WO2013065178A1 - Light-emitting device - Google Patents

Light-emitting device Download PDF

Info

Publication number
WO2013065178A1
WO2013065178A1 PCT/JP2011/075464 JP2011075464W WO2013065178A1 WO 2013065178 A1 WO2013065178 A1 WO 2013065178A1 JP 2011075464 W JP2011075464 W JP 2011075464W WO 2013065178 A1 WO2013065178 A1 WO 2013065178A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
refractive index
high refractive
index layer
light emitting
Prior art date
Application number
PCT/JP2011/075464
Other languages
French (fr)
Japanese (ja)
Inventor
黒田 和男
Original Assignee
パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社 filed Critical パイオニア株式会社
Priority to PCT/JP2011/075464 priority Critical patent/WO2013065178A1/en
Publication of WO2013065178A1 publication Critical patent/WO2013065178A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/856Arrangements for extracting light from the devices comprising reflective means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/858Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to a light emitting device, and more particularly to a technique for improving light extraction efficiency.
  • LED lighting is becoming popular in ordinary households as the demand for energy saving increases.
  • organic EL organic electroluminescence element
  • organic EL illumination is an improvement in light extraction efficiency.
  • organic EL lighting device configured by laminating a transparent electrode, an organic functional layer including a light emitting layer, and a metal electrode on a light transmissive substrate such as a glass substrate
  • the light emitted from the light emitting layer Total reflection is repeatedly attenuated at the interface of the transmissive substrate and the interface between the light transmissive substrate and the light emission space (air).
  • a structure such as a lens array or a scatterer is provided on the surface of the light transmissive substrate to improve the light extraction efficiency.
  • Patent Document 1 discloses a light extraction substrate constituting a light emission surface of a light emitting element, a transparent resin layer provided on the light emission surface side of the substrate, and a surface on the light emission surface side of the transparent resin layer.
  • the transparent resin layer has a pyramid-shaped or prism-shaped concavo-convex structure on the light-emitting surface side surface, and the pyramid-shaped or prism-shaped The angle formed by the slope and the light exit surface is more than 40 ° and less than 65 °, and the high refractive index thin film is provided along the concavo-convex structure, and the film thickness at each location is an average film thickness of ⁇ 30%.
  • a surface light source device is disclosed in which the refractive index of the high refractive index thin film is 15 to 30% higher than the refractive index of the transparent resin layer.
  • Patent Document 2 in an optical display device in which a light-transmitting layer and a color conversion layer are sequentially laminated on the light-emitting surface side of a planar light emitter, the refractive index of the color conversion layer is set to the light-transmitting property.
  • An optical display device is disclosed in which the refractive index is larger than the refractive index of the layer, and the interface between the color conversion layer and the translucent layer has an uneven shape.
  • an organic EL light-emitting device configured by laminating a transparent electrode, an organic functional layer including a light-emitting layer, and a metal electrode on a light-transmitting substrate such as a glass substrate
  • the factors that reduce the light extraction efficiency are as follows: There are three. (1) Due to the difference in refractive index between the light transmissive substrate and the transparent electrode, total reflection occurs at these interfaces, and the light generated in the light emitting layer does not enter the light transmissive substrate. (2) Due to the difference in refractive index between the light-transmitting substrate and the light emission space (air), total reflection occurs at these interfaces, and the light generated in the light emitting layer is not emitted to the outside.
  • each layer The light transmitted through each layer is attenuated according to the light transmittance of each layer constituting the organic EL light emitting device.
  • the light incident in an oblique direction with respect to the transparent electrode having a relatively low light transmittance has a significant attenuation because the optical path length becomes long.
  • Patent Documents 1 and 2 are intended to improve the light extraction efficiency by suppressing total reflection occurring at the interface between the light-transmitting substrate and the light emission space (air). It is recognized that the factor 2) is to be eliminated. However, even if the factor (2) is eliminated, unless the total reflection occurring at the interface between the transparent electrode and the light-transmitting substrate is efficiently suppressed (that is, unless the factor (1) is efficiently eliminated). ) The light extraction efficiency cannot be increased dramatically. That is, even in the structures described in Patent Documents 1 and 2 described above, it is considered that there is a lot of light that cannot be extracted outside, and it is necessary to further improve the light extraction efficiency.
  • the present invention has been made in view of the above points, and an object of the present invention is to provide a light-emitting device capable of dramatically improving the light extraction efficiency as compared with the prior art.
  • the light-emitting device includes a light-transmitting substrate having a light extraction surface and a concavo-convex surface formed on the opposite side of the light extraction surface, and a first light reflecting film that is in partial contact with the concavo-convex surface. And a high refractive index layer provided on the light transmissive substrate with the uneven surface and the surface of the first light reflecting film as an interface and having a refractive index higher than the refractive index of the light transmissive substrate, An organic functional layer including a light emitting layer provided on the high refractive index layer; and a second light reflecting film provided on the organic functional layer, wherein the concavo-convex surface is formed on each of the light extraction surfaces.
  • FIG. 1A is a cross-sectional view showing a configuration of a light emitting device according to an embodiment of the present invention.
  • FIG. 1B is a plan view of the high refractive index layer according to the embodiment of the present invention.
  • FIG.1 (c) is a perspective view which shows 1 unit of the convex part which comprises the uneven
  • 2A is a plan view showing the structure of the organic EL element according to the embodiment of the present invention
  • FIG. 2B is a cross-sectional view taken along line 2b-2b in FIG. 2A.
  • FIGS. 3A to 3C are cross-sectional views illustrating paths until light generated in the organic functional layer is emitted to the outside in the light emitting device according to the embodiment of the invention.
  • FIGS. 4A to 4C are cross-sectional views illustrating paths until light generated in the organic functional layer is emitted to the outside in the light emitting device according to the embodiment of the invention.
  • FIG. 5A and FIG. 5B are cross-sectional views illustrating paths until light emitted from the organic functional layer is emitted to the outside in the light emitting device according to the embodiment of the invention.
  • 6A and 6B are ray tracing diagrams in the light extraction structure of the light emitting device according to the example of the present invention.
  • FIG. 7 is a ray tracing diagram in the light extraction structure according to the comparative example.
  • FIG. 8A is a plan view of a light transmissive substrate according to an embodiment of the present invention.
  • FIG.8 (b) is a perspective view which shows 1 unit of the convex part which comprises the uneven
  • FIG. 9A and FIG. 9B are plan views of the high refractive index layer according to the example of the present invention.
  • FIG. 10A and FIG. 10B are plan views of the high refractive index layer according to the example of the present invention.
  • FIG. 11A and FIG. 11C are plan views of the high refractive index layer according to the example of the present invention.
  • FIG.11 (b) is a perspective view which shows 1 unit of the convex part which comprises the uneven
  • FIG. 16A and FIG. 16B are perspective views of a light transmissive substrate according to an embodiment of the present invention.
  • FIG. 17B are cross-sectional views showing a part of the configuration of the light emitting device according to the example of the present invention.
  • FIG. 18A is a cross-sectional view showing a part of the configuration of the light emitting device according to the example of the present invention.
  • FIG. 18B is a plan view of the high refractive index layer according to the example of the present invention.
  • FIG.18 (c) is a perspective view which shows 1 unit of the convex part which comprises the uneven
  • FIG. 18A is a cross-sectional view showing a part of the configuration of the light emitting device according to the example of the present invention.
  • FIG. 18B is a plan view of the high refractive index layer according to the example of the present invention.
  • FIG.18 (c) is a perspective view which shows 1
  • FIG. 20A is a cross-sectional view showing a configuration of a light emitting device according to an example of the present invention.
  • FIG. 20B is a cross-sectional view showing a part of the configuration of the light emitting device according to the example of the present invention. It is sectional drawing which shows a part of structure of the light-emitting device based on the Example of this invention.
  • 22 (a) to 22 (d) are cross-sectional views illustrating a method for manufacturing a light emitting device according to an embodiment of the present invention. It is sectional drawing which shows a part of structure of the light-emitting device based on the Example of this invention.
  • FIG. 24 (a) to 24 (d) are cross-sectional views illustrating a method for manufacturing a light emitting device according to an embodiment of the present invention.
  • 25 (a) to 25 (c) are cross-sectional views illustrating a method for manufacturing a light emitting device according to an embodiment of the present invention.
  • FIG. 26A is a perspective view showing a configuration of a light emitting device according to an example of the present invention.
  • FIG.26 (b) is a top view of the high refractive index layer based on the Example of this invention.
  • FIG.26 (c) is a perspective view which shows 1 unit of the convex part which comprises the uneven
  • FIG. 27A is a perspective view showing a configuration of a light emitting device according to an example of the present invention.
  • FIG. 27B is a plan view of the high refractive index layer according to the embodiment of the present invention. It is a top view of the high refractive index layer which concerns on the Example of this invention.
  • FIG. 1A is a cross-sectional view showing a configuration of a light emitting device 1 according to Example 1 of the present invention.
  • FIG. 1B is a plan view of the high refractive index layer 30 constituting the light emitting device 1 as viewed from the direction of the arrow shown in FIG.
  • the light emitting device 1 is configured by laminating a light transmissive substrate 10, a high refractive index layer 30, a transparent electrode 40, an organic functional layer 50 including a light emitting layer, and a reflective electrode 60, and between the transparent electrode 40 and the reflective electrode 60.
  • This is a so-called bottom emission type organic EL light emitting device that extracts light generated in the light emitting layer by applying a voltage to the surface of the light transmissive substrate 10.
  • the light-transmitting substrate 10 is a plate-like member having a thickness of, for example, about 500 ⁇ m made of a light-transmitting material such as glass or resin.
  • the light extraction surface of the light-transmissive substrate 10 is a flat surface and is in contact with air (refractive index 1) filling the light emission space.
  • the refractive index is about 1.5.
  • the surface opposite to the light extraction surface of the light transmissive substrate 10 has a concavo-convex structure composed of a plurality of quadrangular pyramid-shaped recesses as shown in FIG.
  • the light transmitting substrate 10 may be a laminate of two or more different materials having the same refractive index.
  • the high refractive index layer 30 is composed of a light transmissive member having a refractive index higher than the refractive index of the light transmissive substrate 10 and approximately the same as the refractive index of the transparent electrode 40.
  • the high refractive index layer 30 can be made of, for example, an epoxy resin having a refractive index of about 1.8.
  • the high refractive index layer 30 has an uneven surface that is in close contact with (corresponds to) the uneven surface of the light transmissive substrate 10. That is, the high refractive index layer 30 has a plurality of quadrangular pyramid (pyramid) convex portions 31 corresponding to the plurality of quadrangular pyramid concave portions formed on the light-transmitting substrate 10.
  • the surface of the convex portion 31 of the high refractive index layer 30 forms an inclined surface that is inclined with respect to the light extraction surface.
  • an equivalent inclined surface is also formed on the light-transmitting substrate 10 side.
  • the plurality of convex portions 31 have the same shape and size as each other, and form a periodic structure that is aligned in the vertical direction and the horizontal direction.
  • FIG. 1C is a perspective view showing one unit of the convex portion 31 constituting the concave-convex surface of the photorefractive index layer 30.
  • the size of the convex portion 31 is preferably sufficiently larger than the wavelength of light generated in the organic functional layer 50.
  • the length of one side of the bottom surface of the convex portion 31 is, for example, 10 ⁇ m, and the height is, for example, about 14 ⁇ m.
  • the plurality of convex portions 31 can be formed by processing the surface of the high refractive index layer 30 using a known surface processing technique such as cutting and polishing, laser processing, chemical etching, or thermal imprinting. Further, the uneven surface of the high refractive index layer 30 may be formed by a method of applying a resin on the uneven surface of the light transmissive substrate 10.
  • a reflection film 20 constituting the first light reflection film of the present invention is provided on a part of the side surface of the convex portion 31.
  • the reflective film 20 covers two side surfaces adjacent to each other among the four side surfaces of the quadrangular pyramid-shaped convex portion 31.
  • the reflection film 20 is formed so as to cover one side (for example, the surface a1) of the side surfaces of the convex portion 31 facing each other and not cover the other side surface (for example, the surface b).
  • the reflective film 20 is formed so as to cover one side (for example, the surface a2) of the convex portions 31 adjacent to each other and not the other side surface (for example, the surface b).
  • the reflective film 20 covers the side surfaces of the plurality of convex portions 31 facing in the same direction.
  • the reflective film 20 is made of a material having a high reflectivity, for example, a metal such as Ag or Al.
  • the reflective film 20 is formed, for example, by forming a patterned resist mask on the concavo-convex surface of the high refractive index layer 30 and then applying the above metal to the high refractive index layer 30 through the resist mask by vacuum deposition or sputtering. It can be formed by depositing on an uneven surface.
  • the high refractive index layer 30 is in contact with both the light transmissive substrate 10 and the reflective film 20.
  • the thickness of the high refractive index layer 30 is, for example, 100 ⁇ m, and the surface in contact with the transparent electrode 40 is flat.
  • the reflection film 20 forms a light reflection surface inclined with respect to the light extraction surface at the interface between the light transmissive substrate 10 and the high refractive index layer 30.
  • an organic EL element configured by laminating a transparent electrode 40, an organic functional layer 50 including a light emitting layer, and a reflective electrode 60 is formed.
  • FIG. 2A is a plan view showing a more detailed structure of the organic EL device according to the embodiment of the present invention
  • FIG. 2B is a cross-sectional view taken along line 2b-2b in FIG. 2A.
  • the plurality of transparent electrodes 40 constituting the anode each have a strip shape, extend along the Y direction on the high refractive index layer 30, and are juxtaposed in the X direction at a constant interval.
  • Each of the transparent electrodes 40 is made of a metal oxide conductor such as ITO (Indium Tin Oxide) or IZO (Indium Zinc Oxide).
  • the refractive index of the transparent electrode 40 is approximately the same as that of the high refractive index layer 30 (with a refractive index of approximately 1.8).
  • a bus line 72 for supplying a power supply voltage to the transparent electrode 40 is formed on each surface of the transparent electrode 40.
  • An insulating film 71 is formed on the high refractive index layer 30 and the transparent electrode 40.
  • stripe-shaped openings each extending in the Y direction are formed.
  • a plurality of banks are formed.
  • Each of the openings reaches the transparent electrode 40, and the surface of each transparent electrode 40 is exposed at the bottom of the opening.
  • a hole injection layer 51, a hole transport layer 52, a light emitting layer 53 R , 53 G , 53 B , and an electron transport layer 54 are stacked in this order on the transparent electrode 40 in each opening of the insulating film 71.
  • An organic functional layer 50 is formed.
  • Examples of materials for the hole injection layer 51 and the hole transport layer 52 include aromatic amine derivatives, phthalocyanine derivatives, porphyrin derivatives, oligothiophene derivatives, polythiophene derivatives, benzylphenyl derivatives, compounds in which tertiary amines are linked by fluorene groups, hydrazones. Derivatives, silazane derivatives, silanamine derivatives, phosphamine derivatives, quinacridone derivatives, polyaniline derivatives, polypyrrole derivatives, polyphenylene vinylene derivatives, polythienylene vinylene derivatives, polyquinoline derivatives, polyquinoxaline derivatives, carbon and the like.
  • the light emitting layers 53 R , 53 G , and 53 B are made of a fluorescent organometallic compound that emits red light, green light, and blue light, respectively.
  • the light emitting layers 53 R , 53 G , 53 B are juxtaposed in a state of being separated from each other by the bank of the insulating film 71. That is, the organic functional layer 50 forms a plurality of light emitting regions separated by banks.
  • An electron transport layer 54 is formed so as to cover the surfaces of the light emitting layers 53 R , 53 G , 53 B and the insulating film 71.
  • a band-like reflective electrode 60 constituting a cathode is formed so as to cover the surface of the electron transport layer 54.
  • the reflective electrode 60 is made of a metal such as Al or an alloy having a low work function and high reflectivity.
  • the reflective electrode 60 constitutes the second light reflective film of the present invention.
  • the refractive index of the organic functional layer 50 is approximately the same as that of the transparent electrode 40 and the high refractive index layer 30 (with a refractive index of approximately 1.8).
  • the light emitting layers 53 R , 53 G , and 53 B that respectively emit red, green, and blue light are repeatedly arranged in a stripe shape, and from the surface of the light transmissive substrate 10 that serves as a light extraction surface, Red, green, and blue light are mixed at an arbitrary ratio to emit light that is recognized as a single emission color.
  • 3 to 5 are cross-sectional views illustrating some of the paths until the light generated in the organic functional layer 50 is emitted to the outside in the light emitting device 1 according to the embodiment of the present invention described above.
  • the light reflecting surface formed by the reflective electrode 60 exists at the depth position of the bottom of the convex portion 31. Since the high refractive index layer 30, the transparent electrode 40, and the organic functional layer 50 have the same refractive index, no refraction or reflection occurs at each interface. Furthermore, since the concavo-convex structure of the light-transmitting substrate 10 and the high refractive index layer is periodic, there is virtually no problem even if it is assumed that the reflective electrode 60 exists at the above position. In this case, the light emitting point is considered to be on the reflective electrode 60.
  • the light beam A incident from the right side of the normal line n at an incident angle ⁇ 1 (the light beam incident from the right side of the normal line n is positive) is light formed by the reflective film 20.
  • the light After being reflected by the reflecting surface a ⁇ b> 1, the light passes through the light transmitting surface b on which no reflecting film is formed and enters the light transmitting substrate 10.
  • the light beam A travels straight inside the light-transmitting substrate 10, is reflected by the light reflecting surface a ⁇ b> 2 formed by the reflective film 20, and then is emitted from the light extraction surface d to the outside.
  • the light beam B incident at the incident angle ⁇ 2 ( ⁇ 1 > ⁇ 2 ) from the right side of the normal line n is reflected by the light reflecting surface a 1 formed by the reflective film 20. Then, the light passes through the light transmission surface b on which no reflective film is formed, and enters the light transmissive substrate 10.
  • the light beam B travels straight inside the light transmissive substrate 10, is reflected by the light reflecting surface a ⁇ b> 2 formed by the reflective film 20, and then is emitted from the light extraction surface d to the outside.
  • the light ray C incident in parallel to the normal line n is orthogonal to the light reflection surface a1 formed by the reflective film 20, and therefore follows the same path as the incident path, thereby reflecting the electrode 60. It goes to the light reflection surface c formed by the above. After being reflected by the light reflecting surface c, the light beam C is transmitted through the light transmitting surface b on which no reflective film is formed and enters the light transmitting substrate 10. The light beam C travels straight through the light-transmitting substrate 10 and is emitted from the light extraction surface d to the outside.
  • the light ray D incident at the incident angle ⁇ 4 ( ⁇ 4 ⁇ 0) from the left side of the normal line n is reflected by the light reflecting surface a1 formed by the reflective film 20,
  • the light is reflected by the light reflecting surface c formed by the reflecting electrode 60 and is reflected again by the light reflecting surface a1.
  • the light beam D passes through the light transmission surface b on which no reflective film is formed and enters the light transmissive substrate 10.
  • the light beam D travels straight inside the light-transmitting substrate 10, is reflected by the light reflecting surface a ⁇ b> 2 formed by the reflective film 20, and then is emitted from the light extraction surface d to the outside.
  • the reflection film is formed on the light ray E incident from the left side of the normal line n at an incident angle ⁇ 5 ( ⁇ 5 > critical angle between the high refractive index layer and the light transmitting substrate). Since the incident light is incident on the light transmitting surface b which is not larger than the critical angle, the light transmitting surface b is totally reflected. Thereafter, the light beam E is reflected by the light reflecting surface a1 formed by the reflecting film 20, and then reflected by the light reflecting surface c formed by the reflecting electrode 60, passes through the light transmitting surface b, and passes through the light transmitting substrate 10. Is incident on. The light beam E travels straight in the light transmissive substrate 10 and is emitted to the outside from the light extraction surface d.
  • the light beam F incident on the high refractive index layer 30 at an angle substantially parallel to the light reflecting surface a1 is transmitted through the light transmitting surface b on which no reflecting film is formed. Incident on the conductive substrate 10.
  • the light beam F travels straight through the light-transmitting substrate 10 and is emitted from the light extraction surface d to the outside, or is totally reflected at the interface d (light extraction surface) between the light-transmitting substrate 10 and air.
  • the light beam G totally reflected at the interface d between the light transmissive substrate 10 and air is reflected by the light reflecting surface a formed by the reflective film 20. Since the light reflection surface a is inclined with respect to the interface d, the light beam G is incident on the interface d at an incident angle smaller than the critical angle, and is not totally reflected from the light extraction surface d to the outside. Released.
  • the light beam H that has entered the high refractive index layer 30 through the light transmission surface b on which no reflective film is formed from the light transmissive substrate 10 is formed by the reflective electrode 60.
  • the light is reflected by the light reflecting surface a ⁇ b> 1 formed by the light reflecting surface c and the reflecting film 20, passes through the light transmitting surface b where the reflecting film is not formed, and enters the light transmitting substrate 10.
  • the light beam H travels straight inside the light transmissive substrate 10, is reflected by the light reflecting surface a ⁇ b> 2 formed by the reflective film 20, and then is emitted from the light extraction surface d to the outside.
  • the light-transmitting substrate 10 has the corresponding unevenness corresponding to the uneven surface including the plurality of quadrangular pyramidal protrusions 31 provided on the surface of the high refractive index layer 30.
  • the reflective film 20 having a double-sided reflective surface partially contacts the uneven surface and the corresponding uneven surface.
  • the high refractive index layer 30 having a higher refractive index than the light transmissive substrate 10 is provided on the light transmissive substrate 10 with the uneven surface of the light transmissive substrate 10 and the surface of the reflective film 20 as an interface.
  • the interface between the light transmissive substrate 10 and the high refractive index layer 30 forms an inclined surface inclined with respect to the surface on which the organic functional layer 50 including the light emitting layer extends.
  • the light incident on the interface at an angle greater than the critical angle can be reduced, and total reflection at the interface can be suppressed.
  • the reflection film 20 forms a light reflection surface inclined with respect to the light extraction surface.
  • the light reflecting surface on which the reflecting film 20 is formed and the light transmitting surface on which the reflecting film is not formed face each other, the light traveling in the high refractive index layer 30 has a relatively short path. So that the light can enter the light-transmitting substrate 10.
  • FIGS. 6A and 6B are ray tracing diagrams in the light extraction structure of the light emitting device 1 according to the present example, respectively, in which the bottom of one convex portion of the high refractive index layer is divided into five equal parts.
  • the refractive index n1 of the light-transmitting substrate is 1.5
  • the refractive index n2 of the high refractive index layer is 1.8
  • the refractive index n0 of air filling the light emission space is 1
  • the simulation was carried out assuming that it exists at the depth position of the bottom of the convex part of the refractive index layer. According to the light extraction structure according to this example, all 36 light beams could be emitted to the outside by passing through the light reflection surface c formed by the reflective electrode twice at most.
  • FIG. 7 is a ray tracing diagram in the light extraction structure according to the comparative example in which the reflective film is not provided on the uneven surface of the light-transmitting substrate, and the bottom of one convex portion of the high refractive index layer is 5 A total of 36 incident on the high refractive index layer 30 at angles of 10 °, 30 °, 50 °, 70 °, 90 °, 110 °, 130 °, 150 °, and 170 ° at each of the equally dividing points P1 to P4. It is the result of simulating the course of light rays of a book. Since the light path has symmetry, in FIG.
  • the refractive index n1 of the light-transmitting substrate is 1.5
  • the refractive index n2 of the high refractive index layer is 1.8
  • the refractive index n0 of air filling the light emission space is 1, and the light reflecting surface formed by the reflective electrode
  • the number of reflections at the light reflection surface c is 0 to 2 times, and 20 of the light rays are emitted to the outside. It was confirmed that there were few. That is, in a structure having no reflective film on the uneven surface of the light-transmitting substrate, about 44% of light cannot be extracted outside unless it has been reflected by the light reflecting surface c three times or more.
  • the light emitting device 1 has a high refractive index layer having a refractive index substantially equal to that of the transparent electrode 40 between the transparent electrode 40 and the light transmissive substrate 10, Since a double-sided reflective film inclined with respect to the light extraction surface is provided between the transmissive substrate 10 and the high refractive index layer 30, light can be extracted outside with a relatively short optical path length and a relatively small number of reflections. And light extraction efficiency can be dramatically improved.
  • FIG. 8A is a plan view showing a first modified example of the pattern of the reflective film 20 formed on the uneven surface of the high refractive index layer 30, and FIG. 8B is the reflective film 20 having the modified pattern. It is a perspective view which shows one unit of the convex part 31 in which was formed.
  • the reflective film 20 may be provided so as to cover a substantially half region of each side surface of the quadrangular pyramid-shaped convex portion 31.
  • the light transmission surface is formed on each of the four side surfaces of the quadrangular pyramid-shaped convex portion 31, so that the light emission direction can be dispersed.
  • the reflective film 20 is provided only on one of the portions facing each other even in such a modified pattern.
  • the reflective film 20 is provided only on the portion a1 ′ of the portions a1 ′ and b ′ facing each other. The same applies to the portions a2 ′ and b ′ facing each other between the adjacent convex portions.
  • FIG. 9A is a plan view showing a second modification of the pattern of the reflective film 20 formed on the concavo-convex surface of the high refractive index layer 30.
  • the pattern of the reflective film 20 may be a mixed pattern of the reflective film pattern shown in FIG. 1B and the reflective film pattern shown in FIG.
  • FIG. 9B is a plan view showing a third modification of the pattern of the reflective film 20 formed on the uneven surface of the high refractive index layer 30.
  • the reflective film 20 covers two side surfaces adjacent to each other among the four side surfaces of each of the quadrangular pyramidal convex portions 31.
  • the reflective film 20 may be formed so as to cover side surfaces facing in different directions for each convex portion or for each block composed of a plurality of convex portions.
  • the reflective film 20 is arranged in different directions for each block constituted by the four convex portions 31.
  • the pattern of the reflection film 20 the light transmission surface that is not covered with the reflection film 20 faces the center of FIG. 9B, and the unit shown in FIG. Uniform light can be obtained.
  • FIGS. 10A and 10B are plan views showing a first modification of the shape of the convex portion 31 of the high refractive index layer 30.
  • the shape of one unit of the convex portion 31 may be a triangular pyramid shape.
  • the reflective film 20 is formed so as to cover one of the three side surfaces of the triangular pyramid.
  • the reflective film 20 is formed so as to cover only one of the side surfaces facing each other between adjacent convex portions (for example, the surface a and the surface b).
  • a region that is a light transmission surface that is not covered with a reflective film on both side surfaces facing each other between adjacent convex portions may be included (for example, the surface b1).
  • the shape of the convex portion 31 is a triangular pyramid, and the reflection film is formed so that both of the side surfaces facing each other between the adjacent convex portions do not become light reflecting surfaces, thereby improving the light extraction efficiency and light. It becomes possible to disperse the release direction. In particular, according to the configuration shown in FIG. 10A, uniform light can be obtained as a whole.
  • FIG. 11A is a plan view showing a second modification of the shape of the convex portion 31 of the high refractive index layer 30.
  • FIG. FIG. 11B is a perspective view showing one unit of the modified convex portion 31.
  • the shape of one unit of the convex portion 31 may be a conical shape.
  • the reflective film 20 covers a substantially half region of the side surface of the cone. Note that the coverage of the reflective film 20 can be changed as appropriate in consideration of light extraction efficiency and the like.
  • so-called oblique deposition without using a mask by directing the portions covered by the reflective film 20 of the convex portion 31 in the same direction (deposition with respect to the flying direction of the vapor deposition particles).
  • the pattern of the reflective film 20 by the method of performing vapor deposition by inclining the surface, and the manufacture becomes easy.
  • the direction of the portion covered by the reflective film 20 of the convex portion 31 is made different, for example, for each block composed of the plurality of convex portions 31, thereby dispersing the light emission direction. It becomes possible.
  • the plurality of protrusions 31 constituting the uneven surface of the high refractive index layer 30 may be arranged with a gap between adjacent protrusions.
  • the high refractive index layer 30 and the transparent electrode 40 are provided separately.
  • the high refractive index layer 30 may have the function of a transparent electrode. . That is, in this case, the high refractive index layer 30 is made of a metal oxide conductor such as ITO.
  • the concavo-convex surfaces of the light transmissive substrate 10 and the high refractive index layer 30 have a periodic structure composed of conical concave portions or convex portions is illustrated, but as shown in FIG.
  • the shape, size, and height of the concave portions or convex portions constituting the concavo-convex surface of the transmissive substrate 10 and the high refractive index layer 30 may be random.
  • Such a random concavo-convex surface can be formed using a known surface processing technique such as sandblasting or water blasting.
  • the reflective film 20 is partially formed on the side surface of the convex portion having a random shape and size by so-called oblique vapor deposition or the like.
  • the light transmissive substrate 10 is made of a single material.
  • the light transmissive substrate 10 is made of different materials having the same refractive index.
  • a laminated substrate obtained by laminating layers may be used.
  • the light-transmitting substrate 10 can be configured by laminating a first layer 10a made of glass and a second layer 10b made of a resin having a refractive index equivalent to that of the first layer 10a. Manufacture is facilitated by selecting a material that is relatively easy to form an uneven surface as the material of the second layer 10b adjacent to the high refractive index layer 30.
  • the uneven surface of the light-transmitting substrate 10 is formed by the plurality of conical recesses 12 is illustrated, but FIG. As described above, the uneven surface of the light-transmitting substrate 10 may be formed by the plurality of conical protrusions 11.
  • the high refractive index layer 30 has an uneven surface constituted by a plurality of conical concave portions corresponding to the convex portions 11 of the light-transmitting substrate 10.
  • FIG. 17A is a cross-sectional view showing a part of the light emitting device 2 according to Example 2 of the present invention.
  • the tops of the quadrangular pyramid-shaped protrusions 31 constituting the uneven surface of the high refractive index layer 30 and the valleys between adjacent protrusions are surfaces 31a and 31b that are substantially parallel to the light extraction surface.
  • the reflective film 20 is not formed on the surfaces 31a and 31b of the high refractive index layer 30, and the surfaces 31a and 31b are light transmitting surfaces. That is, the light emitting device 2 according to the present example is inclined with respect to the first light transmission surface formed on the surfaces 31 a and 31 b parallel to the light extraction surface and the surface on which the organic functional layer 50 extends.
  • a second light transmission surface is formed on the surface 31c.
  • the surfaces 31a and 31b substantially parallel to the light extraction surface as light transmission surfaces, it is possible to easily extract light rays substantially orthogonal to the light extraction surface to the outside. That is, when a light ray that enters perpendicularly to the surface 31a and the surface 31b is transmitted, the light ray travels straight and enters the light extraction surface also perpendicularly. Light rays that are incident perpendicular to the light extraction surface are not totally reflected by the light extraction surface, and can be extracted directly to the outside. With respect to such straight light, it is possible to improve the light extraction efficiency by extracting the light to the outside without being reflected by the reflective film 20. In addition, since it is the same as that of the light-emitting device 1 which concerns on Example 1 except the above-mentioned, those description is abbreviate
  • omitted since it is the same as that of the light-emitting device 1 which concerns on Example 1 except the above-mentioned, those description is abbreviate
  • the surfaces 31a and 31b may be covered with the reflective film 20 so that the surfaces 31a and 31b substantially parallel to the light extraction surface become light transmission surfaces. That is, the thickness of the portion covering the surfaces 31a and 31b of the reflective film 20 is smaller than the thickness of the portion forming the light reflecting surface.
  • Such a film thickness distribution can be formed by forming the reflective film 20 by so-called oblique deposition.
  • FIG. 18A is a cross-sectional view showing a part of the light emitting device 2a in which the shape of each of the plurality of convex portions 31 constituting the concavo-convex surface of the high refractive index layer 30 is modified
  • FIG. FIG. 18C is a perspective view showing one unit of the modified convex portion 31.
  • FIG. 18C is a plan view of the high refractive index layer 30 having an uneven surface constituted by the convex portion 31 having a different shape.
  • each of the protrusions 31 constituting the uneven surface of the high refractive index layer 30 has a truncated pyramid shape, and its upper base (or lower base) is substantially parallel to the light extraction surface. And has a surface 31d.
  • the reflection film 20 covers two adjacent side surfaces of the truncated pyramid and forms a light reflection surface.
  • the reflective film is not formed on the surface 31d which is the upper base (or the lower base) of the convex portion 31, and the surface 31d forms a light transmission surface.
  • the surface 31d substantially parallel to the light extraction surface a light transmission surface, the light incident perpendicularly to the surface 31d is reflected by the reflection film 20 as in the case of the light emitting device 2 described above. Therefore, the light extraction efficiency can be improved.
  • each shape of the convex portion 31 is a truncated pyramid is illustrated, but the shape of the convex portion 31 may be a truncated cone shape.
  • the uneven surface of the high refractive index layer 30 may be composed of a plurality of frustum-shaped recesses.
  • the concavo-convex surface of the light-transmitting substrate 10 is constituted by a plurality of frustum-shaped convex portions (see FIG. 19). According to the configuration shown in FIG. 19, since the light transmission surface 31d is located below the reflection film 20, light emitted from the light emitting layer can be incident on the light transmission surface 31d at any angle.
  • the light transmission surface 31d is located above the reflection film, so that light incident at an angle smaller than a predetermined angle when viewed from the bottom surface is reflected by the reflection film 20.
  • the light transmission surface 31d cannot be reached by being blocked by the reflection, and is reflected by the reflection surface 20 and taken out to the outside. That is, repeated reflection between the light transmission surface 31d and the reflective electrode 60 is unlikely to occur.
  • FIG. 20A is a cross-sectional view illustrating a configuration of the light emitting device 3 according to Example 3 of the invention.
  • the light-emitting device 3 is different from the light-emitting device 1 according to Example 1 described above in the light reflection structure formed along the side surface of the convex portion 31 constituting the concave-convex surface of the high refractive index layer 30. That is, the light reflecting structure according to the present embodiment has a reflective film 20 made of a metal such as Ag or Al having a high reflectance and a material having a refractive index lower than that of the light transmissive substrate 10 (for example, SiO 2 And the like, and a low-refractive-index film 21 made of a laminated reflective film 22.
  • a reflective film 20 made of a metal such as Ag or Al having a high reflectance and a material having a refractive index lower than that of the light transmissive substrate 10 (for example, SiO 2 And the like, and a low-refractive-index film 21
  • the laminated reflective film 22 forms a light reflecting surface inclined with respect to the light extraction surface at each interface between the light transmissive substrate 10 and the high refractive index layer 30.
  • 20A illustrates the case where the low refractive index film 21 is in contact with the light-transmitting substrate 10 and the reflective film 20 is in contact with the high refractive index layer 30.
  • the arrangement of the refractive index film 21 may be changed. Since the components other than the laminated reflective film 22 are the same as those of the light-emitting device 1 according to Example 1, the description thereof is omitted.
  • FIG. 20B is a cross-sectional view showing a light path inside the light-emitting device 3 having the laminated reflective film 22 described above.
  • the light beam I incident on the multilayer reflective film 22 at an incident angle larger than the critical angle from the light transmissive substrate 10 side is totally reflected at the interface between the light transmissive substrate 10 and the low refractive index film 21 and travels toward the light extraction surface. In this case, since no reflection loss occurs, the light extraction efficiency becomes higher compared to the case where reflection by the reflection film 20 is performed.
  • the light beam J incident on the laminated reflective film 22 at an incident angle smaller than the critical angle from the light transmissive substrate 10 side is transmitted through the low refractive index film 21 and reflected by the surface of the reflective film 20 to be reflected on the light extraction surface. Head.
  • the reflection loss can be reduced by interposing the laminated reflective film 22 composed of the low refractive index film 21 and the reflective film 20 between the light transmissive substrate 10 and the high refractive index layer 30.
  • the extraction efficiency can be further improved.
  • FIG. 21 is a cross-sectional view showing a modified example of the light reflecting structure formed by the low refractive index film 21 and the reflecting film 20.
  • the laminated reflective film 22 a may have a sandwich structure in which the low refractive index film 21 sandwiches the reflective film 20. Thereby, it is possible to totally reflect the light incident on the laminated reflective film 22a from the light transmissive substrate 10 side and the high refractive index layer 30 side, and it is possible to further reduce the reflection loss.
  • Example 3 of the present invention having the multilayer reflective film 22 including the reflective film 20 and the low refractive index film 21 will be described with reference to FIGS. 22 (a) to 22 (d). .
  • a light-transmitting substrate 10 configured by laminating a glass substrate 10a and a resin substrate 10b having an uneven surface is prepared.
  • the refractive index of the glass substrate 10a and the refractive index of the resin substrate 10b are equivalent.
  • the uneven surface of the resin substrate 10b is formed using a molding technique such as thermal imprinting (FIG. 22A).
  • a low refractive index film 21 made of SiO 2 or the like having a lower refractive index than that of the resin substrate 10a and the glass substrate 10b is formed on the uneven surface of the resin substrate 10b by sputtering or the like. Thereafter, the low refractive index film 21 is partially removed by a lift-off method, an etching method, or the like, and the low refractive index film 21 is patterned (FIG. 22B).
  • the reflective film 20 made of a metal having a high reflectance such as Ag or Al is formed on the uneven surface of the resin substrate 10b by vapor deposition or sputtering. Thereafter, the reflective film 20 is partially removed by a lift-off method, an etching method, or the like, and the reflective film 20 is patterned. The reflective film 20 is laminated on the low refractive index film 21 to form a laminated reflective film 22 along the uneven surface of the resin substrate 10b (FIG. 22C).
  • the refractive index higher than the refractive index of the resin substrate 10b and the glass substrate 10a and the same refractive index as that of the transparent electrode 40 and the organic functional layer 50 is formed on the uneven surface of the resin substrate 10b on which the multilayer reflective film 22 is formed.
  • a UV curable resin having a rate is applied. Thereafter, the UV curable resin is irradiated with ultraviolet rays to be cured.
  • the high refractive index layer 30 in contact with both the uneven surface of the light transmissive substrate and the multilayer reflective film 22 is formed on the light transmissive substrate 10 (FIG. 22D).
  • a transparent conductive film made of a metal oxide conductor such as ITO is formed on the high refractive index layer 30 by sputtering or the like, and this is patterned by etching to form the transparent electrode 40.
  • a photosensitive resist (not shown) is applied so as to cover the transparent electrode 40.
  • a plurality of openings reaching the transparent electrode 40 are formed in the photosensitive resist through exposure and development processing.
  • the bank which separates an organic functional layer for every luminescent color is formed.
  • a hole injection layer, a hole transport layer, a light emitting layer, and an electron transport layer are laminated on the transparent electrode 40 by applying an organic material inside each of the plurality of openings by an inkjet method.
  • the organic functional layer 50 is formed.
  • the reflective electrode 60 is formed by depositing Al as an electrode material in a desired pattern on the organic functional layer 50 by vapor deposition or the like using a mask having an opening corresponding to the pattern of the reflective electrode 60.
  • a sealing layer may be formed on the reflective electrode 60 as necessary.
  • FIG. 23 is a cross-sectional view showing a modification of the light reflecting structure composed of a reflective film and a low refractive index layer.
  • the light reflecting structure 24 is configured by a gap 23 and a light reflecting film 20 provided between the light transmissive substrate 10 and the high refractive index layer 30.
  • the gap 23 may be filled with air or other gas having a lower refractive index than the light-transmitting substrate 10 or may be a vacuum. Since the gap 23 has a lower refractive index than that of the light transmissive substrate 10, the gap 23 exhibits the same function as the low refractive index film 21 described above.
  • the light reflecting structure 24 forms a light reflecting surface inclined with respect to the light extraction surface at each interface between the light transmissive substrate 10 and the high refractive index layer 30.
  • FIG. 23 illustrates the case where the reflective film 20 is in contact with the light-transmitting substrate 10 and the gap portion 23 is in contact with the high refractive index layer 30. However, the arrangement of the reflective film 20 and the gap portion 23 is illustrated. It may be replaced. Since the components other than the light reflecting structure are the same as those of the light emitting device according to the first embodiment, description thereof will be omitted.
  • a light-transmitting substrate 10 configured by laminating a glass substrate 10a and a resin substrate 10b having an uneven surface is prepared.
  • the refractive index of the glass substrate 10a and the refractive index of the resin substrate 10b are equivalent.
  • the uneven surface of the resin substrate 10b is formed by using a molding technique such as thermal imprint (FIG. 24A).
  • the reflective film 20 made of a metal having a high reflectance such as Ag or Al is formed on the uneven surface of the resin substrate 10b by vapor deposition or sputtering. Thereafter, the reflective film 20 is partially removed by a lift-off method, an etching method, or the like, and the reflective film 20 is patterned (FIG. 24B).
  • the high refractive index resin member 30a is made of an epoxy resin or the like having a refractive index higher than that of the glass substrate 10a and the resin substrate 10b and about the same as that of the transparent electrode 40 and the organic functional layer 50.
  • the high refractive index member 30a has a corresponding uneven surface corresponding to (engaged with) the uneven surface formed on the resin substrate 10b, and a minute protrusion 32 provided on the corresponding uneven surface (FIG. 24C).
  • the uneven surface of the resin substrate 10b and the corresponding uneven surface of the high refractive index member 30a are brought into contact with each other using the minute protrusion 32 as a spacer.
  • the microprotrusions 32 are in contact with the reflective film 20, and a gap is formed on the reflective film 20.
  • a light reflecting structure 24 including the reflective film 20 and the gap 23 is formed between the resin substrate 10a and the high refractive index member 30a (FIG. 24D).
  • the reflective film 20 may be formed on the corresponding uneven surface of the high refractive index member 30a, or may be formed on both the resin substrate 10a and the high refractive index member 30a. Further, the fine protrusions 32 functioning as spacers may be provided on the uneven surface of the resin substrate 10b, or may be provided on both the resin substrate 10b and the high refractive index member 30a. Alternatively, a structure separate from the resin substrate 10b and the high refractive index member 30a may be disposed between the uneven surface and the corresponding uneven surface to function as a spacer.
  • a light-transmitting substrate 10 configured by laminating a glass substrate 10a and a resin substrate 10b having an uneven surface is prepared.
  • the refractive index of the glass substrate 10a and the refractive index of the resin substrate 10b are equivalent.
  • the uneven surface of the resin substrate 10b is formed by using a molding technique such as thermal imprinting.
  • the high refractive index resin member 30a is an epoxy having a refractive index higher than the refractive indexes of the glass substrate 10a and the resin substrate 10b constituting the light transmissive substrate 10 and similar to the refractive indexes of the transparent electrode 40 and the organic functional layer 50. Made of resin.
  • the high refractive index resin member 30a has a corresponding uneven surface corresponding to (engaged with) the uneven surface formed on the resin substrate 10b.
  • the reflective film 20 made of a metal having a high reflectance such as Ag or Al is formed on the corresponding irregular surface of the high refractive index member 30a by vapor deposition or sputtering. Thereafter, the reflective film 20 is patterned by a lift-off method or an etching method (FIG. 25A).
  • a buckling structure (sag-like undulation) is formed on the reflective film 20.
  • a buckling structure can be formed in the reflective film 20 by heating the reflective film 20 formed on the high refractive index member 30a at about 100 ° C. and then lowering the temperature to room temperature (FIG. 25B). ).
  • the concavo-convex surface of the resin substrate 10b and the corresponding concavo-convex surface of the high refractive index member 30a are brought into contact with each other with the reflective film 20 having the buckling structure interposed therebetween.
  • a light reflecting structure 24a is formed between the resin substrate 10a and the high refractive index member 30a.
  • the light reflecting structure 24a includes the reflecting film 20 and the gap portion 23 generated with the buckling structure of the reflecting film 20 (FIG. 25). (C)).
  • the process of forming the transparent electrode 40, the organic functional layer 50, and the reflective electrode 60 is the same as that described above, the description thereof is omitted.
  • FIG. 26 (a) is a perspective view showing the configuration of the light-emitting device 4 according to Example 4 of the present invention.
  • FIG. 26B is a plan view of the high refractive index layer 30 constituting the light emitting device 4.
  • FIG. 26C is a perspective view of the convex portion 31 constituting the concave and convex surface formed in the high refractive index layer 30.
  • each of the plurality of convex portions 31 constituting the concavo-convex surface of the high refractive index layer 30 is opposite to the first inclined surface 33 a inclined to the light extraction surface and the first inclined surface 33 a. It has the 2nd inclined surface 33b inclined in the direction. That is, the first inclined surface 33a and the second inclined surface 33b correspond to the two side surfaces of the triangular prism as shown in FIG.
  • the plurality of convex portions 31 are arranged without gaps such that the first inclined surfaces and the second inclined surfaces are parallel to each other.
  • the first inclined surface 33 a is covered with the reflective film 20.
  • the second inclined surface 33b is not covered with a reflective film.
  • the high refractive index layer 30 is provided on the light-transmitting substrate 10 with the uneven surface of the light-transmitting substrate 10 and the surface of the light reflecting film 20 as an interface.
  • the reflection film 20 forms a light reflection surface inclined with respect to the light extraction surface at each interface between the light transmissive substrate 10 and the high refractive index layer 30.
  • a plurality of rectangular (or strip-shaped) light reflecting surfaces facing the same direction are formed by the reflective film 20. It will be.
  • the light transmissive substrate 10 is in contact with the high refractive index layer 30 at the second inclined surface 13b, and is inclined with respect to the surface on which the organic functional layer 50 extends at the interface between the light transmissive substrate 10 and the high refractive index layer 30.
  • a light-transmitting surface is formed.
  • the organic functional layer 50 is formed on the high refractive index layer 30 with the transparent electrode 40 interposed therebetween.
  • the organic functional layer 50 forms a plurality of light emitting regions 50a, 50b, 50c separated by banks.
  • the plurality of light emitting regions 50 a, 50 b, and 50 c each have a rectangular shape, and are juxtaposed in a stripe shape on the high refractive index layer 30 via the transparent electrode 40. Note that light of different emission colors may be generated from the plurality of light emitting regions 50a, 50b, and 50c.
  • Each of the plurality of convex portions 31 constituting the concavo-convex surface of the high refractive index layer 30 is provided at a position overlapping the light emitting regions 50a, 50b, 50c, and extends in a direction parallel to the longitudinal direction of the light emitting regions 50a, 50b, 50c. is doing.
  • the intersection line L where the first inclined surface 33a and the second inclined surface 33b intersect extends along the longitudinal direction of the light emitting regions 50a, 50b, 50c.
  • the length of the protrusion 31 in the extending direction (that is, the length of the crossing line L) is longer than the length of the light emitting regions 50a, 50b, and 50c in the longitudinal direction.
  • the light extraction efficiency can be improved as in the light emitting device 1 according to the first embodiment.
  • one unit of the convex part 31 which comprises the uneven surface of the high refractive index layer 30 is a simple structure which has two inclined surfaces, formation of an uneven surface becomes easy and it can ensure a high manufacturing yield. It becomes possible.
  • the light reflecting surface formed on the first inclined surface 33a and the light transmitting surface formed on the second inclined surface 33b are arranged in a single direction, the light reflecting surface and the light transmitting surface are arranged.
  • Optimal value design for improving light extraction efficiency using the surface area ratio as a parameter becomes easy.
  • each of the light reflecting surfaces formed on the first inclined surface 33a has a rectangular shape (strip shape) and faces a single direction, so that light is emitted from a predetermined angle when the light emitting device is not turned on. When looking at the take-out surface, it is possible to visually recognize a mirror surface with good appearance.
  • the extending direction of each of the plurality of convex portions 31 constituting the uneven surface of the high refractive index layer 30 is a light emitting region. It may extend in the direction in which 50a, 50b, 50c are arranged or in the direction perpendicular to the longitudinal direction of the light emitting regions 50a, 50b, 50c. In this case, the intersection line L may extend so as to straddle the plurality of light emitting regions 50a, 50b, 50c as shown in FIG. Alternatively, as shown in FIG.
  • each of the protrusions 31 is formed discontinuously in the direction in which the light emitting regions 50a, 50b, 50c are arranged, and the length of the intersection line L is the same as the direction of the light emitting regions 50a, 50b, 50c. It may be the same as the length W in the matching width direction.
  • the configurations shown in the above embodiments can be combined with each other.
  • the reflective film 20 and the low refractive index film 21 may be formed on the light transmissive substrate 10 side. It is good also as forming in the high refractive index layer 30 side.
  • Light emitting device 10
  • Light transmissive substrate 20
  • Reflective film 21 Low refractive index film 22
  • Laminated reflective film 23 Gap 24
  • Light reflecting structure 30 High refractive index layer 31
  • Convex part 33a First inclined surface 33b second inclined surface 40
  • transparent electrode 50 organic functional layers 53 R, 53 G, 53 B emission layer 60 reflective electrode

Abstract

A light-emitting device includes: a light-transmitting substrate (10) having a light extraction surface and a concavoconvex surface formed on the side opposite the light extraction surface; reflective films (20) contacting sections of the concavoconvex surface; a high refractive index layer (30) provided on the light-transmitting substrate (10) with the concavoconvex surface and the reflective film (20) surfaces as the interface therebetween, and having a higher refractive index than that of the light-transmitting substrate (10); an organic functional layer (50) containing a light-emitting layer and provided on the high refractive index layer (30); and a reflective electrode (60) provided on the organic functional layer (50). The concavoconvex surface comprises a plurality of concave sections or convex sections which each have a first angled surface (13a) set at an angle to the light extraction surface, and a second angled surface (13b) set at an angle in a direction opposite the direction in which the first angled surface (13a) is angled. Each reflective film (20) covers a first angled surface (13a), and forms a light-reflecting surface angled in relation to the light extraction surface, and positioned along the interface between the light-transmitting substrate (10) and the high refractive index layer (30). The light-transmitting substrate (10) contacts the high refractive index layer (30) along the second angled surfaces (13b), and a light-transmitting surface angled in relation to the plane in which the light-emitting layer extends is formed along the interface between the light-transmitting substrate (10) and the high refractive index layer (30).

Description

発光装置Light emitting device
 本発明は、発光装置に関し、特に光取り出し効率の向上のための技術に関する。 The present invention relates to a light emitting device, and more particularly to a technique for improving light extraction efficiency.
照明装置のエネルギー効率を改善すべく、白熱球や蛍光灯に代わる光源の研究開発が進められている。最近では高輝度LED(発光ダイオード)などが候補のひとつとして有力視されており、実際に応用製品が商品化されている。LED照明は、省エネルギー化の要請の高まりに伴って一般家庭にも普及しつつある。 In order to improve the energy efficiency of lighting devices, research and development of light sources to replace incandescent bulbs and fluorescent lamps is ongoing. Recently, high-brightness LEDs (light-emitting diodes) and the like have been regarded as promising candidates, and applied products are actually commercialized. LED lighting is becoming popular in ordinary households as the demand for energy saving increases.
 一方、有機エレクトロルミネッセンス素子(以下有機ELと称する)を用いた照明も商品化が見え始めている。LEDは点状に発光するのに対して有機ELは面状に発光するので、拡散板を用いることなく照明光に適した広く均一な光を得ることができるといったメリットがある。 On the other hand, lighting using an organic electroluminescence element (hereinafter referred to as organic EL) is beginning to be commercialized. Since the LED emits light in the form of dots while the organic EL emits light in a planar shape, there is an advantage that a wide and uniform light suitable for illumination light can be obtained without using a diffusion plate.
 有機EL素子を用いた照明装置(以下有機EL照明と称する)における解決課題の1つとして光取り出し効率の向上が挙げられる。例えばガラス基板等の光透過性基板上に透明電極、発光層を含む有機機能層、金属電極を積層して構成される有機EL照明装置では、発光層から発せられた光は、透明電極と光透過性基板の界面および光透過性基板と光放出空間(空気)との界面において全反射を繰り返して減衰する。これにより、発光層で生成された光のうち約20%程度の光しか外部に取り出すことができない。これを解決するために、光透過性基板の表面にレンズアレイや散乱体などの構造物を設けて光取り出し効率の向上を図ることが行われている。 One of the problems to be solved in an illumination device using an organic EL element (hereinafter referred to as organic EL illumination) is an improvement in light extraction efficiency. For example, in an organic EL lighting device configured by laminating a transparent electrode, an organic functional layer including a light emitting layer, and a metal electrode on a light transmissive substrate such as a glass substrate, the light emitted from the light emitting layer Total reflection is repeatedly attenuated at the interface of the transmissive substrate and the interface between the light transmissive substrate and the light emission space (air). Thereby, only about 20% of the light generated in the light emitting layer can be extracted outside. In order to solve this problem, a structure such as a lens array or a scatterer is provided on the surface of the light transmissive substrate to improve the light extraction efficiency.
 特許文献1には、発光素子の出光面を構成する光取り出し用の基板と、前記基板の出光面側の面上に設けられた透明樹脂層と、前記透明樹脂層の出光面側の面上に設けられた高屈折率薄膜とを有する面光源装置であって、前記透明樹脂層が、その出光面側の面に、角錐形状又はプリズム形状の凹凸構造を有し、前記角錐形状又はプリズム形状の斜面と、出光面とがなす角が40°超65°未満であり、前記高屈折率薄膜は、前記凹凸構造に沿って設けられるとともに、各箇所での膜厚が平均膜厚±30%以内であり、前記高屈折率薄膜の屈折率は、前記透明樹脂層の屈折率より15~30%高いことを特徴とする面光源装置が開示されている。 Patent Document 1 discloses a light extraction substrate constituting a light emission surface of a light emitting element, a transparent resin layer provided on the light emission surface side of the substrate, and a surface on the light emission surface side of the transparent resin layer. The transparent resin layer has a pyramid-shaped or prism-shaped concavo-convex structure on the light-emitting surface side surface, and the pyramid-shaped or prism-shaped The angle formed by the slope and the light exit surface is more than 40 ° and less than 65 °, and the high refractive index thin film is provided along the concavo-convex structure, and the film thickness at each location is an average film thickness of ± 30%. A surface light source device is disclosed in which the refractive index of the high refractive index thin film is 15 to 30% higher than the refractive index of the transparent resin layer.
 特許文献2には、面状発光体の発光面側に、透光性層と、色変換層とが順次に積層された光学的表示装置において、前記色変換層の屈折率を前記透光性層の屈折率よりも大きくし、かつ、前記色変換層と前記透光性層との界面を凹凸形状としてあることを特徴とする光学的表示装置が開示されている。 In Patent Document 2, in an optical display device in which a light-transmitting layer and a color conversion layer are sequentially laminated on the light-emitting surface side of a planar light emitter, the refractive index of the color conversion layer is set to the light-transmitting property. An optical display device is disclosed in which the refractive index is larger than the refractive index of the layer, and the interface between the color conversion layer and the translucent layer has an uneven shape.
特開平2009-146654号公報JP 2009-146654 A 特開平2000-284705号公報JP 2000-284705 A
 ガラス基板等の光透過性基板上に透明電極、発光層を含む有機機能層、金属電極を積層して構成される有機EL発光装置において、光取り出し効率を低下させている要因としては、以下の3つが挙げられる。(1)光透過性基板と透明電極との屈折率差に起因して、これらの界面で全反射が起こり、発光層で生成された光が光透過性基板に入射しない。(2)光透過性基板と光放出空間(空気)との屈折率差に起因して、これらの界面で全反射が起こり、発光層で生成された光が外部に放出されない。(3)有機EL発光装置を構成する各層の光透過率に応じて各層を透過する光が減衰する。特に、光透過率の比較的低い透明電極に対して斜め方向に入射する光は、光路長が長くなる故、減衰が顕著となる。 In an organic EL light-emitting device configured by laminating a transparent electrode, an organic functional layer including a light-emitting layer, and a metal electrode on a light-transmitting substrate such as a glass substrate, the factors that reduce the light extraction efficiency are as follows: There are three. (1) Due to the difference in refractive index between the light transmissive substrate and the transparent electrode, total reflection occurs at these interfaces, and the light generated in the light emitting layer does not enter the light transmissive substrate. (2) Due to the difference in refractive index between the light-transmitting substrate and the light emission space (air), total reflection occurs at these interfaces, and the light generated in the light emitting layer is not emitted to the outside. (3) The light transmitted through each layer is attenuated according to the light transmittance of each layer constituting the organic EL light emitting device. In particular, the light incident in an oblique direction with respect to the transparent electrode having a relatively low light transmittance has a significant attenuation because the optical path length becomes long.
 上記した特許文献1および2に記載のものは、いずれも光透過性基板と光放出空間(空気)との界面で生じる全反射を抑制して光り取り出し効率の向上を図るものであり、上記(2)の要因を排除しようとするものと認められる。しかしながら、上記(2)の要因を排除したとしても、透明電極と光透過性基板との界面で生じる全反射を効率的に抑制しない限り(すなわち、上記(1)の要因を効率よく排除しない限り)光取り出し効率を飛躍的に高めることはできない。すなわち、上記した特許文献1および2に記載の構造でも、外部に取り出すことのできない光が多く存在し、更なる光取り出し効率の向上を図る必要があるものと考えられる。 Both of the above-described Patent Documents 1 and 2 are intended to improve the light extraction efficiency by suppressing total reflection occurring at the interface between the light-transmitting substrate and the light emission space (air). It is recognized that the factor 2) is to be eliminated. However, even if the factor (2) is eliminated, unless the total reflection occurring at the interface between the transparent electrode and the light-transmitting substrate is efficiently suppressed (that is, unless the factor (1) is efficiently eliminated). ) The light extraction efficiency cannot be increased dramatically. That is, even in the structures described in Patent Documents 1 and 2 described above, it is considered that there is a lot of light that cannot be extracted outside, and it is necessary to further improve the light extraction efficiency.
 本発明は、上記した点に鑑みてなされたものであり、光取り出し効率を従来よりも飛躍的に向上させることができる発光装置を提供することを目的とする。 The present invention has been made in view of the above points, and an object of the present invention is to provide a light-emitting device capable of dramatically improving the light extraction efficiency as compared with the prior art.
 本発明に係る発光装置は、光取り出し面と、前記光取り出し面の反対側に形成された凹凸面と、を有する光透過性基板と、前記凹凸面と部分的に接する第1の光反射膜と、前記凹凸面および前記第1の光反射膜の表面を界面として前記光透過性基板上に設けられ且つ前記光透過性基板の屈折率よりも高い屈折率を有する高屈折率層と、前記高屈折率層上に設けられた発光層を含む有機機能層と、前記有機機能層上に設けられた第2の光反射膜と、を含み、前記凹凸面は、各々が前記光取り出し面に対して傾斜した第1の傾斜面と、前記第1の傾斜面の傾斜方向とは反対方向に傾斜した第2の傾斜面と、を有し、前記第1の光反射膜は、前記第1の傾斜面の各々と接し、前記光透過性基板および前記高屈折率層との各界面において前記光取り出し面に対して傾斜した光反射面を形成し、前記光透過性基板は、前記第2の傾斜面において前記高屈折率層と接し、前記光透過性基板と前記高屈折率層との界面において前記発光層の延在する面に対して傾斜した光透過面が形成されていることを特徴としている。 The light-emitting device according to the present invention includes a light-transmitting substrate having a light extraction surface and a concavo-convex surface formed on the opposite side of the light extraction surface, and a first light reflecting film that is in partial contact with the concavo-convex surface. And a high refractive index layer provided on the light transmissive substrate with the uneven surface and the surface of the first light reflecting film as an interface and having a refractive index higher than the refractive index of the light transmissive substrate, An organic functional layer including a light emitting layer provided on the high refractive index layer; and a second light reflecting film provided on the organic functional layer, wherein the concavo-convex surface is formed on each of the light extraction surfaces. A first inclined surface that is inclined with respect to the first inclined surface, and a second inclined surface that is inclined in a direction opposite to the inclined direction of the first inclined surface, wherein the first light reflecting film includes the first inclined surface. Each of the inclined surfaces of the light-transmitting substrate and the high-refractive-index layer at each of the interfaces. Forming a light reflecting surface inclined with respect to a cutting surface, the light transmitting substrate being in contact with the high refractive index layer on the second inclined surface, and an interface between the light transmitting substrate and the high refractive index layer A light transmission surface inclined with respect to the surface on which the light emitting layer extends is formed.
図1(a)は本発明の実施例に係る発光装置の構成を示す断面図である。図1(b)は本発明の実施例に係る高屈折率層の平面図である。図1(c)は本発明の実施例に係る高屈折率層の凹凸面を構成する凸部の1単位を示す斜視図である。FIG. 1A is a cross-sectional view showing a configuration of a light emitting device according to an embodiment of the present invention. FIG. 1B is a plan view of the high refractive index layer according to the embodiment of the present invention. FIG.1 (c) is a perspective view which shows 1 unit of the convex part which comprises the uneven | corrugated surface of the high refractive index layer based on the Example of this invention. 図2(a)は本発明の実施例に係る有機EL素子の構造を示す平面図であり、図2(b)は図2(a)における2b-2b線に沿った断面図である。2A is a plan view showing the structure of the organic EL element according to the embodiment of the present invention, and FIG. 2B is a cross-sectional view taken along line 2b-2b in FIG. 2A. 図3(a)~図3(c)は本発明の実施例に係る発光装置において、有機機能層で生成された光の外部に放出されるまでの経路を例示した断面図である。FIGS. 3A to 3C are cross-sectional views illustrating paths until light generated in the organic functional layer is emitted to the outside in the light emitting device according to the embodiment of the invention. 図4(a)~図4(c)は本発明の実施例に係る発光装置において、有機機能層で生成された光の外部に放出されるまでの経路を例示した断面図である。FIGS. 4A to 4C are cross-sectional views illustrating paths until light generated in the organic functional layer is emitted to the outside in the light emitting device according to the embodiment of the invention. 図5(a)および図5(b)は本発明の実施例に係る発光装置において、有機機能層で生成された光の外部に放出されるまでの経路を例示した断面図である。FIG. 5A and FIG. 5B are cross-sectional views illustrating paths until light emitted from the organic functional layer is emitted to the outside in the light emitting device according to the embodiment of the invention. 図6(a)および図6(b)は、それぞれ、本発明の実施例に係る発光装置の光取り出し構造における光線追跡図である。6A and 6B are ray tracing diagrams in the light extraction structure of the light emitting device according to the example of the present invention. 図7は、比較例に係る光取り出し構造における光線追跡図である。FIG. 7 is a ray tracing diagram in the light extraction structure according to the comparative example. 図8(a)は、本発明の実施例に係る光透過性基板の平面図である。図8(b)は、本発明の実施例に係る高屈折率層の凹凸面を構成する凸部の1単位を示す斜視図である。FIG. 8A is a plan view of a light transmissive substrate according to an embodiment of the present invention. FIG.8 (b) is a perspective view which shows 1 unit of the convex part which comprises the uneven | corrugated surface of the high refractive index layer based on the Example of this invention. 図9(a)および図9(b)は、本発明の実施例に係る高屈折率層の平面図である。FIG. 9A and FIG. 9B are plan views of the high refractive index layer according to the example of the present invention. 図10(a)および図10(b)は、本発明の実施例に係る高屈折率層の平面図である。FIG. 10A and FIG. 10B are plan views of the high refractive index layer according to the example of the present invention. 図11(a)および図11(c)は、本発明の実施例に係る高屈折率層の平面図である。図11(b)は本発明の実施例に係る高屈折率層の凹凸面を構成する凸部の1単位を示す斜視図である。FIG. 11A and FIG. 11C are plan views of the high refractive index layer according to the example of the present invention. FIG.11 (b) is a perspective view which shows 1 unit of the convex part which comprises the uneven | corrugated surface of the high refractive index layer based on the Example of this invention. 本発明の実施例に係る高屈折率層の平面図である。It is a top view of the high refractive index layer which concerns on the Example of this invention. 本発明の実施例に係る発光装置の構成を示す断面図である。It is sectional drawing which shows the structure of the light-emitting device based on the Example of this invention. 本発明の実施例に係る発光装置の構成を示す断面図である。It is sectional drawing which shows the structure of the light-emitting device based on the Example of this invention. 本発明の実施例に係る発光装置の構成を示す断面図である。It is sectional drawing which shows the structure of the light-emitting device based on the Example of this invention. 図16(a)および図16(b)は、本発明の実施例に係る光透過性基板の斜視図である。FIG. 16A and FIG. 16B are perspective views of a light transmissive substrate according to an embodiment of the present invention. 図17(a)および図17(b)は、本発明の実施例に係る発光装置の構成の一部を示す断面図である。FIG. 17A and FIG. 17B are cross-sectional views showing a part of the configuration of the light emitting device according to the example of the present invention. 図18(a)は、本発明の実施例に係る発光装置の構成の一部を示す断面図である。図18(b)は、本発明の実施例に係る高屈折率層の平面図である。図18(c)は、本発明の実施例に係る高屈折率層の凹凸面を構成する凸部の1単位を示す斜視図である。FIG. 18A is a cross-sectional view showing a part of the configuration of the light emitting device according to the example of the present invention. FIG. 18B is a plan view of the high refractive index layer according to the example of the present invention. FIG.18 (c) is a perspective view which shows 1 unit of the convex part which comprises the uneven | corrugated surface of the high refractive index layer based on the Example of this invention. 本発明の実施例に係る発光装置の構成の一部を示す断面図である。It is sectional drawing which shows a part of structure of the light-emitting device based on the Example of this invention. 図20(a)は、本発明の実施例に係る発光装置の構成を示す断面図である。図20(b)は、本発明の実施例に係る発光装置の構成の一部を示す断面図である。FIG. 20A is a cross-sectional view showing a configuration of a light emitting device according to an example of the present invention. FIG. 20B is a cross-sectional view showing a part of the configuration of the light emitting device according to the example of the present invention. 本発明の実施例に係る発光装置の構成の一部を示す断面図である。It is sectional drawing which shows a part of structure of the light-emitting device based on the Example of this invention. 図22(a)~図22(d)は、本発明の実施例に係る発光装置の製造方法を示す断面図である。22 (a) to 22 (d) are cross-sectional views illustrating a method for manufacturing a light emitting device according to an embodiment of the present invention. 本発明の実施例に係る発光装置の構成の一部を示す断面図である。It is sectional drawing which shows a part of structure of the light-emitting device based on the Example of this invention. 図24(a)~図24(d)は、本発明の実施例に係る発光装置の製造方法を示す断面図である。24 (a) to 24 (d) are cross-sectional views illustrating a method for manufacturing a light emitting device according to an embodiment of the present invention. 図25(a)~図25(c)は、本発明の実施例に係る発光装置の製造方法を示す断面図である。25 (a) to 25 (c) are cross-sectional views illustrating a method for manufacturing a light emitting device according to an embodiment of the present invention. 図26(a)は、本発明の実施例に係る発光装置の構成を示す斜視図である。図26(b)は、本発明の実施例に係る高屈折率層の平面図である。図26(c)は、本発明の実施例に係る高屈折率層の凹凸面を構成する凸部の1単位を示す斜視図である。FIG. 26A is a perspective view showing a configuration of a light emitting device according to an example of the present invention. FIG.26 (b) is a top view of the high refractive index layer based on the Example of this invention. FIG.26 (c) is a perspective view which shows 1 unit of the convex part which comprises the uneven | corrugated surface of the high refractive index layer based on the Example of this invention. 図27(a)は、本発明の実施例に係る発光装置の構成を示す斜視図である。図27(b)は、本発明の実施例に係る高屈折率層の平面図である。FIG. 27A is a perspective view showing a configuration of a light emitting device according to an example of the present invention. FIG. 27B is a plan view of the high refractive index layer according to the embodiment of the present invention. 本発明の実施例に係る高屈折率層の平面図である。It is a top view of the high refractive index layer which concerns on the Example of this invention.
 以下、本発明の実施例について図面を参照しつつ説明する。尚、各図において、実質的に同一又は等価な構成要素、部分には同一の参照符を付している。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the drawings, substantially the same or equivalent components and parts are denoted by the same reference numerals.
 図1(a)は、本発明の実施例1に係る発光装置1の構成を示す断面図である。図1(b)は、発光装置1を構成する高屈折率層30を図1(a)に示す矢印の方向から見た平面図である。発光装置1は、光透過性基板10、高屈折率層30、透明電極40、発光層を含む有機機能層50、反射電極60が積層されて構成され、透明電極40と反射電極60との間に電圧を印加することにより発光層において生成される光を光透過性基板10の表面から取り出す所謂ボトムエミッション型の有機EL発光装置である。 FIG. 1A is a cross-sectional view showing a configuration of a light emitting device 1 according to Example 1 of the present invention. FIG. 1B is a plan view of the high refractive index layer 30 constituting the light emitting device 1 as viewed from the direction of the arrow shown in FIG. The light emitting device 1 is configured by laminating a light transmissive substrate 10, a high refractive index layer 30, a transparent electrode 40, an organic functional layer 50 including a light emitting layer, and a reflective electrode 60, and between the transparent electrode 40 and the reflective electrode 60. This is a so-called bottom emission type organic EL light emitting device that extracts light generated in the light emitting layer by applying a voltage to the surface of the light transmissive substrate 10.
 光透過性基板10は、ガラスや樹脂などの光透過性を有する材料からなる厚さ例えば500μm程度の板状部材である。光透過性基板10の光取り出し面は、平坦面となっており光放出空間を充たす空気(屈折率1)と接している。尚、光透過性基板10が例えばガラスにより構成される場合、その屈折率は1.5程度である。光透過性基板10の光取り出し面とは反対側の面は、図1(b)に示す複数の四角錐状の凹部からなる凹凸構造を有する。尚、光透過性基板10は、屈折率が同程度の2以上の異種材料の積層体であってもよい。 The light-transmitting substrate 10 is a plate-like member having a thickness of, for example, about 500 μm made of a light-transmitting material such as glass or resin. The light extraction surface of the light-transmissive substrate 10 is a flat surface and is in contact with air (refractive index 1) filling the light emission space. When the light transmissive substrate 10 is made of glass, for example, the refractive index is about 1.5. The surface opposite to the light extraction surface of the light transmissive substrate 10 has a concavo-convex structure composed of a plurality of quadrangular pyramid-shaped recesses as shown in FIG. The light transmitting substrate 10 may be a laminate of two or more different materials having the same refractive index.
 高屈折率層30は、光透過性基板10の屈折率よりも高く且つ透明電極40の屈折率と同程度の屈折率を有する光透過性部材により構成される。高屈折率層30は、例えば屈折率1.8程度のエポキシ樹脂などにより構成することができる。高屈折率層30は、光透過性基板10の凹凸面と密着する(対応する)凹凸面を有する。すなわち、高屈折率層30は、光透過性基板10に形成された複数の四角錐状凹部に対応する複数の四角錐状(ピラミッド状)の凸部31を有する。 The high refractive index layer 30 is composed of a light transmissive member having a refractive index higher than the refractive index of the light transmissive substrate 10 and approximately the same as the refractive index of the transparent electrode 40. The high refractive index layer 30 can be made of, for example, an epoxy resin having a refractive index of about 1.8. The high refractive index layer 30 has an uneven surface that is in close contact with (corresponds to) the uneven surface of the light transmissive substrate 10. That is, the high refractive index layer 30 has a plurality of quadrangular pyramid (pyramid) convex portions 31 corresponding to the plurality of quadrangular pyramid concave portions formed on the light-transmitting substrate 10.
 高屈折率層30の凸部31の表面は、光取り出し面に対して傾斜した傾斜面を形成している。尚、高屈折率層30の凹凸面と、光透過性基板10の凹凸面とは密着している故、光透過性基板10側にも等価な傾斜面が形成されることになる。複数の凸部31は、互いに同一の形状およびサイズを有し、縦方向および横方向において整列した状態で並ぶ周期構造を形成している。図1(c)は光屈折率層30の凹凸面を構成する凸部31の1単位を示す斜視図である。凸部31のサイズは、有機機能層50において生成される光の波長よりも十分に大きいことが好ましい。凸部31の底面の一辺の長さは例えば10μm、高さは例えば14μm程度である。複数の凸部31は、切削研磨、レーザー加工、化学的エッチング、熱インプリントなどの公知の表面加工技術を用いて高屈折率層30の表面を加工することにより形成することができる。また、光透過性基板10の凹凸面上に樹脂を塗布する方法によって高屈折率層30の凹凸面を形成することとしてもよい。 The surface of the convex portion 31 of the high refractive index layer 30 forms an inclined surface that is inclined with respect to the light extraction surface. In addition, since the uneven surface of the high refractive index layer 30 and the uneven surface of the light-transmitting substrate 10 are in close contact with each other, an equivalent inclined surface is also formed on the light-transmitting substrate 10 side. The plurality of convex portions 31 have the same shape and size as each other, and form a periodic structure that is aligned in the vertical direction and the horizontal direction. FIG. 1C is a perspective view showing one unit of the convex portion 31 constituting the concave-convex surface of the photorefractive index layer 30. The size of the convex portion 31 is preferably sufficiently larger than the wavelength of light generated in the organic functional layer 50. The length of one side of the bottom surface of the convex portion 31 is, for example, 10 μm, and the height is, for example, about 14 μm. The plurality of convex portions 31 can be formed by processing the surface of the high refractive index layer 30 using a known surface processing technique such as cutting and polishing, laser processing, chemical etching, or thermal imprinting. Further, the uneven surface of the high refractive index layer 30 may be formed by a method of applying a resin on the uneven surface of the light transmissive substrate 10.
 凸部31の側面の一部には本発明の第1の光反射膜を構成する反射膜20が設けられている。反射膜20は、四角錐状の凸部31の4つの側面のうち、互いに隣接する2つの側面を覆っている。反射膜20は、凸部31の互いに向かい合う側面の一方(例えば面a1)を被覆し、他方の側面(例えば面b)を被覆しないように形成されている。また、反射膜20は、互いに隣接する凸部31の互いに向かい合う側面の一方(例えば面a2)を被覆し、他方の側面(例えば面b)を被覆しないように形成されている。また、反射膜20は、複数の凸部31において、互いに同じ方向を向いている側面を被覆している。反射膜20は、高反射率を有する材料、例えばAgやAlなどの金属により構成される。反射膜20は、例えば、高屈折率層30の凹凸面上にパターニングされたレジストマスクを形成した後、真空蒸着やスパッタ法などにより該レジストマスクを介して上記の金属を高屈折率層30の凹凸面上に堆積することにより形成することができる。このように、高屈折率層30は、光透過性基板10および反射膜20の双方と接している。高屈折率層30の厚さは、例えば100μmであり、透明電極40と接する面は平坦となっている。 A reflection film 20 constituting the first light reflection film of the present invention is provided on a part of the side surface of the convex portion 31. The reflective film 20 covers two side surfaces adjacent to each other among the four side surfaces of the quadrangular pyramid-shaped convex portion 31. The reflection film 20 is formed so as to cover one side (for example, the surface a1) of the side surfaces of the convex portion 31 facing each other and not cover the other side surface (for example, the surface b). The reflective film 20 is formed so as to cover one side (for example, the surface a2) of the convex portions 31 adjacent to each other and not the other side surface (for example, the surface b). In addition, the reflective film 20 covers the side surfaces of the plurality of convex portions 31 facing in the same direction. The reflective film 20 is made of a material having a high reflectivity, for example, a metal such as Ag or Al. The reflective film 20 is formed, for example, by forming a patterned resist mask on the concavo-convex surface of the high refractive index layer 30 and then applying the above metal to the high refractive index layer 30 through the resist mask by vacuum deposition or sputtering. It can be formed by depositing on an uneven surface. Thus, the high refractive index layer 30 is in contact with both the light transmissive substrate 10 and the reflective film 20. The thickness of the high refractive index layer 30 is, for example, 100 μm, and the surface in contact with the transparent electrode 40 is flat.
 反射膜20は、光透過性基板10および高屈折率層30との界面において光取り出し面に対して傾斜した光反射面を形成する。一方、光反射膜20が形成されていない光透過性基板10と高屈折率層30との他の界面には、発光層を含む有機機能層50の延在する面に対して傾斜した光透過面が形成される。高屈折率層30の平坦面上には、透明電極40、発光層を含む有機機能層50、反射電極60が積層されて構成される有機EL素子が形成されている。 The reflection film 20 forms a light reflection surface inclined with respect to the light extraction surface at the interface between the light transmissive substrate 10 and the high refractive index layer 30. On the other hand, at the other interface between the light transmissive substrate 10 on which the light reflecting film 20 is not formed and the high refractive index layer 30, the light transmission inclined with respect to the extending surface of the organic functional layer 50 including the light emitting layer. A surface is formed. On the flat surface of the high refractive index layer 30, an organic EL element configured by laminating a transparent electrode 40, an organic functional layer 50 including a light emitting layer, and a reflective electrode 60 is formed.
 図2(a)は、本発明の実施例に係る有機EL素子のより詳細な構造を示す平面図であり、図2(b)は、図2(a)における2b-2b線に沿った断面図である。 2A is a plan view showing a more detailed structure of the organic EL device according to the embodiment of the present invention, and FIG. 2B is a cross-sectional view taken along line 2b-2b in FIG. 2A. FIG.
 陽極を構成する複数の透明電極40は、それぞれ帯状をなしており、高屈折率層30上においてY方向に沿って伸長し、互いに一定間隔おいてX方向に並置されている。透明電極40の各々は、例えばITO(Indium Tin Oxide)やIZO(Indium Zinc Oxide)等の金属酸化物導電体等からなる。透明電極40の屈折率は高屈折率層30と同程度(屈折率1.8程度)とされる。透明電極40の各々の表面には、透明電極40に電源電圧を供給する為のバスライン72が形成されている。高屈折率層30及び透明電極40上には絶縁膜71が形成されている。絶縁膜71には、夫々がY方向に伸張するストライプ状の開口部が形成されている。絶縁膜71の表面に複数の開口部を設けることにより複数のバンク(隔壁)が形成される。開口部の各々は、透明電極40に達しており、開口部の底面において透明電極40各々の表面が露出している。絶縁膜71の各開口部内における透明電極40上には、正孔注入層51、正孔輸送層52、発光層53、53、53、電子輸送層54がこの順序で積層されて構成される有機機能層50が形成されている。正孔注入層51及び正孔輸送層52の材料としては、芳香族アミン誘導体、フタロシアニン誘導体、ポルフィリン誘導体、オリゴチオフェン誘導体、ポリチオフェン誘導体、ベンジルフェニル誘導体、フルオレン基で3級アミンを連結した化合物、ヒドラゾン誘導体、シラザン誘導体、シラナミン誘導体、ホスファミン誘導体、キナクリドン誘導体、ポリアニリン誘導体、ポリピロール誘導体、ポリフェニレンビニレン誘導体、ポリチエニレンビニレン誘導体、ポリキノリン誘導体、ポリキノキサリン誘導体、カーボン等が挙げられる。発光層53、53、53は、それぞれ、赤色発光、緑色発光、青色発光を行う蛍光性有機金属化合物等からなる。発光層53、53、53は、絶縁膜71のバンクによって互いに隔てられた状態で並置されている。すなわち、有機機能層50は、バンクによって隔てられた複数の発光領域を形成している。発光層53、53、53および絶縁膜71の表面を覆うように電子輸送層54が形成されている。電子輸送層54の表面を覆うように陰極を構成する帯状の反射電極60が形成されている。反射電極60は、仕事関数が低く且つ高反射率を有するAlなどの金属または合金等からなる。反射電極60は、本発明の第2の光反射膜を構成するものである。尚、有機機能層50の屈折率は、透明電極40および高屈折率層30と同程度(屈折率1.8程度)とされる。 The plurality of transparent electrodes 40 constituting the anode each have a strip shape, extend along the Y direction on the high refractive index layer 30, and are juxtaposed in the X direction at a constant interval. Each of the transparent electrodes 40 is made of a metal oxide conductor such as ITO (Indium Tin Oxide) or IZO (Indium Zinc Oxide). The refractive index of the transparent electrode 40 is approximately the same as that of the high refractive index layer 30 (with a refractive index of approximately 1.8). A bus line 72 for supplying a power supply voltage to the transparent electrode 40 is formed on each surface of the transparent electrode 40. An insulating film 71 is formed on the high refractive index layer 30 and the transparent electrode 40. In the insulating film 71, stripe-shaped openings each extending in the Y direction are formed. By providing a plurality of openings on the surface of the insulating film 71, a plurality of banks (partition walls) are formed. Each of the openings reaches the transparent electrode 40, and the surface of each transparent electrode 40 is exposed at the bottom of the opening. A hole injection layer 51, a hole transport layer 52, a light emitting layer 53 R , 53 G , 53 B , and an electron transport layer 54 are stacked in this order on the transparent electrode 40 in each opening of the insulating film 71. An organic functional layer 50 is formed. Examples of materials for the hole injection layer 51 and the hole transport layer 52 include aromatic amine derivatives, phthalocyanine derivatives, porphyrin derivatives, oligothiophene derivatives, polythiophene derivatives, benzylphenyl derivatives, compounds in which tertiary amines are linked by fluorene groups, hydrazones. Derivatives, silazane derivatives, silanamine derivatives, phosphamine derivatives, quinacridone derivatives, polyaniline derivatives, polypyrrole derivatives, polyphenylene vinylene derivatives, polythienylene vinylene derivatives, polyquinoline derivatives, polyquinoxaline derivatives, carbon and the like. The light emitting layers 53 R , 53 G , and 53 B are made of a fluorescent organometallic compound that emits red light, green light, and blue light, respectively. The light emitting layers 53 R , 53 G , 53 B are juxtaposed in a state of being separated from each other by the bank of the insulating film 71. That is, the organic functional layer 50 forms a plurality of light emitting regions separated by banks. An electron transport layer 54 is formed so as to cover the surfaces of the light emitting layers 53 R , 53 G , 53 B and the insulating film 71. A band-like reflective electrode 60 constituting a cathode is formed so as to cover the surface of the electron transport layer 54. The reflective electrode 60 is made of a metal such as Al or an alloy having a low work function and high reflectivity. The reflective electrode 60 constitutes the second light reflective film of the present invention. The refractive index of the organic functional layer 50 is approximately the same as that of the transparent electrode 40 and the high refractive index layer 30 (with a refractive index of approximately 1.8).
 このように、赤、緑、青の光をそれぞれ発する発光層53、53、53は、ストライプ状に繰り返し配置されており、光取り出し面となる光透過性基板10の表面からは、赤、緑、青の光が任意の割合で混色されて単一の発光色として認識される光が放出される。 Thus, the light emitting layers 53 R , 53 G , and 53 B that respectively emit red, green, and blue light are repeatedly arranged in a stripe shape, and from the surface of the light transmissive substrate 10 that serves as a light extraction surface, Red, green, and blue light are mixed at an arbitrary ratio to emit light that is recognized as a single emission color.
 図3乃至図5は、上記した本発明の実施例に係る発光装置1において、有機機能層50で生成された光の外部に放出されるまでの経路のいくつかを例示した断面図である。尚、理解を容易にするために、反射電極60により形成される光反射面が凸部31の底部の深さ位置に存在するものとして説明する。高屈折率層30、透明電極40および有機機能層50は、互いに同程度の屈折率を有する故、各界面において屈折や反射が生じない。更に光透過性基板10および高屈折率層の凹凸構造が周期的である故、反射電極60が上記の位置に存在するものと想定しても実質的に問題はない。この場合、発光点は反射電極60上にあるとみなされる。 3 to 5 are cross-sectional views illustrating some of the paths until the light generated in the organic functional layer 50 is emitted to the outside in the light emitting device 1 according to the embodiment of the present invention described above. In order to facilitate understanding, it is assumed that the light reflecting surface formed by the reflective electrode 60 exists at the depth position of the bottom of the convex portion 31. Since the high refractive index layer 30, the transparent electrode 40, and the organic functional layer 50 have the same refractive index, no refraction or reflection occurs at each interface. Furthermore, since the concavo-convex structure of the light-transmitting substrate 10 and the high refractive index layer is periodic, there is virtually no problem even if it is assumed that the reflective electrode 60 exists at the above position. In this case, the light emitting point is considered to be on the reflective electrode 60.
 図3(a)に示すように、法線nの右側から入射角θ(法線nの右側から入射する光線を正とする)で入射した光線Aは、反射膜20により形成される光反射面a1で反射された後、反射膜が形成されていない光透過面bを透過して光透過性基板10に入射する。光線Aは、光透過性基板10の内部を直進し、反射膜20により形成される光反射面a2で反射された後、光取り出し面dから外部に放出される。 As shown in FIG. 3A, the light beam A incident from the right side of the normal line n at an incident angle θ 1 (the light beam incident from the right side of the normal line n is positive) is light formed by the reflective film 20. After being reflected by the reflecting surface a <b> 1, the light passes through the light transmitting surface b on which no reflecting film is formed and enters the light transmitting substrate 10. The light beam A travels straight inside the light-transmitting substrate 10, is reflected by the light reflecting surface a <b> 2 formed by the reflective film 20, and then is emitted from the light extraction surface d to the outside.
 図3(b)に示すように、法線nの右側から入射角θ(θ>θ)で入射した光線Bは、反射膜20により形成される光反射面a1で反射された後、反射膜が形成されていない光透過面bを透過して光透過性基板10に入射する。光線Bは、光透過性基板10の内部を直進し、反射膜20により形成される光反射面a2で反射された後、光取り出し面dから外部に放出される。 As shown in FIG. 3B, the light beam B incident at the incident angle θ 21 > θ 2 ) from the right side of the normal line n is reflected by the light reflecting surface a 1 formed by the reflective film 20. Then, the light passes through the light transmission surface b on which no reflective film is formed, and enters the light transmissive substrate 10. The light beam B travels straight inside the light transmissive substrate 10, is reflected by the light reflecting surface a <b> 2 formed by the reflective film 20, and then is emitted from the light extraction surface d to the outside.
 図3(c)に示すように、法線nに平行に入射した光線Cは、反射膜20により形成される光反射面a1と直交する故、入射経路と同一の経路を辿って反射電極60により形成される光反射面cに向かう。光線Cは、光反射面cで反射された後、反射膜が形成されていない光透過面bを透過して光透過性基板10に入射する。光線Cは、そのまま光透過性基板10内を直進して光取り出し面dから外部に放出される。 As shown in FIG. 3C, the light ray C incident in parallel to the normal line n is orthogonal to the light reflection surface a1 formed by the reflective film 20, and therefore follows the same path as the incident path, thereby reflecting the electrode 60. It goes to the light reflection surface c formed by the above. After being reflected by the light reflecting surface c, the light beam C is transmitted through the light transmitting surface b on which no reflective film is formed and enters the light transmitting substrate 10. The light beam C travels straight through the light-transmitting substrate 10 and is emitted from the light extraction surface d to the outside.
 図4(a)に示すように、法線nの左側から入射角θ(θ<0)で入射した光線Dは、反射膜20により形成される光反射面a1で反射された後、反射電極60により形成される光反射面cで反射され再び光反射面a1で反射される。その後、光線Dは反射膜が形成されていない光透過面bを透過して光透過性基板10に入射する。光線Dは、光透過性基板10の内部を直進し、反射膜20により形成される光反射面a2で反射された後、光取り出し面dから外部に放出される。 As shown in FIG. 4A, the light ray D incident at the incident angle θ 44 <0) from the left side of the normal line n is reflected by the light reflecting surface a1 formed by the reflective film 20, The light is reflected by the light reflecting surface c formed by the reflecting electrode 60 and is reflected again by the light reflecting surface a1. Thereafter, the light beam D passes through the light transmission surface b on which no reflective film is formed and enters the light transmissive substrate 10. The light beam D travels straight inside the light-transmitting substrate 10, is reflected by the light reflecting surface a <b> 2 formed by the reflective film 20, and then is emitted from the light extraction surface d to the outside.
 図4(b)に示すように、法線nの左側から入射角θ(θ>高屈折率層と光透過性基板との臨界角)で入射した光線Eは、反射膜が形成されていない光透過面bに対して臨界角よりも大きい角度で入射する故、光透過面bで全反射される。その後、光線Eは反射膜20により形成される光反射面a1で反射された後、反射電極60により形成される光反射面cで反射され、光透過面bを透過して光透過性基板10に入射する。光線Eは、光透過性基板10内を直進して光取り出し面dから外部に放出される。 As shown in FIG. 4B, the reflection film is formed on the light ray E incident from the left side of the normal line n at an incident angle θ 55 > critical angle between the high refractive index layer and the light transmitting substrate). Since the incident light is incident on the light transmitting surface b which is not larger than the critical angle, the light transmitting surface b is totally reflected. Thereafter, the light beam E is reflected by the light reflecting surface a1 formed by the reflecting film 20, and then reflected by the light reflecting surface c formed by the reflecting electrode 60, passes through the light transmitting surface b, and passes through the light transmitting substrate 10. Is incident on. The light beam E travels straight in the light transmissive substrate 10 and is emitted to the outside from the light extraction surface d.
 図4(c)に示すように、光反射面a1とほぼ平行となる角度で高屈折率層30に入射した光線Fは、反射膜が形成されていない光透過面bを透過して光透過性基板10に入射する。光線Fは、光透過性基板10内を直進して光取り出し面dから外部に放出されるか場合によっては光透過性基板10と空気との界面d(光取り出し面)で全反射される。 As shown in FIG. 4C, the light beam F incident on the high refractive index layer 30 at an angle substantially parallel to the light reflecting surface a1 is transmitted through the light transmitting surface b on which no reflecting film is formed. Incident on the conductive substrate 10. The light beam F travels straight through the light-transmitting substrate 10 and is emitted from the light extraction surface d to the outside, or is totally reflected at the interface d (light extraction surface) between the light-transmitting substrate 10 and air.
 図5(a)に示すように、光透過性基板10と空気との界面dで全反射された光線Gは、反射膜20により形成される光反射面aで反射する。光反射面aは、界面dに対して傾斜している故、光線Gは、臨界角よりも小さい入射角で界面dに入射することとなり、全反射されることなく光取り出し面dから外部に放出される。 As shown in FIG. 5A, the light beam G totally reflected at the interface d between the light transmissive substrate 10 and air is reflected by the light reflecting surface a formed by the reflective film 20. Since the light reflection surface a is inclined with respect to the interface d, the light beam G is incident on the interface d at an incident angle smaller than the critical angle, and is not totally reflected from the light extraction surface d to the outside. Released.
 図5(b)に示すように、光透過性基板10から反射膜が形成されていない光透過面bを透過して高屈折率層30に入射した光線Hは、反射電極60により形成される光反射面cおよび反射膜20により形成される光反射面a1で反射され、反射膜が形成されていない光透過面bを透過して光透過性基板10に入射する。光線Hは、光透過性基板10の内部を直進し、反射膜20により形成される光反射面a2で反射された後、光取り出し面dから外部に放出される。 As shown in FIG. 5B, the light beam H that has entered the high refractive index layer 30 through the light transmission surface b on which no reflective film is formed from the light transmissive substrate 10 is formed by the reflective electrode 60. The light is reflected by the light reflecting surface a <b> 1 formed by the light reflecting surface c and the reflecting film 20, passes through the light transmitting surface b where the reflecting film is not formed, and enters the light transmitting substrate 10. The light beam H travels straight inside the light transmissive substrate 10, is reflected by the light reflecting surface a <b> 2 formed by the reflective film 20, and then is emitted from the light extraction surface d to the outside.
 このように、本実施例に係る発光装置1において、光透過性基板10は、高屈折率層30の表面に設けられた複数の四角錐状の凸部31からなる凹凸面に対応する対応凹凸面を有し、両面反射性の反射膜20が該凹凸面および対応凹凸面を部分的に接している。光透過性基板10よりも高い屈折率を有する高屈折率層30は、光透過性基板10の凹凸面および反射膜20の表面を界面として光透過性基板10上に設けられる。このような光取り出し構造によれば、光透過性基板10と高屈折率層30との界面は、発光層を含む有機機能層50が延在する面に対して傾斜した傾斜面を形成するので、当該界面に対して臨界角以上の角度で入射する光を減じることができ、当該界面での全反射を抑制することができる。また、反射膜20は、光取り出し面に対して傾いた光反射面を形成している。これにより、光透過性基板10と空気との界面(光取り出し面)で全反射された光や、高屈折率層30を経て光透過性基板10に入射した光は、反射膜20で反射された後、臨界角よりも小さい入射角で光取り出し面に入射することができる。従って、光取り出し面と反射電極60との間で延々と反射が繰り返されることを防止するこができる。また、反射膜20が形成された光反射面と、反射膜が形成されていない光透過面が向かい合うように配置されているので、高屈折率層30内を進行する光は、比較的短い経路で光透過性基板10に入射することができる。 As described above, in the light emitting device 1 according to the present example, the light-transmitting substrate 10 has the corresponding unevenness corresponding to the uneven surface including the plurality of quadrangular pyramidal protrusions 31 provided on the surface of the high refractive index layer 30. The reflective film 20 having a double-sided reflective surface partially contacts the uneven surface and the corresponding uneven surface. The high refractive index layer 30 having a higher refractive index than the light transmissive substrate 10 is provided on the light transmissive substrate 10 with the uneven surface of the light transmissive substrate 10 and the surface of the reflective film 20 as an interface. According to such a light extraction structure, the interface between the light transmissive substrate 10 and the high refractive index layer 30 forms an inclined surface inclined with respect to the surface on which the organic functional layer 50 including the light emitting layer extends. The light incident on the interface at an angle greater than the critical angle can be reduced, and total reflection at the interface can be suppressed. Further, the reflection film 20 forms a light reflection surface inclined with respect to the light extraction surface. Thereby, the light totally reflected at the interface (light extraction surface) between the light transmissive substrate 10 and the air or the light incident on the light transmissive substrate 10 through the high refractive index layer 30 is reflected by the reflective film 20. Thereafter, the light can enter the light extraction surface at an incident angle smaller than the critical angle. Therefore, it is possible to prevent the repeated reflection between the light extraction surface and the reflective electrode 60. Further, since the light reflecting surface on which the reflecting film 20 is formed and the light transmitting surface on which the reflecting film is not formed face each other, the light traveling in the high refractive index layer 30 has a relatively short path. So that the light can enter the light-transmitting substrate 10.
 図6(a)および図6(b)は、それぞれ、本実施例に係る発光装置1の光取り出し構造における光線追跡図であって、高屈折率層の1つの凸部の底部を5等分する点P1~P4のそれぞれにおいて、10°、30°、50°、70°、90°、110°、130°、150°、170°の角度で高屈折率層に入射する合計36本の光線の進路をシミュレーションした結果である。尚、光透過性基板の屈折率n1を1.5、高屈折率層の屈折率n2を1.8、光放出空間を充たす空気の屈折率n0を1、反射電極により形成される光反射面cと高屈折率層の凸部の側面とのなす角αを40°(図6(a))および55°(図6(b))とし、反射電極により形成される光反射面cが高屈折率層の凸部の底部の深さ位置に存在するものとしてシミュレーションを実施した。本実施例に係る光取り出し構造によれば、反射電極により形成される光反射面cでの反射を最大2回経ることにより36本全ての光線を外部に放出させることができた。 FIGS. 6A and 6B are ray tracing diagrams in the light extraction structure of the light emitting device 1 according to the present example, respectively, in which the bottom of one convex portion of the high refractive index layer is divided into five equal parts. A total of 36 rays incident on the high refractive index layer at angles of 10 °, 30 °, 50 °, 70 °, 90 °, 110 °, 130 °, 150 °, and 170 ° at each of the points P1 to P4. It is the result of simulating the course of. In addition, the refractive index n1 of the light-transmitting substrate is 1.5, the refractive index n2 of the high refractive index layer is 1.8, the refractive index n0 of air filling the light emission space is 1, and the light reflecting surface formed by the reflective electrode The angle α formed by c and the side surface of the convex portion of the high refractive index layer is 40 ° (FIG. 6A) and 55 ° (FIG. 6B), and the light reflection surface c formed by the reflective electrode is high. The simulation was carried out assuming that it exists at the depth position of the bottom of the convex part of the refractive index layer. According to the light extraction structure according to this example, all 36 light beams could be emitted to the outside by passing through the light reflection surface c formed by the reflective electrode twice at most.
 一方、図7は、光透過性基板の凹凸面上に反射膜が設けられていない比較例に係る光取り出し構造における光線追跡図であって、高屈折率層の1つの凸部の底部を5等分する点P1~P4のそれぞれにおいて、10°、30°、50°、70°、90°、110°、130°、150°、170°の角度で高屈折率層30に入射する合計36本の光線の進路をシミュレーションした結果である。尚、光の進路は対称性を有する故、図7においては、110°、130°、50°、170°の角度で高屈折率層に入射する光線を非表示とした。尚、光透過性基板の屈折率n1を1.5、高屈折率層の屈折率n2を1.8、光放出空間を充たす空気の屈折率n0を1、反射電極により形成される光反射面cと凸部の側面とのなす角αを55°とし、反射電極により形成される光反射面cが高屈折率層の凸部の底部の深さ位置に存在するものとしてシミュレーションを実施した。比較例に係る光取り出し構造によれば、光反射面cでの反射の回数が0~2回で外部に放出される光線は36本中20本であり、本実施例に係る光取出し構造よりも少ないことが確認された。すなわち、光透過性基板の凹凸面上に反射膜を有しない構造においては、約44%の光は、光反射面cでの反射を3回以上経なければ外部に取り出すことができない。 On the other hand, FIG. 7 is a ray tracing diagram in the light extraction structure according to the comparative example in which the reflective film is not provided on the uneven surface of the light-transmitting substrate, and the bottom of one convex portion of the high refractive index layer is 5 A total of 36 incident on the high refractive index layer 30 at angles of 10 °, 30 °, 50 °, 70 °, 90 °, 110 °, 130 °, 150 °, and 170 ° at each of the equally dividing points P1 to P4. It is the result of simulating the course of light rays of a book. Since the light path has symmetry, in FIG. 7, the light rays incident on the high refractive index layer at the angles of 110 °, 130 °, 50 °, and 170 ° are not displayed. In addition, the refractive index n1 of the light-transmitting substrate is 1.5, the refractive index n2 of the high refractive index layer is 1.8, the refractive index n0 of air filling the light emission space is 1, and the light reflecting surface formed by the reflective electrode The simulation was carried out on the assumption that the angle α formed by c and the side surface of the convex portion was 55 °, and the light reflecting surface c formed by the reflective electrode was present at the depth position of the bottom of the convex portion of the high refractive index layer. According to the light extraction structure according to the comparative example, the number of reflections at the light reflection surface c is 0 to 2 times, and 20 of the light rays are emitted to the outside. It was confirmed that there were few. That is, in a structure having no reflective film on the uneven surface of the light-transmitting substrate, about 44% of light cannot be extracted outside unless it has been reflected by the light reflecting surface c three times or more.
 以上の説明から明らかなように、本実施例に係る発光装置1は、透明電極40と光透過性基板10との間に透明電極40と屈折率が略等しい高屈折率層を有し、光透過性基板10と高屈折率層30との間に光取り出し面に対して傾斜した両面反射性の反射膜を有するので、比較的短い光路長および比較的少ない反射回数で外部に光を取り出すことができ、光取り出し効率を飛躍的に向上させることができる。 As is clear from the above description, the light emitting device 1 according to the present embodiment has a high refractive index layer having a refractive index substantially equal to that of the transparent electrode 40 between the transparent electrode 40 and the light transmissive substrate 10, Since a double-sided reflective film inclined with respect to the light extraction surface is provided between the transmissive substrate 10 and the high refractive index layer 30, light can be extracted outside with a relatively short optical path length and a relatively small number of reflections. And light extraction efficiency can be dramatically improved.
 図8(a)は、高屈折率層30の凹凸面に形成された反射膜20のパターンの第1の改変例を示す平面図、図8(b)は当該改変されたパターンの反射膜20が形成された凸部31の一単位を示す斜視図である。これらの図に示されるように、反射膜20は四角錐状の凸部31の各側面の略半分の領域を覆うように設けられていてもよい。かかる反射膜20のパターンによれば、四角錐状の凸部31の4つの側面のそれぞれに光透過面が形成されるので、光の放出方向を分散させることが可能となる。尚、光取り出し効率の観点から、このような改変パターンにおいても、互いに向かい合う部分の一方にのみ反射膜20を設けることが好ましい。図8(a)に示す例では、互いに向かい合う部分a1´とb´のうち、部分a1´にのみ反射膜20が設けられる。また、互いに隣接する凸部間において互いに向かい合う部分a2´とb´についても同様である。 FIG. 8A is a plan view showing a first modified example of the pattern of the reflective film 20 formed on the uneven surface of the high refractive index layer 30, and FIG. 8B is the reflective film 20 having the modified pattern. It is a perspective view which shows one unit of the convex part 31 in which was formed. As shown in these drawings, the reflective film 20 may be provided so as to cover a substantially half region of each side surface of the quadrangular pyramid-shaped convex portion 31. According to the pattern of the reflective film 20, the light transmission surface is formed on each of the four side surfaces of the quadrangular pyramid-shaped convex portion 31, so that the light emission direction can be dispersed. From the viewpoint of light extraction efficiency, it is preferable to provide the reflective film 20 only on one of the portions facing each other even in such a modified pattern. In the example shown in FIG. 8A, the reflective film 20 is provided only on the portion a1 ′ of the portions a1 ′ and b ′ facing each other. The same applies to the portions a2 ′ and b ′ facing each other between the adjacent convex portions.
 図9(a)は、高屈折率層30の凹凸面に形成された反射膜20のパターンの第2の改変例を示す平面図である。図9(a)に示されるように、反射膜20のパターンを図1(b)に示す反射膜のパターンと、図8(a)に示す反射膜のパターンの混在パターンとしてもよい。 FIG. 9A is a plan view showing a second modification of the pattern of the reflective film 20 formed on the concavo-convex surface of the high refractive index layer 30. FIG. As shown in FIG. 9A, the pattern of the reflective film 20 may be a mixed pattern of the reflective film pattern shown in FIG. 1B and the reflective film pattern shown in FIG.
 図9(b)は、高屈折率層30の凹凸面に形成された反射膜20のパターンの第3の改変例を示す平面図である。反射膜20は、四角錐状の凸部31の各々の4つの側面のうち互いに隣接する2つの側面を覆っている。図9(b)に示すように、反射膜20は、凸部毎若しくは複数の凸部からなるブロック毎に互いに異なる方向を向いている側面を覆うように形成されていてもよい。図9(b)に示す例では、反射膜20は、4つの凸部31により構成されるブロック毎に互いに異なる向きで配置されている。かかる反射膜20のパターンによれば、反射膜20で覆われていない光透過面が図9(b)の中心を向いており、図9(b)に示されるユニットを繰り返し敷き詰めることにより、全体的に均一な方向の光を得ることができる。 FIG. 9B is a plan view showing a third modification of the pattern of the reflective film 20 formed on the uneven surface of the high refractive index layer 30. The reflective film 20 covers two side surfaces adjacent to each other among the four side surfaces of each of the quadrangular pyramidal convex portions 31. As shown in FIG. 9B, the reflective film 20 may be formed so as to cover side surfaces facing in different directions for each convex portion or for each block composed of a plurality of convex portions. In the example shown in FIG. 9B, the reflective film 20 is arranged in different directions for each block constituted by the four convex portions 31. According to the pattern of the reflection film 20, the light transmission surface that is not covered with the reflection film 20 faces the center of FIG. 9B, and the unit shown in FIG. Uniform light can be obtained.
 図10(a)および図10(b)は、高屈折率層30の凸部31の形状の第1の改変例を示す平面図である。これらの図に示されるように、凸部31の1単位の形状は三角錐状であってもよい。反射膜20は、三角錐の3つの側面のうちの1つを覆うように形成されている。また、図10(a)に示すように、反射膜20は、互いに隣接する凸部間において互いに向かい合う側面の一方のみを被覆するように形成されている(例えば面aと面b)。尚、図10(b)に示すように、互いに隣接する凸部間において互いに向かい合う側面の双方が反射膜で覆われていない光透過面となる領域が含まれていてもよい(例えば面b1と面b2)。このように、凸部31の形状を三角錐状とし、互いに隣接する凸部間において互いに向かい合う側面の双方が光反射面とならないように反射膜を形成することにより光取り出し効率を向上させるとともに光の放出方向を分散させることが可能となる。特に図10(a)に示す構成によれば、全体として均一な光を得ることができる。 FIGS. 10A and 10B are plan views showing a first modification of the shape of the convex portion 31 of the high refractive index layer 30. FIG. As shown in these drawings, the shape of one unit of the convex portion 31 may be a triangular pyramid shape. The reflective film 20 is formed so as to cover one of the three side surfaces of the triangular pyramid. Further, as shown in FIG. 10A, the reflective film 20 is formed so as to cover only one of the side surfaces facing each other between adjacent convex portions (for example, the surface a and the surface b). As shown in FIG. 10B, a region that is a light transmission surface that is not covered with a reflective film on both side surfaces facing each other between adjacent convex portions may be included (for example, the surface b1). Surface b2). As described above, the shape of the convex portion 31 is a triangular pyramid, and the reflection film is formed so that both of the side surfaces facing each other between the adjacent convex portions do not become light reflecting surfaces, thereby improving the light extraction efficiency and light. It becomes possible to disperse the release direction. In particular, according to the configuration shown in FIG. 10A, uniform light can be obtained as a whole.
 図11(a)は、高屈折率層30の凸部31の形状の第2の改変例を示す平面図である。図11(b)は当該改変された形状の凸部31の1単位を示す斜視図である。これらの図に示されるように、凸部31の1単位の形状は円錐状であってもよい。反射膜20は、円錐の側面の略半分の領域を覆っている。尚、反射膜20の被覆範囲は光取り出し効率等を勘案して適宜変更することが可能である。図11(a)に示すように、凸部31の反射膜20によって被覆される部分の向きを互いに同一方向に向けることによりマスクを使用しない所謂斜め蒸着(蒸着粒子の飛来方向に対して被蒸着面を傾けて蒸着を行う方法)によって反射膜20のパターンを形成することが可能となり製造が容易となる。一方、図11(c)に示すように、凸部31の反射膜20によって被覆される部分の向きを例えば複数の凸部31からなるブロック毎に異ならしめることにより、光の放出方向を分散させることが可能となる。 FIG. 11A is a plan view showing a second modification of the shape of the convex portion 31 of the high refractive index layer 30. FIG. FIG. 11B is a perspective view showing one unit of the modified convex portion 31. As shown in these drawings, the shape of one unit of the convex portion 31 may be a conical shape. The reflective film 20 covers a substantially half region of the side surface of the cone. Note that the coverage of the reflective film 20 can be changed as appropriate in consideration of light extraction efficiency and the like. As shown in FIG. 11A, so-called oblique deposition without using a mask by directing the portions covered by the reflective film 20 of the convex portion 31 in the same direction (deposition with respect to the flying direction of the vapor deposition particles). It is possible to form the pattern of the reflective film 20 by the method of performing vapor deposition by inclining the surface, and the manufacture becomes easy. On the other hand, as shown in FIG. 11C, the direction of the portion covered by the reflective film 20 of the convex portion 31 is made different, for example, for each block composed of the plurality of convex portions 31, thereby dispersing the light emission direction. It becomes possible.
 図12に示すように、高屈折率層30の凹凸面を構成する複数の凸部31は、隣接する凸部との間に間隙を有して並んでいてもよい。 As shown in FIG. 12, the plurality of protrusions 31 constituting the uneven surface of the high refractive index layer 30 may be arranged with a gap between adjacent protrusions.
 尚、上記の説明においては、高屈折率層30と透明電極40とを別々に設ける構成としたが、図13に示すように、高屈折率層30は透明電極の機能を兼ね備えていてもよい。すなわち、この場合、高屈折率層30は、ITOなどの金属酸化物導電体により構成される。 In the above description, the high refractive index layer 30 and the transparent electrode 40 are provided separately. However, as shown in FIG. 13, the high refractive index layer 30 may have the function of a transparent electrode. . That is, in this case, the high refractive index layer 30 is made of a metal oxide conductor such as ITO.
 また、上記の説明においては、光透過性基板10および高屈折率層30の凹凸面が錐形状の凹部または凸部からなる周期構造を有する場合を例示したが、図14に示すように、光透過性基板10および高屈折率層30凹凸面を構成する凹部または凸部の形状、サイズ、高さはランダムであってもよい。このようなランダムな凹凸面は、例えばサンドブラストやウォータブラスト等の公知の表面加工技術を用いて形成することができる。反射膜20は、所謂斜め蒸着などによってランダムな形状およびサイズを有する凸部の側面に部分的に形成される。 In the above description, the case where the concavo-convex surfaces of the light transmissive substrate 10 and the high refractive index layer 30 have a periodic structure composed of conical concave portions or convex portions is illustrated, but as shown in FIG. The shape, size, and height of the concave portions or convex portions constituting the concavo-convex surface of the transmissive substrate 10 and the high refractive index layer 30 may be random. Such a random concavo-convex surface can be formed using a known surface processing technique such as sandblasting or water blasting. The reflective film 20 is partially formed on the side surface of the convex portion having a random shape and size by so-called oblique vapor deposition or the like.
 また、上記の説明においては、光透過性基板10が単一の材料により構成される場合を例示したが、図15に示すように、光透過性基板10は、屈折率が同等である異種材料を積層した積層基板であってもよい。例えば、光透過性基板10は、ガラスからなる第1の層10aと、第1の層10aと屈折率が同等である樹脂からなる第2の層10bとを積層して構成することができる。高屈折率層30に隣接する第2の層10bの材料として凹凸面の形成が比較的容易な材料を選択することにより製造が容易となる。 In the above description, the case where the light transmissive substrate 10 is made of a single material has been exemplified. However, as shown in FIG. 15, the light transmissive substrate 10 is made of different materials having the same refractive index. A laminated substrate obtained by laminating layers may be used. For example, the light-transmitting substrate 10 can be configured by laminating a first layer 10a made of glass and a second layer 10b made of a resin having a refractive index equivalent to that of the first layer 10a. Manufacture is facilitated by selecting a material that is relatively easy to form an uneven surface as the material of the second layer 10b adjacent to the high refractive index layer 30.
 また、上記の説明においては、図16(b)に示すように、複数の錐状の凹部12によって光透過性基板10の凹凸面を形成する場合を例示したが、図16(a)に示すように複数の錐状の凸部11によって光透過性基板10の凹凸面を形成することとしてもよい。この場合、高屈折率層30は、光透過性基板10の凸部11に対応する複数の錐状の凹部によって構成される凹凸面を有することとなる。 Moreover, in the above description, as shown in FIG. 16B, the case where the uneven surface of the light-transmitting substrate 10 is formed by the plurality of conical recesses 12 is illustrated, but FIG. As described above, the uneven surface of the light-transmitting substrate 10 may be formed by the plurality of conical protrusions 11. In this case, the high refractive index layer 30 has an uneven surface constituted by a plurality of conical concave portions corresponding to the convex portions 11 of the light-transmitting substrate 10.
 図17(a)は、本発明の実施例2に係る発光装置2の一部を示す断面図である。発光装置2は、高屈折率層30の凹凸面を構成する四角錐状の凸部31の頂部および隣接する凸部間の谷部が、光取り出し面と実質的に平行な面31aおよび31bを有する。高屈折率層30の面31aおよび31b上には反射膜20は形成されておらず、面31aおよび31bは、光透過面となっている。すなわち、本実施例に係る発光装置2は、光取り出し面に対して平行な面31a、31bに形成された第1の光透過面と、有機機能層50の延在する面に対して傾斜した面31cに形成された第2の光透過面を有する。 FIG. 17A is a cross-sectional view showing a part of the light emitting device 2 according to Example 2 of the present invention. In the light emitting device 2, the tops of the quadrangular pyramid-shaped protrusions 31 constituting the uneven surface of the high refractive index layer 30 and the valleys between adjacent protrusions are surfaces 31a and 31b that are substantially parallel to the light extraction surface. Have. The reflective film 20 is not formed on the surfaces 31a and 31b of the high refractive index layer 30, and the surfaces 31a and 31b are light transmitting surfaces. That is, the light emitting device 2 according to the present example is inclined with respect to the first light transmission surface formed on the surfaces 31 a and 31 b parallel to the light extraction surface and the surface on which the organic functional layer 50 extends. A second light transmission surface is formed on the surface 31c.
 光取り出し面と実質的に平行な面31aおよび31bを光透過面とすることにより、光取り出し面に対して略直交する光線を外部に取り出しやすくすることができる。すなわち、面31aおよび面31bに対して垂直に入射する光線を透過させると、当該光線はそのまま直進して光取り出し面に対しても垂直に入射する。光取り出し面に対して垂直に入射する光線は光取り出し面で全反射されることはなく、直接外部に取り出すことができる。このような直進光に関しては、反射膜20による反射を経ることなく外部に取り出すことで光取り出し効率を向上させることが可能となる。尚、上記した以外の構成部分は、実施例1に係る発光装置1と同様であるので、それらの説明は省略する。 By using the surfaces 31a and 31b substantially parallel to the light extraction surface as light transmission surfaces, it is possible to easily extract light rays substantially orthogonal to the light extraction surface to the outside. That is, when a light ray that enters perpendicularly to the surface 31a and the surface 31b is transmitted, the light ray travels straight and enters the light extraction surface also perpendicularly. Light rays that are incident perpendicular to the light extraction surface are not totally reflected by the light extraction surface, and can be extracted directly to the outside. With respect to such straight light, it is possible to improve the light extraction efficiency by extracting the light to the outside without being reflected by the reflective film 20. In addition, since it is the same as that of the light-emitting device 1 which concerns on Example 1 except the above-mentioned, those description is abbreviate | omitted.
 また、図17(b)に示すように、光取り出し面と実質的に平行な面31aおよび31bが光透過面となるように面31aおよび31bを反射膜20で覆うこととしてもよい。すなわち、反射膜20の面31aおよび31bを覆う部分の膜厚は、光反射面を形成している部分の膜厚よりも小さくなっている。反射膜20を所謂斜め蒸着によって形成することにより、このような膜厚分布を形成することが可能である。 Further, as shown in FIG. 17B, the surfaces 31a and 31b may be covered with the reflective film 20 so that the surfaces 31a and 31b substantially parallel to the light extraction surface become light transmission surfaces. That is, the thickness of the portion covering the surfaces 31a and 31b of the reflective film 20 is smaller than the thickness of the portion forming the light reflecting surface. Such a film thickness distribution can be formed by forming the reflective film 20 by so-called oblique deposition.
 図18(a)は高屈折率層30の凹凸面を構成する複数の凸部31の各々の形状が改変された発光装置2aの一部を示す断面図、図18(b)は当該改変された形状の凸部31により構成される凹凸面を有する高屈折率層30の平面図、図18(c)は当該改変された形状の凸部31の1単位を示す斜視図である。これらの図に示されるように、高屈折率層30の凹凸面を構成する凸部31の各々は角錐台形状を有し、その上底(または下底)が光取り出し面と実質的に平行となる面31dを有している。反射膜20は、角錐台の互いに隣接する2つの側面を覆っており光反射面を形成している。一方、凸部31の上底(または下底)である面31dには反射膜が形成されておらず、面31dは光透過面を形成している。 FIG. 18A is a cross-sectional view showing a part of the light emitting device 2a in which the shape of each of the plurality of convex portions 31 constituting the concavo-convex surface of the high refractive index layer 30 is modified, and FIG. FIG. 18C is a perspective view showing one unit of the modified convex portion 31. FIG. 18C is a plan view of the high refractive index layer 30 having an uneven surface constituted by the convex portion 31 having a different shape. As shown in these drawings, each of the protrusions 31 constituting the uneven surface of the high refractive index layer 30 has a truncated pyramid shape, and its upper base (or lower base) is substantially parallel to the light extraction surface. And has a surface 31d. The reflection film 20 covers two adjacent side surfaces of the truncated pyramid and forms a light reflection surface. On the other hand, the reflective film is not formed on the surface 31d which is the upper base (or the lower base) of the convex portion 31, and the surface 31d forms a light transmission surface.
 光取り出し面と実質的に平行な面31dを光透過面とすることにより、上記した発光装置2の場合と同様、面31dに対して垂直に入射する光線は、反射膜20による反射を経ることなく外部に放出されるので光取り出し効率を向上させることが可能となる。 By making the surface 31d substantially parallel to the light extraction surface a light transmission surface, the light incident perpendicularly to the surface 31d is reflected by the reflection film 20 as in the case of the light emitting device 2 described above. Therefore, the light extraction efficiency can be improved.
 尚、上記の説明においては、凸部31の各々の形状を角錐台とした場合を例示したが、凸部31の形状は円錐台状であってもよい。また、高屈折率層30の凹凸面は、複数の錐台形状の凹部により構成されていてもよい。この場合、光透過性基板10の凹凸面が、複数の錐台形状の凸部によって構成されることとなる(図19参照)。図19に示す構成によれば、光透過面31dは、反射膜20よりも下方に位置している故、発光層から発せられる光は、光透過面31dに対してあらゆる角度で入射し得る。従って、この光透過面31dで全反射が起こり、光透過面31dと反射電極60との間で反射を繰り返す可能性がある。一方、図18(a)に示す構成によれば、光透過面31dは、反射膜よりも上方に位置している故、底面からみて所定の角度より小さい角度で入射する光は、反射膜20によって遮られて光透過面31dに到達することはできず、反射面20よって反射されて外部に取り出される。すなわち、光透過面31dと反射電極60との間での反射の繰り返しが生じにくい。 In the above description, the case where each shape of the convex portion 31 is a truncated pyramid is illustrated, but the shape of the convex portion 31 may be a truncated cone shape. The uneven surface of the high refractive index layer 30 may be composed of a plurality of frustum-shaped recesses. In this case, the concavo-convex surface of the light-transmitting substrate 10 is constituted by a plurality of frustum-shaped convex portions (see FIG. 19). According to the configuration shown in FIG. 19, since the light transmission surface 31d is located below the reflection film 20, light emitted from the light emitting layer can be incident on the light transmission surface 31d at any angle. Therefore, total reflection occurs on the light transmission surface 31d, and there is a possibility that reflection is repeated between the light transmission surface 31d and the reflection electrode 60. On the other hand, according to the configuration shown in FIG. 18A, the light transmission surface 31d is located above the reflection film, so that light incident at an angle smaller than a predetermined angle when viewed from the bottom surface is reflected by the reflection film 20. The light transmission surface 31d cannot be reached by being blocked by the reflection, and is reflected by the reflection surface 20 and taken out to the outside. That is, repeated reflection between the light transmission surface 31d and the reflective electrode 60 is unlikely to occur.
 図20(a)は、本発明の実施例3に係る発光装置3の構成を示す断面図である。発光装置3は、高屈折率層30の凹凸面を構成する凸部31の側面に沿って形成される光反射構造が上記した実施例1に係る発光装置1と異なる。すなわち、本実施例に係る光反射構造は、高反射率を有するAgまたはAlなどの金属からなる反射膜20と、光透過性基板10の屈折率よりも低い屈折率を有する材料(例えばSiOなど)からなる低屈折率膜21とを積層した積層反射膜22により構成される。積層反射膜22は、光透過性基板10および高屈折率層30との各界面において光取り出し面に対して傾斜した光反射面を形成する。尚、図20(a)には、低屈折率膜21が光透過性基板10と接し、反射膜20が高屈折率層30と接している場合が例示されているが、反射膜20と低屈折率膜21の配置を入れ替えることとしてもよい。積層反射膜22以外の構成部分は、上記した実施例1に係る発光装置1と同様であるので、それらの説明は省略する。 FIG. 20A is a cross-sectional view illustrating a configuration of the light emitting device 3 according to Example 3 of the invention. The light-emitting device 3 is different from the light-emitting device 1 according to Example 1 described above in the light reflection structure formed along the side surface of the convex portion 31 constituting the concave-convex surface of the high refractive index layer 30. That is, the light reflecting structure according to the present embodiment has a reflective film 20 made of a metal such as Ag or Al having a high reflectance and a material having a refractive index lower than that of the light transmissive substrate 10 (for example, SiO 2 And the like, and a low-refractive-index film 21 made of a laminated reflective film 22. The laminated reflective film 22 forms a light reflecting surface inclined with respect to the light extraction surface at each interface between the light transmissive substrate 10 and the high refractive index layer 30. 20A illustrates the case where the low refractive index film 21 is in contact with the light-transmitting substrate 10 and the reflective film 20 is in contact with the high refractive index layer 30. The arrangement of the refractive index film 21 may be changed. Since the components other than the laminated reflective film 22 are the same as those of the light-emitting device 1 according to Example 1, the description thereof is omitted.
 図20(b)は、上記した積層反射膜22を有する発光装置3の内部における光の経路を示した断面図である。光透過性基板10側から臨界角よりも大きい入射角で積層反射膜22に入射する光線Iは、光透過性基板10と低屈折率膜21の界面で全反射されて光取り出し面に向かう。この場合、反射ロスが生じない故、反射膜20による反射を経る場合と比較して光取り出し効率が高くなる。一方、光透過性基板10側から臨界角よりも小さい入射角で積層反射膜22に入射する光線Jは、低屈折率膜21を透過して反射膜20の表面で反射されて光取り出し面に向かう。このように、光透過性基板10と高屈折率層30との間に低屈折率膜21と反射膜20からなる積層反射膜22を介在させることにより反射ロスを低減することができるので、光取り出し効率をより向上させることが可能となる。 FIG. 20B is a cross-sectional view showing a light path inside the light-emitting device 3 having the laminated reflective film 22 described above. The light beam I incident on the multilayer reflective film 22 at an incident angle larger than the critical angle from the light transmissive substrate 10 side is totally reflected at the interface between the light transmissive substrate 10 and the low refractive index film 21 and travels toward the light extraction surface. In this case, since no reflection loss occurs, the light extraction efficiency becomes higher compared to the case where reflection by the reflection film 20 is performed. On the other hand, the light beam J incident on the laminated reflective film 22 at an incident angle smaller than the critical angle from the light transmissive substrate 10 side is transmitted through the low refractive index film 21 and reflected by the surface of the reflective film 20 to be reflected on the light extraction surface. Head. In this way, the reflection loss can be reduced by interposing the laminated reflective film 22 composed of the low refractive index film 21 and the reflective film 20 between the light transmissive substrate 10 and the high refractive index layer 30. The extraction efficiency can be further improved.
 図21は、低屈折率膜21と反射膜20により形成される光反射構造の改変例を示す断面図である。図21に示すように、積層反射膜22aは、低屈折率膜21が反射膜20を挟持するサンドイッチ構造を有していてもよい。これにより、光透過性基板10側および高屈折率層30側から積層反射膜22aに入射する光を全反射させることが可能となり、反射ロスを更に低減することが可能となる。 FIG. 21 is a cross-sectional view showing a modified example of the light reflecting structure formed by the low refractive index film 21 and the reflecting film 20. As shown in FIG. 21, the laminated reflective film 22 a may have a sandwich structure in which the low refractive index film 21 sandwiches the reflective film 20. Thereby, it is possible to totally reflect the light incident on the laminated reflective film 22a from the light transmissive substrate 10 side and the high refractive index layer 30 side, and it is possible to further reduce the reflection loss.
 以下において、反射膜20および低屈折率膜21からなる積層反射膜22を有する本発明の実施例3に係る発光装置3の製造方法について図22(a)~(d)を参照しつつ説明する。 Hereinafter, a method for manufacturing the light emitting device 3 according to Example 3 of the present invention having the multilayer reflective film 22 including the reflective film 20 and the low refractive index film 21 will be described with reference to FIGS. 22 (a) to 22 (d). .
 はじめに、ガラス基板10aと凹凸面を有する樹脂基板10bとが積層されて構成される光透過性基板10を用意する。尚、ガラス基板10aの屈折率と樹脂基板10bの屈折率は同等である。樹脂基板10bの凹凸面は、例えば熱インプリントなどの成型技術を用いて形成される(図22(a))。 First, a light-transmitting substrate 10 configured by laminating a glass substrate 10a and a resin substrate 10b having an uneven surface is prepared. In addition, the refractive index of the glass substrate 10a and the refractive index of the resin substrate 10b are equivalent. The uneven surface of the resin substrate 10b is formed using a molding technique such as thermal imprinting (FIG. 22A).
 次に、スパッタ法などにより、樹脂基板10bの凹凸面上に樹脂基板10aおよびガラス基板10bよりも屈折率の低いSiOなどからなる低屈折率膜21を成膜する。その後、リフトオフ法やエッチング法などにより低反射率膜21を部分的に除去して低屈折率膜21のパターニングを行う(図22(b))。 Next, a low refractive index film 21 made of SiO 2 or the like having a lower refractive index than that of the resin substrate 10a and the glass substrate 10b is formed on the uneven surface of the resin substrate 10b by sputtering or the like. Thereafter, the low refractive index film 21 is partially removed by a lift-off method, an etching method, or the like, and the low refractive index film 21 is patterned (FIG. 22B).
 次に、蒸着法やスパッタ法などにより、樹脂基板10bの凹凸面上にAgまたはAlなどの高反射率を有する金属などからなる反射膜20を成膜する。その後、リフトオフ法やエッチング法などにより反射膜20を部分的に除去して反射膜20のパターニングを行う。反射膜20は、低屈折率膜21上に積層され、樹脂基板10bの凹凸面に沿った積層反射膜22が形成される(図22(c))。 Next, the reflective film 20 made of a metal having a high reflectance such as Ag or Al is formed on the uneven surface of the resin substrate 10b by vapor deposition or sputtering. Thereafter, the reflective film 20 is partially removed by a lift-off method, an etching method, or the like, and the reflective film 20 is patterned. The reflective film 20 is laminated on the low refractive index film 21 to form a laminated reflective film 22 along the uneven surface of the resin substrate 10b (FIG. 22C).
 次に、積層反射膜22が形成された樹脂基板10bの凹凸面上に、樹脂基板10bおよびガラス基板10aの屈折率よりも高く且つ透明電極40および有機機能層50の屈折率と同程度の屈折率を有するUV硬化性樹脂を塗布する。その後、UV硬化性樹脂に紫外線を照射してこれを硬化させる。これにより、光透過性基板10上に光透過性基板の凹凸面および積層反射膜22の双方と接する高屈折率層30が形成される(図22(d))。 Next, the refractive index higher than the refractive index of the resin substrate 10b and the glass substrate 10a and the same refractive index as that of the transparent electrode 40 and the organic functional layer 50 is formed on the uneven surface of the resin substrate 10b on which the multilayer reflective film 22 is formed. A UV curable resin having a rate is applied. Thereafter, the UV curable resin is irradiated with ultraviolet rays to be cured. As a result, the high refractive index layer 30 in contact with both the uneven surface of the light transmissive substrate and the multilayer reflective film 22 is formed on the light transmissive substrate 10 (FIG. 22D).
 次に、スパッタ法などにより高屈折率層30上にITOなどの金属酸化物導電体からなる透明導電膜を成膜し、エッチングによりこれをパターニングして透明電極40を形成する。次に、透明電極40を覆うように感光性レジスト(図示せず)を塗布する。その後、露光、現像処理を経て感光性レジストに透明電極40に達する複数の開口部を形成する。これにより、有機機能層を発光色毎に隔てるバンクが形成される。次に、インクジェット法により、複数の開口部の各々の内側に有機材料を塗布することにより透明電極40上に正孔注入層、正孔輸送層、発光層、電子輸送層が積層されて構成される有機機能層50を形成する。次に、反射電極60のパターンに対応する開口部を有するマスクを用いて蒸着法等により有機機能層50上に電極材料であるAlを所望のパターンに堆積させて反射電極60を形成する。必要に応じて反射電極60上に封止層を形成することとしてもよい。以上の各工程を経ることにより、本実施例に係る発光装置3が完成する。 Next, a transparent conductive film made of a metal oxide conductor such as ITO is formed on the high refractive index layer 30 by sputtering or the like, and this is patterned by etching to form the transparent electrode 40. Next, a photosensitive resist (not shown) is applied so as to cover the transparent electrode 40. Thereafter, a plurality of openings reaching the transparent electrode 40 are formed in the photosensitive resist through exposure and development processing. Thereby, the bank which separates an organic functional layer for every luminescent color is formed. Next, a hole injection layer, a hole transport layer, a light emitting layer, and an electron transport layer are laminated on the transparent electrode 40 by applying an organic material inside each of the plurality of openings by an inkjet method. The organic functional layer 50 is formed. Next, the reflective electrode 60 is formed by depositing Al as an electrode material in a desired pattern on the organic functional layer 50 by vapor deposition or the like using a mask having an opening corresponding to the pattern of the reflective electrode 60. A sealing layer may be formed on the reflective electrode 60 as necessary. Through the above steps, the light emitting device 3 according to this example is completed.
 図23は、反射膜と低屈折率層からなる光反射構造の変形例を示す断面図である。図23に示すように、光反射構造体24は、光透過性基板10と高屈折率層30との間に設けられた空隙部23と光反射膜20とによって構成されている。空隙部23は光透過性基板10よりも屈折率の低い空気またはその他のガスで充たされていてもよいし、真空であってもよい。空隙部23は、光透過性基板10よりも低い屈折率を有する故、上記した低屈折率膜21と同様の機能を発揮する。すなわち、光反射構造体24は、光透過性基板10および高屈折率層30との各界面において光取り出し面に対して傾斜した光反射面を形成する。尚、図23には、反射膜20が光透過性基板10と接し、空隙部23が高屈折率層30と接している場合が例示されているが、反射膜20と空隙部23の配置を入れ替えることとしてもよい。光反射構造以外の構成部分は上記した実施例1に係る発光装置と同様であるので、それらの説明は省略する。 FIG. 23 is a cross-sectional view showing a modification of the light reflecting structure composed of a reflective film and a low refractive index layer. As shown in FIG. 23, the light reflecting structure 24 is configured by a gap 23 and a light reflecting film 20 provided between the light transmissive substrate 10 and the high refractive index layer 30. The gap 23 may be filled with air or other gas having a lower refractive index than the light-transmitting substrate 10 or may be a vacuum. Since the gap 23 has a lower refractive index than that of the light transmissive substrate 10, the gap 23 exhibits the same function as the low refractive index film 21 described above. That is, the light reflecting structure 24 forms a light reflecting surface inclined with respect to the light extraction surface at each interface between the light transmissive substrate 10 and the high refractive index layer 30. FIG. 23 illustrates the case where the reflective film 20 is in contact with the light-transmitting substrate 10 and the gap portion 23 is in contact with the high refractive index layer 30. However, the arrangement of the reflective film 20 and the gap portion 23 is illustrated. It may be replaced. Since the components other than the light reflecting structure are the same as those of the light emitting device according to the first embodiment, description thereof will be omitted.
 以下において、反射膜20と空隙部23からなる光反射構造を有する発光装置の製造方法を図24(a)~(d)を参照しつつ説明する。 Hereinafter, a method for manufacturing a light-emitting device having a light reflection structure including the reflective film 20 and the gap 23 will be described with reference to FIGS.
 はじめに、ガラス基板10aと、凹凸面を有する樹脂基板10bが積層されて構成される光透過性基板10を用意する。尚、ガラス基板10aの屈折率と樹脂基板10bの屈折率は同等である。樹脂基板10bの凹凸面は、例えば熱インプリントなどの成型技術を用いて形成される(図24(a))。 First, a light-transmitting substrate 10 configured by laminating a glass substrate 10a and a resin substrate 10b having an uneven surface is prepared. In addition, the refractive index of the glass substrate 10a and the refractive index of the resin substrate 10b are equivalent. The uneven surface of the resin substrate 10b is formed by using a molding technique such as thermal imprint (FIG. 24A).
 次に、蒸着法やスパッタ法などにより、樹脂基板10bの凹凸面上にAgまたはAlなどの高反射率を有する金属などからなる反射膜20を成膜する。その後、リフトオフ法やエッチング法などにより反射膜20を部分的に除去して反射膜20のパターニングを行う(図24(b))。 Next, the reflective film 20 made of a metal having a high reflectance such as Ag or Al is formed on the uneven surface of the resin substrate 10b by vapor deposition or sputtering. Thereafter, the reflective film 20 is partially removed by a lift-off method, an etching method, or the like, and the reflective film 20 is patterned (FIG. 24B).
 次に、高屈折率層30を構成する高屈折率部材30aを用意する。高屈折率樹脂部材30aは、ガラス基板10aおよび樹脂基板10bの屈折率よりも高く且つ透明電極40および有機機能層50の屈折率と同程度の屈折率を有するエポキシ樹脂などからなる。高屈折率部材30aは、樹脂基板10bに形成された凹凸面と対応する(噛み合う)対応凹凸面と、対応凹凸面上に設けられた微小突起32を有する(図24(c))。 Next, a high refractive index member 30a constituting the high refractive index layer 30 is prepared. The high refractive index resin member 30a is made of an epoxy resin or the like having a refractive index higher than that of the glass substrate 10a and the resin substrate 10b and about the same as that of the transparent electrode 40 and the organic functional layer 50. The high refractive index member 30a has a corresponding uneven surface corresponding to (engaged with) the uneven surface formed on the resin substrate 10b, and a minute protrusion 32 provided on the corresponding uneven surface (FIG. 24C).
 次に、微小突起32をスペーサとして、樹脂基板10bの凹凸面と高屈折率部材30aの対応凹凸面とを当接する。微小突起32は反射膜20に当接され、反射膜20上に空隙が形成される。これにより、樹脂基板10aと高屈折率部材30aとの間には反射膜20と空隙部23からなる光反射構造体24が形成される(図24(d))。 Next, the uneven surface of the resin substrate 10b and the corresponding uneven surface of the high refractive index member 30a are brought into contact with each other using the minute protrusion 32 as a spacer. The microprotrusions 32 are in contact with the reflective film 20, and a gap is formed on the reflective film 20. As a result, a light reflecting structure 24 including the reflective film 20 and the gap 23 is formed between the resin substrate 10a and the high refractive index member 30a (FIG. 24D).
 透明電極40、有機機能層50および反射電極60を形成する工程は、上記したものと同様であるので説明は省略する。尚、反射膜20は高屈折率部材30aの対応凹凸面上に形成されていてもよいし、樹脂基板10aおよび高屈折率部材30aの双方に形成されていてもよい。また、スペーサとして機能する微小突起32は、樹脂基板10bの凹凸面上に設けられていてもよいし、樹脂基板10bおよび高屈折率部材30aの双方に設けられていてもよい。また、樹脂基板10bおよび高屈折率部材30aとは別体の構造物を凹凸面と対応凹凸面の間に配置して、これをスペーサとして機能させることとしてもよい。 Since the process of forming the transparent electrode 40, the organic functional layer 50, and the reflective electrode 60 is the same as that described above, the description thereof is omitted. The reflective film 20 may be formed on the corresponding uneven surface of the high refractive index member 30a, or may be formed on both the resin substrate 10a and the high refractive index member 30a. Further, the fine protrusions 32 functioning as spacers may be provided on the uneven surface of the resin substrate 10b, or may be provided on both the resin substrate 10b and the high refractive index member 30a. Alternatively, a structure separate from the resin substrate 10b and the high refractive index member 30a may be disposed between the uneven surface and the corresponding uneven surface to function as a spacer.
 反射膜と空隙部からなる光反射構造を有する発光装置の他の製造方法を図25(a)~(d)を参照しつつ説明する。
はじめに、ガラス基板10aと、凹凸面を有する樹脂基板10bが積層されて構成される光透過性基板10を用意する。尚、ガラス基板10aの屈折率と樹脂基板10bの屈折率は同等である。樹脂基板10bの凹凸面は、例えば熱インプリントなどの成型技術を用いて形成される。
Another method for manufacturing a light emitting device having a light reflecting structure including a reflective film and a gap will be described with reference to FIGS. 25 (a) to 25 (d).
First, a light-transmitting substrate 10 configured by laminating a glass substrate 10a and a resin substrate 10b having an uneven surface is prepared. In addition, the refractive index of the glass substrate 10a and the refractive index of the resin substrate 10b are equivalent. The uneven surface of the resin substrate 10b is formed by using a molding technique such as thermal imprinting.
 次に、高屈折率層30を構成する高屈折率部材30aを用意する。高屈折率樹脂部材30aは、光透過性基板10を構成するガラス基板10aおよび樹脂基板10bの屈折率よりも高く且つ透明電極40および有機機能層50の屈折率と同程度の屈折率を有するエポキシ樹脂などからなる。高屈折率樹脂部材30aは、樹脂基板10bに形成された凹凸面に対応する(噛み合う)対応凹凸面を有する。 Next, a high refractive index member 30a constituting the high refractive index layer 30 is prepared. The high refractive index resin member 30a is an epoxy having a refractive index higher than the refractive indexes of the glass substrate 10a and the resin substrate 10b constituting the light transmissive substrate 10 and similar to the refractive indexes of the transparent electrode 40 and the organic functional layer 50. Made of resin. The high refractive index resin member 30a has a corresponding uneven surface corresponding to (engaged with) the uneven surface formed on the resin substrate 10b.
 次に、蒸着法やスパッタ法などにより、高屈折率部材30aの対応凹凸面上にAgまたはAlなどの高反射率を有する金属などからなる反射膜20を成膜する。その後、リフトオフ法やエッチング法などにより反射膜20のパターニングを行う(図25(a))。 Next, the reflective film 20 made of a metal having a high reflectance such as Ag or Al is formed on the corresponding irregular surface of the high refractive index member 30a by vapor deposition or sputtering. Thereafter, the reflective film 20 is patterned by a lift-off method or an etching method (FIG. 25A).
 次に、高屈折率部材30aと反射膜20の熱膨張係数の差を利用して反射膜20にバックリング構造(皺状のうねり)を形成する。例えば、高屈折率部材30a上に形成された反射膜20を100℃程度で加熱した後、室温まで温度を下げることにより反射膜20にバックリング構造を形成することができる(図25(b))。 Next, using the difference in thermal expansion coefficient between the high refractive index member 30 a and the reflective film 20, a buckling structure (sag-like undulation) is formed on the reflective film 20. For example, a buckling structure can be formed in the reflective film 20 by heating the reflective film 20 formed on the high refractive index member 30a at about 100 ° C. and then lowering the temperature to room temperature (FIG. 25B). ).
 次に、バックリング構造が形成された反射膜20を間に挟んで樹脂基板10bの凹凸面と高屈折率部材30aの対応凹凸面とを当接する。これにより、樹脂基板10aと高屈折率部材30aの間には反射膜20と、反射膜20のバックリング構造に伴って生じた空隙部23からなる光反射構造体24aが形成される(図25(c))。 Next, the concavo-convex surface of the resin substrate 10b and the corresponding concavo-convex surface of the high refractive index member 30a are brought into contact with each other with the reflective film 20 having the buckling structure interposed therebetween. Thus, a light reflecting structure 24a is formed between the resin substrate 10a and the high refractive index member 30a. The light reflecting structure 24a includes the reflecting film 20 and the gap portion 23 generated with the buckling structure of the reflecting film 20 (FIG. 25). (C)).
 透明電極40、有機機能層50および反射電極60を形成する工程は、上記したものと同様であるので説明は省略する。 Since the process of forming the transparent electrode 40, the organic functional layer 50, and the reflective electrode 60 is the same as that described above, the description thereof is omitted.
 図26(a)は、本発明の実施例4に係る発光装置4の構成を示す斜視図である。図26(b)は、発光装置4を構成する高屈折率層30の平面図である。図26(c)は、高屈折率層30に形成された凹凸面を構成する凸部31の斜視図である。尚、図26(a)においては、理解を容易にするために、光透過性基板10および高屈折率層30からなる構成部分と、透明電極40、有機機能層50および反射電極60からなる構成部分が分割されて表示されている。 FIG. 26 (a) is a perspective view showing the configuration of the light-emitting device 4 according to Example 4 of the present invention. FIG. 26B is a plan view of the high refractive index layer 30 constituting the light emitting device 4. FIG. 26C is a perspective view of the convex portion 31 constituting the concave and convex surface formed in the high refractive index layer 30. In FIG. 26 (a), in order to facilitate understanding, a configuration portion composed of the light-transmitting substrate 10 and the high refractive index layer 30, and a configuration composed of the transparent electrode 40, the organic functional layer 50, and the reflection electrode 60. The part is divided and displayed.
 発光装置4において、高屈折率層30の凹凸面を構成する複数の凸部31の各々は、光取り出し面に対して傾斜した第1の傾斜面33aと、第1の傾斜面33aとは反対方向に傾斜した第2の傾斜面33bを有する。すなわち、第1の傾斜面33aおよび第2の傾斜面33bは、図26(c)に示されるように、三角柱の2つの側面に対応している。複数の凸部31は、第1の傾斜面同士および第2傾斜面同士が互いに平行となるように且つ隙間なく並んでいる。 In the light emitting device 4, each of the plurality of convex portions 31 constituting the concavo-convex surface of the high refractive index layer 30 is opposite to the first inclined surface 33 a inclined to the light extraction surface and the first inclined surface 33 a. It has the 2nd inclined surface 33b inclined in the direction. That is, the first inclined surface 33a and the second inclined surface 33b correspond to the two side surfaces of the triangular prism as shown in FIG. The plurality of convex portions 31 are arranged without gaps such that the first inclined surfaces and the second inclined surfaces are parallel to each other.
 第1の傾斜面33aは反射膜20で覆われている。第2の傾斜面33bは反射膜で覆われていない。高屈折率層30は、光透過性基板10の凹凸面および光反射膜20の表面を界面として光透過性基板10上に設けられている。反射膜20は、光透過性基板10および高屈折率層30との各界面において光取り出し面に対して傾斜した光反射面を形成する。本実施例に係る光透過性基板10および高屈折率層30の凹凸構造によれば、反射膜20によって互いに同じ方向を向いた複数の矩形形状(または短冊状)の光反射面が形成されることになる。光透過性基板10は、第2の傾斜面13bにおいて高屈折率層30と接し、光透過性基板10と高屈折率層30との界面において有機機能層50の延在する面に対して傾斜した光透過面が形成される。 The first inclined surface 33 a is covered with the reflective film 20. The second inclined surface 33b is not covered with a reflective film. The high refractive index layer 30 is provided on the light-transmitting substrate 10 with the uneven surface of the light-transmitting substrate 10 and the surface of the light reflecting film 20 as an interface. The reflection film 20 forms a light reflection surface inclined with respect to the light extraction surface at each interface between the light transmissive substrate 10 and the high refractive index layer 30. According to the concavo-convex structure of the light transmissive substrate 10 and the high refractive index layer 30 according to the present embodiment, a plurality of rectangular (or strip-shaped) light reflecting surfaces facing the same direction are formed by the reflective film 20. It will be. The light transmissive substrate 10 is in contact with the high refractive index layer 30 at the second inclined surface 13b, and is inclined with respect to the surface on which the organic functional layer 50 extends at the interface between the light transmissive substrate 10 and the high refractive index layer 30. A light-transmitting surface is formed.
 有機機能層50は、透明電極40を間に挟んで高屈折率層30上に形成される。有機機能層50は、バンクによって隔てられた複数の発光領域50a、50b、50cを形成している。複数の発光領域50a、50b、50cは、それぞれ矩形形状を有し、透明電極40を介して高屈折率層30上にストライプ状に並置されている。尚、複数の発光領域50a、50b、50cからは互いに異なる発光色の光が生成されることとしてもよい。 The organic functional layer 50 is formed on the high refractive index layer 30 with the transparent electrode 40 interposed therebetween. The organic functional layer 50 forms a plurality of light emitting regions 50a, 50b, 50c separated by banks. The plurality of light emitting regions 50 a, 50 b, and 50 c each have a rectangular shape, and are juxtaposed in a stripe shape on the high refractive index layer 30 via the transparent electrode 40. Note that light of different emission colors may be generated from the plurality of light emitting regions 50a, 50b, and 50c.
 高屈折率層30の凹凸面を構成する複数の凸部31の各々は、発光領域50a、50b、50cと重なる位置に設けられ、発光領域50a、50b、50cの長手方向と平行な方向に伸長している。換言すれば、第1の傾斜面33aと第2の傾斜面33bが交差する交差ラインLが発光領域50a、50b、50cの長手方向に沿って伸長している。また、凸部31の伸長方向における長さ(すなわち交差ラインLの長さ)は、発光領域50a、50b、50cの長手方向における長さよりも長くなっている。 Each of the plurality of convex portions 31 constituting the concavo-convex surface of the high refractive index layer 30 is provided at a position overlapping the light emitting regions 50a, 50b, 50c, and extends in a direction parallel to the longitudinal direction of the light emitting regions 50a, 50b, 50c. is doing. In other words, the intersection line L where the first inclined surface 33a and the second inclined surface 33b intersect extends along the longitudinal direction of the light emitting regions 50a, 50b, 50c. Further, the length of the protrusion 31 in the extending direction (that is, the length of the crossing line L) is longer than the length of the light emitting regions 50a, 50b, and 50c in the longitudinal direction.
 本実施例に係る発光装置4によれば、上記した実施例1に係る発光装置1と同様、光取り出し効率の向上を図ることが可能となる。また、高屈折率層30の凹凸面を構成する凸部31の1単位は、2つの傾斜面を有する単純な構造であるので、凹凸面の形成が容易となり、高い製造歩留りを確保することが可能となる。また、第1の傾斜面33a上に形成される光反射面と、第2の傾斜面33b上に形成される光透過面は、単一の方向に並んでいるので、光反射面と光透過面の面積割合をパラメータとした光取り出し効率向上のための最適値設計が容易となる。かかる効果は、交差ラインLの伸長方向を発光領域50a、50b、50cの長手方向と平行な方向に向けることにより、更に助長される。また、第1の傾斜面33a上に形成される光反射面の各々は、矩形形状(短冊状)であり且つ単一の方向を向いているので、発光装置の非点灯時に所定の角度から光取り出し面を眺めたときに見映えの良好な鏡面を視認することができる。 According to the light emitting device 4 according to the present embodiment, the light extraction efficiency can be improved as in the light emitting device 1 according to the first embodiment. Moreover, since one unit of the convex part 31 which comprises the uneven surface of the high refractive index layer 30 is a simple structure which has two inclined surfaces, formation of an uneven surface becomes easy and it can ensure a high manufacturing yield. It becomes possible. Further, since the light reflecting surface formed on the first inclined surface 33a and the light transmitting surface formed on the second inclined surface 33b are arranged in a single direction, the light reflecting surface and the light transmitting surface are arranged. Optimal value design for improving light extraction efficiency using the surface area ratio as a parameter becomes easy. Such an effect is further promoted by directing the extending direction of the intersection line L in a direction parallel to the longitudinal direction of the light emitting regions 50a, 50b, and 50c. In addition, each of the light reflecting surfaces formed on the first inclined surface 33a has a rectangular shape (strip shape) and faces a single direction, so that light is emitted from a predetermined angle when the light emitting device is not turned on. When looking at the take-out surface, it is possible to visually recognize a mirror surface with good appearance.
 図27(a)および図27(b)に示すように、高屈折率層30の凹凸面を構成する複数の凸部31の各々の伸長方向(すなわち交差ラインLの伸長方向)は、発光領域50a、50b、50cの並ぶ方向または発光領域50a、50b、50cの長手方向と直交する方向に伸長していてもよい。この場合において、交差ラインLは、図27(b)に示すように複数の発光領域50a、50b、50cを跨ぐように伸長していてもよい。或いは、凸部31の各々は、図28に示すように、発光領域50a、50b、50cが並ぶ方向において不連続に形成され、交差ラインLの長さは、発光領域50a、50b、50c方向と一致する幅方向における長さWと同一であってもよい。 As shown in FIGS. 27A and 27B, the extending direction of each of the plurality of convex portions 31 constituting the uneven surface of the high refractive index layer 30 (that is, the extending direction of the intersection line L) is a light emitting region. It may extend in the direction in which 50a, 50b, 50c are arranged or in the direction perpendicular to the longitudinal direction of the light emitting regions 50a, 50b, 50c. In this case, the intersection line L may extend so as to straddle the plurality of light emitting regions 50a, 50b, 50c as shown in FIG. Alternatively, as shown in FIG. 28, each of the protrusions 31 is formed discontinuously in the direction in which the light emitting regions 50a, 50b, 50c are arranged, and the length of the intersection line L is the same as the direction of the light emitting regions 50a, 50b, 50c. It may be the same as the length W in the matching width direction.
 尚、上記の各実施例において示された構成は、相互に組み合わせることが可能である。また、光透過性基板10および高屈折率層30の凹凸面は、密着しているので、反射膜20や低屈折率膜21は、光透過性基板10側に形成することとしてもよいし、高屈折率層30側に形成することとしてもよい。 It should be noted that the configurations shown in the above embodiments can be combined with each other. Moreover, since the concavo-convex surfaces of the light transmissive substrate 10 and the high refractive index layer 30 are in close contact, the reflective film 20 and the low refractive index film 21 may be formed on the light transmissive substrate 10 side. It is good also as forming in the high refractive index layer 30 side.
 1、2、2a、3、4 発光装置
 10 光透過性基板
 20 反射膜
 21 低屈折率膜
 22 積層反射膜
 23 空隙部
 24 光反射構造体
 30 高屈折率層
 31 凸部
 33a 第1の傾斜面
 33b 第2の傾斜面
 40 透明電極
 50 有機機能層
 53、53、53 発光層
 60 反射電極
1, 2, 2a, 3, 4 Light emitting device 10 Light transmissive substrate 20 Reflective film 21 Low refractive index film 22 Laminated reflective film 23 Gap 24 Light reflecting structure 30 High refractive index layer 31 Convex part 33a First inclined surface 33b second inclined surface 40 transparent electrode 50 organic functional layers 53 R, 53 G, 53 B emission layer 60 reflective electrode

Claims (9)

  1.  光取り出し面と、前記光取り出し面の反対側に形成された凹凸面と、を有する光透過性基板と、
     前記凹凸面と部分的に接する第1の光反射膜と、
     前記凹凸面および前記第1の光反射膜の表面を界面として前記光透過性基板上に設けられ且つ前記光透過性基板の屈折率よりも高い屈折率を有する高屈折率層と、
     前記高屈折率層上に設けられた発光層を含む有機機能層と、
     前記有機機能層上に設けられた第2の光反射膜と、を含み、
     前記凹凸面は、各々が前記光取り出し面に対して傾斜した第1の傾斜面と、前記第1の傾斜面の傾斜方向とは反対方向に傾斜した第2の傾斜面と、を有し、
     前記第1の光反射膜は、前記第1の傾斜面の各々と接し、前記光透過性基板および前記高屈折率層との各界面において前記光取り出し面に対して傾斜した光反射面を形成し、
     前記光透過性基板は、前記第2の傾斜面において前記高屈折率層と接し、
     前記光透過性基板と前記高屈折率層との界面において前記発光層の延在する面に対して傾斜した光透過面が形成されていることを特徴とする発光装置。
    A light transmissive substrate having a light extraction surface and an uneven surface formed on the opposite side of the light extraction surface;
    A first light reflecting film partially in contact with the uneven surface;
    A high refractive index layer provided on the light transmissive substrate with the uneven surface and the surface of the first light reflecting film as an interface and having a refractive index higher than the refractive index of the light transmissive substrate;
    An organic functional layer including a light emitting layer provided on the high refractive index layer;
    A second light reflecting film provided on the organic functional layer,
    The concavo-convex surface has a first inclined surface that is inclined with respect to the light extraction surface, and a second inclined surface that is inclined in a direction opposite to the inclination direction of the first inclined surface,
    The first light reflecting film is in contact with each of the first inclined surfaces and forms a light reflecting surface inclined with respect to the light extraction surface at each interface between the light transmissive substrate and the high refractive index layer. And
    The light-transmitting substrate is in contact with the high refractive index layer on the second inclined surface;
    A light-emitting device, wherein a light-transmitting surface inclined with respect to a surface on which the light-emitting layer extends is formed at an interface between the light-transmitting substrate and the high refractive index layer.
  2.  前記有機機能層は、前記高屈折率層上にストライプ状に並置された複数の発光領域を形成し、
     前記第1の傾斜面と前記第2の傾斜面が交差する交差ラインが前記発光領域の各々の長手方向に沿って伸長していることを特徴とする請求項1に記載の発光装置。
    The organic functional layer forms a plurality of light emitting regions juxtaposed in stripes on the high refractive index layer,
    2. The light emitting device according to claim 1, wherein an intersection line between the first inclined surface and the second inclined surface extends along a longitudinal direction of each of the light emitting regions.
  3.  同一ライン上にある前記交差ラインの長さの和は前記発光領域の各々の長手方向における長さよりも長いことを特徴とする請求項2に記載の発光装置。 3. The light emitting device according to claim 2, wherein the sum of the lengths of the intersecting lines on the same line is longer than the length of each light emitting region in the longitudinal direction.
  4.  前記有機機能層は、前記高屈折率層上にストライプ状に並置された複数の発光領域を形成し、
     前記第1の傾斜面と前記第2の傾斜面が交差する交差ラインが前記複数の発光領域が並ぶ方向に沿って伸長していることを特徴とする請求項1に記載の発光装置。
    The organic functional layer forms a plurality of light emitting regions juxtaposed in stripes on the high refractive index layer,
    2. The light emitting device according to claim 1, wherein an intersection line between the first inclined surface and the second inclined surface extends along a direction in which the plurality of light emitting regions are arranged.
  5.  前記交差ラインは、前記複数の発光領域を跨ぐように伸長していることを特徴とする請求項4に記載の発光装置。 The light-emitting device according to claim 4, wherein the intersection line extends so as to straddle the plurality of light-emitting regions.
  6.  前記凹凸面を構成する凹部または凸部は、前記複数の発光領域が並ぶ方向において不連続に形成されていることを特徴とする請求項4に記載の発光装置。 5. The light emitting device according to claim 4, wherein the concave portion or the convex portion constituting the uneven surface is formed discontinuously in a direction in which the plurality of light emitting regions are arranged.
  7.  前記交差ラインの長さは、前記発光領域の幅と一致していることを特徴とする請求項6に記載の発光装置。 The light emitting device according to claim 6, wherein the length of the intersecting line is equal to the width of the light emitting region.
  8.  前記光反射面の各々は、矩形形状であることを特徴とする請求項1乃至7のいずれか1つに記載の発光装置。 The light emitting device according to claim 1, wherein each of the light reflecting surfaces has a rectangular shape.
  9.  前記光反射面の各々は、互いに平行であることを特徴とする請求項1乃至7のいずれか1つに記載の発光装置。 The light emitting device according to any one of claims 1 to 7, wherein each of the light reflecting surfaces is parallel to each other.
PCT/JP2011/075464 2011-11-04 2011-11-04 Light-emitting device WO2013065178A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/075464 WO2013065178A1 (en) 2011-11-04 2011-11-04 Light-emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/075464 WO2013065178A1 (en) 2011-11-04 2011-11-04 Light-emitting device

Publications (1)

Publication Number Publication Date
WO2013065178A1 true WO2013065178A1 (en) 2013-05-10

Family

ID=48191569

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/075464 WO2013065178A1 (en) 2011-11-04 2011-11-04 Light-emitting device

Country Status (1)

Country Link
WO (1) WO2013065178A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113764494A (en) * 2021-09-08 2021-12-07 成都京东方光电科技有限公司 Color film structure, preparation method thereof and display device
CN113764494B (en) * 2021-09-08 2024-04-09 成都京东方光电科技有限公司 Color film structure, preparation method thereof and display device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005322490A (en) * 2004-05-07 2005-11-17 Nitto Denko Corp Manufacturing method of electroluminescent display device
JP2007538363A (en) * 2004-05-17 2007-12-27 トムソン ライセンシング Organic light emitting diode (OLED) with improved light extraction and corresponding display unit
JP2009272059A (en) * 2008-04-30 2009-11-19 Toppan Printing Co Ltd El element, backlight device for liquid-crystal display using the same, lighting device using the element, electronic advertising display device using the element, and display device using the element
JP2010198797A (en) * 2009-02-23 2010-09-09 Nippon Electric Glass Co Ltd Glass substrate for organic el element, and method of manufacturing the same
JP2011507164A (en) * 2007-12-12 2011-03-03 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Light emitting device
JP2011159451A (en) * 2010-01-29 2011-08-18 Toppan Printing Co Ltd Electroluminescent element, organic el display, liquid crystal display, and lighting system
WO2011132773A1 (en) * 2010-04-22 2011-10-27 出光興産株式会社 Organic electroluminescent element and lighting device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005322490A (en) * 2004-05-07 2005-11-17 Nitto Denko Corp Manufacturing method of electroluminescent display device
JP2007538363A (en) * 2004-05-17 2007-12-27 トムソン ライセンシング Organic light emitting diode (OLED) with improved light extraction and corresponding display unit
JP2011507164A (en) * 2007-12-12 2011-03-03 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Light emitting device
JP2009272059A (en) * 2008-04-30 2009-11-19 Toppan Printing Co Ltd El element, backlight device for liquid-crystal display using the same, lighting device using the element, electronic advertising display device using the element, and display device using the element
JP2010198797A (en) * 2009-02-23 2010-09-09 Nippon Electric Glass Co Ltd Glass substrate for organic el element, and method of manufacturing the same
JP2011159451A (en) * 2010-01-29 2011-08-18 Toppan Printing Co Ltd Electroluminescent element, organic el display, liquid crystal display, and lighting system
WO2011132773A1 (en) * 2010-04-22 2011-10-27 出光興産株式会社 Organic electroluminescent element and lighting device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113764494A (en) * 2021-09-08 2021-12-07 成都京东方光电科技有限公司 Color film structure, preparation method thereof and display device
CN113764494B (en) * 2021-09-08 2024-04-09 成都京东方光电科技有限公司 Color film structure, preparation method thereof and display device

Similar Documents

Publication Publication Date Title
KR100970693B1 (en) Illumination or image-display panel
US8987767B2 (en) Light emitting device having improved light extraction efficiency
KR101431467B1 (en) Organic light emitting diode devices with optical microstructures
WO2013137184A1 (en) Organic electroluminescence element
JPWO2013084442A1 (en) Sheet and light emitting device
JP2007273397A (en) Organic el polychromatic display panel
WO2013065177A1 (en) Light-emitting device
JP5179392B2 (en) Organic EL light emitting device
US11264597B2 (en) Multiple QD-LED sub-pixels for high on-axis brightness and low colour shift
WO2013065172A1 (en) Light-emitting device and method for producing light-emitting device
WO2013065178A1 (en) Light-emitting device
WO2013065170A1 (en) Light-emitting device
JPWO2013065177A1 (en) Light emitting device
WO2004112434A1 (en) El device, process for manufacturing the same, and liquid crystal display employing el device
JP2015179584A (en) Light emitting element
WO2014103043A1 (en) Light-emitting device
WO2014103042A1 (en) Light-emitting device
WO2014103041A1 (en) Light-emitting device
JP2004265851A (en) El device, manufacturing method of same, and liquid crystal display device using el device
JP2004265850A (en) El device, manufacturing method of same, and liquid crystal display device using el device
JP6528513B2 (en) Surface emitting module
WO2013161000A1 (en) Light emitting element and method for manufacturing same
WO2014118936A1 (en) Light-emitting element and production method for light-emitting element
WO2013161001A1 (en) Organic el light emitting element
WO2014196054A1 (en) Light scattering film, light emitting element, light scattering film manufacturing method, and light emitting element manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11874942

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11874942

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP