WO2014083693A1 - Light emitting device - Google Patents

Light emitting device Download PDF

Info

Publication number
WO2014083693A1
WO2014083693A1 PCT/JP2012/081137 JP2012081137W WO2014083693A1 WO 2014083693 A1 WO2014083693 A1 WO 2014083693A1 JP 2012081137 W JP2012081137 W JP 2012081137W WO 2014083693 A1 WO2014083693 A1 WO 2014083693A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
light
light emitting
electrode
organic functional
Prior art date
Application number
PCT/JP2012/081137
Other languages
French (fr)
Japanese (ja)
Inventor
黒田 和男
秀雄 工藤
浩 大畑
敏治 内田
Original Assignee
パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社 filed Critical パイオニア株式会社
Priority to PCT/JP2012/081137 priority Critical patent/WO2014083693A1/en
Publication of WO2014083693A1 publication Critical patent/WO2014083693A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/878Arrangements for extracting light from the devices comprising reflective means

Definitions

  • the present invention relates to a light emitting device having an organic light emitting layer.
  • a light emitting device having an organic light emitting layer as one of the light emitting devices.
  • this light emitting device it is desired to improve the ratio of light emitted to the outside (light extraction efficiency) of the light generated in the organic light emitting layer.
  • Patent Document 1 As a technique for improving the light extraction efficiency, there is one described in Patent Document 1.
  • the organic EL (Electro Luminescence) element described in Patent Document 1 emits light with respect to a light-transmitting front electrode and back electrode, a light-emitting layer disposed between the front electrode and the back electrode, and the back electrode as a reference.
  • a high refractive index light scattering layer disposed on the opposite side of the layer.
  • the high refractive index light scattering layer is constituted by dispersing fine particles such as Y 2 O 3 in a resin.
  • Japanese Patent Application Laid-Open No. H10-228707 describes that light traveling from the light emitting layer toward the back side is reflected by the high refractive index light scattering layer and travels toward the front side, so that light can be efficiently extracted from the front side.
  • Patent Document 1 The inventor considered that the technique described in Patent Document 1 has the following problems.
  • the high refractive index light scattering layer in the technique of Patent Document 1 scatters light in a random direction. For this reason, the effect of strengthening the intensity of light reflected by the high-refractive-index light scattering layer and reflected toward the front side (reflected light) and the light directed from the light emitting layer toward the front side (direct light) is sufficient. It is difficult to get into. Therefore, the technique of Patent Document 1 has room for improvement regarding light extraction efficiency. Furthermore, a problem peculiar to the scattering layer is that in the case of light in an oblique direction, the probability of scattering increases, and the amount of light toward the extraction surface decreases.
  • An example of a problem to be solved by the present invention is to improve the light extraction efficiency of the light emitting device.
  • the invention according to claim 1 is a translucent substrate; A translucent first electrode disposed on the side opposite to the exit surface of the translucent substrate; An organic functional layer including at least a light-emitting layer and disposed on the opposite side of the translucent substrate with respect to the first electrode; A light reflecting layer disposed on the opposite side of the first electrode with respect to the organic functional layer, and reflecting light coming from the organic functional layer side; A light-transmitting intervening layer disposed between the organic functional layer and the light reflecting layer; With The intervening layer is formed by laminating three or more layers having different refractive indexes between adjacent layers, and has two or more interfaces. In the light emitting device, the refractive indexes of the three or more layers are alternately high and low or alternately low and high from the organic functional layer side toward the light reflecting layer side. is there.
  • FIG. 8A is a plan view showing an example of a more specific configuration of the light emitting device according to the first embodiment
  • FIG. 8B is a cross-sectional view taken along line BB in FIG. 8A.
  • 1 is a cross-sectional view illustrating a configuration of a light emitting device according to Example 1.
  • FIG. 6 is a cross-sectional view illustrating a configuration of a light emitting device according to Example 2.
  • FIG. 6 is a cross-sectional view illustrating a configuration of a light emitting device according to Example 3.
  • FIG. 6 is a cross-sectional view illustrating a configuration of a light emitting device according to Example 4.
  • FIG. 1 is a cross-sectional view showing a configuration of a light emitting device 100 according to an embodiment.
  • the light emitting device 100 includes an organic EL element.
  • the light emitting device 100 can be used as a light source of, for example, a display, a lighting device, or an optical communication device.
  • the light emitting device 100 includes a light transmissive substrate 110 having an emission surface (light extraction surface 110a), a light transmissive first electrode 130, an organic functional layer 140 including at least a light emitting layer, and light reflection.
  • the first electrode 130 is disposed on the side opposite to the emission surface of the translucent substrate 110.
  • the organic functional layer 140 is disposed on the opposite side of the translucent substrate 110 with respect to the first electrode 130.
  • the light reflecting layer 160 is disposed on the side opposite to the first electrode 130 with respect to the organic functional layer 140.
  • the light reflecting layer 160 reflects light that arrives at the light reflecting layer 160 from the organic functional layer 140 side.
  • the intervening layer 120 is disposed between the organic functional layer 140 and the light reflecting layer 160.
  • the intervening layer 120 is configured by stacking three or more layers having different refractive indexes between adjacent layers, and has two or more interfaces.
  • the refractive indexes of three or more layers constituting the intervening layer 120 are alternately in the order of high and low from the organic functional layer 140 side to the light reflecting layer 160 side, or alternately low and high. The order is
  • the translucent substrate 110 is a plate-like member made of a translucent material such as glass or resin.
  • the upper surface of the translucent substrate 110 that is, the surface of the translucent substrate 110 opposite to the organic functional layer 140 side is a flat light extraction surface 110a.
  • the light extraction surface 110a is in contact with air (refractive index 1) filling the light emission space.
  • the light extraction film is affixed on the upper surface of the translucent board
  • the first electrode 130 may be a transparent electrode made of a metal oxide conductor such as ITO (Indium Tin Oxide) or IZO (Indium Zinc Oxide). However, the first electrode 130 may be a metal thin film that is thin enough to transmit light.
  • a metal oxide conductor such as ITO (Indium Tin Oxide) or IZO (Indium Zinc Oxide).
  • the first electrode 130 may be a metal thin film that is thin enough to transmit light.
  • the organic functional layer 140 includes a translucent second electrode 150.
  • the second electrode 150 is disposed at the end of the organic functional layer 140 on the intervening layer 120 side. That is, the 2nd electrode 150 comprises the layer of the end by the side of the intervening layer 120 in the organic functional layer 140, for example.
  • the organic functional layer 140 includes an organic layer (such as an electron injection layer) disposed between the second electrode 150 and the intervening layer 120. That is, the second electrode 150 is disposed at an intermediate portion in the thickness direction of the organic functional layer 140.
  • FIG. 1 shows an example in which the second electrode 150 is disposed at the end of the organic functional layer 140 on the intervening layer 120 side.
  • the second electrode 150 can be a metal thin film that is thin enough to transmit light.
  • the film thickness of the second electrode 150 can be about 10 nm, for example.
  • the material of the second electrode 150 include silver and aluminum.
  • the second electrode 150 may be a transparent electrode made of a metal oxide conductor such as ITO or IZO.
  • the first electrode 130 constitutes an anode and the second electrode 150 constitutes a cathode.
  • the material of the second electrode 150 and the material of the first electrode 130 it is necessary to select a combination of the material of the second electrode 150 and the material of the first electrode 130 so that the work function of the second electrode 150 is smaller than the work function of the first electrode 130.
  • the portion other than the second electrode 150 in the organic functional layer 140 is made of an organic material such as NPB (N, N-di (naphthalene-1-yl) -N, N-diphenyl-benzidine).
  • the organic functional layer 140 may include, for example, a layer having an electron transport function, a layer having a hole transport function, and the like in addition to the light emitting layer.
  • the refractive index of the organic functional layer 140 is, for example, about 1.6 or more and 2.0 or less.
  • Each layer constituting the intervening layer 120 is made of, for example, a translucent dielectric. Of the three or more layers constituting the intervening layer 120, adjacent layers are in contact with each other, and an interface is formed between the adjacent layers.
  • the intervening layer 120 has a laminated structure in which three or more first layers 121 and second layers 122 are alternately laminated.
  • the refractive index of the second layer 122 is smaller than the refractive index of the first layer 121.
  • the refractive index of the first layer 121 is equal to or higher than the refractive index of the organic functional layer 140.
  • the refractive index of the first layer 121 can be about 1.8.
  • the refractive index of the second layer 122 can be about 1.3 to 1.5.
  • the material of the first layer 121 can be the same as the material of the organic functional layer 140, for example.
  • the material of the second layer 122 can be, for example, MgF 2 (refractive index 1.37) or SiO 2 (refractive index 1.45). Note that the first layers 121 are not necessarily made of the same material. Similarly, the second layers 122 are not necessarily made of the same material. If the refractive index inside the intervening layer 120 is alternately in the order of high and low from the organic functional layer 140 side to the light reflecting layer 160 side, or alternately in the order of low and high.
  • any refractive index material may be used as the material of the first layer 121 and the second layer 122. If the refractive index inside the intervening layer 120 is alternately in the order of high and low from the organic functional layer 140 side to the light reflecting layer 160 side, or alternately in the order of low and high.
  • the refractive index of any one or more second layers 122 may be larger than the refractive index of any one or more first layers 121.
  • the refractive indexes of the first layers 121 are different from each other, the physical film thicknesses of the first layers 121 are different from each other even if the optical path lengths of the film thicknesses of the first layers 121 are the same.
  • the refractive indexes of the second layers 122 are different from each other, even if the optical path lengths of the film thicknesses of the second layers 122 are the same, the physical film thicknesses of the second layers 122 are different from each other.
  • a material that does not adversely affect the organic functional layer 140 for example, porous silica
  • a material that adversely affects the organic functional layer 140 when it is close to the organic functional layer 140 should be selected. Can do. This is because the first layer 121 and the second layer 122 existing between the first layer 121 and the second layer 122 and the organic functional layer 140 serve as a barrier layer.
  • the uppermost layer (most layer on the organic functional layer 140 side) in the intervening layer 120 may be either the first layer 121 or the second layer 122. However, even if the second electrode 150 is disposed at the end of the organic functional layer 140 on the side of the intervening layer 120 by suppressing the uppermost layer of the intervening layer 120 to the first layer 121 having a high refractive index, the occurrence of plasmon resonance is suppressed. can do. On the other hand, when the uppermost layer in the intervening layer 120 is the second layer 122 having a low refractive index, the interface between the second electrode 150 and the intervening layer 120 has a high refractive index from the light emitting layer side toward the light reflecting layer 160 side.
  • the interface changes from one side to the other, and light can be reflected to the light extraction surface 110a side at this interface.
  • the lowermost layer (the layer closest to the light reflecting layer 160) in the intervening layer 120 may be either the first layer 121 or the second layer 122.
  • the light reflecting layer 160 is made of, for example, a metal film such as silver or aluminum. That is, the light reflection layer 160 is, for example, conductive.
  • the light reflecting layer 160 reflects light traveling from the organic functional layer 140 toward the light reflecting layer 160 (light coming from the organic functional layer 140 side) toward the translucent substrate 110 side.
  • the light reflection layer 160 may be non-conductive (insulating). For this reason, the light reflection layer 160 may not be a metal layer.
  • the light emitting layer of the organic functional layer 140 When a voltage is applied between the first electrode 130 and the second electrode 150, the light emitting layer of the organic functional layer 140 emits light.
  • the translucent substrate 110, the first electrode 130, the organic functional layer 140, the second electrode 150, and the first layer 121 and the second layer 122 of the intervening layer 120 are all light emitted from the light emitting layer of the organic functional layer 140. Of at least part of it. Part of the light emitted from the light emitting layer is emitted (extracted) from the light extraction surface 110a of the translucent substrate 110 to the outside of the light emitting device 100 (that is, the light emission space).
  • one surface (the lower surface in FIG. 1) of the translucent substrate 110 and one surface (the upper surface in FIG. 1) of the first electrode 130 are in contact with each other.
  • the other surface (lower surface in FIG. 1) of the first electrode 130 and one surface (upper surface in FIG. 1) of the organic functional layer 140 are in contact with each other.
  • the second electrode 150 is disposed at the end of the organic functional layer 140 on the intervening layer 120 side.
  • the second electrode 150 and one surface (the upper surface in FIG. 1) of the intervening layer 120 are in contact with each other. More specifically, the surface of the second electrode 150 opposite to the light emitting layer side and one surface (the upper surface in FIG. 1) of the uppermost first layer 121 are in contact with each other.
  • the other surface (lower surface in FIG. 1) of the intervening layer 120 and one surface (upper surface in FIG. 1) of the light reflecting layer 160 are in contact with each other. More specifically, one surface (the lower surface in FIG. 1) of the lowermost first layer 121 and one surface of the light reflecting layer 160 are in contact with each other.
  • another layer may exist between the translucent substrate 110 and the first electrode 130.
  • another layer may exist between the first electrode 130 and the organic functional layer 140.
  • another layer may exist between the organic layer (organic material part) such as an electron injection layer and the second electrode 150.
  • another layer may exist between the second electrode 150 and the intervening layer 120.
  • another layer may exist between the intervening layer 120 and the light reflecting layer 160.
  • the thickness of each of the three or more layers constituting the intervening layer 120 is such that the optical path length (optical distance) is ⁇ / 4. Yes. That is, the thickness of each first layer 121 and the thickness of each second layer 122 are such that the optical path length (optical distance) is ⁇ / 4.
  • the maximum peak wavelength ⁇ differs individually depending on the refractive index of each layer. That is, the maximum peak wavelength ⁇ is a value for each layer.
  • the thickness of the first layer 121 is lambda 1/4
  • the film thickness of the second layer is lambda 2/4.
  • the optical path length (optical distance) from the light emitting surface to the interface between the organic functional layer 140 and the intervening layer 120 is a multiple of ⁇ / 2. It has become.
  • the basic unit of light is considered to be one wavelength
  • the minimum light emitting region (the lower limit of the size of the region where light emission occurs) is a spherical region having a diameter ⁇ . If the central point of the minimum light emitting region is referred to as the light emitting center point, the light emitting surface is a substantially flat surface composed of a set of light emitting center points.
  • the film thickness of the light emitting layer is about 25 nm or more and 35 nm or less
  • the light emitting surface exists, for example, at a position of about 5 nm from the hole injection layer, depending on conditions.
  • the optical path length from the light emitting surface to the interface between the organic functional layer 140 and the intervening layer 120 in the light emitting layer depends on the refractive index of each layer interposed between the light emitting surface and the interface between the organic functional layer 140 and the interposing layer 120. It becomes length.
  • FIG. 1 shows an example in which the uppermost layer and the lowermost layer of the intervening layer 120 are both the first layer 121, and the following operation description is based on this structure.
  • FIG. 2 is a cross-sectional view showing an example of the operation of the light emitting device 100 according to the first embodiment.
  • the light traveling toward the translucent substrate 110 (the light of the optical paths L1 and L5) travels toward the translucent substrate 110 through the organic functional layer 140 and the first electrode 130.
  • the refractive index of the first electrode 130 is 1.8, for example, and the refractive index of the translucent substrate 110 is 1.5, for example.
  • the light is totally reflected at the interface with the substrate 110 and the remaining light is transmitted (incident) to the light transmitting substrate 110. Part of the light transmitted (incident) to the translucent substrate 110 is totally reflected at the interface with the light emission space, and the rest is emitted to the light emission space.
  • the light whose angle between the normal to the organic functional layer 140 and the optical axis is within a predetermined angle ⁇ is any one of the first layers 121 and the second layer adjacent thereto.
  • the light is reflected at the interface with 122 and synthesized, and acts as if large reflection is occurring at the interface between the organic functional layer 140 and the intervening layer 120.
  • the film thickness of each layer constituting the intervening layer 120 (the film thickness of each first layer 121 and the film thickness of each second layer 122) is a film whose optical path length is ⁇ / 4, respectively.
  • the film thickness of each first layer 121 and the film thickness of each second layer 122 are ⁇ / 4, respectively, with respect to light having a certain angle or less (light within an angle ⁇ )
  • Light reflected at each interface between the first layer 121 and the second layer 122 reinforces each other due to interference. Thereby, the light extraction efficiency can be improved. Note that the effect of strengthening the reflected light in this way increases as the number of layers constituting the intervening layer 120 increases.
  • the thickness of each first layer 121 and the thickness of each second layer 122 are ⁇ / 4, and the lowest layer of the intervening layer 120 is the first layer 121.
  • the optical path length from the light emitting surface of the light emitting layer to the interface between the organic functional layer 140 and the intervening layer 120 is a multiple of ⁇ / 2, light with a certain angle or less (light within an angle ⁇ )
  • these lights can be intensified.
  • the light extraction efficiency is improved by the amount of reflected light at the interface between the organic functional layer 140 and the intervening layer 120.
  • FIG. 3 is a diagram showing a simulation result of the reflectance in the light emitting device 100 according to the first embodiment.
  • the maximum peak wavelength ⁇ of light emitted from the light emitting layer is 520 nm with respect to the light emitting device 100 including the intervening layer 120 in which six first layers 121 and five second layers 122 are alternately stacked. It was carried out as As shown in FIG. 3, the angle between the normal to the organic functional layer 140 and the optical axis is within about 20 degrees (corresponding to the angle ⁇ ), and the angle is about 60 degrees (corresponding to ⁇ ) or more. It can be seen that a remarkably high reflectance (almost 100%) can be obtained with respect to the above light.
  • FIG. 4 is a diagram illustrating interference between direct light from the light emitting layer and reflected light reflected by the second electrode 150 in the light emitting device according to the comparative example.
  • the light emitting device according to the comparative example is different from the light emitting device 100 shown in FIG. 1 in that the intervening layer 120 and the light reflecting layer 160 are not provided and the second electrode 150 is a reflecting electrode. Then, it shall be comprised similarly to the light-emitting device 100 shown in FIG. That is, in the light emitting device according to Comparative Example 1, the intervening layer 120 does not exist between the light reflecting layer (second electrode 150) and the organic functional layer 140.
  • a part of the light emitted from the light emitting layer is directed toward the translucent substrate 110 as indicated by an optical path L21 in FIG.
  • Another part of the light emitted from the light emitting layer is directed to the second electrode 150 side as indicated by the optical path L22, reflected at the interface between the organic functional layer 140 and the second electrode 150, and indicated by the optical path 23. In this way, it goes to the translucent substrate 110 side.
  • the light indicated by the optical path L21 (direct light) and the light indicated by the optical path L23 (reflected light) interfere with each other to increase or decrease (increase or decrease) the intensity of the light.
  • FIG. 5 is a diagram showing the relationship between the light angle and the increase / decrease in light intensity due to interference in the light emitting device according to the comparative example.
  • the horizontal axis represents the light angle
  • the vertical axis represents the light intensity.
  • the angle of light on the horizontal axis is the angle formed between the normal to the light extraction surface 110a and the optical path.
  • the light intensity on the vertical axis is a simulation result of the light intensity after the interference, and the light intensity before the interference (the light intensity on the optical path L21) is 1.
  • the light intensity shown in FIG. 5 is a simulation result when the distance from the light emitting layer to the second electrode 150 is set so that the light intensity after interference is the strongest when the light angle is 0 degree. is there. In this case, as shown in FIG. 5, as the light angle increases, the light intensity decreases due to the influence of interference.
  • the intervening layer 120 exists between the organic functional layer 140 including the light emitting layer and the light reflecting layer (light reflecting layer 160).
  • the reflected light and the reflected light are reflected as the light is reflected at the interface far from the light emitting layer.
  • the influence of interference between the light and the corresponding direct light can be suppressed. This is because the optical axis of the reflected light and the optical axis of the direct light are further away as the light is reflected at the interface far from the light emitting layer.
  • the intervening layer 120 having a structure in which the first layer 121 and the second layer 122 are provided in multiple layers as in the present embodiment, the reflected light of the light having a certain angle or more and the direct light interfere with each other. Can suppress mutual weakening. Therefore, the light extraction efficiency is improved as compared with the comparative example.
  • a light-transmitting conductive film made of a metal oxide conductor such as ITO or IZO is formed on the lower surface of the light-transmitting substrate 110 by sputtering or the like, and patterned by etching to form the first electrode 130. Form.
  • the organic functional layer 140 is formed by applying an organic material to the lower surface of the first electrode 130.
  • a second electrode 150 is formed on the lower surface of the organic functional layer 140 by depositing a metal material such as Al by vapor deposition or the like.
  • an organic material such as NPB is applied to the lower surface of the second electrode 150 to form the uppermost first layer 121 in the intervening layer 120.
  • the uppermost layer of the second layer 122 is formed on the lower surface of the uppermost first layer 121 by using MgF 2 or SiO 2 .
  • the first layer 121 and the second layer 122 are alternately formed. Then, the first layer 121 is formed as the lowermost layer of the intervening layer 120.
  • a light reflecting layer 160 is formed by depositing a metal material such as Al on the lower surface of the intervening layer 120 by vapor deposition or the like.
  • FIG. 6 is a diagram illustrating a first example of the layer structure of the organic functional layer 140.
  • the organic functional layer 140 according to the first example has a structure in which a hole injection layer 141, a hole transport layer 142, a light emitting layer 143, an electron transport layer 144, and an electron injection layer 145 are stacked in this order. That is, the organic functional layer 140 is an organic electroluminescence light emitting layer. Note that instead of the hole injection layer 141 and the hole transport layer 142, one layer having the functions of these two layers may be provided. Similarly, instead of the electron transport layer 144 and the electron injection layer 145, one layer having the function of these two layers may be provided (see FIG. 8B).
  • the light emitting layer 143 is, for example, a layer that emits red light, a layer that emits blue light, a layer that emits yellow light, or a layer that emits green light. .
  • a region having a light emitting layer 143 that emits red light, a region having a light emitting layer 143 that emits green light, and a region having a light emitting layer 143 that emits blue light are repeatedly provided. (See FIG. 8B).
  • the light emitting device 100 emits light in a single light emission color such as white.
  • the light emitting layer 143 may be configured to emit light in a single light emission color such as white by mixing materials for emitting a plurality of colors.
  • FIG. 7 is a diagram illustrating a second example of the layer structure of the organic functional layer 140.
  • FIG. 8 (described later) describes an example in which regions separated from each other by the partition wall portion 180 in the organic functional layer 140 emit red light, green light, and blue light, respectively.
  • the light emitting layer 143 of the organic functional layer 140 has a configuration in which the light emitting layers 143a, 143b, and 143c are stacked in this order.
  • the light emitting layers 143a, 143b, and 143c emit light of different colors (for example, red, green, and blue).
  • the light emitting layers 143a, 143b, and 143c emit light at the same time, so that the light emitting device 100 emits light in a single light emission color such as white.
  • FIG. 8A is a plan view showing an example of a more specific configuration of the light emitting device 100 according to the embodiment
  • FIG. 8B is a cross-sectional view taken along line BB in FIG. 8A. is there. 8B and 8A are upside down with respect to FIG.
  • the first electrode 130 constitutes an anode.
  • the plurality of first electrodes 130 each extend in the Y direction in a strip shape. Adjacent first electrodes 130 are spaced apart from each other at a constant interval in the X direction orthogonal to the Y direction.
  • Each of the first electrodes 130 is made of a metal oxide conductor such as ITO or IZO, for example.
  • the refractive index of the first electrode 130 is approximately the same as that of the first layer 121 (for example, approximately 1.8).
  • a bus line (bus electrode) 170 for supplying a power supply voltage to the first electrode 130 is formed on each surface of the first electrode 130.
  • An insulating film is formed on the translucent substrate 110 and the first electrode 130.
  • a plurality of stripe-shaped openings each extending in the Y direction are formed.
  • a plurality of partition walls 180 made of an insulating film are formed.
  • Each of the openings formed in the insulating film reaches the first electrode 130, and the surface of each first electrode 130 is exposed at the bottom of the opening.
  • An organic functional layer 140 is formed on the first electrode 130 in each opening of the insulating film.
  • the organic material portion of the organic functional layer 140 is configured by laminating a hole injection layer 141, a hole transport layer 142, a light emitting layer 143 (light emitting layers 143R, 143G, 143B), and an electron transport layer 144 in this order. ing.
  • Materials for the hole injection layer 141 and the hole transport layer 142 include aromatic amine derivatives, phthalocyanine derivatives, porphyrin derivatives, oligothiophene derivatives, polythiophene derivatives, benzylphenyl derivatives, compounds in which tertiary amines are linked by fluorene groups, hydrazones. Derivatives, silazane derivatives, silanamine derivatives, phosphamine derivatives, quinacridone derivatives, polyaniline derivatives, polypyrrole derivatives, polyphenylene vinylene derivatives, polythienylene vinylene derivatives, polyquinoline derivatives, polyquinoxaline derivatives, carbon and the like.
  • the light emitting layers 143R, 143G, and 143B are made of a fluorescent organometallic compound that emits red light, green light, and blue light, respectively.
  • the light emitting layers 143R, 143G, and 143B are arranged side by side in a state of being separated from each other by the partition wall portion 180. That is, the organic functional layer 140 is partitioned into a plurality of regions by the partition wall portion 180.
  • An electron transport layer 144 is formed so as to cover the surfaces of the light emitting layers 143R, 143G, and 143B and the partition wall portion 180.
  • a second electrode 150 is formed so as to cover the surface of the electron transport layer 144.
  • the second electrode 150 constitutes a cathode.
  • the second electrode 150 is formed in a band shape.
  • the second electrode 150 is made of a metal such as Al or an alloy having a low work function and high reflectivity.
  • the refractive index of the organic material portion of the organic functional layer 140 is approximately the same as that of the first electrode 130 and the first layer 121 (for example, a refractive index of approximately 1.8).
  • An intervening layer 120 is formed on the second electrode 150.
  • a light reflecting layer 160 is formed on the intervening layer 120.
  • the light emitting layers 143R, 143G, and 143B that emit red, green, and blue light are repeatedly arranged in a stripe shape, and red, Green and blue light are mixed at an arbitrary ratio to emit light that is recognized as a single emission color (for example, white).
  • the light emitting device 100 includes the translucent intervening layer 120 disposed between the organic functional layer 140 and the light reflecting layer 160.
  • the intervening layer 120 is formed by laminating three or more layers having different refractive indexes between adjacent layers, and has two or more interfaces.
  • the refractive indexes of three or more layers constituting the intervening layer 120 are alternately in the order of high and low from the organic functional layer 140 side to the light reflecting layer 160 side, or alternately low. , In order of high. Therefore, the optical path length of the light (reflected light) from the organic functional layer 140 toward the light reflecting layer 160 toward the light reflecting layer 160 and then toward the light transmitting substrate 110 is passed through the intervening layer 120. Can earn by.
  • the refractive index of the intervening layer 120 is uniform, the light traveling from the organic functional layer 140 toward the light reflecting layer 160 is reflected by the light reflecting layer 160 that is a metal layer and travels toward the light transmitting substrate 110 side. Head. However, a certain amount of loss occurs in the reflection at the metal layer.
  • the refractive index of the second layer 122 is smaller than the refractive index of the first layer 121, a part of the light traveling from the organic functional layer 140 toward the light reflecting layer 160 is Total reflection can be performed at the interface between the first layer 121 and the second layer 122. Thereby, since the loss can be reduced as compared with the case where the refractive index of the intervening layer 120 is uniform, the light extraction efficiency is improved.
  • the uppermost layer of the intervening layer 120 is the first layer 121 having a high refractive index.
  • the second electrode 150 made of a metal thin film exists at the end of the organic functional layer 140 on the side of the intervening layer 120, the second electrode 150 and the first layer 121 are in contact with each other even if the second electrode 150 and the first layer 121 are in contact with each other.
  • Evanescent light and plasmon resonance do not occur at the interface with the first layer 121. Thereby, the fall of light extraction efficiency can be suppressed.
  • the second electrode 150 is the intervening layer in the organic functional layer 140.
  • the same effect can be obtained by disposing the second electrode 150 at the intermediate portion in the thickness direction of the organic functional layer 140 instead of disposing it at the end on the 120 side.
  • the light is reflected at the interface between the organic functional layer 140 and the intervening layer 120 for light having a certain angle or less. Therefore, the reflected light reflected at the interface between the organic functional layer 140 and the intervening layer 120 and the light on the light emitting surface can be made to interfere with each other. Thereby, the light extraction efficiency can be improved.
  • each layer (three or more layers) constituting the intervening layer 120 is such that the optical path length is ⁇ / 4, the light reflected at the interface of each layer constituting the intervening layer 120 Amplify by interfering with each other. Therefore, the intensity of light extracted from the light emitting device 100 can be improved.
  • the optical path length from the light emitting surface in the light emitting layer to the interface between the organic functional layer 140 and the intervening layer 120 is a multiple of ⁇ / 2
  • the light is reflected at the interface between the organic functional layer 140 and the intervening layer 120.
  • the phases of light and direct light from the light emitting surface of the light emitting layer toward the translucent substrate 110 can be matched, and these light can be amplified by interfering with each other. Therefore, the intensity of light extracted from the light emitting device 100 can be improved.
  • the organic functional layer 140 includes the translucent second electrode 150, it is possible to easily apply a voltage to the light emitting layer in the organic functional layer 140.
  • the second electrode 150 may be drawn out to the peripheral portion of the light emitting device 100 in plan view, and a voltage may be applied to the drawn portion.
  • FIG. 9 is a cross-sectional view showing the configuration of the light emitting device 100 according to the second embodiment.
  • the light emitting device 100 according to the second embodiment is different from the light emitting device 100 according to the first embodiment (FIG. 1) in the points described below, and in other points, the light emitting device according to the first embodiment.
  • the configuration is the same as that of the apparatus 100.
  • the light emitting device 100 according to the second embodiment does not have the second electrode 150 in the organic functional layer 140.
  • the lower surface of the lowermost organic layer (for example, the electron injection layer 145) in the organic functional layer 140 and the upper surface of the intervening layer 120 (the upper surface of the uppermost first layer 121) are in contact with each other.
  • another layer may exist between the organic functional layer 140 and the intervening layer 120.
  • the light reflecting layer 160 is conductive.
  • the light reflecting layer 160 also functions as a cathode.
  • the organic functional layer 140 includes a hole transport layer disposed on the first electrode 130 side of the light emitting layer.
  • the organic functional layer 140 includes a hole injection layer 141 and a hole transport layer 142 similarly to the configuration illustrated in FIG.
  • each first layer 121 and each second layer 122 have an electron transport function. That is, each first layer 121 and each second layer 122 function as an electron transport layer.
  • Each first layer 121 and each second layer 122 may function as an electron transport layer and an electron injection layer.
  • the intervening layer 120 also functions as a part of the organic functional layer 140. Therefore, in the case of this embodiment, the organic functional layer 140 does not need to have an electron carrying layer and an electron injection layer.
  • the light emitting layer of the organic functional layer 140 when a voltage is applied between the first electrode 130 and the light reflecting layer 160, the light emitting layer of the organic functional layer 140 emits light.
  • the organic functional layer 140 contains the electron carrying layer arrange
  • the organic functional layer 140 includes an electron injection layer and an electron transport layer.
  • Each first layer 121 and each second layer 122 have a hole transport function.
  • each first layer 121 and each second layer 122 may function as a hole transport layer and a hole injection layer.
  • the organic functional layer 140 does not need to have a positive hole transport layer and a positive hole injection layer.
  • the second electrode 150 since the second electrode 150 is not present, when the refractive indexes of the layers sandwiching the metal film (the layers on both sides of the metal film) are different from each other (one of the layers sandwiching the metal layer is relatively low). Evanescent light and plasmon resonance generated at the interface between the metal film and the low refractive index layer do not occur in the refractive index layer (when the other is a relatively high refractive index layer).
  • the light emitting device 100 does not have the second electrode 150.
  • the light emitting layer can emit light by applying a voltage to the organic functional layer 140.
  • FIG. 10 is a cross-sectional view illustrating a configuration of the light emitting device 100 according to the first embodiment.
  • the light emitting device 100 according to Example 1 is different from the light emitting device 100 according to the first embodiment (FIG. 1) in the points described below, and otherwise the light emitting device 100 according to the first embodiment. It is configured in the same way.
  • the light scattering layer 210 is provided between the intervening layer 120 and the light reflecting layer 160.
  • the lower surface of the intervening layer 120 and the upper surface of the light scattering layer 210 are in contact with each other, and the lower surface of the light scattering layer 210 and the upper surface of the light reflecting layer 160 are in contact with each other.
  • other layers may exist between the intervening layer 120 and the light scattering layer 210 and between the light scattering layer 210 and the light reflecting layer 160, respectively.
  • the light scattering layer 210 includes, for example, a base material made of a dielectric material and particles disposed in the base material with a refractive index smaller than that of the base material.
  • a plurality of (many) particles are contained in the substrate.
  • Particles for example, inorganic particles such as SiO 2.
  • the size of the particles is preferably not less than the peak wavelength (maximum peak wavelength) ⁇ of the emission wavelength from the light emitting layer.
  • the particle size means the sphere equivalent diameter of each particle.
  • the particles may be spherical, where the particle size is the particle diameter.
  • the shape of the particles may be any other shape.
  • Example 1 a part of the light traveling from the intervening layer 120 toward the light reflecting layer 160 side is scattered in a random direction by the light scattering layer 210. Accordingly, it can be expected that a part of light having an angle that is not emitted from the light emitting device 100 when the light scattering layer 210 is not present can be extracted from the light emitting device 100.
  • FIG. 11 is a cross-sectional view illustrating a configuration of the light emitting device 100 according to the second embodiment.
  • the light emitting device 100 according to Example 2 is different from the light emitting device 100 according to the first embodiment (FIG. 1) in the points described below, and otherwise the light emitting device 100 according to the first embodiment. It is configured in the same way.
  • a first low refractive index layer 147 is disposed between the second electrode 150 and the light emitting layer.
  • the first low refractive index layer 147 is a layer including a first base material and first particles having a refractive index smaller than that of the first base material and disposed in the first base material.
  • a second low refractive index layer 220 is disposed between the second electrode 150 and the intervening layer 120.
  • the second low refractive index layer 220 is a layer including a second base material and second particles having a refractive index smaller than that of the second base material and disposed in the second base material.
  • the materials of the first base material and the second base material are, for example, the same materials as those of the organic functional layer 140 in the first embodiment.
  • the first particles and the second particles are inorganic particles such as SiO 2 and nano silica.
  • the dimensions of the first particles and the second particles may be ⁇ or less.
  • the dimension of the first particle and the second particle can be set to, for example, about 20 nm.
  • grains) means the spherical equivalent diameter of each particle
  • the particles may be spherical, where the particle size is the particle diameter.
  • the shape of the particles may be any other shape.
  • the first low refractive index layer 147 and the second low refractive index layer 220 become the first base material and the first base material. 2
  • the refractive index is lowered compared to the base material. That is, the pair of layers sandwiching the second electrode 150 has a low refractive index.
  • the first low refractive index layer 147 functions as, for example, an electron transport layer, or functions as an electron injection layer and an electron transport layer.
  • the first low refractive index layer 147 functions as, for example, a hole transport layer, or as a hole injection layer and a hole transport layer. Function.
  • the pair of layers (the first low refractive index layer 147 and the second low refractive index layer 220) sandwiching the second electrode 150 each have a low refractive index. Since the light emitting layer has a high refractive index, light can be totally reflected at the interface between the light emitting layer and the first low refractive index layer 147. Accordingly, light having an angle can be directed to the light extraction surface 110a side without using the intervening layer 120 below the second low refractive index layer 220, so that the light extraction efficiency can be improved.
  • FIG. 12 is a cross-sectional view illustrating a configuration of the light emitting device 100 according to the third embodiment.
  • the light emitting device 100 according to Example 3 is different from the light emitting device 100 according to the first embodiment (FIG. 11) in the points described below, and otherwise the light emitting device 100 according to the first embodiment. It is configured in the same way.
  • the light reflection layer 160 is a conductor.
  • the light emitting device 100 includes a conductor 190 that electrically connects at least one second electrode 150 and the light reflection layer 160 to each other. That is, the light emitting device 100 includes one or a plurality of second electrodes 150, and at least one or more second electrodes 150 are electrically connected to the light reflecting layer 160.
  • the conductor 190 penetrates the intervening layer 120 up and down.
  • the conductor 190 may be a columnar shape (that is, a through hole) or a wall shape.
  • a conductor 190 is formed by vapor-depositing a metal such as Ag using a mask, and then the intervening layer 120 is formed.
  • the conductor 190 may be arrange
  • the light reflection layer 160 is conductive, and the second electrode 150 is electrically connected to the light reflection layer 160.
  • the light reflecting layer 160 can form an electrode together with the second electrode 150, so that a voltage can be more easily applied to the light emitting layer in the organic functional layer 140.
  • FIG. 12 illustrates an example in which the conductor 190 electrically connects the second electrode 150 and the light reflecting layer 160 through the inside of the intervening layer 120.
  • the second electrode 150 and the light reflecting layer 160 may be electrically connected to each other through the outside.
  • the former is suitable for a light emitting device having a light emitting layer having a relatively large area
  • the latter is suitable for a light emitting device having a light emitting layer having a relatively small area.
  • an N-type impurity may be introduced into the intervening layer 120 so that the intervening layer 120 becomes a conductive layer. That is, the intervening layer 120 may be an N-doped layer. Even in this case, the light reflection layer 160 made of a conductor can form an electrode together with the second electrode 150. Note that the second electrode 150 may be an anode and the first electrode 130 may be a cathode. In this case, a P-type impurity can be introduced into the intervening layer 120 to make the intervening layer 120 a P-doped layer.
  • FIG. 13 is a cross-sectional view illustrating a configuration of the light emitting device 100 according to the fourth embodiment.
  • the light emitting device 100 according to the fourth embodiment is different from the light emitting device 100 according to the third embodiment (FIG. 12) in the points described below, and is otherwise configured in the same manner as the light emitting device 100 according to the third embodiment. Has been.
  • the upper surface of the light reflecting layer 160 is an uneven surface 161 including a plurality of inclined surfaces inclined with respect to the organic functional layer 140. That is, the surface on the intervening layer 120 side of the light reflecting layer 160 is an uneven surface 161.
  • the dimension of each inclined surface (the maximum dimension of each inclined surface in a plane parallel to each inclined surface) is preferably not less than the peak wavelength (maximum peak wavelength) ⁇ of the emission wavelength from the light emitting layer.
  • the entire surface on the intervening layer 120 side of the light reflecting layer 160 may be the uneven surface 161, or a part of the surface on the interposing layer 120 side of the light reflecting layer 160 may be a flat surface.
  • Example 4 a part of the light traveling from the organic functional layer 140 toward the light reflecting layer 160 is reflected by the light reflecting layer 160.
  • the upper surface of the light reflecting layer 160 is a concavo-convex surface 161 including a plurality of inclined surfaces inclined with respect to the organic functional layer 140, the light emitting device is formed when the upper surface of the light reflecting layer 160 is a flat surface. It can be expected that a part of the light having an angle that cannot be extracted from 100 can be extracted from the light emitting device 100.
  • FIG. 13 illustrates an example in which the surface on the intervening layer 120 side of the light reflecting layer 160 is an uneven surface 161 when the light emitting device 100 includes the second electrode 150.
  • the second electrode 150 is not provided (FIG. 9)
  • the same effect can be obtained even if the surface on the intervening layer 120 side of the light reflecting layer 160 is an uneven surface 161.

Abstract

A light emitting device (100) comprises: a light transmissive substrate (110); a first light transmissive electrode (130) disposed opposite the light emission surface (light extraction surface (110a)) of the light transmissive substrate (110); an organic function layer (140) including at least a light emitting layer; a light reflection layer (160); and a light transmissive interposing layer (120). The interposing layer (120) is disposed between the organic function layer (140) and the light reflection layer (160). The interposing layer (120) is constituted by a first layer (121) and a second layer (122) that have mutually different refractive indexes, and are laminated alternately in three or more layers, the interposing layer (120) having two or more interfaces therein.

Description

発光装置Light emitting device
 本発明は、有機発光層を有する発光装置に関する。 The present invention relates to a light emitting device having an organic light emitting layer.
 発光装置の1つに有機発光層を有する発光装置がある。この発光装置においては、有機発光層で発生した光のうち外部に放射される光の割合(光取り出し効率)を向上することが望まれている。 There is a light emitting device having an organic light emitting layer as one of the light emitting devices. In this light emitting device, it is desired to improve the ratio of light emitted to the outside (light extraction efficiency) of the light generated in the organic light emitting layer.
 光取り出し効率の向上を目的とした技術としては、特許文献1に記載のものがある。特許文献1に記載された有機EL(Electro Luminescence)素子は、それぞれ光透過性の前面電極及び背面電極と、前面電極と背面電極との間に配置された発光層と、背面電極を基準として発光層とは反対側に配置された高屈折率光散乱層と、を有する。高屈折率光散乱層は、Yなどの微粒子を樹脂中に分散させることにより構成されたものである。特許文献1には、発光層から背面側に向かった光は、高屈折率光散乱層により反射されて前面側に向かうため、前面側から効率良く光を取り出すことができる旨の記載がある。 As a technique for improving the light extraction efficiency, there is one described in Patent Document 1. The organic EL (Electro Luminescence) element described in Patent Document 1 emits light with respect to a light-transmitting front electrode and back electrode, a light-emitting layer disposed between the front electrode and the back electrode, and the back electrode as a reference. A high refractive index light scattering layer disposed on the opposite side of the layer. The high refractive index light scattering layer is constituted by dispersing fine particles such as Y 2 O 3 in a resin. Japanese Patent Application Laid-Open No. H10-228707 describes that light traveling from the light emitting layer toward the back side is reflected by the high refractive index light scattering layer and travels toward the front side, so that light can be efficiently extracted from the front side.
特開2004-14385号公報JP 2004-14385 A
 本発明者は、特許文献1に記載の技術では、以下に説明する問題があると考えた。
 特許文献1の技術における高屈折率光散乱層は、光をランダムな方向に散乱する。このため、高屈折率光散乱層により反射されて前面側に向かう光(反射光)と、発光層から前面側に向かう光(直接光)との干渉によってこれら光の強度を強め合う効果を十分に得ることは困難である。よって、特許文献1の技術は、光取り出し効率に関し、改善の余地がある。さらに散乱層に特有の課題として、斜め方向の光の場合、散乱する確率が高くなり、取り出し面に向かう光量が減少するということが挙げられる。
The inventor considered that the technique described in Patent Document 1 has the following problems.
The high refractive index light scattering layer in the technique of Patent Document 1 scatters light in a random direction. For this reason, the effect of strengthening the intensity of light reflected by the high-refractive-index light scattering layer and reflected toward the front side (reflected light) and the light directed from the light emitting layer toward the front side (direct light) is sufficient. It is difficult to get into. Therefore, the technique of Patent Document 1 has room for improvement regarding light extraction efficiency. Furthermore, a problem peculiar to the scattering layer is that in the case of light in an oblique direction, the probability of scattering increases, and the amount of light toward the extraction surface decreases.
 本発明が解決しようとする課題としては、発光装置の光取り出し効率を向上することが一例として挙げられる。 An example of a problem to be solved by the present invention is to improve the light extraction efficiency of the light emitting device.
 請求項1に記載の発明は、透光性基板と、
 前記透光性基板の出射面とは反対面側に配置された透光性の第1電極と、
 少なくとも発光層を含み、前記第1電極を基準として前記透光性基板とは反対側に配置された有機機能層と、
 前記有機機能層を基準として前記第1電極とは反対側に配置され、前記有機機能層側から到来する光を反射する光反射層と、
 前記有機機能層と前記光反射層との間に配置された透光性の介在層と、
 を備え、
 前記介在層は、互いに隣り合う層間で屈折率が異なる3つ以上の層を積層することにより構成されて、2つ以上の界面を有し、
 前記3つ以上の層の屈折率は、前記有機機能層側から前記光反射層側に向けて、交互に高、低となっているか、又は、交互に低、高となっている発光装置である。
The invention according to claim 1 is a translucent substrate;
A translucent first electrode disposed on the side opposite to the exit surface of the translucent substrate;
An organic functional layer including at least a light-emitting layer and disposed on the opposite side of the translucent substrate with respect to the first electrode;
A light reflecting layer disposed on the opposite side of the first electrode with respect to the organic functional layer, and reflecting light coming from the organic functional layer side;
A light-transmitting intervening layer disposed between the organic functional layer and the light reflecting layer;
With
The intervening layer is formed by laminating three or more layers having different refractive indexes between adjacent layers, and has two or more interfaces.
In the light emitting device, the refractive indexes of the three or more layers are alternately high and low or alternately low and high from the organic functional layer side toward the light reflecting layer side. is there.
 上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。 The above-described object and other objects, features, and advantages will be further clarified by a preferred embodiment described below and the following drawings attached thereto.
第1の実施形態に係る発光装置の構成を示す断面図である。It is sectional drawing which shows the structure of the light-emitting device which concerns on 1st Embodiment. 第1の実施形態に係る発光装置の動作の例を示す断面図である。It is sectional drawing which shows the example of operation | movement of the light-emitting device which concerns on 1st Embodiment. 第1の実施形態に係る発光装置における反射率のシミュレーション結果を示す図である。It is a figure which shows the simulation result of the reflectance in the light-emitting device which concerns on 1st Embodiment. 比較例1に係る発光装置における、発光層からの直接光と、光反射層で反射した反射光との干渉について説明する図である。It is a figure explaining the interference of the direct light from a light emitting layer and the reflected light reflected in the light reflection layer in the light-emitting device which concerns on the comparative example 1. FIG. 比較例1に係る発光装置における、光の角度と、干渉による光強度の増減と、の関係を示す図である。It is a figure which shows the relationship between the angle of light in the light-emitting device which concerns on the comparative example 1, and the increase / decrease in the light intensity by interference. 有機機能層の第1例を示す断面図である。It is sectional drawing which shows the 1st example of an organic functional layer. 有機機能層の第2例を示す断面図である。It is sectional drawing which shows the 2nd example of an organic functional layer. 図8(a)は第1の実施形態に係る発光装置のより具体的な構成の例を示す平面図であり、図8(b)は図8(a)におけるB-B線に沿った断面図である。FIG. 8A is a plan view showing an example of a more specific configuration of the light emitting device according to the first embodiment, and FIG. 8B is a cross-sectional view taken along line BB in FIG. 8A. FIG. 第2の実施形態に係る発光装置の構成を示す断面図である。It is sectional drawing which shows the structure of the light-emitting device which concerns on 2nd Embodiment. 実施例1に係る発光装置の構成を示す断面図である。1 is a cross-sectional view illustrating a configuration of a light emitting device according to Example 1. FIG. 実施例2に係る発光装置の構成を示す断面図である。6 is a cross-sectional view illustrating a configuration of a light emitting device according to Example 2. FIG. 実施例3に係る発光装置の構成を示す断面図である。6 is a cross-sectional view illustrating a configuration of a light emitting device according to Example 3. FIG. 実施例4に係る発光装置の構成を示す断面図である。6 is a cross-sectional view illustrating a configuration of a light emitting device according to Example 4. FIG.
 以下、実施の形態について、図面を用いて説明する。尚、すべての図面において、同様の構成要素には同一の符号を付し、適宜説明を省略する。 Hereinafter, embodiments will be described with reference to the drawings. In all the drawings, the same components are denoted by the same reference numerals, and description thereof will be omitted as appropriate.
 (第1の実施形態) (First embodiment)
 図1は実施形態に係る発光装置100の構成を示す断面図である。発光装置100は、有機EL素子を含んで構成される。この発光装置100は、例えばディスプレイ、照明装置、又は光通信装置の光源として用いることができる。 FIG. 1 is a cross-sectional view showing a configuration of a light emitting device 100 according to an embodiment. The light emitting device 100 includes an organic EL element. The light emitting device 100 can be used as a light source of, for example, a display, a lighting device, or an optical communication device.
 本実施形態に係る発光装置100は、出射面(光取り出し面110a)を有する透光性基板110と、透光性の第1電極130と、少なくとも発光層を含む有機機能層140と、光反射層160と、透光性の介在層120と、を備える。第1電極130は、透光性基板110の出射面とは反対面側に配置されている。有機機能層140は、第1電極130を基準として透光性基板110とは反対側に配置されている。光反射層160は、有機機能層140を基準として第1電極130とは反対側に配置されている。光反射層160は、有機機能層140側から光反射層160へ到来する光を反射する。介在層120は、有機機能層140と光反射層160との間に配置されている。介在層120は、互いに隣り合う層間で屈折率が異なる3つ以上の層を積層することにより構成されて、2つ以上の界面を有している。介在層120を構成する3つ以上の層の屈折率は、有機機能層140側から光反射層160側に向けて、交互に高、低の順となっているか、又は、交互に低、高の順となっている。 The light emitting device 100 according to the present embodiment includes a light transmissive substrate 110 having an emission surface (light extraction surface 110a), a light transmissive first electrode 130, an organic functional layer 140 including at least a light emitting layer, and light reflection. A layer 160 and a light-transmitting intervening layer 120; The first electrode 130 is disposed on the side opposite to the emission surface of the translucent substrate 110. The organic functional layer 140 is disposed on the opposite side of the translucent substrate 110 with respect to the first electrode 130. The light reflecting layer 160 is disposed on the side opposite to the first electrode 130 with respect to the organic functional layer 140. The light reflecting layer 160 reflects light that arrives at the light reflecting layer 160 from the organic functional layer 140 side. The intervening layer 120 is disposed between the organic functional layer 140 and the light reflecting layer 160. The intervening layer 120 is configured by stacking three or more layers having different refractive indexes between adjacent layers, and has two or more interfaces. The refractive indexes of three or more layers constituting the intervening layer 120 are alternately in the order of high and low from the organic functional layer 140 side to the light reflecting layer 160 side, or alternately low and high. The order is
 以下においては、説明を簡単にするため、発光装置100の各構成要素の位置関係(上下関係等)が各図に示す関係であるものとして説明を行う。ただし、この説明における位置関係は、発光装置100の使用時の位置関係とは無関係である。 Hereinafter, in order to simplify the description, description will be made assuming that the positional relationship (vertical relationship, etc.) of each component of the light emitting device 100 is the relationship shown in each drawing. However, the positional relationship in this description is irrelevant to the positional relationship when the light emitting device 100 is used.
 図1に示すように、透光性基板110は、ガラスや樹脂などの透光性を有する材料からなる板状部材である。例えば、透光性基板110の上面、すなわち透光性基板110における有機機能層140側とは反対側の面は、平坦な光取り出し面110aとなっている。この光取り出し面110aは、光放出空間を充たす空気(屈折率1)と接している。なお、透光性基板110の上面には、光取り出しフィルムが貼り付けられており、この光取り出しフィルムの上面が、光取り出し面を構成していても良い。 As shown in FIG. 1, the translucent substrate 110 is a plate-like member made of a translucent material such as glass or resin. For example, the upper surface of the translucent substrate 110, that is, the surface of the translucent substrate 110 opposite to the organic functional layer 140 side is a flat light extraction surface 110a. The light extraction surface 110a is in contact with air (refractive index 1) filling the light emission space. In addition, the light extraction film is affixed on the upper surface of the translucent board | substrate 110, and the upper surface of this light extraction film may comprise the light extraction surface.
 第1電極130は、例えばITO(Indium Tin Oxide)やIZO(Indium Zinc Oxide)などの金属酸化物導電体からなる透明電極とすることができる。ただし、第1電極130は、光が透過する程度に薄い金属薄膜であっても良い。 The first electrode 130 may be a transparent electrode made of a metal oxide conductor such as ITO (Indium Tin Oxide) or IZO (Indium Zinc Oxide). However, the first electrode 130 may be a metal thin film that is thin enough to transmit light.
 有機機能層140は、透光性の第2電極150を備えて構成されている。第2電極150は、例えば、有機機能層140における介在層120側の端に配置されている。すなわち、第2電極150は、例えば、有機機能層140における介在層120側の端の層を構成している。或いは、有機機能層140は、第2電極150と介在層120との間に配置された有機層(電子注入層など)を備えている。すなわち、第2電極150は、有機機能層140の厚み方向における中間部に配置されている。図1では、第2電極150が有機機能層140における介在層120側の端に配置されている例を示している。第2電極150は、例えば、光が透過する程度に薄い金属薄膜とすることができる。この場合、第2電極150の膜厚は、例えば、10nm程度とすることができる。第2電極150の材質としては、例えば、銀、アルミニウム等が挙げられる。ただし、第2電極150は、ITOやIZOなどの金属酸化物導電体からなる透明電極であっても良い。 The organic functional layer 140 includes a translucent second electrode 150. For example, the second electrode 150 is disposed at the end of the organic functional layer 140 on the intervening layer 120 side. That is, the 2nd electrode 150 comprises the layer of the end by the side of the intervening layer 120 in the organic functional layer 140, for example. Alternatively, the organic functional layer 140 includes an organic layer (such as an electron injection layer) disposed between the second electrode 150 and the intervening layer 120. That is, the second electrode 150 is disposed at an intermediate portion in the thickness direction of the organic functional layer 140. FIG. 1 shows an example in which the second electrode 150 is disposed at the end of the organic functional layer 140 on the intervening layer 120 side. For example, the second electrode 150 can be a metal thin film that is thin enough to transmit light. In this case, the film thickness of the second electrode 150 can be about 10 nm, for example. Examples of the material of the second electrode 150 include silver and aluminum. However, the second electrode 150 may be a transparent electrode made of a metal oxide conductor such as ITO or IZO.
 例えば、第1電極130が陽極を構成し、第2電極150が陰極を構成する。この場合、第2電極150の仕事関数が第1電極130の仕事関数よりも小さくなるように、第2電極150の材料と第1電極130の材料との組み合わせを選択する必要がある。 For example, the first electrode 130 constitutes an anode and the second electrode 150 constitutes a cathode. In this case, it is necessary to select a combination of the material of the second electrode 150 and the material of the first electrode 130 so that the work function of the second electrode 150 is smaller than the work function of the first electrode 130.
 有機機能層140における第2電極150以外の部分は、NPB(N,N-di(naphthalene-1-yl)-N,N-diphenyl-benzidene)などの有機材料からなる。有機機能層140は、例えば、発光層の他に、電子輸送機能を有する層、正孔輸送機能を有する層などを有していても良い。有機機能層140の屈折率は、例えば、1.6以上2.0以下程度である。 The portion other than the second electrode 150 in the organic functional layer 140 is made of an organic material such as NPB (N, N-di (naphthalene-1-yl) -N, N-diphenyl-benzidine). The organic functional layer 140 may include, for example, a layer having an electron transport function, a layer having a hole transport function, and the like in addition to the light emitting layer. The refractive index of the organic functional layer 140 is, for example, about 1.6 or more and 2.0 or less.
 介在層120を構成する各層は、例えば透光性の誘電体などにより構成されている。介在層120を構成する3つ以上の層のうち、隣り合う層は相互に接しており、隣り合う層の間に界面が形成されている。
 介在層120は、第1層121と、第2層122と、を交互に3層以上積層してなる積層構造となっている。例えば、第2層122の屈折率は、第1層121の屈折率よりも小さい。第2電極150が有機機能層140における介在層120側の端に位置している場合、第1層121の屈折率は、有機機能層140の屈折率以上である。例えば、第1層121の屈折率は、1.8程度とすることができる。例えば、第2層122の屈折率は、1.3~1.5程度とすることができる。第1層121の材料は、例えば、有機機能層140の材料と同じとすることができる。第2層122の材料は、例えば、MgF(屈折率1.37)又はSiO(屈折率1.45)などとすることができる。なお、各第1層121は、必ずしも互いに同じ材料である必要は無い。同様に、各第2層122は、必ずしも互いに同じ材料である必要は無い。また、介在層120の内部の屈折率が、有機機能層140側から光反射層160側に向けて、交互に高、低の順となるか、又は、交互に低、高の順となるならば、第1層121および第2層122の材料として、どのような屈折率の材料を用いても良い。また、介在層120の内部の屈折率が、有機機能層140側から光反射層160側に向けて、交互に高、低の順となるか、又は、交互に低、高の順となるならば、何れか1つ以上の第2層122の屈折率が、何れか1つ以上の第1層121の屈折率よりも大きくても良い。
 なお、各第1層121の屈折率が互いに異なる場合、各第1層121の膜厚の光路長が互いに等しくても、各第1層121の物理的な膜厚が互いに異なる。同様に、各第2層122の屈折率が互いに異なる場合、各第2層122の膜厚の光路長が互いに等しくても、各第2層122の物理的な膜厚が互いに異なる。
 例えば、有機機能層140に近い第1層121及び第2層122については、有機機能層140に悪影響を及ぼしにくい材料(例えばポーラスシリカ)を用いることができる。また、有機機能層140から離れている第1層121及び第2層122については、有機機能層140に近ければ有機機能層140に悪影響を及ぼすような材料(例えばTiOなど)についても選択することができる。なぜなら、それら第1層121及び第2層122と有機機能層140との間に存在する第1層121及び第2層122がバリア層となるためである。
Each layer constituting the intervening layer 120 is made of, for example, a translucent dielectric. Of the three or more layers constituting the intervening layer 120, adjacent layers are in contact with each other, and an interface is formed between the adjacent layers.
The intervening layer 120 has a laminated structure in which three or more first layers 121 and second layers 122 are alternately laminated. For example, the refractive index of the second layer 122 is smaller than the refractive index of the first layer 121. When the second electrode 150 is positioned at the end of the organic functional layer 140 on the intervening layer 120 side, the refractive index of the first layer 121 is equal to or higher than the refractive index of the organic functional layer 140. For example, the refractive index of the first layer 121 can be about 1.8. For example, the refractive index of the second layer 122 can be about 1.3 to 1.5. The material of the first layer 121 can be the same as the material of the organic functional layer 140, for example. The material of the second layer 122 can be, for example, MgF 2 (refractive index 1.37) or SiO 2 (refractive index 1.45). Note that the first layers 121 are not necessarily made of the same material. Similarly, the second layers 122 are not necessarily made of the same material. If the refractive index inside the intervening layer 120 is alternately in the order of high and low from the organic functional layer 140 side to the light reflecting layer 160 side, or alternately in the order of low and high. For example, any refractive index material may be used as the material of the first layer 121 and the second layer 122. If the refractive index inside the intervening layer 120 is alternately in the order of high and low from the organic functional layer 140 side to the light reflecting layer 160 side, or alternately in the order of low and high. For example, the refractive index of any one or more second layers 122 may be larger than the refractive index of any one or more first layers 121.
When the refractive indexes of the first layers 121 are different from each other, the physical film thicknesses of the first layers 121 are different from each other even if the optical path lengths of the film thicknesses of the first layers 121 are the same. Similarly, when the refractive indexes of the second layers 122 are different from each other, even if the optical path lengths of the film thicknesses of the second layers 122 are the same, the physical film thicknesses of the second layers 122 are different from each other.
For example, for the first layer 121 and the second layer 122 close to the organic functional layer 140, a material that does not adversely affect the organic functional layer 140 (for example, porous silica) can be used. In addition, for the first layer 121 and the second layer 122 that are separated from the organic functional layer 140, a material (for example, TiO) that adversely affects the organic functional layer 140 when it is close to the organic functional layer 140 should be selected. Can do. This is because the first layer 121 and the second layer 122 existing between the first layer 121 and the second layer 122 and the organic functional layer 140 serve as a barrier layer.
 介在層120における最上層(最も有機機能層140側の層)は第1層121と第2層122の何れであっても構わない。ただし、介在層120における最上層を高屈折率の第1層121とすることにより、第2電極150を有機機能層140における介在層120側の端に配置しても、プラズモン共鳴の発生を抑制することができる。一方、介在層120における最上層を低屈折率の第2層122とした場合、第2電極150と介在層120との界面が、発光層側から光反射層160側に向けて屈折率が高い方から低い方に変化する界面となり、この界面にて光取り出し面110a側に光を反射することができる。介在層120における最下層(最も光反射層160側の層)は第1層121と第2層122の何れであっても構わない。 The uppermost layer (most layer on the organic functional layer 140 side) in the intervening layer 120 may be either the first layer 121 or the second layer 122. However, even if the second electrode 150 is disposed at the end of the organic functional layer 140 on the side of the intervening layer 120 by suppressing the uppermost layer of the intervening layer 120 to the first layer 121 having a high refractive index, the occurrence of plasmon resonance is suppressed. can do. On the other hand, when the uppermost layer in the intervening layer 120 is the second layer 122 having a low refractive index, the interface between the second electrode 150 and the intervening layer 120 has a high refractive index from the light emitting layer side toward the light reflecting layer 160 side. The interface changes from one side to the other, and light can be reflected to the light extraction surface 110a side at this interface. The lowermost layer (the layer closest to the light reflecting layer 160) in the intervening layer 120 may be either the first layer 121 or the second layer 122.
 光反射層160は、例えば、銀、アルミニウムなどの金属膜からなる。すなわち、光反射層160は、例えば、導電性である。光反射層160は、有機機能層140から光反射層160側に向かう光(有機機能層140側から到来する光)を、透光性基板110側に向けて反射する。ただし、光反射層160は、非導電性(絶縁性)であっても良い。このため、光反射層160は、金属層でなくても良い。 The light reflecting layer 160 is made of, for example, a metal film such as silver or aluminum. That is, the light reflection layer 160 is, for example, conductive. The light reflecting layer 160 reflects light traveling from the organic functional layer 140 toward the light reflecting layer 160 (light coming from the organic functional layer 140 side) toward the translucent substrate 110 side. However, the light reflection layer 160 may be non-conductive (insulating). For this reason, the light reflection layer 160 may not be a metal layer.
 第1電極130と第2電極150との間に電圧が印加されることにより、有機機能層140の発光層が発光する。透光性基板110、第1電極130、有機機能層140、第2電極150、介在層120の第1層121及び第2層122は、いずれも、有機機能層140の発光層が発光した光の少なくとも一部を透過する。発光層が発光した光の一部は、透光性基板110の光取り出し面110aから、発光装置100の外部(つまり上記光放出空間)に放射される(取り出される)。 When a voltage is applied between the first electrode 130 and the second electrode 150, the light emitting layer of the organic functional layer 140 emits light. The translucent substrate 110, the first electrode 130, the organic functional layer 140, the second electrode 150, and the first layer 121 and the second layer 122 of the intervening layer 120 are all light emitted from the light emitting layer of the organic functional layer 140. Of at least part of it. Part of the light emitted from the light emitting layer is emitted (extracted) from the light extraction surface 110a of the translucent substrate 110 to the outside of the light emitting device 100 (that is, the light emission space).
 例えば、透光性基板110の一方の面(図1における下面)と第1電極130の一方の面(図1における上面)とが相互に接している。また、第1電極130の他方の面(図1における下面)と有機機能層140の一方の面(図1における上面)とが相互に接している。また、有機機能層140における介在層120側の端に第2電極150が配置されている。また、第2電極150と介在層120の一方の面(図1における上面)とが相互に接している。より具体的には、第2電極150の発光層側とは反対側の面と最上層の第1層121の一方の面(図1における上面)とが相互に接している。また、介在層120の他方の面(図1における下面)と光反射層160の一方の面(図1における上面)とが相互に接している。より具体的には、最下層の第1層121の一方の面(図1における下面)と光反射層160の一方の面とが相互に接している。ただし、透光性基板110と第1電極130との間には他の層が存在していても良い。同様に、第1電極130と有機機能層140との間には他の層が存在していても良い。同様に、有機機能層140内において、電子注入層等の有機層(有機材料部)と第2電極150との間には他の層が存在していても良い。同様に、第2電極150と介在層120との間には他の層が存在していても良い。同様に、介在層120と光反射層160との間には他の層が存在していても良い。 For example, one surface (the lower surface in FIG. 1) of the translucent substrate 110 and one surface (the upper surface in FIG. 1) of the first electrode 130 are in contact with each other. Further, the other surface (lower surface in FIG. 1) of the first electrode 130 and one surface (upper surface in FIG. 1) of the organic functional layer 140 are in contact with each other. In addition, the second electrode 150 is disposed at the end of the organic functional layer 140 on the intervening layer 120 side. Further, the second electrode 150 and one surface (the upper surface in FIG. 1) of the intervening layer 120 are in contact with each other. More specifically, the surface of the second electrode 150 opposite to the light emitting layer side and one surface (the upper surface in FIG. 1) of the uppermost first layer 121 are in contact with each other. Further, the other surface (lower surface in FIG. 1) of the intervening layer 120 and one surface (upper surface in FIG. 1) of the light reflecting layer 160 are in contact with each other. More specifically, one surface (the lower surface in FIG. 1) of the lowermost first layer 121 and one surface of the light reflecting layer 160 are in contact with each other. However, another layer may exist between the translucent substrate 110 and the first electrode 130. Similarly, another layer may exist between the first electrode 130 and the organic functional layer 140. Similarly, in the organic functional layer 140, another layer may exist between the organic layer (organic material part) such as an electron injection layer and the second electrode 150. Similarly, another layer may exist between the second electrode 150 and the intervening layer 120. Similarly, another layer may exist between the intervening layer 120 and the light reflecting layer 160.
 発光層から発せられる光の最大ピーク波長をλとすると、介在層120を構成する3つ以上の層の各々の膜厚は、光路長(光学的距離)がλ/4となる厚さとなっている。すなわち、各第1層121の膜厚、及び、各第2層122の膜厚は、光路長(光学的距離)がλ/4となる厚さとなっている。ここで、最大ピーク波長λは、それぞれの層の屈折率により個々に異なる。すなわち、最大ピーク波長λは、各層毎の値である。発光層から発せられる光のうち最大ピーク波長の光の、第1層121における波長をλ、第2層122における波長をλとすると、各第1層121の膜厚はλ/4であり、第2層の膜厚はλ/4である。屈折率が1の媒体中を通過するときの最大ピーク波長をλとし、第1層121の屈折率をn、第2層122の屈折率をnとすると、λ=λ/nとなり、λ=λ/nとなる。 When the maximum peak wavelength of light emitted from the light emitting layer is λ, the thickness of each of the three or more layers constituting the intervening layer 120 is such that the optical path length (optical distance) is λ / 4. Yes. That is, the thickness of each first layer 121 and the thickness of each second layer 122 are such that the optical path length (optical distance) is λ / 4. Here, the maximum peak wavelength λ differs individually depending on the refractive index of each layer. That is, the maximum peak wavelength λ is a value for each layer. Of light of the maximum peak wavelength of the light emitted from the light-emitting layer, 1 wavelength lambda in the first layer 121, and the wavelength of the second layer 122 and lambda 2, the thickness of the first layer 121 is lambda 1/4 , and the film thickness of the second layer is lambda 2/4. When the maximum peak wavelength when passing through a medium having a refractive index of 1 is λ, the refractive index of the first layer 121 is n 1 , and the refractive index of the second layer 122 is n 2 , λ 1 = λ / n 1 Thus, λ 2 = λ / n 2 .
 また、発光層から発せられる光の最大ピーク波長をλとすると、発光層における発光面から有機機能層140と介在層120との界面までの光路長(光学的距離)は、λ/2の倍数となっている。ここで、光の基本単位は1波長と考えられ、最小発光領域(発光が生じる領域の大きさの下限)は直径λの球形の領域である。そして、最小発光領域の中心点を発光中心点と称することとすると、発光面は、発光中心点の集合からなるほぼ平坦な面である。一例として、発光層の膜厚が25nm以上35nm以下程度であるとすると、条件にもよるが、発光面は、例えば、正孔注入層から5nm程度の位置に存在する。発光層における発光面から有機機能層140と介在層120との界面までの光路長は、発光面から有機機能層140と介在層120との界面までの間に介在する各層の屈折率に応じた長さとなる。 Further, when the maximum peak wavelength of light emitted from the light emitting layer is λ, the optical path length (optical distance) from the light emitting surface to the interface between the organic functional layer 140 and the intervening layer 120 is a multiple of λ / 2. It has become. Here, the basic unit of light is considered to be one wavelength, and the minimum light emitting region (the lower limit of the size of the region where light emission occurs) is a spherical region having a diameter λ. If the central point of the minimum light emitting region is referred to as the light emitting center point, the light emitting surface is a substantially flat surface composed of a set of light emitting center points. As an example, when the film thickness of the light emitting layer is about 25 nm or more and 35 nm or less, the light emitting surface exists, for example, at a position of about 5 nm from the hole injection layer, depending on conditions. The optical path length from the light emitting surface to the interface between the organic functional layer 140 and the intervening layer 120 in the light emitting layer depends on the refractive index of each layer interposed between the light emitting surface and the interface between the organic functional layer 140 and the interposing layer 120. It becomes length.
 次に、動作を説明する。図1では、介在層120における最上層と最下層が何れも第1層121である例を示しており、以下の動作説明は、この構造に基づく説明であるものとする。 Next, the operation will be described. FIG. 1 shows an example in which the uppermost layer and the lowermost layer of the intervening layer 120 are both the first layer 121, and the following operation description is based on this structure.
 図2は第1の実施形態に係る発光装置100の動作の例を示す断面図である。発光層から発せられた光のうち、透光性基板110側へ向かう光(光路L1、L5の光)は、有機機能層140及び第1電極130を経て、透光性基板110へ向かう。第1電極130の屈折率は例えば1.8、透光性基板110の屈折率は例えば1.5であり、両者には差があるので、光の一部は第1電極130と透光性基板110との界面で全反射し、残りは透光性基板110へ透過(入射)する。透光性基板110へ透過(入射)した光のうち、一部は光放出空間との界面で全反射し、残りは光放出空間へ出る。 FIG. 2 is a cross-sectional view showing an example of the operation of the light emitting device 100 according to the first embodiment. Of the light emitted from the light emitting layer, the light traveling toward the translucent substrate 110 (the light of the optical paths L1 and L5) travels toward the translucent substrate 110 through the organic functional layer 140 and the first electrode 130. The refractive index of the first electrode 130 is 1.8, for example, and the refractive index of the translucent substrate 110 is 1.5, for example. The light is totally reflected at the interface with the substrate 110 and the remaining light is transmitted (incident) to the light transmitting substrate 110. Part of the light transmitted (incident) to the translucent substrate 110 is totally reflected at the interface with the light emission space, and the rest is emitted to the light emission space.
 一方、第2電極150側へ向かう光のうち、一部は第2電極150の表面(上面)にて反射し、残り(光路L1、L11の光等)は第2電極150を透過して介在層120へ入る。ここで、高屈折率(有機機能層140以上の屈折率)の第1層121が第2電極150に接しているので、第2電極150が金属薄膜からなる場合でも、第2電極150と第1層121との界面にてエバネッセント光およびプラズモン共鳴は生じず、光の損失が生じない。 On the other hand, part of the light traveling toward the second electrode 150 is reflected by the surface (upper surface) of the second electrode 150, and the rest (light of the optical paths L1, L11, etc.) is transmitted through the second electrode 150 and interposed. Enter layer 120. Here, since the first layer 121 having a high refractive index (refractive index greater than or equal to the organic functional layer 140) is in contact with the second electrode 150, even if the second electrode 150 is made of a metal thin film, Evanescent light and plasmon resonance do not occur at the interface with the first layer 121, and no light loss occurs.
 介在層120へ入射した光のうち、有機機能層140に対する法線と光軸とのなす角度が所定の角度α以内の光は、何れかの第1層121とその下に隣接する第2層122との界面にて反射し、それらが合成されて、有機機能層140と介在層120との界面であたかも大きな反射が起きているかのようにふるまう。 Of the light incident on the intervening layer 120, the light whose angle between the normal to the organic functional layer 140 and the optical axis is within a predetermined angle α is any one of the first layers 121 and the second layer adjacent thereto. The light is reflected at the interface with 122 and synthesized, and acts as if large reflection is occurring at the interface between the organic functional layer 140 and the intervening layer 120.
 すなわち、上記のように、介在層120を構成する各層の膜厚(各第1層121の膜厚、及び、各第2層122の膜厚)が、それぞれ光路長がλ/4となる膜厚となっていることにより、角度α以内の光を有機機能層140と介在層120との界面にて反射させるふるまいをすることができる。ここで、各第1層121の膜厚、及び、各第2層122の膜厚が、それぞれλ/4となっていることにより、ある程度以下の角度の光(角度α以内の光)について、第1層121と第2層122との各界面にて反射する光どうしが干渉により相互に強め合う。これにより、光取り出し効率を向上することができる。なお、このようにして反射光どうしで強め合う効果は、介在層120を構成する層の数が多いほど高まる。 That is, as described above, the film thickness of each layer constituting the intervening layer 120 (the film thickness of each first layer 121 and the film thickness of each second layer 122) is a film whose optical path length is λ / 4, respectively. By being thick, it is possible to behave such that light within an angle α is reflected at the interface between the organic functional layer 140 and the intervening layer 120. Here, because the film thickness of each first layer 121 and the film thickness of each second layer 122 are λ / 4, respectively, with respect to light having a certain angle or less (light within an angle α), Light reflected at each interface between the first layer 121 and the second layer 122 reinforces each other due to interference. Thereby, the light extraction efficiency can be improved. Note that the effect of strengthening the reflected light in this way increases as the number of layers constituting the intervening layer 120 increases.
 また、金属層である光反射層160にて光が反射する場合、光の位相は半波長分ずれる。このため、通常では、光反射層160で反射する光と、発光面からの光の位相を考慮しなければならない。ただし、本実施形態では、各第1層121の膜厚、及び、各第2層122の膜厚が、それぞれλ/4となっていて、且つ、介在層120の最下層が第1層121となっていることにより、ある程度以下の角度の光(角度α以内の光)については、第1層121と第2層122との各界面にて反射する光が多くなる。よって、介在層120を構成する層の数が多いほど発光面から光反射層160までの距離を考慮する必要がなくなる。 In addition, when light is reflected by the light reflection layer 160 that is a metal layer, the phase of the light is shifted by a half wavelength. For this reason, normally, it is necessary to consider the phase of the light reflected by the light reflecting layer 160 and the light from the light emitting surface. However, in the present embodiment, the thickness of each first layer 121 and the thickness of each second layer 122 are λ / 4, and the lowest layer of the intervening layer 120 is the first layer 121. As a result, for light with an angle of a certain degree or less (light within an angle α), more light is reflected at each interface between the first layer 121 and the second layer 122. Therefore, it is not necessary to consider the distance from the light emitting surface to the light reflecting layer 160 as the number of layers constituting the intervening layer 120 increases.
 また、発光層における発光面から、有機機能層140と介在層120との界面までの光路長が、λ/2の倍数となっているので、ある程度以下の角度の光(角度α以内の光)については、有機機能層140と介在層120との界面での反射光と発光面の光の位相が一致するので、これら光が強め合うようにできる。 In addition, since the optical path length from the light emitting surface of the light emitting layer to the interface between the organic functional layer 140 and the intervening layer 120 is a multiple of λ / 2, light with a certain angle or less (light within an angle α) With respect to, since the phases of the reflected light at the interface between the organic functional layer 140 and the intervening layer 120 and the light on the light emitting surface coincide with each other, these lights can be intensified.
 また、金属面(光反射層160)で光が反射する場合、ある程度のロスが生じるのに対し、層間の屈折率を利用した反射ではロスが実質的に発生しない。よって、有機機能層140と介在層120との界面での反射光を利用できる分、光取り出し効率が向上する。 In addition, when light is reflected on the metal surface (light reflection layer 160), a certain amount of loss occurs, whereas in the reflection using the refractive index between layers, loss is not substantially generated. Accordingly, the light extraction efficiency is improved by the amount of reflected light at the interface between the organic functional layer 140 and the intervening layer 120.
 また、有機機能層140に対する法線と光軸とのなす角度が角度αよりも大きくかつ角度β(α<β)よりも小さい光は、介在層120を透過して光反射層160にて反射する。また、有機機能層140に対する法線と光軸とのなす角度が角度β以上の光は、何れかの第1層121とその下に隣接する第2層122との界面にて全反射する。 Further, light having an angle between the normal to the organic functional layer 140 and the optical axis that is larger than the angle α and smaller than the angle β (α <β) is transmitted through the intervening layer 120 and reflected by the light reflecting layer 160. To do. In addition, light whose angle between the normal to the organic functional layer 140 and the optical axis is equal to or larger than the angle β is totally reflected at the interface between any one of the first layers 121 and the second layer 122 adjacent thereto.
 図3は第1の実施形態に係る発光装置100における反射率のシミュレーション結果を示す図である。このシミュレーションは、6層の第1層121と5層の第2層122とを交互に積層してなる介在層120を備える発光装置100について、発光層から発せられる光の最大ピーク波長λが520nmであるものとして実施した。図3に示すように、有機機能層140に対する法線と光軸とのなす角度がおよそ20度(上記角度αに相当)以内の光と、この角度がおよそ60度(上記βに相当)以上の光について、顕著に高い反射率(ほぼ100%)が得られることが分かる。 FIG. 3 is a diagram showing a simulation result of the reflectance in the light emitting device 100 according to the first embodiment. In this simulation, the maximum peak wavelength λ of light emitted from the light emitting layer is 520 nm with respect to the light emitting device 100 including the intervening layer 120 in which six first layers 121 and five second layers 122 are alternately stacked. It was carried out as As shown in FIG. 3, the angle between the normal to the organic functional layer 140 and the optical axis is within about 20 degrees (corresponding to the angle α), and the angle is about 60 degrees (corresponding to β) or more. It can be seen that a remarkably high reflectance (almost 100%) can be obtained with respect to the above light.
 図4は、比較例に係る発光装置における、発光層からの直接光と、第2電極150で反射した反射光との干渉について説明する図である。比較例に係る発光装置は、介在層120及び光反射層160を有していない点と、第2電極150が反射電極である点で、図1に示す発光装置100と相違し、その他の点では、図1に示す発光装置100と同様に構成されているものとする。すなわち、比較例1に係る発光装置においては、光反射層(第2電極150)と有機機能層140との間に介在層120が存在しない。 FIG. 4 is a diagram illustrating interference between direct light from the light emitting layer and reflected light reflected by the second electrode 150 in the light emitting device according to the comparative example. The light emitting device according to the comparative example is different from the light emitting device 100 shown in FIG. 1 in that the intervening layer 120 and the light reflecting layer 160 are not provided and the second electrode 150 is a reflecting electrode. Then, it shall be comprised similarly to the light-emitting device 100 shown in FIG. That is, in the light emitting device according to Comparative Example 1, the intervening layer 120 does not exist between the light reflecting layer (second electrode 150) and the organic functional layer 140.
 発光層にて発光した光の一部は、図4に光路L21で示されるように透光性基板110側に向かう。発光層にて発光した光の他の一部は、光路L22で示されるように第2電極150側に向かい、有機機能層140と第2電極150との界面にて反射し、光路23で示されるように透光性基板110側に向かう。光路L21で示される光(直接光)と光路L23で示される光(反射光)とが干渉することにより、光の強度が強くなったり弱くなったりする(増減する)。 A part of the light emitted from the light emitting layer is directed toward the translucent substrate 110 as indicated by an optical path L21 in FIG. Another part of the light emitted from the light emitting layer is directed to the second electrode 150 side as indicated by the optical path L22, reflected at the interface between the organic functional layer 140 and the second electrode 150, and indicated by the optical path 23. In this way, it goes to the translucent substrate 110 side. The light indicated by the optical path L21 (direct light) and the light indicated by the optical path L23 (reflected light) interfere with each other to increase or decrease (increase or decrease) the intensity of the light.
 図5は、比較例に係る発光装置における、光の角度と、干渉による光強度の増減と、の関係を示す図である。図5の横軸は光の角度、縦軸は光強度である。横軸の光の角度は、光取り出し面110aに対する法線と光路とのなす角度である。縦軸の光強度は、干渉後の光強度のシミュレーション結果であり、干渉前の光強度(光路L21の光の強度)を1としている。ここで、図5に示す光強度は、光の角度が0度のときに最も干渉後の光強度が強くなるように、発光層から第2電極150までの距離を設定した場合のシミュレーション結果である。この場合、図5に示すように、光の角度が大きくなるほど、干渉の影響により光強度が弱まる。 FIG. 5 is a diagram showing the relationship between the light angle and the increase / decrease in light intensity due to interference in the light emitting device according to the comparative example. In FIG. 5, the horizontal axis represents the light angle, and the vertical axis represents the light intensity. The angle of light on the horizontal axis is the angle formed between the normal to the light extraction surface 110a and the optical path. The light intensity on the vertical axis is a simulation result of the light intensity after the interference, and the light intensity before the interference (the light intensity on the optical path L21) is 1. Here, the light intensity shown in FIG. 5 is a simulation result when the distance from the light emitting layer to the second electrode 150 is set so that the light intensity after interference is the strongest when the light angle is 0 degree. is there. In this case, as shown in FIG. 5, as the light angle increases, the light intensity decreases due to the influence of interference.
 一方、本実施形態では、発光層を含む有機機能層140と光反射層(光反射層160)との間に介在層120が存在している。そして、上記の角度がα~βの光、及びβ以上の光のように、ある程度以上の角度の光については、発光層から遠い界面で光が反射する場合ほど、この反射光と、当該反射光と対応する直接光と、の干渉の影響を抑制できる。なぜなら、発光層から遠い界面で光が反射する場合ほど、反射光の光軸と直接光の光軸とが遠ざかるためである。つまり、本実施形態のように第1層121と第2層122とを多層に備える構造の介在層120を有していることにより、ある程度以上の角度の光の反射光と直接光とが干渉により相互に弱めあってしまうことを抑制できる。よって、比較例と比べて光取り出し効率が向上する。 On the other hand, in this embodiment, the intervening layer 120 exists between the organic functional layer 140 including the light emitting layer and the light reflecting layer (light reflecting layer 160). For light having an angle of a certain degree or more, such as light having an angle of α to β and light having a value of β or more, the reflected light and the reflected light are reflected as the light is reflected at the interface far from the light emitting layer. The influence of interference between the light and the corresponding direct light can be suppressed. This is because the optical axis of the reflected light and the optical axis of the direct light are further away as the light is reflected at the interface far from the light emitting layer. That is, by including the intervening layer 120 having a structure in which the first layer 121 and the second layer 122 are provided in multiple layers as in the present embodiment, the reflected light of the light having a certain angle or more and the direct light interfere with each other. Can suppress mutual weakening. Therefore, the light extraction efficiency is improved as compared with the comparative example.
 次に、本実施形態に係る発光装置100を製造する工程の一例を説明する。 Next, an example of a process for manufacturing the light emitting device 100 according to this embodiment will be described.
 先ず、透光性基板110の下面に、スパッタ法などによりITOやIZOなどの金属酸化物導電体からなる透光性の導電膜を成膜し、エッチングによりこれをパターニングして第1電極130を形成する。 First, a light-transmitting conductive film made of a metal oxide conductor such as ITO or IZO is formed on the lower surface of the light-transmitting substrate 110 by sputtering or the like, and patterned by etching to form the first electrode 130. Form.
 次に、第1電極130の下面に有機材料を塗布することにより有機機能層140を形成する。 Next, the organic functional layer 140 is formed by applying an organic material to the lower surface of the first electrode 130.
 次に、有機機能層140の下面に、蒸着法などによりAl等の金属材料を堆積させて、第2電極150を形成する。 Next, a second electrode 150 is formed on the lower surface of the organic functional layer 140 by depositing a metal material such as Al by vapor deposition or the like.
 次に、第2電極150の下面に、NPBなどの有機材料を塗布し、介在層120における最上層の第1層121を形成する。 Next, an organic material such as NPB is applied to the lower surface of the second electrode 150 to form the uppermost first layer 121 in the intervening layer 120.
 次に、最上層の第1層121の下面に、MgF又はSiOなどにより第2層122のうちの最上層を形成する。 Next, the uppermost layer of the second layer 122 is formed on the lower surface of the uppermost first layer 121 by using MgF 2 or SiO 2 .
 以下、同様に、第1層121と第2層122とを交互に形成する。そして、介在層120の最下層として、第1層121を形成する。 Hereinafter, similarly, the first layer 121 and the second layer 122 are alternately formed. Then, the first layer 121 is formed as the lowermost layer of the intervening layer 120.
 次に、介在層120の下面に、蒸着法などによりAl等の金属材料を堆積させて、光反射層160を形成する。 Next, a light reflecting layer 160 is formed by depositing a metal material such as Al on the lower surface of the intervening layer 120 by vapor deposition or the like.
 なお、必要に応じてバスラインや隔壁部(図8(b)参照)をそれぞれ適切なタイミングで形成しても良い。また、光反射層160の下面には必要に応じて封止層を形成しても良い。 In addition, you may form a bus line and a partition part (refer FIG.8 (b)) at an appropriate timing, respectively as needed. Moreover, you may form a sealing layer in the lower surface of the light reflection layer 160 as needed.
 (有機機能層の第1例)
 図6は、有機機能層140の層構造の第1例を示す図である。第1例に係る有機機能層140は、正孔注入層141、正孔輸送層142、発光層143、電子輸送層144、及び電子注入層145をこの順に積層した構造を有している。すなわち有機機能層140は、有機エレクトロルミネッセンス発光層である。なお、正孔注入層141及び正孔輸送層142の代わりに、これら2つの層の機能を有する一つの層を設けてもよい。同様に、電子輸送層144及び電子注入層145の代わりに、これら2つの層の機能を有する一つの層を設けてもよい(図8(b)参照)。
(First example of organic functional layer)
FIG. 6 is a diagram illustrating a first example of the layer structure of the organic functional layer 140. The organic functional layer 140 according to the first example has a structure in which a hole injection layer 141, a hole transport layer 142, a light emitting layer 143, an electron transport layer 144, and an electron injection layer 145 are stacked in this order. That is, the organic functional layer 140 is an organic electroluminescence light emitting layer. Note that instead of the hole injection layer 141 and the hole transport layer 142, one layer having the functions of these two layers may be provided. Similarly, instead of the electron transport layer 144 and the electron injection layer 145, one layer having the function of these two layers may be provided (see FIG. 8B).
 有機機能層140の第1例において、発光層143は、例えば赤色の光を発光する層、青色の光を発光する層、黄色の光を発光する層、又は緑色の光を発光する層である。この場合、平面視において、赤色の光を発光する発光層143を有する領域、緑色の光を発光する発光層143を有する領域、及び青色の光を発光する発光層143を有する領域が繰り返し設けられていても良い(図8(b)参照)。この場合、各領域を同時に発光させると、発光装置100は白色等の単一の発光色で発光する。 In the first example of the organic functional layer 140, the light emitting layer 143 is, for example, a layer that emits red light, a layer that emits blue light, a layer that emits yellow light, or a layer that emits green light. . In this case, in a plan view, a region having a light emitting layer 143 that emits red light, a region having a light emitting layer 143 that emits green light, and a region having a light emitting layer 143 that emits blue light are repeatedly provided. (See FIG. 8B). In this case, when each region emits light simultaneously, the light emitting device 100 emits light in a single light emission color such as white.
 なお、発光層143は、複数の色を発光するための材料を混ぜることにより、白色等の単一の発光色で発光するように構成されていても良い。 Note that the light emitting layer 143 may be configured to emit light in a single light emission color such as white by mixing materials for emitting a plurality of colors.
 (有機機能層の第2例)
 図7は、有機機能層140の層構造の第2例を示す図である。図8(後述)では、有機機能層140において隔壁部180により相互に隔てられた領域が、それぞれ赤色発光、緑色発光、青色発光を行う例を説明する。これに対し、第2例では、有機機能層140の発光層143は、発光層143a,143b,143cをこの順に積層した構成を有している。発光層143a,143b,143cは、互いに異なる色の光(例えば赤、緑、及び青)を発光する。そして発光層143a,143b,143cが同時に発光することにより、発光装置100は白色等の単一の発光色で発光する。
(Second example of organic functional layer)
FIG. 7 is a diagram illustrating a second example of the layer structure of the organic functional layer 140. FIG. 8 (described later) describes an example in which regions separated from each other by the partition wall portion 180 in the organic functional layer 140 emit red light, green light, and blue light, respectively. On the other hand, in the second example, the light emitting layer 143 of the organic functional layer 140 has a configuration in which the light emitting layers 143a, 143b, and 143c are stacked in this order. The light emitting layers 143a, 143b, and 143c emit light of different colors (for example, red, green, and blue). The light emitting layers 143a, 143b, and 143c emit light at the same time, so that the light emitting device 100 emits light in a single light emission color such as white.
 図8(a)は実施形態に係る発光装置100のより具体的な構成の例を示す平面図であり、図8(b)は図8(a)におけるB-B線に沿った断面図である。なお、図8(b)及び図8(a)においては、図1とは上下が反転している。 FIG. 8A is a plan view showing an example of a more specific configuration of the light emitting device 100 according to the embodiment, and FIG. 8B is a cross-sectional view taken along line BB in FIG. 8A. is there. 8B and 8A are upside down with respect to FIG.
 第1電極130は、陽極を構成する。複数の第1電極130が、それぞれ帯状にY方向に延在している。隣り合う第1電極130同士は、Y方向に対して直交するX方向において一定間隔ずつ離間している。第1電極130の各々は、例えばITOやIZO等の金属酸化物導電体等からなる。第1電極130の屈折率は第1層121と同程度(例えば屈折率1.8程度)とされる。第1電極130の各々の表面には、第1電極130に電源電圧を供給するためのバスライン(バス電極)170が形成されている。透光性基板110及び第1電極130上には絶縁膜が形成されている。この絶縁膜には、それぞれY方向に延在するストライプ状の開口部が複数形成されている。これにより、絶縁膜からなる複数の隔壁部180が形成されている。また、この絶縁膜に形成された開口部の各々は、第1電極130に達しており、開口部の底部において各第1電極130の表面が露出している。絶縁膜の各開口部内において、第1電極130上には、有機機能層140が形成されている。有機機能層140の有機材料部は、正孔注入層141、正孔輸送層142、発光層143(発光層143R、143G、143B)、電子輸送層144がこの順序で積層されることにより構成されている。正孔注入層141及び正孔輸送層142の材料としては、芳香族アミン誘導体、フタロシアニン誘導体、ポルフィリン誘導体、オリゴチオフェン誘導体、ポリチオフェン誘導体、ベンジルフェニル誘導体、フルオレン基で3級アミンを連結した化合物、ヒドラゾン誘導体、シラザン誘導体、シラナミン誘導体、ホスファミン誘導体、キナクリドン誘導体、ポリアニリン誘導体、ポリピロール誘導体、ポリフェニレンビニレン誘導体、ポリチエニレンビニレン誘導体、ポリキノリン誘導体、ポリキノキサリン誘導体、カーボン等が挙げられる。発光層143R、143G、143Bは、それぞれ、赤色発光、緑色発光、青色発光を行う蛍光性有機金属化合物等からなる。発光層143R、143G、143Bは、隔壁部180によって互いに隔てられた状態で並んで配置されている。すなわち、有機機能層140は、隔壁部180によって複数の領域に仕切られている。発光層143R、143G、143Bおよび隔壁部180の表面を覆うように電子輸送層144が形成されている。電子輸送層144の表面を覆うように第2電極150が形成されている。第2電極150は、陰極を構成する。第2電極150は、帯状に形成されている。第2電極150は、仕事関数が低く且つ高反射率を有するAlなどの金属または合金等からなる。尚、有機機能層140の有機材料部の屈折率は、第1電極130および第1層121と同程度(例えば屈折率1.8程度)とされる。第2電極150上には介在層120が形成されている。介在層120上には光反射層160が形成されている。 The first electrode 130 constitutes an anode. The plurality of first electrodes 130 each extend in the Y direction in a strip shape. Adjacent first electrodes 130 are spaced apart from each other at a constant interval in the X direction orthogonal to the Y direction. Each of the first electrodes 130 is made of a metal oxide conductor such as ITO or IZO, for example. The refractive index of the first electrode 130 is approximately the same as that of the first layer 121 (for example, approximately 1.8). A bus line (bus electrode) 170 for supplying a power supply voltage to the first electrode 130 is formed on each surface of the first electrode 130. An insulating film is formed on the translucent substrate 110 and the first electrode 130. In this insulating film, a plurality of stripe-shaped openings each extending in the Y direction are formed. Thereby, a plurality of partition walls 180 made of an insulating film are formed. Each of the openings formed in the insulating film reaches the first electrode 130, and the surface of each first electrode 130 is exposed at the bottom of the opening. An organic functional layer 140 is formed on the first electrode 130 in each opening of the insulating film. The organic material portion of the organic functional layer 140 is configured by laminating a hole injection layer 141, a hole transport layer 142, a light emitting layer 143 ( light emitting layers 143R, 143G, 143B), and an electron transport layer 144 in this order. ing. Materials for the hole injection layer 141 and the hole transport layer 142 include aromatic amine derivatives, phthalocyanine derivatives, porphyrin derivatives, oligothiophene derivatives, polythiophene derivatives, benzylphenyl derivatives, compounds in which tertiary amines are linked by fluorene groups, hydrazones. Derivatives, silazane derivatives, silanamine derivatives, phosphamine derivatives, quinacridone derivatives, polyaniline derivatives, polypyrrole derivatives, polyphenylene vinylene derivatives, polythienylene vinylene derivatives, polyquinoline derivatives, polyquinoxaline derivatives, carbon and the like. The light emitting layers 143R, 143G, and 143B are made of a fluorescent organometallic compound that emits red light, green light, and blue light, respectively. The light emitting layers 143R, 143G, and 143B are arranged side by side in a state of being separated from each other by the partition wall portion 180. That is, the organic functional layer 140 is partitioned into a plurality of regions by the partition wall portion 180. An electron transport layer 144 is formed so as to cover the surfaces of the light emitting layers 143R, 143G, and 143B and the partition wall portion 180. A second electrode 150 is formed so as to cover the surface of the electron transport layer 144. The second electrode 150 constitutes a cathode. The second electrode 150 is formed in a band shape. The second electrode 150 is made of a metal such as Al or an alloy having a low work function and high reflectivity. The refractive index of the organic material portion of the organic functional layer 140 is approximately the same as that of the first electrode 130 and the first layer 121 (for example, a refractive index of approximately 1.8). An intervening layer 120 is formed on the second electrode 150. A light reflecting layer 160 is formed on the intervening layer 120.
 このように、赤、緑、青の光をそれぞれ発する発光層143R、143G、143Bは、ストライプ状に繰り返し配置されており、光取り出し面110aとなる透光性基板110の表面からは、赤、緑、青の光が任意の割合で混色されて単一の発光色(例えば白色)として認識される光が放出される。 As described above, the light emitting layers 143R, 143G, and 143B that emit red, green, and blue light are repeatedly arranged in a stripe shape, and red, Green and blue light are mixed at an arbitrary ratio to emit light that is recognized as a single emission color (for example, white).
 以上、実施形態によれば、発光装置100は、有機機能層140と光反射層160との間に配置された透光性の介在層120を備える。この介在層120は、互いに隣り合う層間で屈折率が異なる3つ以上の層を積層することにより構成されて、2つ以上の界面を有している。そして、介在層120を構成する3つ以上の層の屈折率は、有機機能層140側から光反射層160側に向けて、交互に高、低の順となっているか、又は、交互に低、高の順となっている。よって、有機機能層140から光反射層160側に向かい当該光反射層160にて反射してから透光性基板110側に向かう光(反射光)の光路長を、介在層120を通過させることによって稼ぐことができる。このため、直接光の光軸と反射光の光軸との距離を遠ざけることができるので、これら光の干渉を抑制できる。よって、干渉によりこれら光が打ち消し合ってしまうことを抑制できるので、光取り出し効率を向上させることができる。また、ある程度以上の角度の光については、第1層121と第2層122との界面にて全反射させることができるので、効率よく透光性基板110側に向かわせることができる。 As described above, according to the embodiment, the light emitting device 100 includes the translucent intervening layer 120 disposed between the organic functional layer 140 and the light reflecting layer 160. The intervening layer 120 is formed by laminating three or more layers having different refractive indexes between adjacent layers, and has two or more interfaces. The refractive indexes of three or more layers constituting the intervening layer 120 are alternately in the order of high and low from the organic functional layer 140 side to the light reflecting layer 160 side, or alternately low. , In order of high. Therefore, the optical path length of the light (reflected light) from the organic functional layer 140 toward the light reflecting layer 160 toward the light reflecting layer 160 and then toward the light transmitting substrate 110 is passed through the intervening layer 120. Can earn by. For this reason, since the distance between the optical axis of the direct light and the optical axis of the reflected light can be increased, interference of these lights can be suppressed. Therefore, it is possible to suppress the cancellation of these lights due to interference, so that the light extraction efficiency can be improved. Further, light having an angle of a certain degree or more can be totally reflected at the interface between the first layer 121 and the second layer 122, so that the light can be efficiently directed toward the translucent substrate 110.
 また、介在層120の屈折率が均一な場合には、有機機能層140から光反射層160側に向かう光は、金属層である光反射層160にて反射して透光性基板110側へ向かう。ただし、金属層での反射には、ある程度のロスが生じる。これに対し、本実施形態では、第2層122の屈折率が、第1層121の屈折率よりも小さいので、有機機能層140から光反射層160側に向かう光の一部については、第1層121と第2層122との界面にて全反射させることができる。これにより、介在層120の屈折率が均一な場合と比べてロスを低減できるので、光取り出し効率が向上する。 When the refractive index of the intervening layer 120 is uniform, the light traveling from the organic functional layer 140 toward the light reflecting layer 160 is reflected by the light reflecting layer 160 that is a metal layer and travels toward the light transmitting substrate 110 side. Head. However, a certain amount of loss occurs in the reflection at the metal layer. On the other hand, in this embodiment, since the refractive index of the second layer 122 is smaller than the refractive index of the first layer 121, a part of the light traveling from the organic functional layer 140 toward the light reflecting layer 160 is Total reflection can be performed at the interface between the first layer 121 and the second layer 122. Thereby, since the loss can be reduced as compared with the case where the refractive index of the intervening layer 120 is uniform, the light extraction efficiency is improved.
 例えば、介在層120の最上層は、高屈折率の第1層121である。この場合、有機機能層140における介在層120側の端に金属薄膜からなる第2電極150が存在し、第2電極150と第1層121とが接していたとしても、第2電極150と第1層121との界面にてエバネッセント光およびプラズモン共鳴は生じない。これにより、光取り出し効率の低下を抑制できる。
 また、第1層121と第2層122との配置を逆にし、介在層120の最上層を低屈折率の第2層122とする場合は、第2電極150を有機機能層140における介在層120側の端に配置するのではなく、有機機能層140の厚み方向における中間部に第2電極150を配置することにより同じ効果が得られる。
 なお、これらの何れの場合でも、ある程度以下の角度の光については、有機機能層140と介在層120との界面にて光の反射が発生する。よって、有機機能層140と介在層120との界面にて反射した反射光と、発光面の光と相互に強め合うように干渉させることができる。これにより、光取り出し効率を向上させることができる。
For example, the uppermost layer of the intervening layer 120 is the first layer 121 having a high refractive index. In this case, even if the second electrode 150 made of a metal thin film exists at the end of the organic functional layer 140 on the side of the intervening layer 120, the second electrode 150 and the first layer 121 are in contact with each other even if the second electrode 150 and the first layer 121 are in contact with each other. Evanescent light and plasmon resonance do not occur at the interface with the first layer 121. Thereby, the fall of light extraction efficiency can be suppressed.
When the arrangement of the first layer 121 and the second layer 122 is reversed and the uppermost layer of the intervening layer 120 is the second layer 122 having a low refractive index, the second electrode 150 is the intervening layer in the organic functional layer 140. The same effect can be obtained by disposing the second electrode 150 at the intermediate portion in the thickness direction of the organic functional layer 140 instead of disposing it at the end on the 120 side.
In any of these cases, the light is reflected at the interface between the organic functional layer 140 and the intervening layer 120 for light having a certain angle or less. Therefore, the reflected light reflected at the interface between the organic functional layer 140 and the intervening layer 120 and the light on the light emitting surface can be made to interfere with each other. Thereby, the light extraction efficiency can be improved.
 介在層120を構成する各層(3つ以上の層)の各々の膜厚が、光路長がλ/4となる厚さとなっているので、介在層120を構成する各層の界面にて反射する光どうしを相互に干渉させて増幅することができる。よって、発光装置100から取り出される光の強度を向上することができる。 Since the thickness of each layer (three or more layers) constituting the intervening layer 120 is such that the optical path length is λ / 4, the light reflected at the interface of each layer constituting the intervening layer 120 Amplify by interfering with each other. Therefore, the intensity of light extracted from the light emitting device 100 can be improved.
 発光層における発光面から、有機機能層140と介在層120との界面までの光路長が、λ/2の倍数となっているので、有機機能層140と介在層120との界面にて反射する光と、発光層における発光面から透光性基板110側に向かう直接光との位相を合わせて、これら光を相互に干渉させて増幅することができる。よって、発光装置100から取り出される光の強度を向上することができる。 Since the optical path length from the light emitting surface in the light emitting layer to the interface between the organic functional layer 140 and the intervening layer 120 is a multiple of λ / 2, the light is reflected at the interface between the organic functional layer 140 and the intervening layer 120. The phases of light and direct light from the light emitting surface of the light emitting layer toward the translucent substrate 110 can be matched, and these light can be amplified by interfering with each other. Therefore, the intensity of light extracted from the light emitting device 100 can be improved.
 また、発光装置100は、有機機能層140が透光性の第2電極150を備えるので、有機機能層140内の発光層に対する電圧の印加を容易に行うことができる。例えば、第2電極150を平面視における発光装置100の周縁部に引き出して、その引き出された部分に電圧を印加しても良い。 In the light emitting device 100, since the organic functional layer 140 includes the translucent second electrode 150, it is possible to easily apply a voltage to the light emitting layer in the organic functional layer 140. For example, the second electrode 150 may be drawn out to the peripheral portion of the light emitting device 100 in plan view, and a voltage may be applied to the drawn portion.
 (第2の実施形態)
 図9は第2の実施形態に係る発光装置100の構成を示す断面図である。第2の実施形態に係る発光装置100は、以下に説明する点で、第1の実施形態に係る発光装置100(図1)と相違し、その他の点では、第1の実施形態に係る発光装置100と同様に構成されている。
(Second Embodiment)
FIG. 9 is a cross-sectional view showing the configuration of the light emitting device 100 according to the second embodiment. The light emitting device 100 according to the second embodiment is different from the light emitting device 100 according to the first embodiment (FIG. 1) in the points described below, and in other points, the light emitting device according to the first embodiment. The configuration is the same as that of the apparatus 100.
 第2の実施形態に係る発光装置100は、有機機能層140内に第2電極150を有していない。例えば、有機機能層140における最下層の有機層(例えば電子注入層145)の下面と介在層120の上面(最上層の第1層121の上面)とが相互に接している。ただし、有機機能層140と介在層120との間には、他の層が存在していても良い。 The light emitting device 100 according to the second embodiment does not have the second electrode 150 in the organic functional layer 140. For example, the lower surface of the lowermost organic layer (for example, the electron injection layer 145) in the organic functional layer 140 and the upper surface of the intervening layer 120 (the upper surface of the uppermost first layer 121) are in contact with each other. However, another layer may exist between the organic functional layer 140 and the intervening layer 120.
 本実施形態の場合も、光反射層160は導電性である。光反射層160が陰極としての機能を兼ねる。また、有機機能層140は発光層の第1電極130側に配置された正孔輸送層を含んでいる。具体的には、例えば、有機機能層140は、図6に示す構成と同様に、正孔注入層141と正孔輸送層142とを有する。そして、例えば、各第1層121及び各第2層122は、電子輸送機能を有している。すなわち、各第1層121及び各第2層122は電子輸送層として機能する。なお、各第1層121及び各第2層122は、電子輸送層及び電子注入層として機能しても良い。このように、本実施形態の場合、介在層120は、有機機能層140の一部分としての機能を兼ねる。従って、本実施形態の場合、有機機能層140は、電子輸送層及び電子注入層を有していなくても良い。 Also in this embodiment, the light reflecting layer 160 is conductive. The light reflecting layer 160 also functions as a cathode. In addition, the organic functional layer 140 includes a hole transport layer disposed on the first electrode 130 side of the light emitting layer. Specifically, for example, the organic functional layer 140 includes a hole injection layer 141 and a hole transport layer 142 similarly to the configuration illustrated in FIG. For example, each first layer 121 and each second layer 122 have an electron transport function. That is, each first layer 121 and each second layer 122 function as an electron transport layer. Each first layer 121 and each second layer 122 may function as an electron transport layer and an electron injection layer. As described above, in the present embodiment, the intervening layer 120 also functions as a part of the organic functional layer 140. Therefore, in the case of this embodiment, the organic functional layer 140 does not need to have an electron carrying layer and an electron injection layer.
 本実施形態の場合、第1電極130と光反射層160との間に電圧が印加されることにより、有機機能層140の発光層が発光する。 In the present embodiment, when a voltage is applied between the first electrode 130 and the light reflecting layer 160, the light emitting layer of the organic functional layer 140 emits light.
 なお、第1電極130が陰極で光反射層160が陽極の場合、有機機能層140は、発光層の第1電極130側に配置された電子輸送層を含んでいる。具体的には、例えば、有機機能層140は、電子注入層と電子輸送層とを有する。そして、各第1層121及び各第2層122は、正孔輸送機能を有している。或いは、各第1層121及び各第2層122は、正孔輸送層及び正孔注入層として機能しても良い。そして、有機機能層140は、正孔輸送層及び正孔注入層を有していなくても良い。 In addition, when the 1st electrode 130 is a cathode and the light reflection layer 160 is an anode, the organic functional layer 140 contains the electron carrying layer arrange | positioned at the 1st electrode 130 side of a light emitting layer. Specifically, for example, the organic functional layer 140 includes an electron injection layer and an electron transport layer. Each first layer 121 and each second layer 122 have a hole transport function. Alternatively, each first layer 121 and each second layer 122 may function as a hole transport layer and a hole injection layer. And the organic functional layer 140 does not need to have a positive hole transport layer and a positive hole injection layer.
 第2の実施形態の場合、第2電極150が存在しないので、金属膜を挟む層(金属膜の両側の層)の屈折率が互いに異なる場合(金属層を挟む層の一方が相対的に低屈折率層で、他方が相対的に高屈折率層の場合)に金属膜と低屈折率層との界面で生じるエバネッセント光およびプラズモン共鳴が生じない。 In the case of the second embodiment, since the second electrode 150 is not present, when the refractive indexes of the layers sandwiching the metal film (the layers on both sides of the metal film) are different from each other (one of the layers sandwiching the metal layer is relatively low). Evanescent light and plasmon resonance generated at the interface between the metal film and the low refractive index layer do not occur in the refractive index layer (when the other is a relatively high refractive index layer).
 また、光反射層160が導電性であり、各第1層121及び各第2層122が電子輸送機能又は正孔輸送機能を有するので、発光装置100が第2電極150を有していなくても、有機機能層140に電圧を印加して発光層を発光させることができる。 Further, since the light reflection layer 160 is conductive and each of the first layers 121 and each of the second layers 122 has an electron transport function or a hole transport function, the light emitting device 100 does not have the second electrode 150. Alternatively, the light emitting layer can emit light by applying a voltage to the organic functional layer 140.
 第2の実施形態によれば、その他、第1の実施形態と同様の効果が得られる。 According to the second embodiment, other effects similar to those of the first embodiment can be obtained.
 (実施例1)
 図10は実施例1に係る発光装置100の構成を示す断面図である。実施例1に係る発光装置100は、以下に説明する点で、第1の実施形態に係る発光装置100(図1)と相違し、その他の点では、第1の実施形態に係る発光装置100と同様に構成されている。
(Example 1)
FIG. 10 is a cross-sectional view illustrating a configuration of the light emitting device 100 according to the first embodiment. The light emitting device 100 according to Example 1 is different from the light emitting device 100 according to the first embodiment (FIG. 1) in the points described below, and otherwise the light emitting device 100 according to the first embodiment. It is configured in the same way.
 実施例1の場合、介在層120と光反射層160との間に、光散乱層210を有している。例えば、介在層120の下面と光散乱層210の上面とが相互に接しており、光散乱層210の下面と光反射層160の上面とが相互に接している。ただし、介在層120と光散乱層210との間、並びに、光散乱層210と光反射層160との間には、それぞれ他の層が存在していても良い。 In the case of Example 1, the light scattering layer 210 is provided between the intervening layer 120 and the light reflecting layer 160. For example, the lower surface of the intervening layer 120 and the upper surface of the light scattering layer 210 are in contact with each other, and the lower surface of the light scattering layer 210 and the upper surface of the light reflecting layer 160 are in contact with each other. However, other layers may exist between the intervening layer 120 and the light scattering layer 210 and between the light scattering layer 210 and the light reflecting layer 160, respectively.
 光散乱層210は、例えば、誘電体材料からなる基材と、この基材よりも屈折率が小さく基材中に配置されている粒子と、を含む。基材中には、複数の(多数の)粒子が含有されている。粒子は、例えば、SiOなどの無機粒子である。この粒子の寸法は、発光層からの発光波長のピーク波長(最大ピーク波長)λ以上であることが好ましい。ここで、粒子の寸法とは、個々の粒子の球相当径を意味する。一例として、粒子は球形であることが挙げられ、その場合、粒子の寸法は粒子の直径である。ただし、この粒子の形状はその他の任意の形状であっても良い。 The light scattering layer 210 includes, for example, a base material made of a dielectric material and particles disposed in the base material with a refractive index smaller than that of the base material. A plurality of (many) particles are contained in the substrate. Particles, for example, inorganic particles such as SiO 2. The size of the particles is preferably not less than the peak wavelength (maximum peak wavelength) λ of the emission wavelength from the light emitting layer. Here, the particle size means the sphere equivalent diameter of each particle. As an example, the particles may be spherical, where the particle size is the particle diameter. However, the shape of the particles may be any other shape.
 実施例1の場合、介在層120から光反射層160側に向かう光の一部は、光散乱層210にてランダムな方向に散乱する。これにより、光散乱層210が存在しない場合には発光装置100から放射されないような角度の光についても、その一部を発光装置100から取り出せるようになることが期待できる。 In the case of Example 1, a part of the light traveling from the intervening layer 120 toward the light reflecting layer 160 side is scattered in a random direction by the light scattering layer 210. Accordingly, it can be expected that a part of light having an angle that is not emitted from the light emitting device 100 when the light scattering layer 210 is not present can be extracted from the light emitting device 100.
 (実施例2)
 図11は実施例2に係る発光装置100の構成を示す断面図である。実施例2に係る発光装置100は、以下に説明する点で、第1の実施形態に係る発光装置100(図1)と相違し、その他の点では、第1の実施形態に係る発光装置100と同様に構成されている。
(Example 2)
FIG. 11 is a cross-sectional view illustrating a configuration of the light emitting device 100 according to the second embodiment. The light emitting device 100 according to Example 2 is different from the light emitting device 100 according to the first embodiment (FIG. 1) in the points described below, and otherwise the light emitting device 100 according to the first embodiment. It is configured in the same way.
 実施例2の場合、第2電極150と発光層との間に、第1低屈折率層147が配置されている。第1低屈折率層147は、第1基材と、第1基材よりも屈折率が小さく第1基材中に配置されている第1粒子と、を含む層である。また、第2電極150と介在層120との間に、第2低屈折率層220が配置されている。第2低屈折率層220は、第2基材と、第2基材よりも屈折率が小さく第2基材中に配置されている第2粒子と、を含む層である。 In the case of Example 2, a first low refractive index layer 147 is disposed between the second electrode 150 and the light emitting layer. The first low refractive index layer 147 is a layer including a first base material and first particles having a refractive index smaller than that of the first base material and disposed in the first base material. A second low refractive index layer 220 is disposed between the second electrode 150 and the intervening layer 120. The second low refractive index layer 220 is a layer including a second base material and second particles having a refractive index smaller than that of the second base material and disposed in the second base material.
 第1基材及び第2基材の材料は、例えば、それぞれ上記の第1の実施形態における有機機能層140と同じ材料である。第1粒子及び第2粒子は、例えば、SiOやナノシリカなどの無機粒子である。発光層から発せられる光の最大ピーク波長をλとすると、第1粒子及び第2粒子の寸法は、λ以下であれば良い。第1粒子及び第2粒子の寸法は、例えば、20nm程度とすることができる。ここで、粒子(第1粒子および第2粒子)の寸法とは、平面視において、個々の粒子の球相当径を意味する。一例として、粒子は球形であることが挙げられ、その場合、粒子の寸法は粒子の直径である。ただし、この粒子の形状はその他の任意の形状であっても良い。第1基材中及び第2基材中にそれぞれ第1粒子及び第2粒子が含有されていることにより、第1低屈折率層147及び第2低屈折率層220が第1基材及び第2基材と比べて低屈折率化されている。すなわち、第2電極150を挟む一対の層がそれぞれ低屈折率化されている。 The materials of the first base material and the second base material are, for example, the same materials as those of the organic functional layer 140 in the first embodiment. The first particles and the second particles are inorganic particles such as SiO 2 and nano silica. When the maximum peak wavelength of light emitted from the light emitting layer is λ, the dimensions of the first particles and the second particles may be λ or less. The dimension of the first particle and the second particle can be set to, for example, about 20 nm. Here, the dimension of particle | grains (1st particle | grains and 2nd particle | grains) means the spherical equivalent diameter of each particle | grain in planar view. As an example, the particles may be spherical, where the particle size is the particle diameter. However, the shape of the particles may be any other shape. By including the first particles and the second particles in the first base material and the second base material, respectively, the first low refractive index layer 147 and the second low refractive index layer 220 become the first base material and the first base material. 2 The refractive index is lowered compared to the base material. That is, the pair of layers sandwiching the second electrode 150 has a low refractive index.
 第1低屈折率層147は、例えば、電子輸送層として機能するか、又は、電子注入層及び電子輸送層として機能する。なお、第1電極130が陰極で第2電極150が陽極の場合、第1低屈折率層147は、例えば、正孔輸送層として機能するか、又は、正孔注入層及び正孔輸送層として機能する。 The first low refractive index layer 147 functions as, for example, an electron transport layer, or functions as an electron injection layer and an electron transport layer. When the first electrode 130 is a cathode and the second electrode 150 is an anode, the first low refractive index layer 147 functions as, for example, a hole transport layer, or as a hole injection layer and a hole transport layer. Function.
 実施例2の場合、第2電極150を挟む一対の層(第1低屈折率層147、第2低屈折率層220)がそれぞれ低屈折率化されている。発光層は高屈折率であるため、発光層と第1低屈折率層147との界面にて光を全反射させることができる。これにより、第2低屈折率層220よりも下側の介在層120を用いずに、角度を持った光を光取り出し面110a側に向かわせることができるので、光取り出し効率を向上できる。 In the case of Example 2, the pair of layers (the first low refractive index layer 147 and the second low refractive index layer 220) sandwiching the second electrode 150 each have a low refractive index. Since the light emitting layer has a high refractive index, light can be totally reflected at the interface between the light emitting layer and the first low refractive index layer 147. Accordingly, light having an angle can be directed to the light extraction surface 110a side without using the intervening layer 120 below the second low refractive index layer 220, so that the light extraction efficiency can be improved.
 (実施例3)
 図12は実施例3に係る発光装置100の構成を示す断面図である。実施例3に係る発光装置100は、以下に説明する点で、第1の実施形態に係る発光装置100(図11)と相違し、その他の点では、第1の実施形態に係る発光装置100と同様に構成されている。
(Example 3)
FIG. 12 is a cross-sectional view illustrating a configuration of the light emitting device 100 according to the third embodiment. The light emitting device 100 according to Example 3 is different from the light emitting device 100 according to the first embodiment (FIG. 11) in the points described below, and otherwise the light emitting device 100 according to the first embodiment. It is configured in the same way.
 実施例3の場合、光反射層160は導電体である。そして、発光装置100は、少なくとも何れか1つの第2電極150と光反射層160とを相互に電気的に接続する導電体190を有している。すなわち、発光装置100は、1つ又は複数の第2電極150を有し、少なくとも1つ以上の第2電極150が光反射層160に対して電気的に接続されている。導電体190は、介在層120を上下に貫通している。なお、導電体190は、柱状のもの(つまりスルーホール)でも良いし、壁状のものでも良い。 In the case of Example 3, the light reflection layer 160 is a conductor. The light emitting device 100 includes a conductor 190 that electrically connects at least one second electrode 150 and the light reflection layer 160 to each other. That is, the light emitting device 100 includes one or a plurality of second electrodes 150, and at least one or more second electrodes 150 are electrically connected to the light reflecting layer 160. The conductor 190 penetrates the intervening layer 120 up and down. The conductor 190 may be a columnar shape (that is, a through hole) or a wall shape.
 例えば、第2電極150の形成後、マスクを用い、Agなどの金属を蒸着することにより導電体190を形成し、その後、介在層120を形成する。なお、導電体190は、隔壁部180(図8参照)上に配置しても良いし、その他の位置に配置しても良い。 For example, after forming the second electrode 150, a conductor 190 is formed by vapor-depositing a metal such as Ag using a mask, and then the intervening layer 120 is formed. In addition, the conductor 190 may be arrange | positioned on the partition part 180 (refer FIG. 8), and may be arrange | positioned in another position.
 実施例3の場合、光反射層160が導電性であり、且つ、第2電極150が光反射層160に対して電気的に接続されている。これにより、光反射層160が第2電極150とともに電極を構成するようにできるので、有機機能層140内の発光層に対してより容易に電圧を印加することができる。 In the case of Example 3, the light reflection layer 160 is conductive, and the second electrode 150 is electrically connected to the light reflection layer 160. As a result, the light reflecting layer 160 can form an electrode together with the second electrode 150, so that a voltage can be more easily applied to the light emitting layer in the organic functional layer 140.
 なお、図12では導電体190が介在層120の内部を通して第2電極150と光反射層160とを相互に電気的に接続している例を説明したが、導電体190は、介在層120の外部を通して第2電極150と光反射層160とを相互に電気的に接続していても良い。前者は比較的大面積の発光層を有する発光装置に向いており、後者は比較的小面積の発光層を有する発光装置に向いている。 Note that FIG. 12 illustrates an example in which the conductor 190 electrically connects the second electrode 150 and the light reflecting layer 160 through the inside of the intervening layer 120. The second electrode 150 and the light reflecting layer 160 may be electrically connected to each other through the outside. The former is suitable for a light emitting device having a light emitting layer having a relatively large area, and the latter is suitable for a light emitting device having a light emitting layer having a relatively small area.
 なお、介在層120に導電体190を設ける代わりに、介在層120にN型不純物が導入されて、介在層120が導電層となっていても良い。すなわち、介在層120はNドープ層であっても良い。この場合でも、導電体からなる光反射層160は、第2電極150とともに電極を構成することができる。なお、第2電極150が陽極で、第1電極130が陰極となっていても良い。この場合、介在層120にP型不純物を導入して、介在層120をPドープ層とすることができる。 Note that, instead of providing the conductor 190 in the intervening layer 120, an N-type impurity may be introduced into the intervening layer 120 so that the intervening layer 120 becomes a conductive layer. That is, the intervening layer 120 may be an N-doped layer. Even in this case, the light reflection layer 160 made of a conductor can form an electrode together with the second electrode 150. Note that the second electrode 150 may be an anode and the first electrode 130 may be a cathode. In this case, a P-type impurity can be introduced into the intervening layer 120 to make the intervening layer 120 a P-doped layer.
 (実施例4)
 図13は実施例4に係る発光装置100の構成を示す断面図である。実施例4に係る発光装置100は、以下に説明する点で、実施例3に係る発光装置100(図12)と相違し、その他の点では、実施例3に係る発光装置100と同様に構成されている。
Example 4
FIG. 13 is a cross-sectional view illustrating a configuration of the light emitting device 100 according to the fourth embodiment. The light emitting device 100 according to the fourth embodiment is different from the light emitting device 100 according to the third embodiment (FIG. 12) in the points described below, and is otherwise configured in the same manner as the light emitting device 100 according to the third embodiment. Has been.
 実施例4の場合、光反射層160の上面は、有機機能層140に対して傾斜した複数の傾斜面を含む凹凸面161となっている。すなわち、光反射層160における介在層120側の面が凹凸面161となっている。ここで、各傾斜面の寸法(各傾斜面と平行な面内における、各傾斜面の最大寸法)は、発光層からの発光波長のピーク波長(最大ピーク波長)λ以上であることが好ましい。なお、例えば、光反射層160における介在層120側の面の50%以上を凹凸面161とすることが好ましい。光反射層160における介在層120側の面の全面を凹凸面161としても良いし、光反射層160における介在層120側の面の一部は平坦面となっていても良い。 In the case of Example 4, the upper surface of the light reflecting layer 160 is an uneven surface 161 including a plurality of inclined surfaces inclined with respect to the organic functional layer 140. That is, the surface on the intervening layer 120 side of the light reflecting layer 160 is an uneven surface 161. Here, the dimension of each inclined surface (the maximum dimension of each inclined surface in a plane parallel to each inclined surface) is preferably not less than the peak wavelength (maximum peak wavelength) λ of the emission wavelength from the light emitting layer. For example, it is preferable that 50% or more of the surface of the light reflecting layer 160 on the side of the intervening layer 120 be the uneven surface 161. The entire surface on the intervening layer 120 side of the light reflecting layer 160 may be the uneven surface 161, or a part of the surface on the interposing layer 120 side of the light reflecting layer 160 may be a flat surface.
 実施例4の場合、有機機能層140から光反射層160側に向かう光のうち、一部は光反射層160にて反射する。ここで、光反射層160の上面は、有機機能層140に対して傾斜した複数の傾斜面を含む凹凸面161となっているので、光反射層160の上面が平坦面の場合には発光装置100から取り出せないような角度の光についても、その一部を発光装置100から取り出せるようになることを期待できる。 In the case of Example 4, a part of the light traveling from the organic functional layer 140 toward the light reflecting layer 160 is reflected by the light reflecting layer 160. Here, since the upper surface of the light reflecting layer 160 is a concavo-convex surface 161 including a plurality of inclined surfaces inclined with respect to the organic functional layer 140, the light emitting device is formed when the upper surface of the light reflecting layer 160 is a flat surface. It can be expected that a part of the light having an angle that cannot be extracted from 100 can be extracted from the light emitting device 100.
 なお、図13では、発光装置100が第2電極150を有する構成の場合に、光反射層160における介在層120側の面が凹凸面161となっている例を示しているが、発光装置100が第2電極150を有していない場合(図9)に、光反射層160における介在層120側の面が凹凸面161となっていても、同様の効果が得られる。 Note that FIG. 13 illustrates an example in which the surface on the intervening layer 120 side of the light reflecting layer 160 is an uneven surface 161 when the light emitting device 100 includes the second electrode 150. In the case where the second electrode 150 is not provided (FIG. 9), the same effect can be obtained even if the surface on the intervening layer 120 side of the light reflecting layer 160 is an uneven surface 161.
 以上、図面を参照して実施形態及び実施例について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。 As mentioned above, although embodiment and the Example were described with reference to drawings, these are the illustrations of this invention, Various structures other than the above are also employable.

Claims (6)

  1.  透光性基板と、
     前記透光性基板の出射面とは反対面側に配置された透光性の第1電極と、
     少なくとも発光層を含み、前記第1電極を基準として前記透光性基板とは反対側に配置された有機機能層と、
     前記有機機能層を基準として前記第1電極とは反対側に配置され、前記有機機能層側から到来する光を反射する光反射層と、
     前記有機機能層と前記光反射層との間に配置された透光性の介在層と、
     を備え、
     前記介在層は、互いに隣り合う層間で屈折率が異なる3つ以上の層を積層することにより構成されて、2つ以上の界面を有し、
     前記3つ以上の層の屈折率は、前記有機機能層側から前記光反射層側に向けて、交互に高、低の順となっているか、又は、交互に低、高の順となっている発光装置。
    A translucent substrate;
    A translucent first electrode disposed on the side opposite to the exit surface of the translucent substrate;
    An organic functional layer including at least a light-emitting layer and disposed on the opposite side of the translucent substrate with respect to the first electrode;
    A light reflecting layer disposed on the opposite side of the first electrode with respect to the organic functional layer, and reflecting light coming from the organic functional layer side;
    A light-transmitting intervening layer disposed between the organic functional layer and the light reflecting layer;
    With
    The intervening layer is formed by laminating three or more layers having different refractive indexes between adjacent layers, and has two or more interfaces.
    The refractive indexes of the three or more layers are alternately in the order of high and low from the organic functional layer side toward the light reflecting layer side, or alternately in the order of low and high. Light emitting device.
  2.  前記発光層から発せられる光の最大ピーク波長をλとすると、
     前記3つ以上の層の各々の膜厚は、光路長がλ/4となる厚さである請求項1に記載の発光装置。
    When the maximum peak wavelength of light emitted from the light emitting layer is λ,
    2. The light emitting device according to claim 1, wherein the film thickness of each of the three or more layers is such that the optical path length is λ / 4.
  3.  前記発光層から発せられる光の最大ピーク波長をλとすると、
     前記発光層における発光面から、前記有機機能層と前記介在層との界面までの光路長は、λ/2の倍数である請求項1又は2に記載の発光装置。
    When the maximum peak wavelength of light emitted from the light emitting layer is λ,
    3. The light emitting device according to claim 1, wherein an optical path length from a light emitting surface of the light emitting layer to an interface between the organic functional layer and the intervening layer is a multiple of λ / 2.
  4.  前記有機機能層は、当該有機機能層における前記介在層側の端に配置された透光性の第2電極を備える請求項1~3の何れか一項に記載の発光装置。 The light-emitting device according to any one of claims 1 to 3, wherein the organic functional layer includes a translucent second electrode disposed at an end of the organic functional layer on the intermediate layer side.
  5.  前記有機機能層は、透光性の第2電極と、前記第2電極と前記介在層との間に配置された有機層と、を備える請求項1~3の何れか一項に記載の発光装置。 The light emitting device according to any one of claims 1 to 3, wherein the organic functional layer includes a translucent second electrode, and an organic layer disposed between the second electrode and the intervening layer. apparatus.
  6.  前記第2電極と前記発光層との間に、第1基材と、前記第1基材中に配置されている第1粒子と、を含む層が配置され、
     前記第2電極と前記介在層との間に、第2基材と、前記第2基材中に配置されている第2粒子と、を含む層が配置されている請求項4に記載の発光装置。
    Between the second electrode and the light emitting layer, a layer including a first base material and first particles disposed in the first base material is disposed,
    The light emission of Claim 4 by which the layer containing the 2nd base material and the 2nd particle | grains arrange | positioned in the said 2nd base material is arrange | positioned between the said 2nd electrode and the said intervening layer. apparatus.
PCT/JP2012/081137 2012-11-30 2012-11-30 Light emitting device WO2014083693A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/081137 WO2014083693A1 (en) 2012-11-30 2012-11-30 Light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/081137 WO2014083693A1 (en) 2012-11-30 2012-11-30 Light emitting device

Publications (1)

Publication Number Publication Date
WO2014083693A1 true WO2014083693A1 (en) 2014-06-05

Family

ID=50827363

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/081137 WO2014083693A1 (en) 2012-11-30 2012-11-30 Light emitting device

Country Status (1)

Country Link
WO (1) WO2014083693A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024022057A1 (en) * 2022-07-25 2024-02-01 京东方科技集团股份有限公司 Light-emitting module and light-emitting device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11288786A (en) * 1998-02-04 1999-10-19 Toyota Central Res & Dev Lab Inc Optical resonance type organic electroluminescence element
JP2000277266A (en) * 1999-03-19 2000-10-06 Toyota Central Res & Dev Lab Inc Organic electroluminescent element
GB2353400A (en) * 1999-08-20 2001-02-21 Cambridge Display Tech Ltd Multicolour light emitting devices
JP2004152751A (en) * 2002-10-08 2004-05-27 Pioneer Electronic Corp Organic electroluminescent device
US20040119405A1 (en) * 2002-10-08 2004-06-24 Pioneer Corporation Organic electroluminescence device
KR20050021327A (en) * 2003-08-27 2005-03-07 가부시키가이샤 히타치 디스프레이즈 High-Efficacy Organic Light Emitting Element
JP2005071919A (en) * 2003-08-27 2005-03-17 Hitachi Ltd Highly efficient organic light emitting element
WO2006035956A1 (en) * 2004-09-28 2006-04-06 Toshiba Matsushita Display Technology Co., Ltd. Display
CN101006586A (en) * 2004-09-28 2007-07-25 东芝松下显示技术有限公司 Display

Patent Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6406801B1 (en) * 1998-02-04 2002-06-18 Kabushiki Kaisha Toyota Chuo Kenkyusho Optical resonator type organic electroluminescent element
JPH11288786A (en) * 1998-02-04 1999-10-19 Toyota Central Res & Dev Lab Inc Optical resonance type organic electroluminescence element
JP2000277266A (en) * 1999-03-19 2000-10-06 Toyota Central Res & Dev Lab Inc Organic electroluminescent element
WO2001015246A2 (en) * 1999-08-20 2001-03-01 Seiko Epson Corporation Multiple-wavelength light emitting device
AU6581800A (en) * 1999-08-20 2001-03-19 Cambridge Display Technology Limited Multiple-wavelength light emitting device and electronic apparatus
EP1145335A2 (en) * 1999-08-20 2001-10-17 Seiko Epson Corporation Multiple-wavelength light emitting device
DE60045185D1 (en) * 1999-08-20 2010-12-16 Cambridge Display Tech Ltd DEVICE FOR LIGHT EMISSIONS ON SEVERAL WAVELENGTHS
JP2003508876A (en) * 1999-08-20 2003-03-04 セイコーエプソン株式会社 Multi-wavelength light emitting device and electronic equipment
US6639250B1 (en) * 1999-08-20 2003-10-28 Seiko Epson Corporation Multiple-wavelength light emitting device and electronic apparatus
JP4779171B2 (en) * 1999-08-20 2011-09-28 セイコーエプソン株式会社 Multiple wavelength light emitting device and electronic device
GB2353400A (en) * 1999-08-20 2001-02-21 Cambridge Display Tech Ltd Multicolour light emitting devices
JP2004152751A (en) * 2002-10-08 2004-05-27 Pioneer Electronic Corp Organic electroluminescent device
US20040119405A1 (en) * 2002-10-08 2004-06-24 Pioneer Corporation Organic electroluminescence device
CN1592525A (en) * 2003-08-27 2005-03-09 株式会社日立显示器 High-effect organic lighting element
US20050236982A1 (en) * 2003-08-27 2005-10-27 Hitachi Displays, Ltd. High-efficiency organic light emitting element
JP2005071919A (en) * 2003-08-27 2005-03-17 Hitachi Ltd Highly efficient organic light emitting element
KR20050021327A (en) * 2003-08-27 2005-03-07 가부시키가이샤 히타치 디스프레이즈 High-Efficacy Organic Light Emitting Element
WO2006035956A1 (en) * 2004-09-28 2006-04-06 Toshiba Matsushita Display Technology Co., Ltd. Display
TWI279016B (en) * 2004-09-28 2007-04-11 Toshiba Matsushita Display Tec Display
KR20070050451A (en) * 2004-09-28 2007-05-15 도시바 마쯔시따 디스플레이 테크놀로지 컴퍼니, 리미티드 Display
US20070120464A1 (en) * 2004-09-28 2007-05-31 Satoshi Okutani Display
EP1794798A1 (en) * 2004-09-28 2007-06-13 Toshiba Matsushita Display Technology Co., Ltd. Display
CN101006586A (en) * 2004-09-28 2007-07-25 东芝松下显示技术有限公司 Display
JP2008515131A (en) * 2004-09-28 2008-05-08 東芝松下ディスプレイテクノロジー株式会社 Display device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024022057A1 (en) * 2022-07-25 2024-02-01 京东方科技集团股份有限公司 Light-emitting module and light-emitting device

Similar Documents

Publication Publication Date Title
US20110101855A1 (en) Display apparatus
KR20120102482A (en) Organic electroluminescent device and illumination apparatus
US10600980B1 (en) Quantum dot light-emitting diode (LED) with roughened electrode
US20060284170A1 (en) Transparent Light-Emitting Component
US7327081B2 (en) Stacked organic electroluminescent device and method for manufacturing thereof
US9425431B2 (en) Organic electroluminescent element and light emitting device with light extraction portions
US20170271606A1 (en) Light-emitting device including nano particle having core shell structure
JP5607733B2 (en) OLED-based light-emitting device
KR101268534B1 (en) Organic electroluminescent device and method for manufacturing thereof
WO2014083693A1 (en) Light emitting device
WO2013065177A1 (en) Light-emitting device
EP4002506B1 (en) Light-emitting device and display apparatus including the same
WO2015125308A1 (en) Organic electroluminescent element, lighting apparatus, and lighting system
US10930888B2 (en) High-efficiency QLED structures
WO2014087482A1 (en) Light emitting apparatus
KR20070119234A (en) Organic electroluminescence display of having reflective side wall and method of manufacturing the same
WO2013186919A1 (en) Organic electroluminescence device
KR20160043803A (en) Organic light emitting display device
JP2007257909A (en) Organic el element
US11316135B2 (en) High-efficiency QLED structures
JP2010251236A (en) Laminated-type light-emitting display device
WO2013186916A1 (en) Organic electroluminescence device
WO2014080513A1 (en) Light emitting device and method for producing light emitting device
WO2014013779A1 (en) Light emitting element
WO2014109028A1 (en) Light-emitting element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12889146

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12889146

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP