with the organic functional layer 140 as a reference. Located on the opposite side.
  • the configuration of the optical path changing layer 120 is the same as that of the eighth embodiment.
  • FIG. 22 is a cross-sectional view of the light emitting device 100 according to the tenth embodiment.
  • a group of a plurality of refractive index changing portions 121 arranged in a planar manner may be arranged in three stages. That is, the light emitting device 100 includes three stages of refractive index changing portion groups 123, 124, and 125.
  • the greater the number of steps of the refractive index changing portion group the better the light reflection efficiency. Therefore, in the case of the configuration of FIG. 22, the light reflection efficiency can be reliably increased as compared with the case where the refractive index changing portion group has two stages.
  • a plurality of refractive index changing portions 121 are arranged at equal intervals at a third interval. That is, a plurality of refractive index changing portion groups are arranged at equal intervals in the vertical direction.
  • the reflective electrode (for example, the second portion 152 of the second electrode 150) may also cover the partition wall portion 180.
  • FIG. 23 is a cross-sectional view of the light emitting device 100 according to the eleventh embodiment.
  • a group of a plurality of refractive index changing sections 121 arranged in a planar manner may be arranged in four or more stages (for example, six stages). That is, the light emitting device 100 includes six stages of refractive index changing portion groups 123, 124, 125, 126, 127, and 128. By arranging the refractive index changing portion groups in four or more stages, the light reflection efficiency can be further increased.
  • the partition wall portion 180 may be buried in the optical path changing layer 120. The same applies to the other embodiments.
  • FIG. 24 is a cross-sectional view of the light emitting device 100 according to the twelfth embodiment.
  • the light emitting device 100 according to Example 12 is different from the light emitting device 100 according to Example 9 (FIG. 21) in the points described below, and is configured in the same manner as the light emitting device 100 according to Example 9 in other points. ing.
  • the second electrode 150 does not have the first portion 151 (FIG. 21) and is disposed only on the lower surface side of the optical path changing layer 120. According to the twelfth embodiment, the same effect as the ninth embodiment can be obtained.
  • FIG. 25 is a cross-sectional view of the light emitting device 100 according to Example 13.
  • the light-emitting device 100 according to Example 13 is different from the light-emitting device 100 according to Example 11 (FIG. 23) in the points described below, and is otherwise configured in the same manner as the light-emitting device 100 according to Example 11. ing.
  • the plurality of refractive index changing portions 121 are in the first direction, the second direction, and the organic functional layer 140 in the region R11 having the curved surface S11 facing the light extraction side (that is, the light extraction surface 110a side). They are arranged at equal intervals in the direction perpendicular to the surface.
  • the surface facing the light extraction surface 110a in the region R11 is a plane parallel to the light extraction surface 110a, the interface between the first electrode 130 and the translucent substrate 110, the translucent substrate, or the like.
  • the light reflected at a certain angle at the interface between the light emitting space 110 and the light emitting space is reflected at the same angle by the second portion 152 of the second electrode 150 and attenuates while repeating these reflections.
  • a plurality of refractive index changing portions 121 are arranged at regular intervals in a region R11 having a curved surface S11 facing the light extraction surface 110a.
  • the light reflected at a certain angle at the interface between the first electrode 130 and the translucent substrate 110 or at the interface between the translucent substrate 110 and the light emission space is composed of the plurality of refractive index changing portions 121. Since light can be reflected at different angles depending on the photonic crystal, light extraction efficiency can be improved.
  • the first portion 151 of the second electrode 150 may cover a portion of the partition wall portion 180 that protrudes from the organic functional layer 140 toward the second portion 152 side.
  • the first portion 151 and the second portion 152 of the second electrode 150 may be connected to each other through the through hole 210.
  • FIG. 26 is a cross-sectional view of the light emitting device 100 according to Example 14.
  • the light-emitting device 100 according to Example 14 is different from the light-emitting device 100 according to Example 3 (FIG. 13) in the points described below, and is otherwise configured in the same manner as the light-emitting device 100 according to Example 3. ing.
  • the optical path changing layer 120 is the light extraction side (that is, the light extraction surface 110a side) that emits light from the light emitting device 100 to the outside with the organic functional layer 140 as a reference. Located on the opposite side. A plurality of refractive index changing portions 121 are arranged in the base region 122 in a three-dimensional manner with a uniform interval therebetween.
  • the group of refractive index changing sections 121 (refractive index changing section groups 123, 124, etc.) arranged in a planar manner is arranged in at least two or more stages. Has been placed.
  • the organic functional layer 140 can be more reliably secured in the same manner as in the ninth embodiment.
  • Light can be reflected in a direction that is substantially orthogonal (thus, a direction that is also substantially orthogonal to the light extraction surface 110a). Thereby, the light extraction efficiency can be increased.
  • FIG. 27 is a cross-sectional view of the light emitting device 100 according to Example 15.
  • the light emitting device 100 according to Example 15 is different from the light emitting device 100 according to the embodiment (FIG. 1) in the points described below, and is otherwise configured in the same manner as the light emitting device 100 according to the embodiment. .
  • the translucent substrate 110 is disposed to face the organic functional layer 140.
  • the partition wall 180 partitions the organic functional layer 140 into a plurality of regions.
  • the plurality of refractive index changing portions 121 are in the first direction in the region R12 that narrows toward the translucent substrate 110 side. They are arranged at equal intervals in the second direction and the direction perpendicular to the organic functional layer 140.
  • the plurality of refractive index changing portions 121 By arranging the plurality of refractive index changing portions 121 in this way, among the light reflected at the interface between the optical path changing layer 120 and the translucent substrate 110 or the interface between the translucent substrate 110 and the light emission space, In addition, it is possible to increase the probability that the optical path of the light entering the region above the partition wall portion 180 can be changed to the direction extracted from the light extraction surface 110a, that is, the direction orthogonal to the light extraction surface 110a as much as possible.
  • region R12 an isosceles trapezoidal cross-sectional region (mesa-shaped region) is illustrated which is wide on the partition wall 180 side and narrow on the translucent substrate 110 side.
  • region R12 may be a triangular cross-sectional region (triangular columnar region) or a polygonal pyramid region in which the partition wall 180 side is the base and the light-transmitting substrate 110 side is the apex.
  • the physical distance using the wavelength such as ⁇ / 4 as a parameter takes into account the refractive index of each part of the light emitting device. That is, for example, ⁇ / 4 in a material having a refractive index of 1.8 is ⁇ / (4 ⁇ 1.8) as an actual distance.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

This light emitting device (100) comprises: an organic functional layer (140) including a light emitting layer; and an optical-path changing layer (120) that changes the optical path of light from the light emitting layer. The optical-path changing layer (120) includes a plurality of refractive-index changing parts (121). If the peak wavelength of the light emission spectrum of the light from the light emitting layer is defined as λ, the size of each refractive-index changing part (121) is smaller than λ/2. The plurality of refractive-index changing parts (121) are arranged so as to be evenly spaced by a first interval in a first direction that is parallel to the organic functional layer (140), and are arranged so as to be evenly spaced by a second interval in a second direction that is parallel to the organic functional layer (140) and that intersects the first direction.

Description

発光装置Light emitting device
 本発明は、有機発光層を有する発光装置に関する。 The present invention relates to a light emitting device having an organic light emitting layer.
 発光装置の1つに有機発光層を有する発光装置がある。この発光装置においては、有機発光層で発生した光のうち外部に放射される光の割合(光取り出し効率)を向上することが望まれている。 There is a light emitting device having an organic light emitting layer as one of the light emitting devices. In this light emitting device, it is desired to improve the ratio of light emitted to the outside (light extraction efficiency) of the light generated in the organic light emitting layer.
 光取り出し効率の向上を目的とした技術としては、特許文献1に記載のものがある。特許文献1に記載された発光装置は、基板と、有機機能層と、陰極及び陽極と、を有している。基板と有機機能層との間には陽極又は陰極が配置され、有機機能層を基準として基板とは反対側には陰極又は陽極が配置されている。特許文献1には、有機機能層と陽極との間、又は、有機機能層と陰極との間に凹凸を形成することにより、光取り出し効率が向上する旨の記載がある。 As a technique for improving the light extraction efficiency, there is a technique described in Patent Document 1. The light emitting device described in Patent Literature 1 includes a substrate, an organic functional layer, a cathode, and an anode. An anode or a cathode is disposed between the substrate and the organic functional layer, and a cathode or an anode is disposed on the opposite side of the substrate from the organic functional layer. Patent Document 1 describes that light extraction efficiency is improved by forming irregularities between the organic functional layer and the anode or between the organic functional layer and the cathode.
特開2002-260868号公報JP 2002-260868 A
 本発明者は、特許文献1に記載の技術では、以下に説明する問題があると考えた。
 特許文献1の技術では、陽極又は陰極が凹凸形状を有する。このため、陽極と陰極との相互間でリーク電流が発生する可能性がある。
The inventor considered that the technique described in Patent Document 1 has the following problems.
In the technique of Patent Document 1, the anode or the cathode has an uneven shape. For this reason, a leakage current may occur between the anode and the cathode.
 本発明が解決しようとする課題としては、発光装置の光取り出し効率と信頼性との両立を図ることが一例として挙げられる。 An example of a problem to be solved by the present invention is to achieve both light extraction efficiency and reliability of a light emitting device.
 請求項1に記載の発明は、少なくとも発光層を含む有機機能層と、
 前記有機機能層の一方の面側に配置され、前記発光層からの光の光路を変更する光路変更層と、
 を備え、
 前記光路変更層は、
 ベース領域と、
 前記ベース領域とは屈折率が異なり、前記ベース領域内に配置された屈折率変化部と、
 を含み、
 前記発光層からの光の発光スペクトルのピーク波長をλとすると、前記屈折率変化部の寸法は、λ/2よりも小さく、
 複数の前記屈折率変化部が、前記有機機能層に対して平行な第1方向において第1間隔で等間隔に配置され、前記有機機能層に対して平行で前記第1方向に対して交差する第2方向において第2間隔で等間隔に配置されている発光装置である。
The invention according to claim 1 includes an organic functional layer including at least a light emitting layer;
An optical path changing layer that is disposed on one surface side of the organic functional layer and changes an optical path of light from the light emitting layer;
With
The optical path changing layer is
The base region,
The refractive index is different from that of the base region, and the refractive index changing portion disposed in the base region;
Including
When the peak wavelength of the emission spectrum of the light from the light emitting layer is λ, the dimension of the refractive index changing portion is smaller than λ / 2,
The plurality of refractive index changing portions are arranged at equal intervals at a first interval in a first direction parallel to the organic functional layer, and are parallel to the organic functional layer and intersect with the first direction. It is the light-emitting device arrange | positioned at equal intervals by the 2nd space | interval in a 2nd direction.
 上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。 The above-described object and other objects, features, and advantages will be further clarified by a preferred embodiment described below and the following drawings attached thereto.
図1(a)は実施形態に係る発光装置の断面図、図1(b)は図1(a)のA部の拡大図、図1(c)は図1(b)のB部の拡大図である。1A is a cross-sectional view of the light emitting device according to the embodiment, FIG. 1B is an enlarged view of a portion A in FIG. 1A, and FIG. 1C is an enlarged view of a B portion in FIG. FIG. 実施形態に係る発光装置の光路変更層の平面図である。It is a top view of the optical path changing layer of the light-emitting device concerning an embodiment. 実施形態に係る発光装置の光路変更層内における屈折率の変化特性の一例を示す図である。It is a figure which shows an example of the change characteristic of the refractive index in the optical path change layer of the light-emitting device which concerns on embodiment. 実施形態に係る発光装置の光路変更層内における屈折率の変化特性の他の一例を示す図である。It is a figure which shows another example of the change characteristic of the refractive index in the optical path change layer of the light-emitting device which concerns on embodiment. 実施形態に係る発光装置の光路変更層内における屈折率の変化特性の更に他の一例を示す図である。It is a figure which shows another example of the change characteristic of the refractive index in the optical path change layer of the light-emitting device which concerns on embodiment. 図6(a)は実施形態に係る発光装置のより具体的な構造の一例を示す平面図であり、図6(b)は、図6(a)におけるB-B線に沿った断面図である。6A is a plan view showing an example of a more specific structure of the light emitting device according to the embodiment, and FIG. 6B is a cross-sectional view taken along the line BB in FIG. 6A. is there. 図7(a)は発光層と隔壁部とを示す平面図、図7(b)は図7(a)のA部の拡大図の一例、図7(c)は図7(a)のA部の拡大図の他の一例である。FIG. 7A is a plan view showing the light emitting layer and the partition wall, FIG. 7B is an example of an enlarged view of part A in FIG. 7A, and FIG. 7C is A in FIG. It is another example of the enlarged view of a part. 図8(a)及び図8(b)は実施形態に係る発光装置を製造する工程の一部を示す断面図である。FIG. 8A and FIG. 8B are cross-sectional views illustrating a part of the process of manufacturing the light emitting device according to the embodiment. 有機機能層の第1例を示す断面図である。It is sectional drawing which shows the 1st example of an organic functional layer. 有機機能層の第2例を示す断面図である。It is sectional drawing which shows the 2nd example of an organic functional layer. 実施例1に係る発光装置の断面図である。1 is a cross-sectional view of a light emitting device according to Example 1. FIG. 実施例2に係る発光装置の断面図である。6 is a cross-sectional view of a light emitting device according to Example 2. FIG. 実施例3に係る発光装置の断面図である。6 is a cross-sectional view of a light emitting device according to Example 3. FIG. 実施例3に係る発光装置を製造する工程の一部を示す断面図である。12 is a cross-sectional view illustrating a part of the process of manufacturing the light-emitting device according to Example 3. FIG. 実施例4に係る発光装置の断面図である。6 is a cross-sectional view of a light emitting device according to Example 4. FIG. 実施例5に係る発光装置の断面図である。6 is a cross-sectional view of a light emitting device according to Example 5. FIG. 実施例6に係る発光装置の断面図である。6 is a cross-sectional view of a light emitting device according to Example 6. FIG. 図18(a)及び図18(b)は実施例6に係る発光装置を製造する工程の一部を示す断面図である。FIG. 18A and FIG. 18B are cross-sectional views illustrating a part of the process of manufacturing the light emitting device according to the sixth embodiment. 実施例7に係る発光装置の断面図である。7 is a cross-sectional view of a light emitting device according to Example 7. FIG. 実施例8に係る発光装置の断面図である。10 is a cross-sectional view of a light emitting device according to Example 8. FIG. 実施例9に係る発光装置の断面図である。10 is a cross-sectional view of a light emitting device according to Example 9. FIG. 実施例10に係る発光装置の断面図である。It is sectional drawing of the light-emitting device based on Example 10. FIG. 実施例11に係る発光装置の断面図である。12 is a sectional view of a light emitting device according to Example 11. FIG. 実施例12に係る発光装置の断面図である。It is sectional drawing of the light-emitting device based on Example 12. 実施例13に係る発光装置の断面図である。It is sectional drawing of the light-emitting device based on Example 13. 実施例14に係る発光装置の断面図である。It is sectional drawing of the light-emitting device based on Example 14. 実施例15に係る発光装置の断面図である。It is sectional drawing of the light-emitting device based on Example 15.
 以下、実施の形態について、図面を用いて説明する。尚、すべての図面において、同様の構成要素には同一の符号を付し、適宜説明を省略する。 Hereinafter, embodiments will be described with reference to the drawings. In all the drawings, the same components are denoted by the same reference numerals, and description thereof will be omitted as appropriate.
 (実施形態)
 図1(a)は実施形態に係る発光装置100の断面図、図1(b)は図1(a)のA部の拡大図、図1(c)は図1(b)のB部の拡大図である。図2は実施形態に係る発光装置100の光路変更層120の平面図である。この発光装置100は、有機EL(Electro Luminescence)素子を含んで構成される。この発光装置100は、例えばディスプレイ、照明装置、又は光通信装置の光源として用いることができる。
(Embodiment)
1A is a cross-sectional view of the light emitting device 100 according to the embodiment, FIG. 1B is an enlarged view of a portion A in FIG. 1A, and FIG. 1C is a view of a B portion in FIG. It is an enlarged view. FIG. 2 is a plan view of the optical path changing layer 120 of the light emitting device 100 according to the embodiment. The light emitting device 100 includes an organic EL (Electro Luminescence) element. The light emitting device 100 can be used as a light source of, for example, a display, a lighting device, or an optical communication device.
 本実施形態に係る発光装置100は、少なくとも発光層を含む有機機能層140と、有機機能層140の一方の面側に配置され、発光層からの光の光路を変更する光路変更層120と、を備える。光路変更層120は、ベース領域122と、ベース領域122とは屈折率が異なり、ベース領域122内に配置された屈折率変化部121と、を含む。発光層からの光の発光スペクトルのピーク波長をλとすると、屈折率変化部121の寸法Dは、λ/2よりも小さい。複数の屈折率変化部121が、有機機能層140に対して平行な第1方向において第1間隔で等間隔に配置され、有機機能層140に対して平行で第1方向に対して交差する第2方向において第2間隔で等間隔に配置されている。なお、第1方向と第2方向は、例えば、互いに直交する方向である。また、第1間隔と第2間隔は、例えば、互いに等しい。複数の屈折率変化部121のこのような配置の例としては、正格子状の配置、千鳥格子状の配置、斜方格子状の配置などが挙げられる。なお、第1間隔と第2間隔とは、互いに異なっていても良い。 The light emitting device 100 according to this embodiment includes an organic functional layer 140 including at least a light emitting layer, an optical path changing layer 120 that is disposed on one surface side of the organic functional layer 140, and changes an optical path of light from the light emitting layer, Is provided. The optical path changing layer 120 includes a base region 122 and a refractive index changing portion 121 having a refractive index different from that of the base region 122 and disposed in the base region 122. When the peak wavelength of the emission spectrum of light from the light emitting layer is λ, the dimension D of the refractive index changing portion 121 is smaller than λ / 2. A plurality of refractive index changing portions 121 are arranged at equal intervals at a first interval in a first direction parallel to the organic functional layer 140, and are parallel to the organic functional layer 140 and intersect with the first direction. They are arranged at equal intervals at second intervals in two directions. Note that the first direction and the second direction are, for example, directions orthogonal to each other. Further, the first interval and the second interval are equal to each other, for example. Examples of such an arrangement of the plurality of refractive index changing sections 121 include a regular lattice arrangement, a staggered lattice arrangement, and an orthorhombic lattice arrangement. Note that the first interval and the second interval may be different from each other.
 以下においては、説明を簡単にするため、発光装置100の各構成要素の位置関係(上下関係等)が各図に示す関係であるものとして説明を行う。ただし、この説明における位置関係は、発光装置100の使用時の位置関係とは無関係である。 Hereinafter, in order to simplify the description, description will be made assuming that the positional relationship (vertical relationship, etc.) of each component of the light emitting device 100 is the relationship shown in each drawing. However, the positional relationship in this description is irrelevant to the positional relationship when the light emitting device 100 is used.
 発光装置100は、更に、有機機能層140に対して対向して配置された透光性基板110と、透光性基板110と有機機能層140との間に配置された透光性の第1電極130と、有機機能層140を基準として第1電極130とは反対側に配置された第2電極150と、を備える。本実施形態の場合、光路変更層120は、透光性基板110と第1電極130との間に配置され、発光装置100から外部に光を出射する光取り出し側(つまり光取り出し面110a側)は、光路変更層120を基準として透光性基板110側である。 The light emitting device 100 further includes a translucent substrate 110 disposed to face the organic functional layer 140, and a translucent first disposed between the translucent substrate 110 and the organic functional layer 140. The electrode 130 and the 2nd electrode 150 arrange | positioned on the opposite side to the 1st electrode 130 on the basis of the organic functional layer 140 are provided. In the present embodiment, the optical path changing layer 120 is disposed between the translucent substrate 110 and the first electrode 130 and emits light from the light emitting device 100 to the outside (that is, the light extraction surface 110a side). Is the translucent substrate 110 side with respect to the optical path changing layer 120.
 透光性基板110は、ガラスや樹脂などの透光性を有する材料からなる板状部材である。本実施形態の場合、透光性基板110の上面、すなわち透光性基板110における有機機能層140とは反対側の面は、平坦な光取り出し面110aとなっている。この光取り出し面110aは、光放出空間を充たす空気(屈折率1)と接している。なお、透光性基板110の上面には、光取り出しフィルムが貼り付けられていて、この光取り出しフィルムの上面が光取り出し面を構成していても良い。 The translucent substrate 110 is a plate-like member made of a translucent material such as glass or resin. In the case of this embodiment, the upper surface of the translucent substrate 110, that is, the surface of the translucent substrate 110 opposite to the organic functional layer 140 is a flat light extraction surface 110a. The light extraction surface 110a is in contact with air (refractive index 1) filling the light emission space. In addition, the light extraction film may be affixed on the upper surface of the translucent board | substrate 110, and the upper surface of this light extraction film may comprise the light extraction surface.
 第1電極130は、例えばITO(Indium Tin Oxide)やIZO(Indium Zinc Oxide)などの金属酸化物導電体からなる透明電極とすることができる。ただし、第1電極130は、光が透過する程度に薄い金属薄膜であっても良い。 The first electrode 130 may be a transparent electrode made of a metal oxide conductor such as ITO (Indium Tin Oxide) or IZO (Indium Zinc Oxide). However, the first electrode 130 may be a metal thin film that is thin enough to transmit light.
 第2電極150は、例えば、Alなどの金属膜からなる反射電極である。第2電極150は、有機機能層140から第2電極150側に向かう光を、透光性基板110側に向けて反射する。 The second electrode 150 is a reflective electrode made of a metal film such as Al. The second electrode 150 reflects light traveling from the organic functional layer 140 toward the second electrode 150 toward the translucent substrate 110.
 第1電極130と第2電極150との間に電圧が印加されることにより、有機機能層140の発光層が発光する。第1電極130、光路変更層120のベース領域122、光路変更層120の屈折率変化部121、透光性基板110、及び、有機機能層140は、いずれも、有機機能層140の発光層が発光した光の少なくとも一部を透過する。発光層が発光した光の一部は、透光性基板110の光取り出し面110aから、発光装置100の外部(つまり上記光放出空間)に放射される(取り出される)。 When a voltage is applied between the first electrode 130 and the second electrode 150, the light emitting layer of the organic functional layer 140 emits light. The first electrode 130, the base region 122 of the optical path changing layer 120, the refractive index changing portion 121 of the optical path changing layer 120, the translucent substrate 110, and the organic functional layer 140 are all the light emitting layer of the organic functional layer 140. Transmits at least part of the emitted light. Part of the light emitted from the light emitting layer is emitted (extracted) from the light extraction surface 110a of the translucent substrate 110 to the outside of the light emitting device 100 (that is, the light emission space).
 例えば、光路変更層120において、屈折率変化部121以外の領域は、すべてベース領域122となっている。ただし、光路変更層120は、屈折率変化部121及びベース領域122以外の領域を含んで構成されていても良い。光路変更層120は、例えば、誘電体材料により構成されている。 For example, in the optical path changing layer 120, all regions other than the refractive index changing portion 121 are the base region 122. However, the optical path changing layer 120 may include a region other than the refractive index changing portion 121 and the base region 122. The optical path changing layer 120 is made of, for example, a dielectric material.
 光路変更層120は、複数の(多数の)屈折率変化部121を有している。発光層からの光の発光スペクトルのピーク波長(例えば最大ピーク波長)をλとすると、各屈折率変化部121の寸法D(図1(c))は、λ/2よりも小さい。ここで、屈折率変化部121の寸法Dとは、平面視において、個々の屈折率変化部121の外形における最大寸法を意味する。一例として、屈折率変化部121は球形であることが挙げられ、その場合、寸法Dは屈折率変化部121の外径である。 The optical path changing layer 120 has a plurality of (many) refractive index changing portions 121. When the peak wavelength (for example, the maximum peak wavelength) of the emission spectrum of light from the light emitting layer is λ, the dimension D (FIG. 1C) of each refractive index changing portion 121 is smaller than λ / 2. Here, the dimension D of the refractive index changing portion 121 means the maximum dimension of the outer shape of each refractive index changing portion 121 in plan view. As an example, the refractive index changing portion 121 may be spherical, and in this case, the dimension D is the outer diameter of the refractive index changing portion 121.
 これら複数の屈折率変化部121は、第1方向において第1間隔で等間隔に配置され、第2方向において第2間隔で等間隔に配置されている。ここで、屈折率変化部121どうしの間隔は、隣り合う屈折率変化部121どうしの中心間距離d(図1(c))を意味する。例えば、隣り合う屈折率変化部121どうしの中心間距離dが一定となっている。 The plurality of refractive index changing portions 121 are arranged at equal intervals at a first interval in the first direction, and are arranged at equal intervals at a second interval in the second direction. Here, the interval between the refractive index changing portions 121 means the center-to-center distance d between adjacent refractive index changing portions 121 (FIG. 1C). For example, the center distance d between adjacent refractive index changing portions 121 is constant.
 このように配置された複数の屈折率変化部121は、フォトニック結晶を構成している。有機機能層140の発光層から発光された光のうち、光路変更層120に入射した光の一部は、複数の屈折率変化部121からなるフォトニック結晶によって、有機機能層140に対してほぼ直交する方向へと向き(光路)が変更される。これにより、この光は、光路変更層120及び透光性基板110を介して、発光装置100の外部に放射される。 The plurality of refractive index changing portions 121 arranged in this way constitutes a photonic crystal. Among the light emitted from the light emitting layer of the organic functional layer 140, a part of the light incident on the optical path changing layer 120 is almost equal to the organic functional layer 140 by the photonic crystal composed of the plurality of refractive index changing portions 121. The direction (optical path) is changed in the orthogonal direction. Thereby, this light is radiated to the outside of the light emitting device 100 through the optical path changing layer 120 and the translucent substrate 110.
 隣り合う屈折率変化部121どうしの中心間距離dは、λ/2以上λ以下であることが好ましい。 The center-to-center distance d between adjacent refractive index changing portions 121 is preferably λ / 2 or more and λ or less.
 屈折率変化部121の寸法はλ/10以上であることが好ましい。 The dimension of the refractive index changing portion 121 is preferably λ / 10 or more.
 例えば、屈折率変化部121の屈折率は、ベース領域122の屈折率よりも小さい。例えば、屈折率変化部121とベース領域122との屈折率差は、屈折率変化部121とベース領域122との境界から屈折率変化部121の内向きに遠ざかるにつれて大きくなっている。すなわち、屈折率変化部121の屈折率は、屈折率変化部121とベース領域122との境界から遠ざかるにつれて低減している。 For example, the refractive index of the refractive index changing portion 121 is smaller than the refractive index of the base region 122. For example, the refractive index difference between the refractive index changing portion 121 and the base region 122 increases as the distance from the boundary between the refractive index changing portion 121 and the base region 122 increases inward. That is, the refractive index of the refractive index changing portion 121 decreases as the distance from the boundary between the refractive index changing portion 121 and the base region 122 increases.
 図3は光路変更層120内における屈折率の変化特性の一例を示す図である。すなわち、図3は図1(c)に示す線分Cの一端C1から他端C2にかけての屈折率の変化特性の例を示す。例えば、ベース領域122内においては、位置にかかわらず屈折率が一定である(図3の領域R1、領域R4)。ベース領域122と屈折率変化部121との境界(図3の領域R1と領域R2との境界、領域R4と領域R3との境界)の屈折率は、ベース領域122の屈折率と同じである。屈折率変化部121内においては、屈折率変化部121とベース領域122との境界から遠ざかるにつれて、すなわち屈折率変化部121の中心に向かうにつれて、徐々に屈折率が低減している(図3の領域R2、領域R3)。このように、例えば、屈折率変化部121の屈折率は、ベース領域122との境界においてはベース領域122の屈折率と同じであり、且つ、当該境界から遠ざかるにつれて徐々に低減している。 FIG. 3 is a diagram illustrating an example of a change characteristic of the refractive index in the optical path changing layer 120. That is, FIG. 3 shows an example of a change characteristic of the refractive index from one end C1 to the other end C2 of the line segment C shown in FIG. For example, in the base region 122, the refractive index is constant regardless of the position (region R1 and region R4 in FIG. 3). The refractive index of the boundary between the base region 122 and the refractive index changing portion 121 (the boundary between the region R1 and the region R2 and the boundary between the region R4 and the region R3 in FIG. 3) is the same as the refractive index of the base region 122. In the refractive index changing portion 121, the refractive index gradually decreases as the distance from the boundary between the refractive index changing portion 121 and the base region 122 increases, that is, toward the center of the refractive index changing portion 121 (see FIG. 3). Region R2, region R3). Thus, for example, the refractive index of the refractive index changing portion 121 is the same as the refractive index of the base region 122 at the boundary with the base region 122, and gradually decreases as the distance from the boundary increases.
 屈折率変化部121は、例えば、光路変更層120(ベース領域122)の一部分を加熱することにより形成されている。したがって、光路変更層120の材料としては、例えば、加熱により屈折率が低下するものを用いることができる。光路変更層120の材料は、有機機能層140の屈折率以上の屈折率を有し、加熱により低屈折率となる材料とすることができる。このような材料の例としては、DVD又はCDなどに用いられるフタロシアニン系又はアゾ系などの有機材料が挙げられる。また、光路変更層120の材料として、有機機能層140に用いられている材料を用い、光路変更層120の一部分を短時間で加熱することによって屈折率変化部121を形成しても良い。光路変更層120は、例えば、誘電体からなる。光路変更層120の一部分を加熱することにより分子が分解され、加熱された部分の屈折率が低下する。 The refractive index changing portion 121 is formed by heating a part of the optical path changing layer 120 (base region 122), for example. Therefore, as the material of the optical path changing layer 120, for example, a material whose refractive index is lowered by heating can be used. The material of the optical path changing layer 120 can be a material having a refractive index equal to or higher than the refractive index of the organic functional layer 140 and having a low refractive index when heated. Examples of such materials include phthalocyanine-based or azo-based organic materials used for DVDs or CDs. Further, as the material of the optical path changing layer 120, the material used for the organic functional layer 140 may be used, and the refractive index changing portion 121 may be formed by heating a part of the optical path changing layer 120 in a short time. The optical path changing layer 120 is made of a dielectric, for example. By heating a part of the optical path changing layer 120, the molecules are decomposed, and the refractive index of the heated part is lowered.
 また、屈折率変化部121は、ベース領域122が結晶化した部分であるとともに、屈折率変化部121の屈折率は、ベース領域122の屈折率よりも大きくても良い。例えば、この場合も、屈折率変化部121とベース領域122との屈折率差は、屈折率変化部121とベース領域122との境界から屈折率変化部121の内向きに遠ざかるにつれて大きくなっている。すなわち、屈折率変化部121の屈折率は、屈折率変化部121とベース領域122との境界から遠ざかるにつれて増大している。
 図4は光路変更層120内における屈折率の変化特性の他の一例を示す図である。すなわち、図4は図1(c)に示す線分Cの一端C1から他端C2にかけての屈折率の変化特性の他の例を示す。例えば、ベース領域122内においては、位置にかかわらず屈折率が一定である(図4の領域R1、領域R4)。ベース領域122と屈折率変化部121との境界(図4の領域R1と領域R2との境界、領域R4と領域R3との境界)の屈折率は、ベース領域122の屈折率と同じである。屈折率変化部121内においては、屈折率変化部121とベース領域122との境界から遠ざかるにつれて、すなわち屈折率変化部121の中心に向かうにつれて、徐々に屈折率が増大している(図4の領域R2、領域R3)。このように、例えば、屈折率変化部121の屈折率は、ベース領域122との境界においてはベース領域122の屈折率と同じであり、且つ、当該境界から遠ざかるにつれて徐々に増大している。
The refractive index changing portion 121 is a portion where the base region 122 is crystallized, and the refractive index of the refractive index changing portion 121 may be larger than the refractive index of the base region 122. For example, also in this case, the refractive index difference between the refractive index changing portion 121 and the base region 122 increases as the distance from the boundary between the refractive index changing portion 121 and the base region 122 increases inward. . That is, the refractive index of the refractive index changing portion 121 increases as the distance from the boundary between the refractive index changing portion 121 and the base region 122 increases.
FIG. 4 is a diagram illustrating another example of the change characteristic of the refractive index in the optical path changing layer 120. That is, FIG. 4 shows another example of the change characteristic of the refractive index from one end C1 to the other end C2 of the line segment C shown in FIG. For example, in the base region 122, the refractive index is constant regardless of the position (region R1 and region R4 in FIG. 4). The refractive index of the boundary between the base region 122 and the refractive index changing portion 121 (the boundary between the region R1 and the region R2 and the boundary between the region R4 and the region R3 in FIG. 4) is the same as the refractive index of the base region 122. In the refractive index changing portion 121, the refractive index gradually increases as the distance from the boundary between the refractive index changing portion 121 and the base region 122 increases, that is, toward the center of the refractive index changing portion 121 (see FIG. 4). Region R2, region R3). Thus, for example, the refractive index of the refractive index changing portion 121 is the same as the refractive index of the base region 122 at the boundary with the base region 122 and gradually increases as the distance from the boundary increases.
 この場合、光路変更層120(ベース領域122)の材料としては、加熱により屈折率が高くなるものを用いることができる。このような材料の光路変更層120(ベース領域122)の一部分を、加熱した後で冷却することにより、光路変更層120(ベース領域122)を構成する材料の結晶化が生じる。これにより、当該一部分の屈折率が、その周囲の部分(つまりベース領域122)の屈折率よりも高くなるとともに、例えば、当該一部分の屈折率がベース領域122から遠ざかるにつれて徐々に増大する。光路変更層120の材質としては、例えば、有機機能層140の材料として用いられるNPB(N,N-di(naphthalene-1-yl)-N,N-diphenyl-benzidene)を用いることができる。 In this case, as the material of the optical path changing layer 120 (base region 122), a material whose refractive index is increased by heating can be used. When a part of the optical path changing layer 120 (base region 122) of such a material is heated and then cooled, the material constituting the optical path changing layer 120 (base region 122) is crystallized. As a result, the refractive index of the portion becomes higher than the refractive index of the surrounding portion (that is, the base region 122), and gradually increases as the refractive index of the portion moves away from the base region 122, for example. As a material of the optical path changing layer 120, for example, NPB (N, N-di (naphthalene-1-yl) -N, N-diphenyl-benzidine) used as a material of the organic functional layer 140 can be used.
 また、屈折率変化部121は気泡であっても良い。例えば、光路変更層120(ベース領域122)の一部分を極めて短時間に集中加熱して、当該一部分の材料を蒸発させることによって、光路変更層120に部分的に気泡を形成することができる。
 図5は光路変更層120内における屈折率の変化特性の更に他の一例を示す図である。すなわち、図5は図1(c)に示す線分Cの一端C1から他端C2にかけての屈折率の変化特性の更に他の例を示す。例えば、ベース領域122内においては、位置にかかわらず屈折率が一定である(図5の領域R1、領域R4)。ベース領域122と屈折率変化部121との境界(図4の領域R1と領域R2との境界、領域R4と領域R3との境界)において屈折率が急峻に変化している。屈折率変化部121は気泡であるため、屈折率変化部121(図4の領域R2及び領域R3)の屈折率は、ベース領域122の屈折率よりも小さく、且つ、一定である。
The refractive index changing portion 121 may be a bubble. For example, bubbles can be partially formed in the optical path changing layer 120 by concentrically heating a part of the optical path changing layer 120 (base region 122) in a very short time to evaporate the material of the part.
FIG. 5 is a diagram showing still another example of the refractive index change characteristic in the optical path changing layer 120. That is, FIG. 5 shows still another example of the refractive index change characteristic from one end C1 to the other end C2 of the line segment C shown in FIG. For example, in the base region 122, the refractive index is constant regardless of the position (region R1 and region R4 in FIG. 5). The refractive index changes sharply at the boundary between the base region 122 and the refractive index changing portion 121 (the boundary between the region R1 and the region R2 and the boundary between the region R4 and the region R3 in FIG. 4). Since the refractive index changing portion 121 is a bubble, the refractive index of the refractive index changing portion 121 (region R2 and region R3 in FIG. 4) is smaller than the refractive index of the base region 122 and is constant.
 例えば、透光性基板110の一方の面(図1における下面)と光路変更層120の一方の面(図1における上面)とが相互に接している。また、光路変更層120の他方の面(図1における下面)と第1電極130の一方の面(図1における上面)とが相互に接している。また、第1電極130の他方の面(図1における下面)と有機機能層140の一方の面(図1における上面)とが相互に接している。また、有機機能層140の他方の面(図1における下面)と第2電極150の一方の面(図1における上面)とが相互に接している。ただし、透光性基板110と光路変更層120との間には他の層が存在していても良い。同様に、光路変更層120と第1電極130との間には他の層が存在していても良い。同様に、第1電極130と有機機能層140との間には他の層が存在していても良い。同様に、有機機能層140と第2電極150との間には他の層が存在していても良い。 For example, one surface (the lower surface in FIG. 1) of the translucent substrate 110 and one surface (the upper surface in FIG. 1) of the optical path changing layer 120 are in contact with each other. Further, the other surface (lower surface in FIG. 1) of the optical path changing layer 120 and one surface (upper surface in FIG. 1) of the first electrode 130 are in contact with each other. Further, the other surface (lower surface in FIG. 1) of the first electrode 130 and one surface (upper surface in FIG. 1) of the organic functional layer 140 are in contact with each other. Further, the other surface (lower surface in FIG. 1) of the organic functional layer 140 and one surface (upper surface in FIG. 1) of the second electrode 150 are in contact with each other. However, another layer may exist between the translucent substrate 110 and the optical path changing layer 120. Similarly, another layer may exist between the optical path changing layer 120 and the first electrode 130. Similarly, another layer may exist between the first electrode 130 and the organic functional layer 140. Similarly, another layer may exist between the organic functional layer 140 and the second electrode 150.
 図6(a)は実施形態に係る発光装置100のより具体的な構造の一例を示す平面図であり、図6(b)は、図6(a)におけるB-B線に沿った断面図である。なお、図6(b)及び図6(a)においては、図1(a)とは上下が反転している。 6A is a plan view showing an example of a more specific structure of the light emitting device 100 according to the embodiment, and FIG. 6B is a cross-sectional view taken along line BB in FIG. 6A. It is. In FIGS. 6B and 6A, the top and bottom are inverted from FIG. 1A.
 第1電極130は、陽極を構成する。複数の第1電極130が、それぞれ帯状にY方向に延在している。隣り合う第1電極130同士は、Y方向に対して直交するX方向において一定間隔ずつ離間している。第1電極130の各々は、例えばITOやIZO等の金属酸化物導電体等からなる。第1電極130の屈折率は光路変更層120と同程度(例えば屈折率1.8程度)とされる。第1電極130の各々の表面には、第1電極130に電源電圧を供給するためのバスライン(バス電極)170が形成されている。光路変更層120及び第1電極130上には絶縁膜が形成されている。この絶縁膜には、それぞれY方向に延在するストライプ状の開口部が複数形成されている。これにより、絶縁膜からなる複数の隔壁部180が形成されている。また、この絶縁膜に形成された開口部の各々は、第1電極130に達しており、開口部の底部において各第1電極130の表面が露出している。絶縁膜の各開口部内において、第1電極130上には、有機機能層140が形成されている。有機機能層140は、正孔注入層141、正孔輸送層142、発光層143(発光層143R、143G、143B)、電子輸送層144がこの順序で積層されることにより構成されている。正孔注入層141及び正孔輸送層142の材料としては、芳香族アミン誘導体、フタロシアニン誘導体、ポルフィリン誘導体、オリゴチオフェン誘導体、ポリチオフェン誘導体、ベンジルフェニル誘導体、フルオレン基で3級アミンを連結した化合物、ヒドラゾン誘導体、シラザン誘導体、シラナミン誘導体、ホスファミン誘導体、キナクリドン誘導体、ポリアニリン誘導体、ポリピロール誘導体、ポリフェニレンビニレン誘導体、ポリチエニレンビニレン誘導体、ポリキノリン誘導体、ポリキノキサリン誘導体、カーボン等が挙げられる。発光層143R、143G、143Bは、それぞれ、赤色発光、緑色発光、青色発光を行う蛍光性有機金属化合物等からなる。発光層143R、143G、143Bは、隔壁部180によって互いに隔てられた状態で並んで配置されている。すなわち、有機機能層140は、隔壁部180によって複数の領域に仕切られている。発光層143R、143G、143Bおよび隔壁部180の表面を覆うように電子輸送層144が形成されている。電子輸送層144の表面を覆うように第2電極150が形成されている。第2電極150は、陰極を構成する。第2電極150は、帯状に形成されている。第2電極150は、仕事関数が低く且つ高反射率を有するAlなどの金属または合金等からなる。尚、有機機能層140の屈折率は、第1電極130および光路変更層120と同程度(例えば屈折率1.8程度)とされる。 The first electrode 130 constitutes an anode. The plurality of first electrodes 130 each extend in the Y direction in a strip shape. Adjacent first electrodes 130 are spaced apart from each other at a constant interval in the X direction orthogonal to the Y direction. Each of the first electrodes 130 is made of a metal oxide conductor such as ITO or IZO, for example. The refractive index of the first electrode 130 is approximately the same as that of the optical path changing layer 120 (for example, approximately 1.8). A bus line (bus electrode) 170 for supplying a power supply voltage to the first electrode 130 is formed on each surface of the first electrode 130. An insulating film is formed on the optical path changing layer 120 and the first electrode 130. In this insulating film, a plurality of stripe-shaped openings each extending in the Y direction are formed. Thereby, a plurality of partition walls 180 made of an insulating film are formed. Each of the openings formed in the insulating film reaches the first electrode 130, and the surface of each first electrode 130 is exposed at the bottom of the opening. An organic functional layer 140 is formed on the first electrode 130 in each opening of the insulating film. The organic functional layer 140 is configured by stacking a hole injection layer 141, a hole transport layer 142, a light emitting layer 143 ( light emitting layers 143R, 143G, 143B), and an electron transport layer 144 in this order. Materials for the hole injection layer 141 and the hole transport layer 142 include aromatic amine derivatives, phthalocyanine derivatives, porphyrin derivatives, oligothiophene derivatives, polythiophene derivatives, benzylphenyl derivatives, compounds in which tertiary amines are linked by fluorene groups, hydrazones. Derivatives, silazane derivatives, silanamine derivatives, phosphamine derivatives, quinacridone derivatives, polyaniline derivatives, polypyrrole derivatives, polyphenylene vinylene derivatives, polythienylene vinylene derivatives, polyquinoline derivatives, polyquinoxaline derivatives, carbon and the like. The light emitting layers 143R, 143G, and 143B are made of a fluorescent organometallic compound that emits red light, green light, and blue light, respectively. The light emitting layers 143R, 143G, and 143B are arranged side by side in a state of being separated from each other by the partition wall portion 180. That is, the organic functional layer 140 is partitioned into a plurality of regions by the partition wall portion 180. An electron transport layer 144 is formed so as to cover the surfaces of the light emitting layers 143R, 143G, and 143B and the partition wall portion 180. A second electrode 150 is formed so as to cover the surface of the electron transport layer 144. The second electrode 150 constitutes a cathode. The second electrode 150 is formed in a band shape. The second electrode 150 is made of a metal such as Al or an alloy having a low work function and high reflectivity. The refractive index of the organic functional layer 140 is approximately the same as that of the first electrode 130 and the optical path changing layer 120 (for example, a refractive index of approximately 1.8).
 このように、赤、緑、青の光をそれぞれ発する発光層143R、143G、143Bは、ストライプ状に繰り返し配置されており、光取り出し面となる透光性基板110の表面からは、赤、緑、青の光が任意の割合で混色されて単一の発光色(例えば白色)として認識される光が放出される。 In this manner, the light emitting layers 143R, 143G, and 143B that emit red, green, and blue light are repeatedly arranged in stripes, and the red, green, and green light is emitted from the surface of the translucent substrate 110 that serves as a light extraction surface. , Blue light is mixed at an arbitrary ratio to emit light that is recognized as a single emission color (for example, white).
 図7(a)は発光層143R、143G、143Bと、隔壁部180と、を示す平面図、図7(b)は図7(a)のA部の拡大図の一例、図7(c)は図7(a)のA部の拡大図の他の一例である。図7(b)及び図7(c)では、光路変更層120において発光層143Rの上方に配置された部分の屈折率変化部121を図示しているとともに、隔壁部180上のバスライン170を図示している。 7A is a plan view showing the light emitting layers 143R, 143G, and 143B and the partition wall portion 180, FIG. 7B is an example of an enlarged view of a portion A in FIG. 7A, and FIG. These are other examples of the enlarged view of the A section of Fig.7 (a). 7B and 7C, the refractive index changing portion 121 of the portion of the optical path changing layer 120 disposed above the light emitting layer 143R is illustrated, and the bus line 170 on the partition wall portion 180 is illustrated. It is shown.
 図7(b)及び図7(c)に示すように、複数の屈折率変化部121は、各発光層143R、143G、143Bの上方の領域において、互いに一様な間隔で二次元的に分散して配置されている。なお、図7(b)に示すように、隔壁部180の上方の領域には、屈折率変化部121を配置しなくても良いし、図7(c)に示すように、各発光層143R、143G、143Bの上方の領域だけでなく、隔壁部180の上方の領域にも、屈折率変化部121を配置しても良い。 As shown in FIGS. 7B and 7C, the plurality of refractive index changing portions 121 are two-dimensionally dispersed at a uniform interval in the region above each light emitting layer 143R, 143G, 143B. Are arranged. In addition, as shown in FIG.7 (b), the refractive index change part 121 does not need to be arrange | positioned in the area | region above the partition part 180, and each light emitting layer 143R is shown in FIG.7 (c). , 143G, 143B, the refractive index changing portion 121 may be disposed not only in the region above the partition wall portion 180, but also in the region above the partition wall portion 180.
 ここで、各発光層143R、143G、143Bは、互いに異なる発光スペクトルの光を発光する。各発光層143R、143G、143Bからの光の発光スペクトルのピーク波長λは、互いに異なる。
 発光層143Rが発光する赤の光の発光スペクトルのピーク波長をλRとすると、発光層143R上の領域に配置される複数の屈折率変化部121は、寸法がλR/10以上で且つλR/2よりも小さい。また、発光層143R上の領域に配置される複数の屈折率変化部121について、隣り合う屈折率変化部121どうしの中心間距離は、λR/2以上λR以下である。
 同様に、発光層143Gが発光する緑の光の発光スペクトルのピーク波長をλGとすると、発光層143G上の領域に配置される複数の屈折率変化部121は、寸法がλG/10以上で且つλG/2よりも小さい。また、発光層143G上の領域に配置される複数の屈折率変化部121について、隣り合う屈折率変化部121どうしの中心間距離は、λG/2以上λG以下である。
 同様に、発光層143Bが発光する青の光の発光スペクトルのピーク波長をλBとすると、発光層143B上の領域に配置される複数の屈折率変化部121は、寸法がλB/10以上で且つλB/2よりも小さい。また、発光層143B上の領域に配置される複数の屈折率変化部121について、隣り合う屈折率変化部121どうしの中心間距離は、λB/2以上λB以下である。
Here, each of the light emitting layers 143R, 143G, and 143B emits light having different emission spectra. The peak wavelengths λ of the emission spectra of light from the light emitting layers 143R, 143G, and 143B are different from each other.
When the peak wavelength of the emission spectrum of red light emitted from the light emitting layer 143R is λR, the plurality of refractive index changing portions 121 arranged in the region on the light emitting layer 143R has a dimension of λR / 10 or more and λR / 2. Smaller than. Further, for the plurality of refractive index changing portions 121 arranged in the region on the light emitting layer 143R, the center-to-center distance between adjacent refractive index changing portions 121 is not less than λR / 2 and not more than λR.
Similarly, assuming that the peak wavelength of the emission spectrum of green light emitted from the light emitting layer 143G is λG, the plurality of refractive index changing portions 121 arranged in the region on the light emitting layer 143G have a dimension of λG / 10 or more and It is smaller than λG / 2. Further, for the plurality of refractive index changing portions 121 arranged in the region on the light emitting layer 143G, the center-to-center distance between adjacent refractive index changing portions 121 is not less than λG / 2 and not more than λG.
Similarly, assuming that the peak wavelength of the emission spectrum of blue light emitted from the light emitting layer 143B is λB, the plurality of refractive index changing portions 121 arranged in the region on the light emitting layer 143B have a size of λB / 10 or more and It is smaller than λB / 2. Further, regarding the plurality of refractive index changing portions 121 arranged in the region on the light emitting layer 143B, the center-to-center distance between adjacent refractive index changing portions 121 is not less than λB / 2 and not more than λB.
 次に、実施形態に係る発光装置100を製造する工程の一例を説明する。図8(a)及び図8(b)はこの工程の一部を示す断面図である。 Next, an example of a process for manufacturing the light emitting device 100 according to the embodiment will be described. FIGS. 8A and 8B are cross-sectional views showing a part of this process.
 先ず、透光性基板110の下面に、フタロシアニン系、アゾ系又はNPBなどの有機材料を成膜し、光路変更層120におけるベース領域122となる部分を形成する(図8(a))。なお、ベース領域122の成膜後、適切なタイミングで屈折率変化部121を形成する。屈折率変化部121を形成するタイミング及びその形成方法については後述する。 First, an organic material such as phthalocyanine-based, azo-based, or NPB is formed on the lower surface of the translucent substrate 110 to form a portion that becomes the base region 122 in the optical path changing layer 120 (FIG. 8A). Note that the refractive index changing portion 121 is formed at an appropriate timing after the base region 122 is formed. The timing and method for forming the refractive index changing portion 121 will be described later.
 次に、光路変更層120(ベース領域122)の下面に、スパッタ法などによりITO(Indium Tin Oxide)やIZO(Indium Zinc Oxide)などの金属酸化物導電体からなる透光性の導電膜を成膜し、エッチングによりこれをパターニングして第1電極130を形成する。 Next, a light-transmitting conductive film made of a metal oxide conductor such as ITO (Indium Tin Oxide) or IZO (Indium Zinc Oxide) is formed on the lower surface of the optical path changing layer 120 (base region 122) by sputtering or the like. A first electrode 130 is formed by patterning the film by etching.
 次に、第1電極130の下面に有機材料を成膜することにより有機機能層140を形成する。 Next, the organic functional layer 140 is formed by depositing an organic material on the lower surface of the first electrode 130.
 次に、有機機能層140の下面に、マスクを用いた蒸着法などによりAl等の金属材料を所望のパターンに堆積させて、第2電極150を形成する。 Next, a second electrode 150 is formed by depositing a metal material such as Al in a desired pattern on the lower surface of the organic functional layer 140 by vapor deposition using a mask or the like.
 なお、必要に応じて、バスライン170や、隔壁部180をそれぞれ適切なタイミングで形成する。また、第2電極150の下面には必要に応じて封止層を形成しても良い。 Note that the bus line 170 and the partition wall portion 180 are formed at appropriate timings as necessary. Further, a sealing layer may be formed on the lower surface of the second electrode 150 as necessary.
 次に、屈折率変化部121の形成の仕方について説明する。 Next, how to form the refractive index changing portion 121 will be described.
 屈折率変化部121は、光線を照射することによって光路変更層120(ベース領域122)の一部分を加熱することにより形成する。なお、照射する光線の波長は、発光層の発光波長よりも短いことが好ましい。具体的には、例えば、光路変更層120の一部分に対してレーザ光を照射することにより、光路変更層120の一部分を加熱し、屈折率変化部121を形成することができる(図8(b))。 The refractive index changing portion 121 is formed by heating a part of the optical path changing layer 120 (base region 122) by irradiating light. In addition, it is preferable that the wavelength of the light ray to irradiate is shorter than the light emission wavelength of a light emitting layer. Specifically, for example, by irradiating a part of the optical path changing layer 120 with a laser beam, a part of the optical path changing layer 120 can be heated to form the refractive index changing portion 121 (FIG. 8B). )).
 光路変更層120の材料として、加熱により屈折率が低下するものを用いた場合、光路変更層120(ベース領域122)の一部分を加熱することにより、光路変更層120を構成する材料の分子構造が変化したり、或いは、光路変更層120を構成する材料の粗密分布が変化(密度が低下)したりする。すなわち、光路変更層120を構成する材料が熱的に変化する。これにより、当該一部分の屈折率が低下する。 When a material whose refractive index is lowered by heating is used as the material of the optical path changing layer 120, the molecular structure of the material constituting the optical path changing layer 120 is changed by heating a part of the optical path changing layer 120 (base region 122). Or the density distribution of the material constituting the optical path changing layer 120 changes (the density decreases). That is, the material constituting the optical path changing layer 120 is thermally changed. Thereby, the refractive index of the said part falls.
 また、光路変更層120の材料として、加熱により屈折率が高くなるものを用いた場合、光路変更層120(ベース領域122)の一部分を加熱した後で冷却することにより、光路変更層120を構成する材料の結晶化が生じる。これにより、当該一部分の屈折率が、その周囲の部分(つまりベース領域122)の屈折率よりも高くなる。 In addition, when a material whose refractive index is increased by heating is used as the material of the optical path changing layer 120, the optical path changing layer 120 is configured by heating and cooling a part of the optical path changing layer 120 (base region 122). Crystallization of the material occurs. Thereby, the refractive index of the said part becomes higher than the refractive index of the surrounding part (namely, base region 122).
 ここで、照射される光(レーザ光等)の強度分布はガウシアン分布であり、当該光の照射スポットの中心部の強度が高くなる。このため、照射スポットの中央に近いほど、光路変更層120を構成する材料の分子構造や粗密分布等に与える影響が大きい。よって、屈折率変化部121の屈折率は、例えば、照射スポットの中心に向けて徐々に低減又は増大する。 Here, the intensity distribution of the irradiated light (laser light or the like) is a Gaussian distribution, and the intensity at the center of the irradiation spot of the light is increased. For this reason, the closer to the center of the irradiation spot, the greater the influence on the molecular structure, density distribution, etc. of the material constituting the optical path changing layer 120. Therefore, the refractive index of the refractive index changing unit 121 is gradually reduced or increased toward the center of the irradiation spot, for example.
 また、光路変更層120(ベース領域122)の一部分を加熱して、当該一部分の材料を蒸発させることによって、光路変更層120に部分的に気泡を形成し、この気泡を屈折率変化部121としても良い。 Further, by heating a part of the optical path changing layer 120 (base region 122) and evaporating the material of the part, bubbles are partially formed in the optical path changing layer 120, and the bubbles are used as the refractive index changing portion 121. Also good.
 屈折率変化部121を形成するタイミングは、光路変更層120(ベース領域122)の形成後の任意のタイミングとすることができる。 The timing for forming the refractive index changing portion 121 can be any timing after the optical path changing layer 120 (base region 122) is formed.
 光路変更層120(ベース領域122)の形成後、第1電極130の形成前に、屈折率変化部121を形成する場合は、光路変更層120(ベース領域122)の何れの面側から光を照射しても良い。
 また、第1電極130の形成後、有機機能層140の形成前に、屈折率変化部121を形成する場合は、光の照射による第1電極130のダメージを抑制するために、透光性基板110側から光を照射する。
 これらの何れの場合も、未だ有機機能層140が形成されていない。このため、有機機能層140へのダメージを考慮する必要がないので、CWレーザ(連続波発振動作レーザ)とパルスレーザの何れを用いても良い。
When the refractive index changing portion 121 is formed after the formation of the optical path changing layer 120 (base region 122) and before the formation of the first electrode 130, light is emitted from any surface side of the optical path changing layer 120 (base region 122). It may be irradiated.
In addition, in the case where the refractive index changing portion 121 is formed after the formation of the first electrode 130 and before the formation of the organic functional layer 140, a translucent substrate is used in order to suppress damage to the first electrode 130 due to light irradiation. Light is irradiated from the 110 side.
In any of these cases, the organic functional layer 140 has not yet been formed. For this reason, since it is not necessary to consider the damage to the organic functional layer 140, either a CW laser (continuous wave oscillation operation laser) or a pulse laser may be used.
 また、有機機能層140及び第2電極150の形成後、封止まで終わってパネル構造の発光装置100を構築した後で、屈折率変化部121を形成しても良い。この場合、透光性基板110側から光を照射する。この場合、CWレーザやパルスレーザを用いるには、有機機能層140になるべく熱が加わらないように配慮することが好ましい。或いは、フェムト秒レーザやナノ秒レーザを用いても良い。 Further, after the organic functional layer 140 and the second electrode 150 are formed, the refractive index changing portion 121 may be formed after the sealing is completed and the light emitting device 100 having a panel structure is constructed. In this case, light is irradiated from the translucent substrate 110 side. In this case, in order to use a CW laser or a pulse laser, it is preferable to consider that heat is not applied to the organic functional layer 140 as much as possible. Alternatively, a femtosecond laser or a nanosecond laser may be used.
 なお、屈折率変化部121を形成するための光の照射は、レーザ光の照射に限らない。例えば、レーザ以外の強力な単一波長の光を、マスクを透過させ、且つ、レンズにより集光して光路変更層120の一部分に結像することによっても、屈折率変化部121を形成することができる。 Note that the light irradiation for forming the refractive index changing portion 121 is not limited to the laser light irradiation. For example, the refractive index changing portion 121 can also be formed by allowing light having a single wavelength other than a laser to pass through a mask and condensing with a lens and forming an image on a part of the optical path changing layer 120. Can do.
 (有機機能層の第1例)
 図9は、有機機能層140の層構造の第1例を示す図である。第1例に係る有機機能層140は、正孔注入層141、正孔輸送層142、発光層143、電子輸送層144、及び電子注入層145をこの順に積層した構造を有している。すなわち有機機能層140は、有機エレクトロルミネッセンス発光層である。なお、正孔注入層141及び正孔輸送層142の代わりに、これら2つの層の機能を有する一つの層を設けてもよい。同様に、電子輸送層144及び電子注入層145の代わりに、これら2つの層の機能を有する一つの層を設けてもよい(図6(b)参照)。
(First example of organic functional layer)
FIG. 9 is a diagram illustrating a first example of the layer structure of the organic functional layer 140. The organic functional layer 140 according to the first example has a structure in which a hole injection layer 141, a hole transport layer 142, a light emitting layer 143, an electron transport layer 144, and an electron injection layer 145 are stacked in this order. That is, the organic functional layer 140 is an organic electroluminescence light emitting layer. Note that instead of the hole injection layer 141 and the hole transport layer 142, one layer having the functions of these two layers may be provided. Similarly, instead of the electron transport layer 144 and the electron injection layer 145, one layer having the functions of these two layers may be provided (see FIG. 6B).
 有機機能層の第1例において、発光層143は、例えば赤色の光を発光する層、青色の光を発光する層、黄色の光を発光する層、又は緑色の光を発光する層である。この場合、平面視において、赤色の光を発光する発光層143を有する領域、緑色の光を発光する発光層143を有する領域、及び青色の光を発光する発光層143を有する領域が繰り返し設けられていても良い(図6(b)参照)。この場合、各領域を同時に発光させると、発光装置100は白色等の単一の発光色で発光する。 In the first example of the organic functional layer, the light emitting layer 143 is, for example, a layer that emits red light, a layer that emits blue light, a layer that emits yellow light, or a layer that emits green light. In this case, in a plan view, a region having a light emitting layer 143 that emits red light, a region having a light emitting layer 143 that emits green light, and a region having a light emitting layer 143 that emits blue light are repeatedly provided. (See FIG. 6B). In this case, when each region emits light simultaneously, the light emitting device 100 emits light in a single light emission color such as white.
 なお、発光層143は、複数の色を発光するための材料を混ぜることにより、白色等の単一の発光色で発光するように構成されていても良い。 Note that the light emitting layer 143 may be configured to emit light in a single light emission color such as white by mixing materials for emitting a plurality of colors.
 (有機機能層の第2例)
 図10は、有機機能層140の層構造の第2例を示す図である。図6では、有機機能層140において隔壁部180により相互に隔てられた領域が、それぞれ赤色発光、緑色発光、青色発光を行う例を説明した。これに対し、第2例では、有機機能層140の発光層143は、発光層143a,143b,143cをこの順に積層した構成を有している。発光層143a,143b,143cは、互いに異なる色の光(例えば赤、緑、及び青)を発光する。そして発光層143a,143b,143cが同時に発光することにより、発光装置100は白色等の単一の発光色で発光する。ここで、これら発光層143a,143b,143cからの発光のうち、何れか1つの発光について、光取り出し効率を向上したい場合、その光の発光スペクトルのピーク波長(上記ピーク波長λR、λG、λBの何れか1つ)に対応させて屈折率変化部121の寸法と隣り合う屈折率変化部121どうしの中心間距離とが設定されている部分の領域の面積比率(平面視における面積比率)を、屈折率変化部121の寸法と隣り合う屈折率変化部121どうしの中心間距離とが他の色のピーク波長と対応する部分の面積比率よりも大きくすると良い。例えば、赤色の光を発光する発光層143aからの発光の光取り出し効率を向上したい場合、複数の屈折率変化部121の寸法をλR/10以上で且つλR/2よりも小さくし、隣り合う屈折率変化部121どうしの中心間距離をλR/2以上λR以下とする部分の面積比率を、他の色のピーク波長と対応させて屈折率変化部121の寸法と隣り合う屈折率変化部121どうしの中心間距離とが設定されている部分の面積比率よりも大きくすることができる。
(Second example of organic functional layer)
FIG. 10 is a diagram illustrating a second example of the layer structure of the organic functional layer 140. FIG. 6 illustrates an example in which the regions separated from each other by the partition wall portion 180 in the organic functional layer 140 emit red light, green light, and blue light, respectively. On the other hand, in the second example, the light emitting layer 143 of the organic functional layer 140 has a configuration in which the light emitting layers 143a, 143b, and 143c are stacked in this order. The light emitting layers 143a, 143b, and 143c emit light of different colors (for example, red, green, and blue). The light emitting layers 143a, 143b, and 143c emit light at the same time, so that the light emitting device 100 emits light in a single light emission color such as white. Here, when it is desired to improve the light extraction efficiency of any one of the light emission from the light emitting layers 143a, 143b, and 143c, the peak wavelength of the emission spectrum of the light (the peak wavelengths λR, λG, and λB described above). The area ratio (area ratio in plan view) of the region where the dimension of the refractive index changing portion 121 and the center-to-center distance between adjacent refractive index changing portions 121 are set in correspondence with any one) The dimension of the refractive index changing portion 121 and the center-to-center distance between adjacent refractive index changing portions 121 are preferably larger than the area ratio of the portion corresponding to the peak wavelength of the other color. For example, when it is desired to improve the light extraction efficiency of light emitted from the light emitting layer 143a that emits red light, the dimensions of the plurality of refractive index changing portions 121 are set to be λR / 10 or more and smaller than λR / 2, and adjacent refractions. The area ratios of the portions in which the distance between the centers of the refractive index changing portions 121 is λR / 2 or more and λR or less correspond to the peak wavelengths of other colors, and the refractive index changing portions 121 adjacent to the dimensions of the refractive index changing portions 121 are adjacent to each other. It is possible to make it larger than the area ratio of the portion where the center-to-center distance is set.
 以上、本実施形態によれば、発光層からの光の発光スペクトルのピーク波長をλとすると、屈折率変化部121の寸法は、λ/2よりも小さい。そして、複数の屈折率変化部121が、第1方向において第1間隔で等間隔に配置され、第2方向において第2間隔で等間隔に配置されている。これら複数の屈折率変化部121は、フォトニック結晶を構成している。このため、第1電極130と透光性基板110との界面や、透光性基板110と光放出空間との界面にて、それぞれ反射する光(つまり各界面における臨界角以上の光)の向きを、複数の屈折率変化部121によって、有機機能層140に対してほぼ直交する向きに変更することができる。これにより、この光を光取り出し面110aから取り出すことができるので、光取り出し効率を向上させることができる。
 なお、特許文献1の技術とは異なり、有機機能層140と第1電極130との間、及び、有機機能層140と第2電極150との間の何れにも凹凸を形成する必要がない。このため、特許文献1の技術と比べて発光装置100の信頼性を向上することができる。
 すなわち、発光装置100の光取り出し効率と信頼性との両立を図ることが可能である。
As described above, according to the present embodiment, when the peak wavelength of the emission spectrum of light from the light emitting layer is λ, the dimension of the refractive index changing portion 121 is smaller than λ / 2. The plurality of refractive index changing portions 121 are arranged at equal intervals at a first interval in the first direction, and are arranged at equal intervals at a second interval in the second direction. The plurality of refractive index changing portions 121 constitutes a photonic crystal. Therefore, the direction of light reflected at the interface between the first electrode 130 and the translucent substrate 110 or the interface between the translucent substrate 110 and the light emission space (that is, light having a critical angle or more at each interface). Can be changed in a direction substantially orthogonal to the organic functional layer 140 by the plurality of refractive index changing portions 121. Thereby, since this light can be extracted from the light extraction surface 110a, the light extraction efficiency can be improved.
Unlike the technique of Patent Document 1, it is not necessary to form unevenness between the organic functional layer 140 and the first electrode 130 and between the organic functional layer 140 and the second electrode 150. For this reason, compared with the technique of patent document 1, the reliability of the light-emitting device 100 can be improved.
That is, it is possible to achieve both the light extraction efficiency and reliability of the light emitting device 100.
 また、隣り合う屈折率変化部121どうしの中心間距離dがλ/2以上λ以下であることにより、複数の屈折率変化部121がより確実にフォトニック結晶として機能するようにできる。 Further, since the center-to-center distance d between the adjacent refractive index changing portions 121 is not less than λ / 2 and not more than λ, the plurality of refractive index changing portions 121 can function more reliably as a photonic crystal.
 例えば、屈折率変化部121の屈折率は、ベース領域122の屈折率よりも小さい。これにより、例えば、光路変更層120として、加熱により屈折率が低下する材料を用いた場合に、光路変更層120の一部分を加熱することによって、屈折率変化部121を形成することができる。 For example, the refractive index of the refractive index changing portion 121 is smaller than the refractive index of the base region 122. Thereby, for example, when a material whose refractive index is lowered by heating is used as the optical path changing layer 120, the refractive index changing portion 121 can be formed by heating a part of the optical path changing layer 120.
 例えば、屈折率変化部121は、ベース領域122が結晶化した部分であるとともに、屈折率変化部121の屈折率は、ベース領域122の屈折率よりも大きい。これにより、例えば、光路変更層120として、加熱により結晶化して屈折率が増大する材料を用いた場合に、光路変更層120の一部分を加熱することによって、屈折率変化部121を形成することができる。 For example, the refractive index changing portion 121 is a portion where the base region 122 is crystallized, and the refractive index of the refractive index changing portion 121 is larger than the refractive index of the base region 122. Accordingly, for example, when a material that is crystallized by heating to increase the refractive index is used as the optical path changing layer 120, the refractive index changing portion 121 can be formed by heating a part of the optical path changing layer 120. it can.
 例えば、屈折率変化部121は気泡である。これにより、例えば、光路変更層120として、加熱により気泡が生じる材料を用いた場合に、光路変更層120の一部分を加熱することによって、屈折率変化部121を形成することができる。 For example, the refractive index changing portion 121 is a bubble. Thereby, for example, when a material that generates bubbles by heating is used as the optical path changing layer 120, the refractive index changing portion 121 can be formed by heating a part of the optical path changing layer 120.
 発光装置100は、有機機能層140に対して対向して配置された透光性基板110と、透光性基板110と有機機能層140との間に配置された透光性の第1電極130と、有機機能層140を基準として第1電極130とは反対側に配置された第2電極150と、を備えている。そして、光路変更層120は、透光性基板110と第1電極130との間に配置され、発光装置100から外部に光を出射する光取り出し側(つまり光取り出し面110a側)は、光路変更層120を基準として透光性基板110側である。よって、複数の屈折率変化部121からなるフォトニック結晶により、発光層から透光性基板110側に向かう光の向きを、光取り出し面110aから取り出せる方向に変更することができる。 The light emitting device 100 includes a light transmissive substrate 110 disposed to face the organic functional layer 140, and a light transmissive first electrode 130 disposed between the light transmissive substrate 110 and the organic functional layer 140. And a second electrode 150 disposed on the side opposite to the first electrode 130 with respect to the organic functional layer 140. The optical path changing layer 120 is disposed between the translucent substrate 110 and the first electrode 130, and the light extraction side that emits light from the light emitting device 100 to the outside (that is, the light extraction surface 110 a side) The light transmitting substrate 110 side with respect to the layer 120. Therefore, the direction of the light from the light emitting layer toward the translucent substrate 110 side can be changed to the direction that can be extracted from the light extraction surface 110a by the photonic crystal including the plurality of refractive index changing portions 121.
 (実施例1)
 図11は実施例1に係る発光装置100の断面図である。上記の実施形態では、透光性基板110から光を放射するボトムエミッションタイプの発光装置を説明したのに対し、実施例1では、トップエミッションタイプの発光装置について説明する。
(Example 1)
FIG. 11 is a cross-sectional view of the light emitting device 100 according to the first embodiment. In the above-described embodiment, a bottom emission type light emitting device that emits light from the translucent substrate 110 has been described. In Example 1, a top emission type light emitting device is described.
 実施例1に係る発光装置100は、以下に説明する点で、上記の実施形態に係る発光装置100と相違し、その他の点では実施形態に係る発光装置100と同様に構成されている。 The light-emitting device 100 according to Example 1 is different from the light-emitting device 100 according to the above-described embodiment in the points described below, and is configured in the same manner as the light-emitting device 100 according to the embodiment in other points.
 透光性基板110における有機機能層140側とは反対側、すなわち透光性基板110の上面側には、光反射膜160が形成されている。この光反射膜160は、例えばAlなどの金属膜からなる。なお、透光性基板110の上面と光反射膜160の下面とが相互に接していても良いし、透光性基板110と光反射膜160との間に他の層が存在していても良い。実施例1の場合、第2電極150は、透光性である。第2電極150は、例えば、ITOやIZOなどの金属酸化物導電体からなる透明電極とすることができる。ただし、第2電極150は、光が透過する程度に薄い金属薄膜であっても良い。そして、第2電極150の下面が光取り出し面150aとなっている。なお陽極は陰極に比べて仕事関数の高い材料を選んだり、活性化などの処理を施すことにより、陰極よりも仕事関数を高くしている。 On the side opposite to the organic functional layer 140 side of the translucent substrate 110, that is, on the upper surface side of the translucent substrate 110, a light reflecting film 160 is formed. The light reflecting film 160 is made of a metal film such as Al. Note that the upper surface of the light-transmitting substrate 110 and the lower surface of the light reflecting film 160 may be in contact with each other, or even if another layer exists between the light transmitting substrate 110 and the light reflecting film 160. good. In the case of Example 1, the second electrode 150 is translucent. The second electrode 150 can be, for example, a transparent electrode made of a metal oxide conductor such as ITO or IZO. However, the second electrode 150 may be a metal thin film that is thin enough to transmit light. The lower surface of the second electrode 150 is a light extraction surface 150a. The anode has a work function higher than that of the cathode by selecting a material having a higher work function than that of the cathode or by performing a treatment such as activation.
 実施例1の場合、発光層から第2電極150側に向かった光の一部は、第2電極150を介して光取り出し面150aから放射される。 In the case of Example 1, a part of the light traveling from the light emitting layer toward the second electrode 150 is radiated from the light extraction surface 150a through the second electrode 150.
 一方、発光層から第1電極130側に向かった光は、第1電極130から光路変更層120に入射した後、光路変更層120から透光性基板110に入射し、光反射膜160にて反射する。この光の一部は、その後、透光性基板110、光路変更層120、第1電極130、有機機能層140及び第2電極150をこの順に介して、光取り出し面150aから放射される。ここで、光路変更層120に対して斜めに入射する光の向きが、複数の屈折率変化部121の作用により光取り出し面150aに対してほぼ面直方向に変更される。これにより、複数の屈折率変化部121が存在しない場合と比べて光取り出し効率が向上する。 On the other hand, the light traveling from the light emitting layer toward the first electrode 130 enters the optical path changing layer 120 from the first electrode 130 and then enters the light transmitting substrate 110 from the optical path changing layer 120. reflect. A part of this light is then radiated from the light extraction surface 150a through the transparent substrate 110, the optical path changing layer 120, the first electrode 130, the organic functional layer 140, and the second electrode 150 in this order. Here, the direction of light obliquely incident on the optical path changing layer 120 is changed to a substantially perpendicular direction with respect to the light extraction surface 150 a by the action of the plurality of refractive index changing portions 121. Thereby, the light extraction efficiency is improved as compared with the case where the plurality of refractive index changing portions 121 do not exist.
 このように、実施例1によっても、上記の実施形態と同様の効果が得られる。 Thus, also in Example 1, the same effect as the above embodiment can be obtained.
 (実施例2)
 図12は実施例2に係る発光装置100の断面図である。実施例1に係る発光装置100においては、図12に示すように、光反射膜160を透光性基板110と光路変更層120との間に配置しても良い。なお、透光性基板110の下面と光反射膜160の上面とが相互に接していても良いし、透光性基板110と光反射膜160との間に他の層が存在していても良い。この場合も、実施例1と同様の効果が得られる。
(Example 2)
FIG. 12 is a cross-sectional view of the light emitting device 100 according to the second embodiment. In the light emitting device 100 according to the first embodiment, as illustrated in FIG. 12, the light reflecting film 160 may be disposed between the translucent substrate 110 and the optical path changing layer 120. Note that the lower surface of the translucent substrate 110 and the upper surface of the light reflecting film 160 may be in contact with each other, or even if another layer exists between the translucent substrate 110 and the light reflecting film 160. good. In this case, the same effect as that of the first embodiment can be obtained.
 ここで、実施例2の場合、発光層から光反射膜160までの距離は、光路変更層120の屈折率を勘案したλ/4の奇数倍とすることが好ましい。これにより、光反射膜160にて反射した後で光取り出し面150aから取り出される光と、発光層から第2電極150側に向かい(光反射膜160での反射を経ずに)光取り出し面150aから取り出される光の位相が整合するので、それら光が互いの位相のずれのために打ち消し合うことによる光取り出し効率の低下を抑制できる。 Here, in the case of Example 2, it is preferable that the distance from the light emitting layer to the light reflecting film 160 is an odd multiple of λ / 4 considering the refractive index of the optical path changing layer 120. Accordingly, the light extracted from the light extraction surface 150a after being reflected by the light reflection film 160 and the light extraction surface 150a from the light emitting layer toward the second electrode 150 (without being reflected by the light reflection film 160). Since the phases of the light extracted from each other match each other, it is possible to suppress a decrease in light extraction efficiency due to the cancellation of the light due to the phase shift of each other.
 (実施例3)
 図13は実施例3に係る発光装置100の断面図である。実施例3に係る発光装置100は、以下に説明する点で、上記の実施形態に係る発光装置100と相違し、その他の点では実施形態に係る発光装置100と同様に構成されている。
(Example 3)
FIG. 13 is a cross-sectional view of the light emitting device 100 according to the third embodiment. The light emitting device 100 according to Example 3 is different from the light emitting device 100 according to the above-described embodiment in the points described below, and is configured similarly to the light-emitting device 100 according to the embodiment in other points.
 光路変更層120は、透光性基板110と第1電極130との間ではなく、有機機能層140と第2電極150との間に配置されている。すなわち、発光装置100は、有機機能層140に対して対向して配置された透光性基板110と、透光性基板110と有機機能層140との間に配置された透光性の第1電極130と、有機機能層140を基準として第1電極130とは反対側に配置された第2電極150とを備える。そして、光路変更層120は、有機機能層140と第2電極150との間に配置され、発光装置100から外部に光を出射する光取り出し側(つまり光取り出し面110a側)は、光路変更層120を基準として透光性基板110側である。 The optical path changing layer 120 is disposed not between the translucent substrate 110 and the first electrode 130 but between the organic functional layer 140 and the second electrode 150. That is, the light emitting device 100 includes a light transmissive substrate 110 disposed to face the organic functional layer 140 and a light transmissive first disposed between the light transmissive substrate 110 and the organic functional layer 140. The electrode 130 and the second electrode 150 disposed on the side opposite to the first electrode 130 with respect to the organic functional layer 140 are provided. The optical path changing layer 120 is disposed between the organic functional layer 140 and the second electrode 150, and the light extraction side (that is, the light extraction surface 110a side) that emits light from the light emitting device 100 to the outside is the optical path changing layer. 120 is the light-transmitting substrate 110 side.
 より具体的には、光路変更層120は、有機機能層140に対して隣接して配置されている。光路変更層120は、第2電極150に対しても隣接して配置されている。ここで、第2電極150から有機機能層140に対して電圧を容易に印加できるように、光路変更層120にはN型不純物が導入され、光路変更層120が導電層となっていることが好ましい。すなわち、光路変更層120はNドープ層であることが好ましい。 More specifically, the optical path changing layer 120 is disposed adjacent to the organic functional layer 140. The optical path changing layer 120 is also disposed adjacent to the second electrode 150. Here, an N-type impurity is introduced into the optical path changing layer 120 so that the voltage can be easily applied from the second electrode 150 to the organic functional layer 140, and the optical path changing layer 120 is a conductive layer. preferable. That is, the optical path changing layer 120 is preferably an N-doped layer.
 実施例3の場合、発光層から第1電極130側に向かった光の一部は、第1電極130及び透光性基板110をこの順に介して光取り出し面110aから放射される。 In the case of Example 3, part of the light traveling from the light emitting layer toward the first electrode 130 is radiated from the light extraction surface 110a through the first electrode 130 and the translucent substrate 110 in this order.
 一方、発光層から光路変更層120側に向かった光は、光路変更層120内を通過した後、反射電極である第2電極150にて反射(全反射)する。この光の一部は、光路変更層120、有機機能層140、第1電極130及び透光性基板110をこの順に介して、光取り出し面110aから放射される。ここで、光路変更層120に対して斜めに入射する光の向きが、複数の屈折率変化部121の作用により光取り出し面110aに対してほぼ面直方向に変更される。これにより、複数の屈折率変化部121が存在しない場合と比べて光取り出し効率が向上する。 On the other hand, the light traveling from the light emitting layer toward the optical path changing layer 120 passes through the optical path changing layer 120 and is then reflected (totally reflected) by the second electrode 150 which is a reflective electrode. A part of this light is emitted from the light extraction surface 110a through the optical path changing layer 120, the organic functional layer 140, the first electrode 130, and the translucent substrate 110 in this order. Here, the direction of light incident obliquely with respect to the optical path changing layer 120 is changed to a substantially perpendicular direction with respect to the light extraction surface 110 a by the action of the plurality of refractive index changing portions 121. Thereby, the light extraction efficiency is improved as compared with the case where the plurality of refractive index changing portions 121 do not exist.
 このように、実施例3によっても、上記の実施形態と同様の効果が得られる。
 なお、フォトニック結晶を通過する光は帯域が狭くなる傾向がある。発光層から、フォトニック結晶を介さずに光取り出し面110aから取り出せる光は、有機ELに特有のブロードなスペクトラムを有する。一方、第2電極150にて反射した光はフォトニック結晶を通過するので、狭い帯域となる。ブロードなスペクトラムの光に、狭い帯域の光が重畳された光が光取り出し面110aから放射されることになる。
Thus, also in Example 3, the same effect as the above-described embodiment can be obtained.
Note that the light passing through the photonic crystal tends to have a narrow band. The light that can be extracted from the light extraction surface 110a without going through the photonic crystal from the light emitting layer has a broad spectrum peculiar to the organic EL. On the other hand, since the light reflected by the second electrode 150 passes through the photonic crystal, it becomes a narrow band. Light in which narrow band light is superimposed on light having a broad spectrum is emitted from the light extraction surface 110a.
 次に、実施例3に係る発光装置100を製造する工程の一例を説明する。図14(a)及び図14(b)は実施例3に係る発光装置100を製造する工程の一部を示す断面図である。先ず、透光性基板110の下面に、スパッタ法などによりITOやIZOなどの金属酸化物導電体からなる透光性の導電膜を成膜し、エッチングによりこれをパターニングして第1電極130を形成する。次に、第1電極130の下面に有機材料を成膜することにより有機機能層140を形成する。なお、必要に応じて、バスライン170や、隔壁部180をそれぞれ適切なタイミングで形成する。次に、有機機能層140の下面に、フタロシアニン系、アゾ系又はNPBなどの有機材料を成膜し、光路変更層120におけるベース領域122となる部分を形成する。次に、光路変更層120におけるベース領域122の下面に、マスクを用いた蒸着法などによりAl等の金属材料を所望のパターンに堆積させて、第2電極150の第1部分151を形成する。次に、レーザ等の光線を第1部分151側から光路変更層120のベース領域122に照射することにより、ベース領域122に屈折率変化部121を形成する(図14(a))。ここで、第2電極150の第1部分151は、有機機能層140に対する光線の影響を抑制するためのマスクとして機能する。次に、第2電極150の第1部分151の下面に、マスクを用いた蒸着法などによりAl等の金属材料を所望のパターンに堆積させて、第2電極150の第2部分152を形成する(図14(b))。こうして、第1部分151と第2部分152との積層構造からなる第2電極150が形成される。これによって、光線の照射によって第1部分151に形成された孔が第2部分152によって埋められるので、第2電極150を所望のパターン形状に形成することができる。なお、第2電極150の下面には必要に応じて封止層を形成しても良い。
 有機機能層140と光路変更層120とのうち少なくとも一方の材料が大気に対して敏感である場合、真空中、または特定のガスの中で成膜およびレーザ照射を行うことが望ましいが、そのような製法では製造工数が嵩む。
 その場合は、第1部分151を光が透過する程度の厚さの均一な膜(10nm程度)にし、その上からレーザを集光して照射し、屈折率変化部121の屈折率を変化させる。屈折率変化部121の屈折率を変化させた後、第2部分152を形成し、第1部分151と第2部分152とからなる反射膜を形成する。このようにすることにより、レーザ照射は、真空中や特定のガスの中で行う必要がないので、その分、製造工程を削減できる。なお、このように第1部分151を形成する工程と第2部分152を形成する工程との間でレーザ照射を行う場合にも、そのレーザ照射を真空中や特定のガスの中で行っても良い。
Next, an example of a process for manufacturing the light emitting device 100 according to Example 3 will be described. 14A and 14B are cross-sectional views illustrating a part of the process of manufacturing the light emitting device 100 according to the third embodiment. First, a light-transmitting conductive film made of a metal oxide conductor such as ITO or IZO is formed on the lower surface of the light-transmitting substrate 110 by sputtering or the like, and patterned by etching to form the first electrode 130. Form. Next, the organic functional layer 140 is formed by depositing an organic material on the lower surface of the first electrode 130. If necessary, the bus line 170 and the partition wall portion 180 are formed at appropriate timings. Next, an organic material such as phthalocyanine-based, azo-based, or NPB is formed on the lower surface of the organic functional layer 140 to form a portion that becomes the base region 122 in the optical path changing layer 120. Next, a first material 151 of the second electrode 150 is formed by depositing a metal material such as Al in a desired pattern on the lower surface of the base region 122 in the optical path changing layer 120 by vapor deposition using a mask or the like. Next, a refractive index changing portion 121 is formed in the base region 122 by irradiating the base region 122 of the optical path changing layer 120 with a light beam such as a laser from the first portion 151 side (FIG. 14A). Here, the first portion 151 of the second electrode 150 functions as a mask for suppressing the influence of light rays on the organic functional layer 140. Next, a metal material such as Al is deposited in a desired pattern on the lower surface of the first portion 151 of the second electrode 150 by vapor deposition using a mask or the like to form the second portion 152 of the second electrode 150. (FIG. 14B). Thus, the second electrode 150 having a laminated structure of the first portion 151 and the second portion 152 is formed. Thereby, the hole formed in the first portion 151 by the irradiation of the light beam is filled with the second portion 152, so that the second electrode 150 can be formed in a desired pattern shape. Note that a sealing layer may be formed on the lower surface of the second electrode 150 as necessary.
When at least one of the organic functional layer 140 and the optical path changing layer 120 is sensitive to the atmosphere, it is desirable to perform film formation and laser irradiation in a vacuum or in a specific gas. This method increases the number of manufacturing steps.
In that case, the first portion 151 is made a uniform film (about 10 nm) thick enough to transmit light, and the laser is condensed and irradiated from above to change the refractive index of the refractive index changing section 121. . After changing the refractive index of the refractive index changing portion 121, the second portion 152 is formed, and a reflective film composed of the first portion 151 and the second portion 152 is formed. By doing so, it is not necessary to perform laser irradiation in a vacuum or in a specific gas, so that the manufacturing process can be reduced accordingly. Even when the laser irradiation is performed between the step of forming the first portion 151 and the step of forming the second portion 152 as described above, the laser irradiation may be performed in a vacuum or in a specific gas. good.
 (実施例4)
 図15は実施例4に係る発光装置100の断面図である。実施例4に係る発光装置100は、以下に説明する点で、上記の実施例3に係る発光装置100(図13)と相違し、その他の点では実施例3に係る発光装置100と同様に構成されている。
Example 4
FIG. 15 is a cross-sectional view of the light emitting device 100 according to the fourth embodiment. The light emitting device 100 according to the fourth embodiment is different from the light emitting device 100 according to the third embodiment described above (FIG. 13) in the points described below, and is otherwise the same as the light emitting device 100 according to the third embodiment. It is configured.
 実施例4の場合、第2電極150の第1部分151と第2部分152との間には、誘電体層190が配置されている。誘電体層190は、高屈折率の透光性の材料により構成されている。誘電体層190は、例えば、NPBなどの有機材料からなる。また、第1部分151は、光が透過する程度に薄い金属薄膜である。 In the case of Example 4, a dielectric layer 190 is disposed between the first portion 151 and the second portion 152 of the second electrode 150. The dielectric layer 190 is made of a light-transmitting material having a high refractive index. The dielectric layer 190 is made of an organic material such as NPB, for example. The first portion 151 is a thin metal film that is thin enough to transmit light.
 実施例4の場合、発光層から第1電極130側に向かった光の一部は、第1電極130及び透光性基板110をこの順に介して光取り出し面110aから放射される。
 一方、発光層から光路変更層120側に向かった光は、光路変更層120、第2電極150の第1部分151、誘電体層190をこの順に通過した後、第2電極150の第2部分152にて反射する。この光の一部は、誘電体層190、第1部分151、光路変更層120、有機機能層140、第1電極130及び透光性基板110をこの順に介して、光取り出し面110aから放射される。
In the case of Example 4, a part of the light traveling from the light emitting layer toward the first electrode 130 is radiated from the light extraction surface 110a through the first electrode 130 and the translucent substrate 110 in this order.
On the other hand, the light traveling from the light emitting layer toward the optical path changing layer 120 side passes through the optical path changing layer 120, the first portion 151 of the second electrode 150, and the dielectric layer 190 in this order, and then the second portion of the second electrode 150. Reflected at 152. Part of this light is radiated from the light extraction surface 110a through the dielectric layer 190, the first portion 151, the optical path changing layer 120, the organic functional layer 140, the first electrode 130, and the translucent substrate 110 in this order. The
 実施例4によっても、実施例3と同様の効果が得られるとともに、反射膜により発生するプラズモン損失の軽減が可能である。 According to the fourth embodiment, the same effect as that of the third embodiment can be obtained and the plasmon loss generated by the reflection film can be reduced.
 (実施例5)
 図16は実施例5に係る発光装置100の断面図である。実施例5に係る発光装置100は、以下に説明する点で、上記の実施例1に係る発光装置100(図11)と相違し、その他の点では実施例1に係る発光装置100と同様に構成されている。
(Example 5)
FIG. 16 is a cross-sectional view of the light emitting device 100 according to the fifth embodiment. The light emitting device 100 according to the fifth embodiment is different from the light emitting device 100 according to the first embodiment described above (FIG. 11) in the points described below, and is otherwise similar to the light emitting device 100 according to the first embodiment. It is configured.
 光路変更層120は、透光性基板110と第1電極130との間ではなく、有機機能層140と第2電極150との間に配置されている。ここで、第2電極150から有機機能層140に対して電圧を容易に印加できるように、光路変更層120にはN型不純物が導入され、光路変更層120が導電層となっていることが好ましい。すなわち、光路変更層120はNドープ層であることが好ましい。なお、第2電極150が陽極で、第1電極130が陰極となっていても良い。この場合、光路変更層120にはP型不純物を導入して、光路変更層120をPドープ層とすることが好ましい。 The optical path changing layer 120 is disposed not between the translucent substrate 110 and the first electrode 130 but between the organic functional layer 140 and the second electrode 150. Here, an N-type impurity is introduced into the optical path changing layer 120 so that the voltage can be easily applied from the second electrode 150 to the organic functional layer 140, and the optical path changing layer 120 is a conductive layer. preferable. That is, the optical path changing layer 120 is preferably an N-doped layer. Note that the second electrode 150 may be an anode and the first electrode 130 may be a cathode. In this case, it is preferable to introduce a P-type impurity into the optical path changing layer 120 to make the optical path changing layer 120 a P-doped layer.
 実施例5の場合、発光層から第2電極150側に向かった光の一部は、第2電極150を介して光取り出し面150aから放射される。 In the case of Example 5, a part of the light traveling from the light emitting layer toward the second electrode 150 is radiated from the light extraction surface 150a through the second electrode 150.
 一方、発光層から第1電極130側に向かった光は、第1電極130から透光性基板110に入射し、光反射膜160にて反射する。この光の一部は、その後、透光性基板110、第1電極130、有機機能層140、光路変更層120及び第2電極150をこの順に介して、光取り出し面150aから放射される。ここで、光路変更層120に対して斜めに入射する光の向きが、複数の屈折率変化部121の作用により光取り出し面150aに対してほぼ面直方向に変更される。これにより、複数の屈折率変化部121が存在しない場合と比べて光取り出し効率が向上する。 On the other hand, the light traveling from the light emitting layer toward the first electrode 130 is incident on the translucent substrate 110 from the first electrode 130 and reflected by the light reflecting film 160. A part of this light is then emitted from the light extraction surface 150a through the transparent substrate 110, the first electrode 130, the organic functional layer 140, the optical path changing layer 120, and the second electrode 150 in this order. Here, the direction of light obliquely incident on the optical path changing layer 120 is changed to a substantially perpendicular direction with respect to the light extraction surface 150 a by the action of the plurality of refractive index changing portions 121. Thereby, the light extraction efficiency is improved as compared with the case where the plurality of refractive index changing portions 121 do not exist.
 このように、実施例5によっても、実施例1と同様の効果が得られる。 Thus, the same effects as in the first embodiment can be obtained in the fifth embodiment.
 なお、実施例5の場合も、実施例2と同様に、光反射膜160を透光性基板110と第1電極130との間に配置しても良い。この場合も、実施例2と同様の理由から、発光層から光反射膜160までの距離は、λ/4の奇数倍とすることが好ましい。 In the case of Example 5, the light reflecting film 160 may be disposed between the translucent substrate 110 and the first electrode 130 as in Example 2. Also in this case, for the same reason as in Example 2, it is preferable that the distance from the light emitting layer to the light reflecting film 160 is an odd multiple of λ / 4.
 (実施例6)
 図17は実施例6に係る発光装置100の断面図である。実施例6に係る発光装置100は、以下に説明する点で、実施例4に係る発光装置100(図15)と相違し、その他の点では実施例4に係る発光装置100と同様に構成されている。
(Example 6)
FIG. 17 is a cross-sectional view of the light emitting device 100 according to the sixth embodiment. The light emitting device 100 according to Example 6 is different from the light emitting device 100 according to Example 4 (FIG. 15) in the points described below, and is configured in the same manner as the light emitting device 100 according to Example 4 in other points. ing.
 実施例6の場合、NPBなどの有機材料からなる高屈折率の誘電体層190は、有機機能層140と第1部分151との間に配置されている。実施例4と同様に、第1部分151は、光が透過する程度に薄い金属薄膜である。また、光路変更層120は、第1部分151と第2部分152との間に配置されている。 In the case of Example 6, the high refractive index dielectric layer 190 made of an organic material such as NPB is disposed between the organic functional layer 140 and the first portion 151. Similar to the fourth embodiment, the first portion 151 is a thin metal film that is thin enough to transmit light. The optical path changing layer 120 is disposed between the first portion 151 and the second portion 152.
 実施例6の場合、発光層から第1電極130側に向かった光の一部は、第1電極130及び透光性基板110をこの順に介して光取り出し面110aから放射される。
 一方、発光層から誘電体層190側に向かった光は、誘電体層190、第2電極150の第1部分151、光路変更層120をこの順に通過した後、第2電極150の第2部分152にて反射する。この光の一部は、光路変更層120、第1部分151、誘電体層190、有機機能層140、第1電極130及び透光性基板110をこの順に介して、光取り出し面110aから放射される。
In the case of Example 6, a part of the light traveling from the light emitting layer toward the first electrode 130 is radiated from the light extraction surface 110a through the first electrode 130 and the translucent substrate 110 in this order.
On the other hand, the light traveling from the light emitting layer toward the dielectric layer 190 side passes through the dielectric layer 190, the first portion 151 of the second electrode 150, and the optical path changing layer 120 in this order, and then the second portion of the second electrode 150. Reflected at 152. A part of this light is emitted from the light extraction surface 110a through the optical path changing layer 120, the first portion 151, the dielectric layer 190, the organic functional layer 140, the first electrode 130, and the translucent substrate 110 in this order. The
 実施例6によっても、実施例4と同様の効果が得られる。 Also in Example 6, the same effect as in Example 4 can be obtained.
 次に、実施例6に係る発光装置100を製造する工程の一例を説明する。図18(a)及び図18(b)は実施例6に係る発光装置100を製造する工程の一部を示す断面図である。先ず、透光性基板110の下面に、スパッタ法などによりITOやIZOなどの金属酸化物導電体からなる透光性の導電膜を成膜し、エッチングによりこれをパターニングして第1電極130を形成する。次に、第1電極130の下面に有機材料を成膜することにより有機機能層140を形成する。なお、必要に応じて、バスライン170や、隔壁部180をそれぞれ適切なタイミングで形成する。次に、有機機能層140の下面に、NPBなどの有機材料を成膜することにより、誘電体層190を形成する。次に、誘電体層190の下面に、マスクを用いた蒸着法などによりAl等の金属材料を所望のパターンに堆積させて、第2電極150の第1部分151を形成する。次に、第1部分151の下面に、フタロシアニン系、アゾ系又はNPBなどの有機材料を成膜し、光路変更層120におけるベース領域122となる部分を形成する。次に、レーザ等の光線を光路変更層120の下面側から光路変更層120のベース領域122に照射することにより、ベース領域122に屈折率変化部121を形成する(図18(a))。ここで、第2電極150の第1部分151は、有機機能層140に対する光線の影響を抑制するためのマスクとして機能する。特に、光線の発光源から見て光路変更層120よりも向こう側に第1部分151を配置した状態で、光路変更層120に光線を照射して屈折率変化部121を形成するので、光線による有機機能層140への影響を抑制する効果が高い。また、薄膜金属からなる第1部分151を基準にして、照射する光線の焦点合わせを行うことにより、この焦点合わせを容易に行うことができるというメリットもある。次に、第2電極150の第1部分151の下面に、マスクを用いた蒸着法などによりAl等の金属材料を所望のパターンに堆積させて、第2電極150の第2部分152を形成する(図18(b))。こうして、第1部分151と第2部分152とからなる第2電極150が形成される。なお、第2部分152の下面には必要に応じて封止層を形成しても良い。 Next, an example of a process for manufacturing the light emitting device 100 according to Example 6 will be described. 18A and 18B are cross-sectional views illustrating a part of the process of manufacturing the light emitting device 100 according to the sixth embodiment. First, a light-transmitting conductive film made of a metal oxide conductor such as ITO or IZO is formed on the lower surface of the light-transmitting substrate 110 by sputtering or the like, and patterned by etching to form the first electrode 130. Form. Next, the organic functional layer 140 is formed by depositing an organic material on the lower surface of the first electrode 130. If necessary, the bus line 170 and the partition wall portion 180 are formed at appropriate timings. Next, a dielectric layer 190 is formed by depositing an organic material such as NPB on the lower surface of the organic functional layer 140. Next, a first material 151 of the second electrode 150 is formed on the lower surface of the dielectric layer 190 by depositing a metal material such as Al in a desired pattern by vapor deposition using a mask. Next, an organic material such as phthalocyanine-based, azo-based, or NPB is formed on the lower surface of the first portion 151 to form a portion that becomes the base region 122 in the optical path changing layer 120. Next, the refractive index changing portion 121 is formed in the base region 122 by irradiating the base region 122 of the optical path changing layer 120 with a light beam such as a laser from the lower surface side of the optical path changing layer 120 (FIG. 18A). Here, the first portion 151 of the second electrode 150 functions as a mask for suppressing the influence of light rays on the organic functional layer 140. In particular, the refractive index changing portion 121 is formed by irradiating the light path changing layer 120 with light rays in a state where the first portion 151 is disposed beyond the light path changing layer 120 as viewed from the light source. The effect of suppressing the influence on the organic functional layer 140 is high. Also, there is an advantage that this focusing can be easily performed by focusing the irradiated light beam with the first portion 151 made of a thin film metal as a reference. Next, a metal material such as Al is deposited in a desired pattern on the lower surface of the first portion 151 of the second electrode 150 by vapor deposition using a mask or the like to form the second portion 152 of the second electrode 150. (FIG. 18 (b)). Thus, the second electrode 150 composed of the first portion 151 and the second portion 152 is formed. Note that a sealing layer may be formed on the lower surface of the second portion 152 as necessary.
 (実施例7)
 図19は実施例7に係る発光装置100の断面図である。実施例7に係る発光装置100は、以下に説明する点で、実施例6に係る発光装置100(図17)と相違し、その他の点では実施例6に係る発光装置100と同様に構成されている。
(Example 7)
FIG. 19 is a cross-sectional view of the light emitting device 100 according to the seventh embodiment. The light emitting device 100 according to the seventh embodiment is different from the light emitting device 100 according to the sixth embodiment (FIG. 17) in the points described below, and is configured in the same manner as the light emitting device 100 according to the sixth embodiment in other points. ing.
 実施例7の場合、第2電極150は、光が透過する程度に薄い金属薄膜である。第2電極150は、誘電体層190と光路変更層120との間に配置された1層の金属薄膜からなり、光路変更層120の下側には配置されていない。光路変更層120の下面が光取り出し面120aとなっている。また、透光性基板110の上側には光反射膜160が形成されている。なお、第2電極150の端部は、隔壁部180の延在方向における端部(図19の紙面の手前側又は奥側)において、発光装置100の外部に引き出されており、第2電極150に対して電圧を印加できるようになっている。 In Example 7, the second electrode 150 is a thin metal film that is thin enough to transmit light. The second electrode 150 is made of a single metal thin film disposed between the dielectric layer 190 and the optical path changing layer 120, and is not disposed below the optical path changing layer 120. The lower surface of the optical path changing layer 120 is a light extraction surface 120a. Further, a light reflection film 160 is formed on the upper side of the translucent substrate 110. Note that the end portion of the second electrode 150 is drawn to the outside of the light emitting device 100 at the end portion in the extending direction of the partition wall portion 180 (the front side or the back side in FIG. 19). Can be applied with a voltage.
 実施例7の場合、発光層から誘電体層190側に向かった光の一部は、誘電体層190、第2電極150、光路変更層120をこの順に介して、光取り出し面120aから放射される。
 一方、発光層から第1電極130側に向かった光の一部は、第1電極130及び透光性基板110をこの順に透過した後に光反射膜160にて反射し、透光性基板110、第1電極130、有機機能層140、誘電体層190、第2電極150及び光路変更層120をこの順に介して、光取り出し面120aから放射される。
In the case of Example 7, a part of the light traveling from the light emitting layer toward the dielectric layer 190 is emitted from the light extraction surface 120a through the dielectric layer 190, the second electrode 150, and the optical path changing layer 120 in this order. The
On the other hand, part of the light traveling from the light emitting layer toward the first electrode 130 is transmitted through the first electrode 130 and the light-transmitting substrate 110 in this order, and then reflected by the light reflecting film 160, thereby transmitting the light-transmitting substrate 110, The light is emitted from the light extraction surface 120a through the first electrode 130, the organic functional layer 140, the dielectric layer 190, the second electrode 150, and the optical path changing layer 120 in this order.
 実施例7によっても、実施例6と同様の効果が得られる。 Also in Example 7, the same effect as in Example 6 can be obtained.
 なお、実施例7の場合も、実施例2と同様の理由から、光反射膜160を透光性基板110と第1電極130との間に配置しても良い。この場合も、実施例2と同様の理由から、発光層から光反射膜160までの距離は、λ/4の奇数倍とすることが好ましい。これにより、光反射膜160にて反射した後で光取り出し面120aから取り出される光と、発光層から光路変更層120側に向かい(光反射膜160での反射を経ずに)光取り出し面120aから取り出される光とが打ち消し合うことによる光取り出し効率の低下を抑制できる。 In the case of Example 7 as well, for the same reason as in Example 2, the light reflecting film 160 may be disposed between the translucent substrate 110 and the first electrode 130. Also in this case, for the same reason as in Example 2, it is preferable that the distance from the light emitting layer to the light reflecting film 160 is an odd multiple of λ / 4. Accordingly, the light extracted from the light extraction surface 120a after being reflected by the light reflection film 160 and the light extraction surface 120a from the light emitting layer toward the optical path changing layer 120 side (without being reflected by the light reflection film 160). Decrease in light extraction efficiency due to cancellation of light extracted from each other can be suppressed.
 (実施例8)
 図20は実施例8に係る発光装置100の断面図である。実施例8に係る発光装置100は、以下に説明する点で、実施例1に係る発光装置100(図11)と相違し、その他の点では実施例1に係る発光装置100と同様に構成されている。
(Example 8)
FIG. 20 is a cross-sectional view of the light emitting device 100 according to the eighth embodiment. The light emitting device 100 according to the eighth embodiment is different from the light emitting device 100 according to the first embodiment (FIG. 11) in the points described below, and is otherwise configured in the same manner as the light emitting device 100 according to the first embodiment. ing.
 実施例8の場合、光路変更層120は、有機機能層140を基準として、発光装置100から外部に光を出射する光取り出し側(つまり光取り出し面150a側)とは反対側に配置されている。そして、有機機能層140に対して平行な第1面と、有機機能層140に対して平行で且つ有機機能層140に対する面直方向において第1面から離間している第2面と、のそれぞれにおいて、複数の屈折率変化部121が、第1方向において第1間隔で等間隔に配置され、第2方向において第2間隔で等間隔に配置されている(図20に示す屈折率変化部群123、124)。すなわち、平面的に分散して配置された複数の屈折率変化部121からなる群(屈折率変化部群123、124等)が、少なくとも2段以上に配置されている。 In the case of Example 8, the optical path changing layer 120 is disposed on the side opposite to the light extraction side (that is, the light extraction surface 150a side) that emits light from the light emitting device 100 to the outside with the organic functional layer 140 as a reference. . Each of the first surface parallel to the organic functional layer 140 and the second surface parallel to the organic functional layer 140 and spaced from the first surface in the direction perpendicular to the organic functional layer 140 , The plurality of refractive index changing portions 121 are arranged at equal intervals at a first interval in the first direction, and are arranged at equal intervals at second intervals in the second direction (refractive index changing portion group shown in FIG. 20). 123, 124). That is, a group (refractive index changing section groups 123, 124, etc.) composed of a plurality of refractive index changing sections 121 arranged in a planar manner is arranged in at least two stages.
 このように平面的に分散して配置された複数の屈折率変化部121からなる群を2段以上に配置することによって、有機機能層140に対してほぼ直交する方向(従って光取り出し面150aに対してもほぼ直交する方向)へと光を反射することができる。この場合、反射膜による損失がなく、これにより、光取り出し効率を高めることができる。 By arranging the group of the plurality of refractive index changing portions 121 arranged in a planar manner in this manner in two or more stages, a direction substantially perpendicular to the organic functional layer 140 (and hence on the light extraction surface 150a). The light can be reflected in a direction substantially perpendicular to the direction. In this case, there is no loss due to the reflective film, and thereby the light extraction efficiency can be increased.
 (実施例9)
 図21は実施例9に係る発光装置100の断面図である。実施例9に係る発光装置100は、以下に説明する点で、実施例6に係る発光装置100(図17)と相違し、その他の点では実施例6に係る発光装置100と同様に構成されている。
Example 9
FIG. 21 is a cross-sectional view of the light emitting device 100 according to the ninth embodiment. The light emitting device 100 according to the ninth embodiment is different from the light emitting device 100 according to the sixth embodiment (FIG. 17) in the points described below, and is configured in the same manner as the light emitting device 100 according to the sixth embodiment in other points. ing.
 実施例9の場合、第2電極150の第1部分151が有機機能層140に対して隣接している。すなわち、陰極を構成する薄膜が有機機能層140に対して隣接している。そして、この第1部分151に対して光路変更層120が隣接している。 In the case of Example 9, the first portion 151 of the second electrode 150 is adjacent to the organic functional layer 140. That is, the thin film constituting the cathode is adjacent to the organic functional layer 140. The optical path changing layer 120 is adjacent to the first portion 151.
 実施例9の場合、実施例8と同様に、光路変更層120は、有機機能層140を基準として、発光装置100から外部に光を出射する光取り出し側(つまり光取り出し面110a側)とは反対側に配置されている。また、光路変更層120の構成も実施例8と同様である。 In the case of Example 9, as in Example 8, the optical path changing layer 120 is the light extraction side (that is, the light extraction surface 110a side) that emits light from the light emitting device 100 to the outside with the organic functional layer 140 as a reference. Located on the opposite side. The configuration of the optical path changing layer 120 is the same as that of the eighth embodiment.
 (実施例10)
 図22は実施例10に係る発光装置100の断面図である。実施例9においては、図22に示すように、平面的に分散して配置された複数の屈折率変化部121からなる群を3段に配置しても良い。すなわち、この発光装置100は、3段の屈折率変化部群123、124、125を有している。屈折率変化部群の段数が多いほど、光の反射効率が向上する。よって、図22の構成の場合、屈折率変化部群が2段の場合よりも、確実に、光の反射効率を高めることができる。
(Example 10)
FIG. 22 is a cross-sectional view of the light emitting device 100 according to the tenth embodiment. In the ninth embodiment, as shown in FIG. 22, a group of a plurality of refractive index changing portions 121 arranged in a planar manner may be arranged in three stages. That is, the light emitting device 100 includes three stages of refractive index changing portion groups 123, 124, and 125. The greater the number of steps of the refractive index changing portion group, the better the light reflection efficiency. Therefore, in the case of the configuration of FIG. 22, the light reflection efficiency can be reliably increased as compared with the case where the refractive index changing portion group has two stages.
 より具体的には、有機機能層140に対する面直方向において、複数の屈折率変化部121が第3間隔で等間隔に配置されている。すなわち、複数の屈折率変化部群が上下に等間隔に配置されている。 More specifically, in the direction perpendicular to the organic functional layer 140, a plurality of refractive index changing portions 121 are arranged at equal intervals at a third interval. That is, a plurality of refractive index changing portion groups are arranged at equal intervals in the vertical direction.
 なお、図22に示すように、反射電極(例えば第2電極150の第2部分152)は、隔壁部180も覆っていても良い。このことは、他の実施例や実施形態においても同様である。 As shown in FIG. 22, the reflective electrode (for example, the second portion 152 of the second electrode 150) may also cover the partition wall portion 180. The same applies to other examples and embodiments.
 (実施例11)
 図23は実施例11に係る発光装置100の断面図である。図23に示すように、平面的に分散して配置された複数の屈折率変化部121からなる群を4段以上(例えば6段など)に配置しても良い。すなわち、この発光装置100は、6段の屈折率変化部群123、124、125、126、127、128を有している。屈折率変化部群を4段以上に配置することにより、光の反射効率を一層高めることができる。
(Example 11)
FIG. 23 is a cross-sectional view of the light emitting device 100 according to the eleventh embodiment. As shown in FIG. 23, a group of a plurality of refractive index changing sections 121 arranged in a planar manner may be arranged in four or more stages (for example, six stages). That is, the light emitting device 100 includes six stages of refractive index changing portion groups 123, 124, 125, 126, 127, and 128. By arranging the refractive index changing portion groups in four or more stages, the light reflection efficiency can be further increased.
 なお、図23に示すように、隔壁部180は、光路変更層120内に埋没していても良い。このことは、他の実施例においても同様である。 Note that, as shown in FIG. 23, the partition wall portion 180 may be buried in the optical path changing layer 120. The same applies to the other embodiments.
 (実施例12)
 図24は実施例12に係る発光装置100の断面図である。実施例12に係る発光装置100は、以下に説明する点で、実施例9に係る発光装置100(図21)と相違し、その他の点では実施例9に係る発光装置100と同様に構成されている。
Example 12
FIG. 24 is a cross-sectional view of the light emitting device 100 according to the twelfth embodiment. The light emitting device 100 according to Example 12 is different from the light emitting device 100 according to Example 9 (FIG. 21) in the points described below, and is configured in the same manner as the light emitting device 100 according to Example 9 in other points. ing.
 実施例12の場合、第2電極150は第1部分151(図21)を有しておらず、光路変更層120の下面側にのみ配置されている。実施例12によっても、実施例9と同様の効果が得られる。 In the case of Example 12, the second electrode 150 does not have the first portion 151 (FIG. 21) and is disposed only on the lower surface side of the optical path changing layer 120. According to the twelfth embodiment, the same effect as the ninth embodiment can be obtained.
 (実施例13)
 図25は実施例13に係る発光装置100の断面図である。実施例13に係る発光装置100は、以下に説明する点で、実施例11に係る発光装置100(図23)と相違し、その他の点では実施例11に係る発光装置100と同様に構成されている。
(Example 13)
FIG. 25 is a cross-sectional view of the light emitting device 100 according to Example 13. The light-emitting device 100 according to Example 13 is different from the light-emitting device 100 according to Example 11 (FIG. 23) in the points described below, and is otherwise configured in the same manner as the light-emitting device 100 according to Example 11. ing.
 実施例13の場合、複数の屈折率変化部121は、光取り出し側(つまり光取り出し面110a側)を向く曲面S11を有する領域R11内に、第1方向、第2方向及び有機機能層140に対する面直方向において等間隔に配置されている。 In the case of the thirteenth embodiment, the plurality of refractive index changing portions 121 are in the first direction, the second direction, and the organic functional layer 140 in the region R11 having the curved surface S11 facing the light extraction side (that is, the light extraction surface 110a side). They are arranged at equal intervals in the direction perpendicular to the surface.
 ここで、仮に、領域R11において光取り出し面110a側を向く面が、光取り出し面110aに対して平行な平面の場合、第1電極130と透光性基板110との界面や、透光性基板110と光放出空間との界面にて、ある角度で反射した光は、第2電極150の第2部分152にて同じ角度で反射し、これら反射を繰り返すうちに減衰してしまう。このような挙動の発生を抑制するために、光取り出し面110a側を向く曲面S11を有する領域R11内に複数の屈折率変化部121を等間隔に分散して配置している。これにより、第1電極130と透光性基板110との界面や、透光性基板110と光放出空間との界面にて、ある角度で反射した光を、複数の屈折率変化部121からなるフォトニック結晶によって異なる角度で反射することができるので、光取り出し効率を向上することができる。 Here, if the surface facing the light extraction surface 110a in the region R11 is a plane parallel to the light extraction surface 110a, the interface between the first electrode 130 and the translucent substrate 110, the translucent substrate, or the like. The light reflected at a certain angle at the interface between the light emitting space 110 and the light emitting space is reflected at the same angle by the second portion 152 of the second electrode 150 and attenuates while repeating these reflections. In order to suppress the occurrence of such behavior, a plurality of refractive index changing portions 121 are arranged at regular intervals in a region R11 having a curved surface S11 facing the light extraction surface 110a. Thus, the light reflected at a certain angle at the interface between the first electrode 130 and the translucent substrate 110 or at the interface between the translucent substrate 110 and the light emission space is composed of the plurality of refractive index changing portions 121. Since light can be reflected at different angles depending on the photonic crystal, light extraction efficiency can be improved.
 なお、図25に示すように、第2電極150の第1部分151は、隔壁部180において有機機能層140から第2部分152側に向けて突出している部分を覆っていても良い。また、第2電極150の第1部分151と第2部分152とは、スルーホール210を介して相互に接続されていても良い。 Note that, as shown in FIG. 25, the first portion 151 of the second electrode 150 may cover a portion of the partition wall portion 180 that protrudes from the organic functional layer 140 toward the second portion 152 side. In addition, the first portion 151 and the second portion 152 of the second electrode 150 may be connected to each other through the through hole 210.
 (実施例14)
 図26は実施例14に係る発光装置100の断面図である。実施例14に係る発光装置100は、以下に説明する点で、実施例3に係る発光装置100(図13)と相違し、その他の点では実施例3に係る発光装置100と同様に構成されている。
(Example 14)
FIG. 26 is a cross-sectional view of the light emitting device 100 according to Example 14. The light-emitting device 100 according to Example 14 is different from the light-emitting device 100 according to Example 3 (FIG. 13) in the points described below, and is otherwise configured in the same manner as the light-emitting device 100 according to Example 3. ing.
 実施例14の場合、実施例9と同様に、光路変更層120は、有機機能層140を基準として、発光装置100から外部に光を出射する光取り出し側(つまり光取り出し面110a側)とは反対側に配置されている。そして、複数の屈折率変化部121が、互いに一様な間隔で三次元的に分散してベース領域122内に配置されている。 In the case of Example 14, as in Example 9, the optical path changing layer 120 is the light extraction side (that is, the light extraction surface 110a side) that emits light from the light emitting device 100 to the outside with the organic functional layer 140 as a reference. Located on the opposite side. A plurality of refractive index changing portions 121 are arranged in the base region 122 in a three-dimensional manner with a uniform interval therebetween.
 このように複数の屈折率変化部121を互いに一様な間隔で三次元的に分散して配置することによって、実施例9と同様に、有機機能層140に対してなるべく直交する方向(従って光取り出し面150aに対してもなるべく直交する方向)へと光を反射することができる。これにより、光取り出し効率を高めることができる。 As described above, by arranging the plurality of refractive index changing portions 121 in a three-dimensional manner at a uniform interval, a direction orthogonal to the organic functional layer 140 as much as possible (thus, light) Light can be reflected in a direction that is as orthogonal as possible to the extraction surface 150a. Thereby, the light extraction efficiency can be increased.
 より具体的には、実施例9と同様に、平面的に分散して配置された複数の屈折率変化部121からなる群(屈折率変化部群123、124等)が、少なくとも2段以上に配置されている。 More specifically, as in the ninth embodiment, the group of refractive index changing sections 121 (refractive index changing section groups 123, 124, etc.) arranged in a planar manner is arranged in at least two or more stages. Has been placed.
 このように平面的に分散して配置された複数の屈折率変化部121からなる群を2段以上に配置することによって、実施例9と同様に、より確実に、有機機能層140に対してほぼ直交する方向(従って光取り出し面110aに対してもほぼ直交する方向)へと光を反射することができる。これにより、光取り出し効率を高めることができる。 By arranging two or more groups of the plurality of refractive index changing portions 121 arranged in a planar manner in this manner, the organic functional layer 140 can be more reliably secured in the same manner as in the ninth embodiment. Light can be reflected in a direction that is substantially orthogonal (thus, a direction that is also substantially orthogonal to the light extraction surface 110a). Thereby, the light extraction efficiency can be increased.
 (実施例15)
 図27は実施例15に係る発光装置100の断面図である。実施例15に係る発光装置100は、以下に説明する点で、実施形態に係る発光装置100(図1)と相違し、その他の点では実施形態に係る発光装置100と同様に構成されている。
(Example 15)
FIG. 27 is a cross-sectional view of the light emitting device 100 according to Example 15. The light emitting device 100 according to Example 15 is different from the light emitting device 100 according to the embodiment (FIG. 1) in the points described below, and is otherwise configured in the same manner as the light emitting device 100 according to the embodiment. .
 透光性基板110は、有機機能層140に対して対向して配置されている。隔壁部180は、有機機能層140を複数の領域に相互に仕切っている。そして、隔壁部180と透光性基板110とに挟まれた領域内において、透光性基板110側に向けて狭くなる領域R12内に、複数の屈折率変化部121が、第1方向と、第2方向と、有機機能層140に対する面直方向と、において等間隔で配置されている。 The translucent substrate 110 is disposed to face the organic functional layer 140. The partition wall 180 partitions the organic functional layer 140 into a plurality of regions. In the region sandwiched between the partition wall portion 180 and the translucent substrate 110, the plurality of refractive index changing portions 121 are in the first direction in the region R12 that narrows toward the translucent substrate 110 side. They are arranged at equal intervals in the second direction and the direction perpendicular to the organic functional layer 140.
 このように複数の屈折率変化部121を配置することにより、光路変更層120と透光性基板110との界面や、透光性基板110と光放出空間との界面にて反射した光のうち、隔壁部180の上方の領域に入る光の光路を、光取り出し面110aから取り出される方向、すなわち光取り出し面110aに対してなるべく直交する方向へと変更できる確率を高めることができる。 By arranging the plurality of refractive index changing portions 121 in this way, among the light reflected at the interface between the optical path changing layer 120 and the translucent substrate 110 or the interface between the translucent substrate 110 and the light emission space, In addition, it is possible to increase the probability that the optical path of the light entering the region above the partition wall portion 180 can be changed to the direction extracted from the light extraction surface 110a, that is, the direction orthogonal to the light extraction surface 110a as much as possible.
 なお、図27には、領域R12として、隔壁部180側が広く透光性基板110側が狭い等脚台形状の断面形状の領域(メサ状の領域)を例示している。ただし、領域R12は、隔壁部180側が底辺となり透光性基板110側が頂点となる三角形状の断面形状の領域(三角柱状の領域)や、多角錐状の領域であっても良い。 In FIG. 27, as the region R12, an isosceles trapezoidal cross-sectional region (mesa-shaped region) is illustrated which is wide on the partition wall 180 side and narrow on the translucent substrate 110 side. However, the region R12 may be a triangular cross-sectional region (triangular columnar region) or a polygonal pyramid region in which the partition wall 180 side is the base and the light-transmitting substrate 110 side is the apex.
 なお、上記λ/4などの波長をパラメータとした物理的距離は、発光装置の部分毎の屈折率を考慮している。すなわち、例えば、屈折率1.8の材質中でのλ/4は、実際の距離としてはλ/(4×1.8)である。 Note that the physical distance using the wavelength such as λ / 4 as a parameter takes into account the refractive index of each part of the light emitting device. That is, for example, λ / 4 in a material having a refractive index of 1.8 is λ / (4 × 1.8) as an actual distance.
 以上、図面を参照して実施形態及び実施例について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。 As mentioned above, although embodiment and the Example were described with reference to drawings, these are the illustrations of this invention, Various structures other than the above are also employable.

Claims (12)

  1.  少なくとも発光層を含む有機機能層と、
     前記有機機能層の一方の面側に配置され、前記発光層からの光の光路を変更する光路変更層と、
     を備え、
     前記光路変更層は、
     ベース領域と、
     前記ベース領域とは屈折率が異なり、前記ベース領域内に配置された屈折率変化部と、
     を含み、
     前記発光層からの光の発光スペクトルのピーク波長をλとすると、前記屈折率変化部の寸法は、λ/2よりも小さく、
     複数の前記屈折率変化部が、前記有機機能層に対して平行な第1方向において第1間隔で等間隔に配置され、前記有機機能層に対して平行で前記第1方向に対して交差する第2方向において第2間隔で等間隔に配置されている発光装置。
    An organic functional layer including at least a light emitting layer;
    An optical path changing layer that is disposed on one surface side of the organic functional layer and changes an optical path of light from the light emitting layer;
    With
    The optical path changing layer is
    The base region,
    The refractive index is different from that of the base region, and the refractive index changing portion disposed in the base region;
    Including
    When the peak wavelength of the emission spectrum of the light from the light emitting layer is λ, the dimension of the refractive index changing portion is smaller than λ / 2,
    The plurality of refractive index changing portions are arranged at equal intervals at a first interval in a first direction parallel to the organic functional layer, and are parallel to the organic functional layer and intersect with the first direction. Light emitting devices arranged at equal intervals at second intervals in the second direction.
  2.  隣り合う前記屈折率変化部どうしの中心間距離は、λ/2以上λ以下である請求項1に記載の発光装置。 The light emitting device according to claim 1, wherein a distance between centers of the adjacent refractive index changing portions is λ / 2 or more and λ or less.
  3.  前記屈折率変化部の寸法がλ/10以上である請求項1又は2に記載の発光装置。 The light emitting device according to claim 1 or 2, wherein the refractive index changing portion has a dimension of λ / 10 or more.
  4.  前記屈折率変化部の屈折率は、前記ベース領域の屈折率よりも小さい請求項1~3の何れか一項に記載の発光装置。 The light emitting device according to any one of claims 1 to 3, wherein a refractive index of the refractive index changing portion is smaller than a refractive index of the base region.
  5.  前記屈折率変化部は、前記ベース領域が結晶化した部分であるとともに、前記屈折率変化部の屈折率は、前記ベース領域の屈折率よりも大きい請求項1~3の何れか一項に記載の発光装置。 The refractive index changing portion is a portion where the base region is crystallized, and a refractive index of the refractive index changing portion is larger than a refractive index of the base region. Light-emitting device.
  6.  前記屈折率変化部は気泡である請求項1~3の何れか一項に記載の発光装置。 The light emitting device according to any one of claims 1 to 3, wherein the refractive index changing portion is a bubble.
  7.  当該発光装置は、更に、
     前記有機機能層に対して対向して配置された透光性基板と、
     前記透光性基板と前記有機機能層との間に配置された透光性の第1電極と、
     前記有機機能層を基準として前記第1電極とは反対側に配置された第2電極と、
     を備え、
     前記光路変更層は、前記透光性基板と前記第1電極との間に配置され、
     当該発光装置から外部に光を出射する光取り出し側は、前記光路変更層を基準として前記透光性基板側である請求項1~6の何れか一項に記載の発光装置。
    The light emitting device further includes:
    A translucent substrate disposed to face the organic functional layer;
    A translucent first electrode disposed between the translucent substrate and the organic functional layer;
    A second electrode disposed on the opposite side of the first electrode with respect to the organic functional layer;
    With
    The optical path changing layer is disposed between the translucent substrate and the first electrode,
    The light emitting device according to any one of claims 1 to 6, wherein a light extraction side for emitting light from the light emitting device to the outside is the light transmitting substrate side with respect to the optical path changing layer.
  8.  当該発光装置は、更に、
     前記有機機能層に対して対向して配置された透光性基板と、
     前記透光性基板と前記有機機能層との間に配置された透光性の第1電極と、
     前記有機機能層を基準として前記第1電極とは反対側に配置された第2電極と、
     を備え、
     前記光路変更層は、前記有機機能層と前記第2電極との間に配置され、
     当該発光装置から外部に光を出射する光取り出し側は、前記光路変更層を基準として前記透光性基板側である請求項1~6の何れか一項に記載の発光装置。
    The light emitting device further includes:
    A translucent substrate disposed to face the organic functional layer;
    A translucent first electrode disposed between the translucent substrate and the organic functional layer;
    A second electrode disposed on the opposite side of the first electrode with respect to the organic functional layer;
    With
    The optical path changing layer is disposed between the organic functional layer and the second electrode,
    The light emitting device according to any one of claims 1 to 6, wherein a light extraction side for emitting light from the light emitting device to the outside is the light transmitting substrate side with respect to the optical path changing layer.
  9.  前記光路変更層は、前記有機機能層を基準として、当該発光装置から外部に光を出射する光取り出し側とは反対側に配置され、
     前記有機機能層に対して平行な第1面と、前記有機機能層に対して平行で且つ前記有機機能層に対する面直方向において前記第1面から離間している第2面と、のそれぞれにおいて、複数の前記屈折率変化部が、前記第1方向において前記第1間隔で等間隔に配置され、前記第2方向において前記第2間隔で等間隔に配置されている請求項1~8の何れか一項に記載の発光装置。
    The optical path changing layer is disposed on the side opposite to the light extraction side that emits light from the light emitting device to the outside with respect to the organic functional layer,
    In each of a first surface parallel to the organic functional layer and a second surface parallel to the organic functional layer and spaced from the first surface in a direction perpendicular to the organic functional layer The plurality of refractive index changing portions are arranged at equal intervals at the first interval in the first direction, and are arranged at equal intervals at the second interval in the second direction. A light-emitting device according to claim 1.
  10.  前記有機機能層に対する面直方向において、複数の前記屈折率変化部が第3間隔で等間隔に配置されている請求項9に記載の発光装置。 The light emitting device according to claim 9, wherein a plurality of the refractive index changing portions are arranged at equal intervals at a third interval in a direction perpendicular to the organic functional layer.
  11.  前記複数の屈折率変化部は、前記光取り出し側を向く曲面を有する領域内に、前記第1方向、前記第2方向及び前記有機機能層に対する面直方向において等間隔に配置されている請求項9に記載の発光装置。 The plurality of refractive index changing portions are arranged at equal intervals in a region having a curved surface facing the light extraction side in the first direction, the second direction, and a direction perpendicular to the organic functional layer. 9. The light emitting device according to 9.
  12.  前記有機機能層に対して対向して配置された透光性基板と、
     前記有機機能層を複数の領域に仕切る隔壁部と、
     を更に備え、
     前記隔壁部と前記透光性基板とに挟まれた領域内において、前記透光性基板側に向けて狭くなる領域内に、前記複数の屈折率変化部が、前記第1方向と、前記第2方向と、前記有機機能層に対する面直方向と、において等間隔で配置されている請求項1~8の何れか一項に記載の発光装置。
    A translucent substrate disposed to face the organic functional layer;
    A partition wall partitioning the organic functional layer into a plurality of regions;
    Further comprising
    In the region sandwiched between the partition wall and the translucent substrate, the plurality of refractive index changing portions are disposed in the region narrowing toward the translucent substrate side, the first direction, and the first The light emitting device according to any one of claims 1 to 8, wherein the light emitting devices are arranged at equal intervals in two directions and a direction perpendicular to the organic functional layer.
PCT/JP2012/080196 2012-11-21 2012-11-21 Light emitting device WO2014080477A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/080196 WO2014080477A1 (en) 2012-11-21 2012-11-21 Light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/080196 WO2014080477A1 (en) 2012-11-21 2012-11-21 Light emitting device

Publications (1)

Publication Number Publication Date
WO2014080477A1 true WO2014080477A1 (en) 2014-05-30

Family

ID=50775682

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/080196 WO2014080477A1 (en) 2012-11-21 2012-11-21 Light emitting device

Country Status (1)

Country Link
WO (1) WO2014080477A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000267585A (en) * 1999-03-19 2000-09-29 Toshiba Corp Light emitter and system using same
JP2002075656A (en) * 2000-09-04 2002-03-15 Mitsubishi Chemicals Corp El element
JP2004196585A (en) * 2002-12-18 2004-07-15 Nippon Sheet Glass Co Ltd Method for forming heterogeneous phase within material with laser beam, structure and optical parts
JP2005141921A (en) * 2003-11-04 2005-06-02 Toyota Industries Corp Organic electroluminescent device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000267585A (en) * 1999-03-19 2000-09-29 Toshiba Corp Light emitter and system using same
JP2002075656A (en) * 2000-09-04 2002-03-15 Mitsubishi Chemicals Corp El element
JP2004196585A (en) * 2002-12-18 2004-07-15 Nippon Sheet Glass Co Ltd Method for forming heterogeneous phase within material with laser beam, structure and optical parts
JP2005141921A (en) * 2003-11-04 2005-06-02 Toyota Industries Corp Organic electroluminescent device

Similar Documents

Publication Publication Date Title
US9147856B2 (en) Organic light emitting device
JP5830194B2 (en) ORGANIC ELECTROLUMINESCENCE ELEMENT AND LIGHTING DEVICE USING THE SAME
US9627458B2 (en) Organic light-emitting display panel and method of fabricating the same
JP5808905B2 (en) ORGANIC LIGHT EMITTING ELEMENT, LIGHTING DEVICE INCLUDING THE SAME, AND ORGANIC LIGHT EMITTING DISPLAY DEVICE EQUIPPED WITH THE SAME
EP2017907A2 (en) Display apparatus
US7667383B2 (en) Light source comprising a common substrate, a first led device and a second led device
US11653528B2 (en) Light emitting device and display apparatus including the same
WO2016043175A1 (en) Organic electroluminescent device and method for producing electroluminescent device
WO2013065177A1 (en) Light-emitting device
WO2006018634A2 (en) Enhanced emission of light from organic light emitting diodes
KR101268534B1 (en) Organic electroluminescent device and method for manufacturing thereof
KR102293473B1 (en) Organic light emitting display device and method of manufacturing the same
WO2014080477A1 (en) Light emitting device
WO2014080479A1 (en) Light emitting device
WO2014118936A1 (en) Light-emitting element and production method for light-emitting element
WO2014080513A1 (en) Light emitting device and method for producing light emitting device
WO2014087482A1 (en) Light emitting apparatus
WO2014080512A1 (en) Light emitting device and method for producing light emitting device
WO2014083693A1 (en) Light emitting device
WO2014097383A1 (en) Light emission device, and production method for light emission device
WO2013065172A1 (en) Light-emitting device and method for producing light-emitting device
US9853247B2 (en) Electrophosphorescent organic light emitting concentrator
WO2013065170A1 (en) Light-emitting device
WO2013065178A1 (en) Light-emitting device
US10770690B2 (en) OLED with minimal plasmonic losses

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12888706

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12888706

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP