WO2014103042A1 - Light-emitting device - Google Patents

Light-emitting device Download PDF

Info

Publication number
WO2014103042A1
WO2014103042A1 PCT/JP2012/084166 JP2012084166W WO2014103042A1 WO 2014103042 A1 WO2014103042 A1 WO 2014103042A1 JP 2012084166 W JP2012084166 W JP 2012084166W WO 2014103042 A1 WO2014103042 A1 WO 2014103042A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
layer
organic functional
functional layer
inclined surfaces
Prior art date
Application number
PCT/JP2012/084166
Other languages
French (fr)
Japanese (ja)
Inventor
黒田 和男
Original Assignee
パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社 filed Critical パイオニア株式会社
Priority to PCT/JP2012/084166 priority Critical patent/WO2014103042A1/en
Publication of WO2014103042A1 publication Critical patent/WO2014103042A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/856Arrangements for extracting light from the devices comprising reflective means

Definitions

  • the present invention relates to a light emitting device having an organic light emitting layer.
  • a light emitting device having an organic light emitting layer as one of the light emitting devices.
  • this light emitting device it is desired to improve the ratio of light emitted to the outside (light extraction efficiency) of the light generated in the organic light emitting layer.
  • a surface light source device described in Patent Document 1 includes a light extraction substrate that constitutes a light emission surface of a light emitting element, a transparent resin layer provided on the light emission surface side of the substrate, and a light emission surface of the transparent resin layer. And a high refractive index thin film provided on the side surface.
  • the transparent resin layer has a pyramid-shaped or prism-shaped concavo-convex structure on its light-emitting surface side. The angle formed between the pyramid-shaped or prism-shaped slope and the light exit surface is more than 40 ° and less than 65 °.
  • the high refractive index thin film is provided along the concavo-convex structure, and the film thickness at each location is within an average film thickness ⁇ 30%.
  • the refractive index of the high refractive index thin film is higher than the refractive index of the transparent resin layer. 15-30% higher.
  • Patent Document 2 describes a technique for taking out light confined in the light emitting layer by total reflection to the outside of the light emitting layer by arranging the reflector obliquely on the side of the light emitting layer.
  • the portion facing the light emission space in the light emitting device is constituted by two faces of a triangular prism shape. These two surfaces are alternately arranged in the x direction parallel to the light emitting layer, extend in the y direction parallel to the light emitting layer and orthogonal to the x direction, and Is inclined. One of these two surfaces is light reflective.
  • JP 2009-146654 A JP-T-2001-507503 Special table 2011-507164
  • an organic EL (Electro Luminescence) light emitting device configured by laminating a light transmitting electrode, an organic functional layer including a light emitting layer, and a metal electrode on a light transmitting substrate such as a glass substrate.
  • a light transmitting electrode such as a glass substrate.
  • a metal electrode on a light transmitting substrate such as a glass substrate.
  • each layer The light transmitted through each layer is attenuated according to the light transmittance of each layer constituting the organic EL light emitting device.
  • the light incident in an oblique direction with respect to the light-transmitting electrode having a relatively low light transmittance has a significant attenuation because the optical path length becomes long.
  • FIG. 1 is a diagram schematically showing the direction in which light is emitted from the light emitting point of the light emitting layer. Light is emitted in all directions (spherically) from the light emitting point of the light emitting layer. Note that FIG. 1 shows a state in which light is emitted in a hemispherical form from the light emitting point P1 in order to make the drawing easy to see. In the present general light emitting device, only light having an angle of about 20 degrees or less (light in the circular region R101 shown in FIG. 1) can be extracted from the light emitting device with reference to a line perpendicular to the translucent electrode. Absent.
  • the region having a larger angle with the line perpendicular to the translucent electrode has a larger total amount of light emitted from the light emitting point P1.
  • the area of the region R102 is larger than that of the region R101 shown in FIG.
  • the angle of the light extracted from the light emitting device is more than the angle that is within about 20 degrees with respect to a line perpendicular to the translucent electrode, for example, improved by 5 degrees to about 25 degrees.
  • the improvement effect of the light extraction efficiency is larger when the extraction efficiency of light having a large current (for example, light in the region R102 shown in FIG. 1) is improved by 5 degrees.
  • the thickness of the light emitting layer of the organic EL light emitting device is very thin. For this reason, in the technique of Patent Document 2, unless the light emitting layers and the reflectors are alternately arranged at short intervals in the surface direction of the light emitting layer, light is attenuated by repeated reflection in the light emitting layer. For this reason, since the area which can arrange
  • An example of a problem to be solved by the present invention is to improve the light extraction efficiency of the light emitting device.
  • the invention according to claim 1 includes an organic functional layer including a light emitting layer, A translucent layer disposed on one side of the organic functional layer; With The surface opposite to the organic functional layer in the translucent layer constitutes a light extraction surface that emits light emitted by the light emitting layer, The translucent layer is In order from the side closer to the organic functional layer, A first light transmissive layer; A second light transmissive layer having an interface with the first light transmissive layer; Have The interface between the first light transmissive layer and the second light transmissive layer is a first inclined surface that is inclined with respect to the organic functional layer, and an inclination direction of the first inclined surface with respect to the organic functional layer A second inclined surface inclined in the opposite direction to A plurality of the first inclined surfaces and a plurality of the second inclined surfaces are arranged in the first direction parallel to the organic functional layer such that the first inclined surfaces and the second inclined surfaces are alternately positioned.
  • An interface between the second light transmissive layer and an adjacent region that is a region adjacent to the second light transmissive layer opposite to the first light transmissive layer includes a plurality of protrusions;
  • a first light reflecting film is formed along at least one of the plurality of first inclined surfaces and the plurality of second inclined surfaces;
  • Each of the plurality of protrusions includes three or more inclined surfaces inclined in different directions with respect to the organic functional layer, and at least one of these inclined surfaces is defined with respect to the organic functional layer.
  • the light emitting device is not orthogonal.
  • the invention according to claim 9 includes an organic functional layer including a light emitting layer, A translucent layer disposed on one side of the organic functional layer; With The surface opposite to the organic functional layer in the translucent layer constitutes a light extraction surface that emits light emitted by the light emitting layer, The translucent layer is In order from the side closer to the organic functional layer, A first light transmissive layer; A second light transmissive layer having an interface with the first light transmissive layer; Have The interface between the first light transmissive layer and the second light transmissive layer is a first inclined surface that is inclined with respect to the organic functional layer, and an inclination direction of the first inclined surface with respect to the organic functional layer A second inclined surface inclined in the opposite direction to A plurality of the first inclined surfaces and a plurality of the second inclined surfaces are arranged in the first direction parallel to the organic functional layer such that the first inclined surfaces and the second inclined surfaces are alternately positioned.
  • An interface between the second light transmissive layer and an adjacent region that is a region adjacent to the second light transmissive layer opposite to the first light transmissive layer includes a plurality of protrusions;
  • a first light reflecting film is formed along at least one of the plurality of first inclined surfaces and the plurality of second inclined surfaces;
  • Each of the plurality of protrusions is a light emitting device formed in a polygonal pyramid shape, a conical shape, a polygonal frustum shape, a truncated cone shape, or a hemispherical shape.
  • FIG. 2A is a perspective view of the light-emitting device according to the embodiment
  • FIG. 2B is a cross-sectional view of the light-emitting device according to the embodiment when viewed in the direction of arrow A in FIG. 2A
  • FIG. 3A is a perspective view of the second light transmissive layer
  • FIG. 3B is a perspective view of the first light transmissive layer.
  • FIG. 4C are cross-sectional views illustrating paths until light generated in the organic functional layer is emitted to the outside in the light emitting device according to the embodiment.
  • FIG. 5A to FIG. 5C are cross-sectional views illustrating paths until light generated in the organic functional layer is emitted to the outside in the light emitting device according to the embodiment.
  • FIG. 6A to FIG. 6C are cross-sectional views illustrating paths through which light generated in the organic functional layer is emitted to the outside in the light emitting device according to the comparative example.
  • FIG. 7A to FIG. 7C are cross-sectional views illustrating paths until light generated in the organic functional layer is emitted to the outside in the light emitting device according to the comparative example.
  • FIG. 10A is a plan view of the light-emitting device according to Example 1
  • FIG. 10B is a cross-sectional view taken along the line CC in FIG. 10A
  • FIG. 11A and FIG. 11B are cross-sectional views of the light emitting device according to the second embodiment
  • 12A is a cross-sectional view illustrating a part of the light-emitting device according to the third embodiment
  • FIG. 12B is a cross-sectional view illustrating a part of the light-emitting device according to the fourth embodiment.
  • FIG. 13A is a cross-sectional view showing a part of the light emitting device according to Example 5
  • FIG. 13B is a plan view showing a part of the first light-transmitting layer in Example 5
  • FIG. 13C is the example.
  • FIG. 5 is a perspective view showing a part of a first light transmissive layer in FIG. 10 is a cross-sectional view showing a part of a light emitting device according to Example 6.
  • FIG. FIG. 10 is a cross-sectional view illustrating a part of the light emitting device according to Example 7.
  • FIG. 16A to FIG. 16E are cross-sectional views illustrating a method for manufacturing a light emitting device according to Example 7.
  • FIG. 10 is a cross-sectional view illustrating a part of the light emitting device according to Example 8.
  • FIG. 10 is a cross-sectional view illustrating a part of the light emitting device according to Example 9;
  • FIG. 19A to FIG. 19D are cross-sectional views illustrating a method for manufacturing a light-emitting device according to Example 9.
  • 20A to 20D are cross-sectional views illustrating the method for manufacturing the light emitting device according to the tenth embodiment.
  • 12 is a sectional view of a light emitting device according to Example 11.
  • FIG. It is sectional drawing of the light-emitting device based on Example 12.
  • It is sectional drawing of the light-emitting device based on Example 13.
  • FIG. 25A is a cross-sectional view of the light-emitting device according to Example 14 as viewed in the direction of arrow A in FIG. 24, and FIG. 25B is a cross-sectional view of the light-emitting device according to Example 14 as viewed in the direction of arrow B of FIG. FIG. It is a top view of the light-emitting device concerning Example 14.
  • FIG. 27A is a perspective view of the light emitting device according to the fifteenth embodiment
  • FIG. 27B is a cross-sectional view of the light emitting device according to the fifteenth embodiment when viewed in the direction of arrow A in FIG.
  • the light emitting device includes an organic EL element.
  • This light emitting device can be used as a light source of a display, a lighting device, or an optical communication device, for example.
  • FIG. 2A is a perspective view of the light-emitting device according to the embodiment
  • FIG. 2B is a cross-sectional view of the light-emitting device according to the embodiment when viewed in the direction of arrow A in FIG. 2A
  • FIG. It is sectional drawing which looked at the light-emitting device which concerns on embodiment in the arrow B direction of Fig.2 (a).
  • the light-emitting device includes an organic functional layer 50 including a light-emitting layer, and a light-transmitting layer 100 disposed on one surface side of the organic functional layer 50.
  • the surface of the translucent layer 100 opposite to the organic functional layer 50 constitutes a light extraction surface d that emits light emitted from the light emitting layer.
  • the light transmissive layer 100 includes a first light transmissive layer 110 and a second light transmissive layer 120 having an interface 35 between the first light transmissive layer 110 in order from the side closer to the organic functional layer 50.
  • the interface 35 between the first light transmitting layer 110 and the second light transmitting layer 120 includes a first inclined surface 35 a that is inclined with respect to the organic functional layer 50 and a first inclined surface 35 a that is inclined with respect to the organic functional layer 50. And a second inclined surface 35b inclined in a direction opposite to the inclined direction.
  • the plurality of first inclined surfaces 35a and the plurality of second inclined surfaces are arranged such that the first inclined surfaces 35a and the second inclined surfaces 35b are alternately positioned in the first direction (arrow B direction) parallel to the organic functional layer 50. 35b are arranged side by side in the first direction.
  • An interface 36 between the second light-transmitting layer 120 and the adjacent region 200 that is adjacent to the second light-transmitting layer 120 on the opposite side of the first light-transmitting layer 110 has a plurality of protrusions 70.
  • the first light reflection film 25 is formed along at least one of the plurality of first inclined surfaces 35a and the plurality of second inclined surfaces 35b.
  • Each of the plurality of protrusions 70 includes three or more inclined surfaces inclined in different directions with respect to the organic functional layer 50, and at least one of these inclined surfaces is relative to the organic functional layer 50. Are not orthogonal.
  • being inclined with respect to the organic functional layer 50 means being inclined with respect to the surface on which the organic functional layer 50 extends, for example, with respect to the upper surface of the organic functional layer 50.
  • each protrusion 70 is formed in the shape which diameter-reduces toward the opposite side to the organic functional layer 50 side on the basis of the 1st translucent layer 110, for example.
  • the base end of each projection 70 (the bottom surface of each projection 70 when each projection 70 is regarded as an independent structure) is located on the same plane, for example.
  • the protrusion 70 may have a quadrangular pyramid shape with a vertex shifted from the center in plan view, and one or two side surfaces thereof may be orthogonal to the organic functional layer 50.
  • the protrusion 70 may have a triangular prism shape (laterally triangular prism shape), and one side surface and two bottom surfaces may be orthogonal to the organic functional layer 50.
  • Each of the plurality of protrusions 70 includes three or more inclined surfaces inclined in different directions with respect to the organic functional layer 50, and any of these inclined surfaces is orthogonal to the organic functional layer 50. It is also preferred not to.
  • the light emitting device includes an organic functional layer 50 including a light emitting layer, and a light transmissive layer 100 disposed on one surface side of the organic functional layer 50.
  • the surface of the translucent layer 100 opposite to the organic functional layer 50 constitutes a light extraction surface d that emits light emitted from the light emitting layer.
  • the light transmissive layer 100 includes a first light transmissive layer 110 and a second light transmissive layer 120 having an interface 35 between the first light transmissive layer 110 in order from the side closer to the organic functional layer 50.
  • the interface 35 between the first light transmitting layer 110 and the second light transmitting layer 120 includes a first inclined surface 35 a that is inclined with respect to the organic functional layer 50 and a first inclined surface 35 a that is inclined with respect to the organic functional layer 50. And a second inclined surface 35b inclined in a direction opposite to the inclined direction.
  • the plurality of first inclined surfaces 35a and the plurality of second inclined surfaces are arranged such that the first inclined surfaces 35a and the second inclined surfaces 35b are alternately positioned in the first direction (arrow B direction) parallel to the organic functional layer 50. 35b are arranged side by side in the first direction.
  • An interface 36 between the second light-transmitting layer 120 and the adjacent region 200 that is adjacent to the second light-transmitting layer 120 on the opposite side of the first light-transmitting layer 110 has a plurality of protrusions 70.
  • the first light reflection film 25 is formed along at least one of the plurality of first inclined surfaces 35a and the plurality of second inclined surfaces 35b.
  • Each of the plurality of protrusions 70 is formed in a polygonal pyramid shape, a conical shape, a polygonal frustum shape, a truncated cone shape, or a hemispherical shape.
  • each protrusion 70 is arranged in a direction to reduce the diameter toward the side opposite to the organic functional layer 50 side with respect to the first light transmitting layer 110.
  • the base end of each projection 70 (the bottom surface of each projection 70 when each projection 70 is regarded as an independent structure) is located on the same plane, for example.
  • At least one of the first inclined surface 35a and the second inclined surface 35b adjacent to each other is not formed with a light reflecting film, and is a light transmitting surface.
  • the adjacent region 200 is, for example, a light emission space outside the light emitting device. Therefore, in the present embodiment, the adjacent region 200 is composed of an air layer (refractive index 1). That is, the adjacent region 200 is made of gas. Further, for example, the upper surface of the second light transmitting layer 120 is in contact with the air layer and constitutes a light extraction surface d. In addition, the light extraction film is affixed on the upper surface of the 2nd translucent layer 120, and the upper surface of this light extraction film may comprise the light extraction surface d.
  • the light emitting device further includes a translucent first electrode (translucent electrode) 40 disposed between the organic functional layer 50 and the first translucent layer 110, and the first electrode based on the organic functional layer 50. 40 and a second electrode 60 disposed on the opposite side of 40.
  • the first electrode 40 is in contact with the surface of the first light transmitting layer 110 on the organic functional layer 50 side.
  • the first electrode 40 may be a transparent electrode made of a metal oxide conductor such as ITO (Indium Tin Oxide) or IZO (Indium Zinc Oxide).
  • the first electrode 40 may be a metal thin film that is thin enough to transmit light.
  • the second electrode 60 is a reflective electrode made of a metal film such as Al.
  • the second electrode 60 reflects light traveling from the organic functional layer 50 toward the second electrode 60 toward the light extraction surface d.
  • the light emitting layer of the organic functional layer 50 emits light.
  • the light-transmitting layer 100 (in the case of the present embodiment, the first light-transmitting layer 110 and the second light-transmitting layer 120), the first electrode 40, and the organic functional layer 50 are all the light-emitting layers of the organic functional layer 50. Transmits at least part of the emitted light. Part of the light emitted from the light emitting layer is emitted (extracted) from the light extraction surface d of the light transmitting layer 100 to the outside of the light emitting device (that is, the light emission space).
  • FIG. 3A is a perspective view of the second light transmitting layer 120
  • FIG. 3B is a perspective view of the first light transmitting layer 110.
  • FIG. 3A is a perspective view of the second light transmitting layer 120
  • FIG. 3B is a perspective view of the first light transmitting layer 110.
  • the second light transmissive layer 120 is a light transmissive plate.
  • a first inclined surface 35 a and a second inclined surface 35 b are formed on the surface of the second light transmitting layer 120 on the first light transmitting layer 110 side, that is, the lower surface 122, and the surface of the second light transmitting layer 120 on the adjacent region 200 side,
  • a plurality of protrusions 70 are formed on the upper surface 121.
  • the first light transmissive layer 110 is a light transmissive plate.
  • the top surface 111 of the first light transmissive layer 110 is formed in a concavo-convex shape that meshes with the concavo-convex shape of the bottom surface 122 of the second light transmissive layer 120.
  • the interface between the upper surface 111 and the lower surface 122 is the interface 35.
  • the lower surface 112 of the first light transmissive layer 110 is formed flat. However, a certain degree of surface roughness of the lower surface 112 is allowed.
  • the lower surface 112 is disposed in parallel to the organic functional layer 50.
  • the upper surface 121 of the second light transmitting layer 120 forms an interface 36.
  • a plurality of protrusions 70 can be formed on the upper surface 121 by forming irregularities on the upper surface 121 of the second light transmitting layer 120.
  • the unevenness can be formed by processing the surface of the second light transmitting layer 120 using a known surface processing technique such as cutting and polishing, laser processing, chemical etching, or thermal imprinting.
  • the 2nd light transmission layer 120 may be comprised by attaching the several protrusion 70 formed separately on the upper surface of the main body of the 2nd light transmission layer 120 formed flat.
  • the 2nd light transmission layer 120 may be comprised by affixing the sheet
  • the plurality of protrusions 70 are two-dimensionally distributed on the upper surface of the first light transmissive layer 110. Specifically, for example, the plurality of protrusions 70 are arranged at regular intervals in a matrix or zigzag arrangement in plan view. However, the interval between the adjacent protrusions 70 may not be constant.
  • the plurality of protrusions 70 include protrusions 70 formed in a cone shape. More specifically, each of the plurality of protrusions 70 may be formed in a conical shape, for example.
  • the plurality of protrusions 70 may include protrusions 70 formed in a polygonal pyramid shape. More specifically, each of the plurality of protrusions 70 may be formed in a polygonal pyramid shape, for example.
  • each of the plurality of protrusions 70 may be formed in a quadrangular pyramid shape, for example.
  • each of the plurality of protrusions 70 includes four inclined surfaces inclined in different directions with respect to the organic functional layer 50, and none of these inclined surfaces is orthogonal to the organic functional layer 50.
  • the plurality of protrusions 70 can be arranged in a matrix in a plan view without any gap.
  • One or two side surfaces of the quadrangular pyramid-shaped protrusion 70 may be orthogonal to the organic functional layer 50.
  • the shape of the protrusion 70 may be other polygonal pyramid shapes such as a triangular pyramid shape, a pentagonal pyramid shape, and a hexagonal pyramid shape, for example.
  • the plurality of protrusions 70 may include a protrusion 70 formed in a conical shape.
  • each of the plurality of protrusions 70 may be formed in a conical shape.
  • the plurality of protrusions 70 may include a hemispherical protrusion 70.
  • each of the plurality of protrusions 70 may be formed in a hemispherical shape.
  • the shape of the protrusion 70 may be a polygonal frustum shape, a truncated cone shape, or a shape in which the top of the hemisphere is cut.
  • the shape of the protrusion 70 is not limited to these shapes, and includes three or more inclined surfaces inclined in different directions with respect to the organic functional layer 50, and at least one of these inclined surfaces. Any shape may be used as long as it satisfies the condition that it is not orthogonal to the organic functional layer 50.
  • the lower surface 122 of the second translucent layer 120 forming the interface 35 is formed in an uneven shape having a first inclined surface 35a and a second inclined surface 35b.
  • a plurality of first inclined surfaces 35 a and a plurality of second inclined surfaces 35 b are formed by forming a plurality of inverted V grooves parallel to each other on the lower surface of the second light transmitting layer 120.
  • the uneven shape can be formed by processing the surface of the second light transmitting layer 120 using a known surface processing technique such as cutting and polishing, laser processing, chemical etching, or thermal imprinting.
  • a plurality of first inclined surfaces 35a and a plurality of second inclined surfaces 35b are formed by attaching a plurality of protrusions in parallel to the lower surface of the main body portion of the second light transmitting layer 120 formed flat. May be.
  • the first inclined surface 35a and the second inclined surface 35b are alternately arranged with no gap.
  • the gable roof-shaped protrusion which protrudes toward the 1st translucent layer 110 side is formed of the 1st inclined surface 35a and the 2nd inclined surface 35b which were mutually arrange
  • the first inclined surface 35 a has a rectangular surface parallel to the organic functional layer 50, and the first rotation direction about the first rotation axis parallel to the organic functional layer 50.
  • the surface is rotated by a first angle.
  • the second inclined surface 35b located next to the first inclined surface 35a is a rectangular surface parallel to the organic functional layer 50 and is opposite to the first rotation direction around the first rotation axis. It is a surface rotated by a second angle in the second rotation direction of the direction.
  • the first rotation axis is orthogonal to the first direction.
  • the inclination angles (first angles) of the first inclined surfaces 35a with respect to the organic functional layer 50 are equal to each other, for example.
  • each second inclined surface 35b with respect to the organic functional layer 50 is equal to each other, for example.
  • the magnitudes of the first angle and the second angle are, for example, equal to each other. However, the magnitudes of the first angle and the second angle may be different from each other.
  • the first inclined surface 35a and the second inclined surface 35b are formed in the same shape and size, for example. It is preferable that the dimension of the first inclined surface 35 a and the second inclined surface 35 b in the short direction (the rectangular short dimension) is sufficiently larger than the wavelength of the light generated in the organic functional layer 50.
  • first and second inclined surfaces 35a and 35b are arranged along the same plane. More specifically, the first and second inclined surfaces 35 a and 35 b are arranged along one plane parallel to the organic functional layer 50, for example. That is, the distance from the organic functional layer 50 to each first inclined surface 35a is equal to the distance from the organic functional layer 50 to each second inclined surface 35b.
  • the first light reflection film 25 is formed along one of the first inclined surface 35a and the second inclined surface 35b adjacent to each other.
  • the first light reflecting film 25 is formed along each of the plurality of second inclined surfaces 35b.
  • the first light reflecting film 25 is formed along the entire surface of the second inclined surface 35b.
  • the 1st light reflection film 25 may be formed along a part of 2nd inclined surface 35b like the Example mentioned later.
  • the first light reflecting film 25 is made of a material having high reflectivity, for example, a metal such as Ag or Al.
  • the first light reflecting film 25 is formed by obliquely depositing a metal film on the lower surface of the second light-transmitting layer 120, whereby one of the first inclined surface 35a and the second inclined surface 35b (for example, the second inclined surface). A metal film is selectively formed on the surface 35b).
  • the second light transmissive layer 120 is made of a light transmissive material such as glass or resin. When the 2nd translucent layer 120 is comprised with glass, the refractive index of the 2nd translucent layer 120 is about 1.5, for example.
  • the second light transmissive layer 120 may be a light transmissive film. The refractive index of the second light transmissive layer 120 is smaller than the refractive index of the first light transmissive layer 110.
  • the refractive index of the first light transmissive layer 110 is larger than the refractive index of the second light transmissive layer 120. This facilitates extraction of light from the first electrode 40 side to the first light transmissive layer 110 side.
  • the refractive index of the first light transmissive layer 110 is, for example, about the same as the refractive index of the first electrode 40.
  • the first light transmissive layer 110 includes, for example, an epoxy resin having a refractive index of about 1.8 and a barrier film that suppresses the influence on the organic material.
  • the first light transmissive layer 110 may be formed of a high refractive index material containing nanoparticles using BaTiO 3 or a high refractive index nanocomposite thin film.
  • the first light transmissive layer 110 may be made of the same material as the organic functional layer 50.
  • the refractive index of the first light transmitting layer 110 is, for example, not less than the refractive index of the first electrode 40 and not more than 2.3.
  • the first light-transmitting layer 110 is configured, for example, by applying an organic material to the lower surface of the second light-transmitting layer 120 and curing it. Accordingly, the upper surface 111 of the first light transmissive layer 110 has a shape reflecting the uneven shape of the lower surface of the second light transmissive layer 120. However, the first light transmissive layer 110 may be attached to the second light transmissive layer 120 after being formed separately from the second light transmissive layer 120.
  • the first electrode 40 is configured, for example, by sputtering a metal oxide conductor such as ITO or IZO on the lower surface 112 of the first light transmitting layer 110. Furthermore, for example, a partition wall is formed on the lower surface of the first electrode 40.
  • the organic functional layer 50 is configured by depositing or applying an organic material including a light emitting layer between the partition walls.
  • the second electrode 60 is configured by evaporating a metal material on the lower surface of the organic functional layer 50.
  • the surface (lower surface) of the first light transmitting layer 110 opposite to the second light transmitting layer 120 side and one surface (upper surface) of the first electrode 40 are in contact with each other. Further, the other surface (lower surface) of the first electrode 40 and one surface (upper surface) of the organic functional layer 50 are in contact with each other. Further, the other surface (lower surface) of the organic functional layer 50 and one surface (upper surface) of the second electrode 60 are in contact with each other.
  • another layer may exist between the first light-transmissive layer 110 and the first electrode 40. Similarly, another layer may exist between the first electrode 40 and the organic functional layer 50. Similarly, another layer may exist between the organic functional layer 50 and the second electrode 60.
  • FIGS. 5 (a) to 5 (c) show how many paths until the light generated in the organic functional layer 50 is emitted to the outside in the light emitting device according to the present embodiment. It is sectional drawing which illustrated this. 4A to 4C and FIGS. 5A to 5C, the region R1 is on the low refractive index side (second light transmitting layer 120), and the region R2 is on the high refractive index side (first light transmitting layer). Optical layer 110). 4 (a) to 4 (c) and FIGS. 5 (a) to 5 (c) are particularly for explaining the function of the lower interface 35 of the second light transmitting layer 120. FIG.
  • the first light-transmissive layer 110, the first electrode 40, and the organic functional layer 50 have, for example, the same refractive index, refraction and reflection do not occur at the interfaces. Moreover, the uneven structure (arrangement of the first inclined surface 35a and the second inclined surface 35b) of the interface 35 on the light emitting layer side in the second light transmitting layer 120 is periodic. Furthermore, the thickness of the first light transmitting layer 110 and the second light transmitting layer 120 is about 10 ⁇ m, for example, whereas the thickness of the first electrode 40 and the organic functional layer 50 is about 100 nm, for example.
  • the thicknesses of the first electrode 40 and the organic functional layer 50 are negligible compared to the thicknesses of the first light transmitting layer 110 and the second light transmitting layer 120. From these facts, even if it is considered that the second electrode 60 and the light emitting point are present at a position on the plane c in contact with the top of the protrusion on the light emitting layer side in the second light transmitting layer 120, there is substantially a problem. Absent. Accordingly, the following description will be made with reference to FIGS. 4A to 4C and FIGS. 5A to 5C assuming that the second electrode 60 and the light emitting point are located on the plane c.
  • the light ray A is incident on the first light transmitting layer 110 (region) at an angle ⁇ 1 with respect to the normal line n1 of the surface a1 (second inclined surface 35b) having the first light reflecting film 25.
  • the surface a1 is reached from the R2) side.
  • the light ray A is reflected by the surface a1, and then reaches the surface b1 at an angle ⁇ 2 with respect to the normal line n2 of the surface b1 (first inclined surface 35a) adjacent to the surface a1.
  • the light beam A is refracted at the surface b1 and is incident on the second light transmitting layer 120 at the angle ⁇ 3, and is adjacent to the surface b1 side at the adjacent surface a2 (second inclined surface 35b). Reflects with a directional component and travels toward interface 36.
  • the angle ⁇ 1 of the light beam B is larger than the angle ⁇ 1 of the light beam A.
  • the light beam B is reflected by the surface a1 and then refracted by the surface b1, and enters the second light transmitting layer 120 (region R1) from the first light transmitting layer 110 (region R2). Reflected with a direction component on the surface b2 side, which is the first inclined surface 35a opposite to the surface b1 at a2, and travels toward the interface 36.
  • the light ray C is almost parallel to the surface a1.
  • the light ray C is refracted at the surface b1 and enters the second light-transmitting layer 120 (region R1) from the first light-transmitting layer 110 (region R2) and travels toward the interface 36.
  • the light ray D reflected by the surface a1 and returning to the original is reflected by the plane c which is the upper surface of the second electrode 60 and travels to the surface b1. Since the light beam D is incident on the surface b1 perpendicularly, the light beam D is directly incident on the second light-transmitting layer 120 (region R1) from the first light-transmitting layer 110 (region R2) and travels toward the interface 36.
  • the light beam E is a light beam having a polarity different from that of the angle ⁇ 1 of the light beam A, and enters the surface a1 from the left side of the normal line n1.
  • the light beam E is reflected on the surface a1, reflected on the plane c which is the upper surface of the second electrode 60, and then reflected again on the surface a1.
  • the light beam E enters the second light transmitting layer 120 (region R1) from the surface b1, reflects off the surface a2, and travels toward the interface 36.
  • the light beam F is incident on the surface b1 at an angle greater than or equal to the total reflection angle.
  • the light beam F totally reflected by the surface b1 is reflected by the surface a1, then reflected by the plane c which is the upper surface of the second electrode 60, and then reaches the surface b1 again.
  • the light beam F further enters the second light transmitting layer 120 (region R1) from the surface b1, and then travels toward the interface 36.
  • each protrusion 70 includes three or more inclined surfaces that are inclined in different directions with respect to the organic functional layer 50. At least one of them is not orthogonal to the organic functional layer 50.
  • each protrusion 70 is formed in a polygonal pyramid shape, a conical shape, or a hemispherical shape. Therefore, even for light that cannot be changed upward sufficiently by the functions of the first inclined surface 35a, the second inclined surface 35b, and the first light reflecting film 25 of the interface 35, the light is sufficiently increased by the function of the inclined surface of the protrusion 70. It can be changed upward so that it can be taken out from the light emitting device.
  • the light extraction efficiency of the light emitting device can be improved. Further, with respect to the light traveling from the interface 35 toward the interface 36, the path is directed upward by the inclined surface of the projection 70 of the interface 36 not directly at a position far from the light emission point of the light but directly above the light emission point. Can be changed. Therefore, there is a high possibility that the direction of the light can be changed to a direction in which the light can be extracted from the light extraction surface d before the light is attenuated.
  • FIG. 6A, FIG. 6B, FIG. 6C, FIG. 7A, FIG. 7B, and FIG. 7C are generated in the organic functional layer in the light emitting device according to the comparative example. It is sectional drawing which illustrated the path
  • the angles of the light rays A to F shown in FIGS. 6 (a) to 6 (c) and FIGS. 7 (a) to 7 (c) are shown in FIGS. 4 (a) to 4 (c) and 5 respectively. The angles are the same as those of the light rays A to F shown in (a) to FIG. 5 (c).
  • the light beams A to F among the light beams A to F, the light beam A (FIG. 6A), the light beam B (FIG. 6B), the light beam E (FIG. 7B), and the light beam F (FIG. 7C).
  • the angles toward the interface 36 are respectively gentle. Therefore, in the comparative example, the possibility that the light is totally reflected at the interface 36 (the possibility that the light is not emitted outside from the light extraction surface d) is higher than that in the present embodiment. That is, according to the present embodiment, the light extraction efficiency can be increased as compared with the comparative example.
  • FIG. 8 is a view showing a first example of the layer structure of the organic functional layer 50.
  • the organic functional layer 50 has a structure in which a hole injection layer 51, a hole transport layer 52, a light emitting layer 53, an electron transport layer 54, and an electron injection layer 55 are stacked in this order. That is, the organic functional layer 50 is an organic electroluminescence light emitting layer.
  • the hole injection layer 51 and the hole transport layer 52 one layer having the functions of these two layers may be provided.
  • the electron transport layer 54 and the electron injection layer 55 one layer having the functions of these two layers may be provided.
  • the light emitting layer 53 is, for example, a layer that emits red light, a layer that emits blue light, a layer that emits yellow light, or a layer that emits green light.
  • a region having the light emitting layer 53 that emits red light, a region having the light emitting layer 53 that emits green light, and a region having the light emitting layer 53 that emits blue light are repeated. It may be provided. In this case, when each region emits light simultaneously, the light emitting device emits light in a single light emission color such as white.
  • the light emitting layer 143 may be configured to emit light in a single light emission color such as white by mixing materials for emitting a plurality of colors.
  • FIG. 9 is a diagram showing a second example of the layer structure of the organic functional layer 50.
  • the light emitting layer 53 of the organic functional layer 50 has a structure in which light emitting layers 53a, 53b, and 53c are laminated in this order.
  • the light emitting layers 53a, 53b, and 53c emit light of different colors (for example, red, green, and blue).
  • the light emitting layers 53a, 53b, and 53c emit light at the same time, so that the light emitting device emits light in a single emission color such as white.
  • the interface 35 has a plurality of first inclined surfaces 35a and a plurality of second inclined surfaces 35b. Therefore, light incident on the interface 35 at an angle greater than the critical angle can be reduced, and total reflection at the interface 35 can be suppressed. As a result, light with a large angle can be easily incident on the second light transmitting layer 120 from the first light transmitting layer 110, so that the light extraction efficiency is improved.
  • the effect of improving the light extraction efficiency by allowing light having a large angle to enter the adjacent layer is great (see FIG. 1).
  • the first light reflection film 25 is formed along at least one of the plurality of first inclined surfaces 35a and the plurality of second inclined surfaces 35b.
  • the inclined surface on which the light reflecting film (first light reflecting film 25) is not formed transmits light
  • the inclined surface on which the light reflecting film is formed reflects light.
  • each protrusion 70 includes three or more inclined surfaces that are inclined in different directions with respect to the organic functional layer 50. At least one of them is not orthogonal to the organic functional layer 50.
  • each protrusion 70 is formed in a polygonal pyramid shape, a conical shape, or a hemispherical shape. Therefore, even for light that cannot be changed upward sufficiently by the functions of the first inclined surface 35a, the second inclined surface 35b, and the first light reflecting film 25 of the interface 35, the light is sufficiently increased by the function of the inclined surface of the protrusion 70. It can be changed upward so that it can be taken out from the light emitting device.
  • the light extraction efficiency of the light emitting device can be improved. Further, with respect to the light traveling from the interface 35 toward the interface 36, the path is directed upward by the inclined surface of the projection 70 of the interface 36 not directly at a position far from the light emission point of the light but directly above the light emission point. Can be changed. Therefore, there is a high possibility that the direction of the light can be changed to a direction in which the light can be extracted from the light extraction surface d before the light is attenuated.
  • the light emitting device includes a first electrode 40 disposed between the organic functional layer 50 and the first light transmitting layer 110, and the first electrode 40 is located on the organic functional layer 50 side in the first light transmitting layer 110.
  • the refractive index of the first translucent layer 110 that is in contact with the surface is not less than the refractive index of the first electrode 40 and not more than 2.3. This facilitates extraction of light from the first electrode 40 toward the first light transmissive layer 110 and suppresses a decrease in light extraction efficiency from the first light transmissive layer 110 to the second light transmissive layer 120. be able to.
  • the first light reflecting film 25 is formed along one of the first inclined surface 35a and the second inclined surface 35b adjacent to each other. Therefore, since the periodicity of the arrangement of the first light reflecting film 25 at the interface 35 can be provided, the extraction efficiency can be improved evenly in any region of the light emitting device.
  • the first light reflecting film 25 is disposed along each of the plurality of second inclined surfaces 35b, the periodicity of the arrangement of the first light reflecting film 25 at the interface 35 can be made more uniform. Therefore, the extraction efficiency can be improved more uniformly in any region of the light emitting device.
  • the protrusions 70 include the protrusions 70 formed in the shape of cones
  • the protrusions 70 include three or more inclined surfaces that are inclined in different directions with respect to the organic functional layer 50, and A structure in which at least one of these inclined surfaces is not orthogonal to the organic functional layer 50 can be easily realized.
  • the gap between the protrusions 70 adjacent to each other should be made as small as possible, and the plurality of protrusions 70 should be arranged with as little gap as possible. It can be easily realized.
  • the plurality of quadrangular pyramid-shaped projections 70 can be arranged in a matrix without any gap.
  • the side surface of the conical protrusion 70 has a very large number of angles compared to the protrusion 70 having a pyramid shape or the like. Of inclined surfaces (of virtually infinite kinds of angles). For this reason, it can be expected to improve the light extraction efficiency at various angles.
  • the outer surface of the hemispherical protrusion 70 has an extremely large number of angles compared to the protrusion 70 having a pyramid shape or the like. Of inclined surfaces (of virtually infinite kinds of angles). For this reason, it can be expected to improve the light extraction efficiency at various angles.
  • the outer surface of the projection 70 formed in a hemispherical shape includes inclined surfaces having a very large number of angles (substantially infinite types of angles) in a side view as compared with the conical projection 70. For this reason, it can be expected that the light extraction efficiency of more angles can be improved as compared with the case where the conical protrusion 70 is used.
  • Example 1 In Example 1, an example of a more specific configuration of the light emitting device according to the embodiment will be described.
  • 10A is a plan view of the light-emitting device according to Example 1
  • FIG. 10B is a cross-sectional view taken along the line CC in FIG. 10A.
  • FIGS. 10B and 10A the top and bottom are reversed from those in FIG.
  • the first electrode 40 constitutes an anode.
  • the plurality of first electrodes 40 each extend in the Y direction in a strip shape. Adjacent first electrodes 40 are spaced apart at regular intervals in the X direction orthogonal to the Y direction.
  • Each of the first electrodes 40 is made of, for example, a metal oxide conductor such as ITO or IZO.
  • the 1st electrode 40 may be a metal thin film which has the thickness of the grade which has translucency.
  • the refractive index of the first electrode 40 is, for example, about the same as that of the first light-transmitting layer 110 (for example, the refractive index is about 1.8).
  • a bus line (bus electrode) 72 for supplying a power supply voltage to the first electrode 40 is formed on each surface of the first electrode 40.
  • An insulating film is formed on the first light transmitting layer 110 and the first electrode 40.
  • a plurality of stripe-shaped openings each extending in the Y direction are formed in the insulating film. Thereby, a plurality of partition walls 71 made of an insulating film are formed. Each opening formed in the insulating film reaches the first electrode 40, and the surface of each first electrode 40 is exposed at the bottom of the opening.
  • An organic functional layer 50 is formed on the first electrode 40 in each opening of the insulating film.
  • the organic functional layer 50 is configured by laminating a hole injection layer 51, a hole transport layer 52, a light emitting layer 53 (light emitting layers 53R, 53G, 53B), and an electron transport layer 54 in this order.
  • materials for the hole injection layer 51 and the hole transport layer 52 include aromatic amine derivatives, phthalocyanine derivatives, porphyrin derivatives, oligothiophene derivatives, polythiophene derivatives, benzylphenyl derivatives, compounds in which tertiary amines are linked by fluorene groups, hydrazones.
  • the light emitting layers 53R, 53G, and 53B are made of a fluorescent organometallic compound that emits red light, green light, and blue light, respectively.
  • the light emitting layers 53R, 53G, and 53B are arranged side by side in a state of being separated from each other by the partition wall portion 71. That is, the organic functional layer 50 forms a plurality of light emitting regions separated by the partition wall 71.
  • An electron transport layer 54 is formed so as to cover the surfaces of the light emitting layers 53R, 53G, 53B and the partition wall 71.
  • a second electrode 60 is formed so as to cover the surface of the electron transport layer 54.
  • the second electrode 60 constitutes a cathode.
  • the second electrode 60 is formed in a strip shape.
  • the second electrode 60 is made of a metal or alloy such as Al or Ag having a low work function and high reflectivity.
  • the refractive index of the organic functional layer 50 is about the same as that of the first electrode 40 and the first light transmitting layer 110 (for example, the refractive index is about 1.8).
  • the light emitting layers 53R, 53G, and 53B that emit red, green, and blue light, respectively, are repeatedly arranged in a stripe shape, and red light is emitted from the surface of the second light transmissive layer 120 that serves as the light extraction surface d.
  • Green and blue light are mixed at an arbitrary ratio to emit light that is recognized as a single emission color (for example, white).
  • Example 1 the same effect as the above embodiment can be obtained.
  • FIG. 11A and FIG. 11B are cross-sectional views of the light emitting device according to this example.
  • FIG. 11A corresponds to FIG. 2B
  • FIG. 11B corresponds to FIG.
  • the first light transmissive layer 110 and the first electrode 40 are separately provided.
  • the first light transmissive layer 110 is formed of a light transmissive electrode. You may have the function of. That is, in this case, the first light transmissive layer 110 is made of a light transmissive conductor such as a metal oxide conductor such as ITO. According to this embodiment, since the first light transmissive layer 110 also functions as a light transmissive electrode, the number of components of the light emitting device can be reduced.
  • FIG. 12A is a cross-sectional view showing a part of the light emitting device according to this example.
  • the top of the gable roof-shaped ridge 31 and the valley between the adjacent ridges 31 constituting the concavo-convex shape of the upper surface of the first light-transmitting layer 110 are substantially from the organic functional layer 50. It has parallel surfaces 31a and 31b.
  • the first light reflecting film 25 is not formed on the surfaces 31a and 31b, and the surfaces 31a and 31b are light transmitting surfaces. That is, the interface 35 of the light emitting device according to the present embodiment has the surfaces 31 a and 31 b that are light transmission surfaces formed in parallel to the organic functional layer 50.
  • the surfaces 31a and 31b are substantially parallel to the organic functional layer 50 light transmitting surfaces, it is possible to easily extract light rays that are substantially orthogonal to the organic functional layer 50 to the outside. With respect to the light in such a direction, it is possible to improve the light extraction efficiency by extracting the light outside without being reflected by the first light reflection film 25.
  • FIG. 12B is a cross-sectional view showing a part of the light emitting device according to this example.
  • the surfaces 31a and 31b may be covered with the first light reflecting film 25 so that the surfaces 31a and 31b substantially parallel to the organic functional layer 50 become light transmission surfaces.
  • the film thickness of the part covering the surfaces 31a and 31b in the first light reflection film 25 is smaller than the film thickness of the part forming the light reflection surface in the first light reflection film 25. It is possible to form such a film thickness distribution by forming the first light reflecting film 25 by oblique vapor deposition. According to the present embodiment, the same effect as that of the third embodiment can be obtained.
  • FIG. 13A is a cross-sectional view showing a part of the light emitting device according to this example
  • FIG. 13B is a plan view showing a part of the first light transmitting layer 110 in this example
  • FIG. It is a perspective view which shows a part of 1st translucent layer 110 in an Example.
  • the shape of each protrusion 31 on the upper surface of the first light transmissive layer 110 is changed.
  • each of the protrusions 31 has a trapezoidal cross-sectional shape
  • the upper base is a surface 31 d substantially parallel to the organic functional layer 50.
  • the 1st inclined surface 35a and the 2nd inclined surface 35b which comprise the protrusion 31 are mutually spaced apart in those arrangement directions.
  • the first light reflection film 25 is formed on the surface 31d, and the surface 31d forms a light transmission surface.
  • the surface 31d substantially parallel to the organic functional layer 50 as a light transmission surface, the light rays perpendicularly incident on the surface 31d are incident on the first light reflecting film as in the third embodiment. Since the light is emitted to the outside without being reflected by 25, the light extraction efficiency can be improved.
  • FIG. 14 is a cross-sectional view showing a part of the light emitting device according to the present embodiment.
  • the adjacent protrusions 31 are separated from each other in the arrangement direction thereof.
  • a surface 31 d substantially parallel to the organic functional layer 50 is formed between adjacent protrusions 31.
  • the first light reflection film 25 is formed on the surface 31d, and the surface 31d forms a light transmission surface. According to the present embodiment, the same effect as that of the fifth embodiment can be obtained.
  • FIG. 15 is a cross-sectional view showing a part of the light emitting device according to the present embodiment.
  • the light reflecting structure 22 formed on the interface 35 is different from the above embodiment. That is, in the above-described embodiment, the light reflecting structure is configured by the first light reflecting film 25, whereas the light reflecting structure 22 in the present example has the first light reflecting film 25 and the second light transmitting film.
  • a low refractive index film 21 made of a material having a refractive index lower than that of the layer 120 (for example, SiO 2 ) is laminated.
  • the light ray I incident on the light reflecting structure 22 at an incident angle larger than the critical angle from the second light transmitting layer 120 side is totally reflected at the interface between the second light transmitting layer 120 and the low refractive index film 21 and is reflected on the interface 36. Head.
  • the reflectivity of the total reflection is 100%, and the reflectivity of the reflective film such as metal is about 90%. Therefore, the total reflection by the low refractive index film 21 is performed only by the first light reflection film 25. Compared with the case of reflecting, it is possible to expect an improvement in reflectance and, in turn, an improvement in light extraction efficiency.
  • the light beam J incident on the light reflecting structure 22 at an incident angle smaller than the critical angle from the second light transmitting layer 120 side is transmitted through the low refractive index film 21 and reflected by the surface of the first light reflecting film 25. Head to interface 36.
  • the low refractive index film 21 on the first light reflecting film 25
  • a part of the light rays are totally reflected by the low refractive index film 21 and directed toward the interface 36. Therefore, it is possible to expect an improvement in reflectance and, in turn, an improvement in light extraction efficiency.
  • FIG. 15 shows an example in which the low refractive index film 21 is in contact with the second light transmitting layer 120 and the first light reflecting film 25 is in contact with the first light transmitting layer 110.
  • the arrangement of the film 25 and the low refractive index film 21 may be interchanged.
  • FIGS. 16A to 16E are cross-sectional views showing a method for manufacturing a light emitting device according to this example.
  • a second light-transmitting layer 120 having a plurality of protrusions 70 formed on the upper surface 121 and an uneven shape formed on the lower surface 122 is prepared (FIG. 16A).
  • the low refractive index film 21 made of SiO 2 or the like having a refractive index lower than that of the second light transmitting layer 120 is formed on the lower surface 122 of the second light transmitting layer 120 by sputtering or the like. Thereafter, the low refractive index film 21 is partially removed by a lift-off method, an etching method, or the like, and the low refractive index film 21 is patterned (FIG. 16B).
  • the first light reflection film 25 made of a metal having a high reflectance such as Ag or Al is formed on the lower surface of the second light transmission layer 120 by an oblique deposition method or the like.
  • the first light reflecting film 25 is laminated on the low refractive index film 21 to form, for example, the light reflecting structure 22 along the second inclined surface 35b (FIG. 16C).
  • a UV curable resin having a refractive index higher than the refractive index of the second light transmissive layer 120 and similar to the refractive index of the first electrode 40 and the organic functional layer 50 is formed on the lower surface of the second light transmissive layer 120.
  • the UV curable resin is irradiated with ultraviolet rays to be cured.
  • the first light-transmitting layer 110 in contact with the uneven shape of the second light-transmitting layer 120 and the light reflecting structure 22 is formed on the lower surface of the second light-transmitting layer 120 (FIG. 16D).
  • a transparent conductive film made of a metal oxide conductor such as ITO is formed on the lower surface of the first light transmissive layer 110 by sputtering or the like, and is patterned by etching to form the first electrode 40.
  • a photosensitive resist (not shown) is applied so as to cover the first electrode 40.
  • a plurality of openings reaching the first electrode 40 are formed in the photosensitive resist through exposure and development processing.
  • the partition part which separates an organic functional layer for every luminescent color is formed.
  • a hole injection layer, a hole transport layer, a light-emitting layer, and an electron transport layer are stacked on the first electrode 40 by applying an organic material inside each of the plurality of openings by an inkjet method.
  • the organic functional layer 50 to be formed is formed.
  • an electrode material such as Al or Ag is deposited on the organic functional layer 50 in a desired pattern by vapor deposition or the like.
  • the electrode 60 is formed (FIG. 16E). It is good also as forming a sealing layer on the 2nd electrode 60 as needed.
  • FIG. 17 is a cross-sectional view showing a part of the light emitting device according to this example.
  • the light reflecting structure 22 a has a sandwich structure in which a low refractive index film 21 having a refractive index smaller than that of the second light transmitting layer 120 holds the first light reflecting film 25.
  • a low refractive index film 21 having a refractive index smaller than that of the second light transmitting layer 120 holds the first light reflecting film 25.
  • FIG. 18 is a cross-sectional view showing a part of the light emitting device according to this example.
  • the low refractive index layer of the light reflecting structure 24 includes a gap portion 23 provided between the second light transmitting layer 120 and the first light transmitting layer 110. That is, the light reflecting structure 24 is constituted by the gap portion 23 and the first light reflecting film 25.
  • the gap 23 may be filled with air or other gas having a refractive index smaller than that of the second light transmissive layer 120, or may be a vacuum.
  • FIG. 18 illustrates the case where the gap portion 23 is in contact with the second light transmission layer 120 and the first light reflection film 25 is in contact with the first light transmission layer 110. The arrangement with the one-light reflecting film 25 may be exchanged.
  • FIG. 19A to FIG. 19D are cross-sectional views showing a method for manufacturing a light emitting device according to this example.
  • a second light-transmissive layer 120 having a plurality of protrusions 70 formed on the upper surface 121 and an uneven shape formed on the lower surface 122 is prepared (FIG. 19A).
  • a first light reflecting film 25 made of a metal having a high reflectance such as Ag or Al is formed on the lower surface 122 of the second light transmitting layer 120 by an oblique deposition method or the like (FIG. 19B). .
  • the first light transmissive layer 110 is prepared.
  • the first light transmissive layer 110 is made of an epoxy resin having a refractive index larger than that of the second light transmissive layer 120 and having a refractive index comparable to that of the first electrode 40 and the organic functional layer 50.
  • On the upper surface of the first light transmissive layer 110 a concavo-convex shape that meshes with the concavo-convex shape on the lower surface of the second light transmissive layer 120 is formed. Furthermore, a minute protrusion 32 is formed on the upper surface of the first light transmitting layer 110 (FIG. 19C).
  • the uneven shape on the lower surface of the second light transmitting layer 120 and the uneven shape on the upper surface of the first light transmitting layer 110 are brought into contact with each other.
  • the minute protrusions 32 are in contact with the first light reflecting film 25, and a gap 23 is formed between the first light reflecting film 25 and the upper surface of the first light transmissive layer 110.
  • a light reflecting structure 24 including the first light reflecting film 25 and the gap 23 is formed between the second light transmitting layer 120 and the first light transmitting layer 110 (FIG. 19D). .
  • the first light reflecting film 25 may be formed on the upper surface of the first light transmitting layer 110, or formed on both the upper surface of the first light transmitting layer 110 and the lower surface of the second light transmitting layer 120. It may be. Further, the minute protrusions 32 functioning as spacers may be provided on the lower surface of the second light transmitting layer 120, or provided on both the upper surface of the first light transmitting layer 110 and the lower surface of the second light transmitting layer 120. It may be done. In addition, a structure separate from the first light-transmitting layer 110 and the second light-transmitting layer 120 is disposed between the upper surface of the first light-transmitting layer 110 and the lower surface of the second light-transmitting layer 120. It may function as a spacer.
  • Example 10 20 (a) to 20 (d) are cross-sectional views illustrating a method for manufacturing a light-emitting device according to this example.
  • the light reflecting structure 24 including the first light reflecting film 25 and the gap 23 is changed and a manufacturing method thereof will be described.
  • a second light transmitting layer 120 having a plurality of protrusions 70 formed on the upper surface 121 and an uneven shape formed on the lower surface 122 is prepared (FIG. 20A).
  • the first light transmissive layer 110 is prepared in the same manner as in Example 9 above. However, in the present embodiment, the minute protrusion 32 is not formed on the first light transmitting layer 110.
  • a first light reflecting film 25 made of a metal having a high reflectance such as Ag or Al is selectively formed on the upper surface of the first light transmitting layer 110 by an oblique deposition method or the like (FIG. 20B). )).
  • a buckling structure (sag-like swell) is formed in the first light reflecting film 25. That is, the first light reflection film 25 is shaped to wave up and down in a sectional view.
  • a buckling structure can be formed in the first light reflection film 25 by heating the first light reflection film 25 to about 100 ° C. and then lowering the temperature to room temperature (FIG. 20C).
  • the concave / convex shape on the upper surface of the first light-transmitting layer 110 and the concave / convex shape on the lower surface of the second light-transmitting layer 120 are brought into contact with each other with the first light reflecting film 25 having the buckling structure interposed therebetween.
  • the light emitting device has the light reflecting structure 24 including the first light reflecting film 25 and the gap portion 23 generated with the buckling structure of the first light reflecting film 25. . According to the present embodiment, the same effect as that of the ninth embodiment can be obtained.
  • FIG. 21 is a cross-sectional view of the light emitting device according to this example.
  • the light emitting device according to this example has a light-transmitting protective film 130 in addition to the configuration of the above embodiment.
  • the protective film 130 covers the plurality of protrusions 70 on the upper surface 121 of the second light transmissive layer 120.
  • the protective film 130 may be made of an inorganic material such as a silicon oxide film, or may be made of the same material as the first electrode 40.
  • the protective film 130 is formed using, for example, a vapor deposition method such as a CVD method or a sputtering method.
  • the light transmissive layer 100 includes a protective film 130 in addition to the first light transmissive layer 110 and the second light transmissive layer 120. Further, the upper surface of the protective film 130 constitutes a light extraction surface d.
  • the same effect as in the embodiment can be obtained.
  • the second light transmissive layer 120 is protected by the protective film 130, the durability of the light emitting device can be improved.
  • FIG. 22 is a cross-sectional view of the light emitting device according to this example.
  • a translucent protective member (for example, protective glass) 140 is disposed above the second light transmissive layer 120 of the light emitting device according to the above embodiment.
  • the protection member 140 is supported on the base member 80 via the support member 84, for example.
  • the light emitting device having the structure described in the above embodiment is fixed.
  • the space surrounded by the base member 80, the protection member 140, and the support member 84 is sealed.
  • a gas for example, air or inert gas
  • the space between the protection member 140 and the second light transmissive layer 120 is the adjacent region 200.
  • the light transmissive layer 100 includes an adjacent region 200 made of a gas and a protective member 140 in addition to the first light transmissive layer 110 and the second light transmissive layer 120. Further, the upper surface of the protection member 140 constitutes a light extraction surface d.
  • the same effect as in the above embodiment can be obtained.
  • the 2nd light transmission layer 120 is protected by the protection member 140, durability of a light-emitting device can be improved.
  • part of the light reflected by the protective member 140 and returned to the second light transmissive layer 120 can also be converted into a direction that can be extracted from the light extraction surface d by being reflected by the interface 35.
  • FIG. 23 is a cross-sectional view of the light emitting device according to this example.
  • the base member 80 can be a sealing body, for example.
  • a conductor 191 for electrically connecting the second electrode 60 to the outside is provided through the base member 80 at a portion covering the partition wall 71. According to this embodiment, the same effect as that of Embodiment 12 can be obtained.
  • FIG. 24 is a perspective view of the light emitting device according to this example.
  • 25A is a cross-sectional view of the light-emitting device according to the present embodiment as viewed in the direction of arrow A in FIG. 24, and
  • FIG. 25B is a cross-sectional view of the light-emitting device according to the present embodiment as viewed in the direction of arrow B in FIG.
  • FIG. 26 is a plan view of the interface 35 of the light emitting device according to this example.
  • this light-emitting device is configured in the same manner as the light-emitting device according to the above-described embodiment (FIG. 2) with respect to other configurations described below.
  • the interface 35 between the first light transmitting layer 110 and the second light transmitting layer 120 is either the first inclined surface 35 a or the second inclined surface 35 b with respect to the organic functional layer 50.
  • a third inclined surface 35c inclined in a direction different from the inclined direction; and a fourth inclined surface 35d inclined in a direction opposite to the inclined direction of the third inclined surface 35c with respect to the organic functional layer 50. is doing.
  • a plurality of third inclined surfaces are arranged such that the third inclined surfaces 35c and the fourth inclined surfaces 35d are alternately positioned in a second direction that is parallel to the organic functional layer 50 and intersects the first direction (arrow B direction).
  • the surface 35c and the plurality of fourth inclined surfaces 35d are arranged side by side in the second direction.
  • the second light reflection film 26 is formed along at least one of the plurality of third inclined surfaces 35c and the plurality of fourth inclined surfaces 35d.
  • the second light reflecting film 26 is the same as the first light reflecting film 25.
  • the second light reflecting film 26 is formed along each of the plurality of fourth inclined surfaces 35d.
  • the plurality of third inclined surfaces 35c are light-transmitting surfaces on which the second light reflecting film 26 is not formed.
  • a region R11 in which the first inclined surface 35a and the second inclined surface 35b are disposed, and a region R12 in which the third inclined surface 35c and the fourth inclined surface 35d are disposed. are different from each other.
  • the second direction is orthogonal to the first direction. That is, the second direction is, for example, the arrow A direction.
  • the directions of the third inclined surface 35c and the fourth inclined surface 35d are, for example, directions obtained by rotating the first inclined surface 35a and the second inclined surface 35b by 90 degrees in the plane.
  • the first direction and the second direction only need to cross each other, and the angle formed by the first direction and the second direction may be other than 90 degrees.
  • the direction of the inclined surface is changed for each region in the interface 35 as described above.
  • the structure of the light emitting device in the region R11 and the structure of the light emitting device in the region R12 are configured in the same manner except that the direction of the inclined surface is different.
  • a plurality of first regions R11 (a region where the first inclined surface 35a and the second inclined surface 35b are arranged) and a plurality of second regions R12 (the third inclined surface 35c and the fourth inclined surface). And the area where the surface 35d is arranged) are alternately arranged in plan view. Specifically, for example, a plurality of first regions R11 and a plurality of second regions R12 are arranged adjacent to each other in a staggered manner.
  • the portion disposed in each first region R11 and the portion disposed in each second region R12 are formed as individual blocks and arranged side by side on the same plane. May be.
  • the second light-transmitting layer 120 is formed as a plurality of blocks having the same shape, and a plurality of these blocks are arranged side by side with their directions different from each other by 90 degrees. Can be produced.
  • region R12 are formed as a separate block, and they are on the same plane. They may be arranged side by side.
  • the second light transmissive layer 120 and the first light transmissive layer 110 may be integrally formed as a whole.
  • the present embodiment since there are inclined surfaces at many angles at the interface 35, it is possible to convert light at various angles into directions that can be extracted from the light emitting device at the interface 35.
  • the first inclined surface 35a and the second electrode 60 having interfaces having different refractive indexes between the first light reflecting film 25 on the second inclined surface 35b and the second electrode 60 that is a reflective electrode.
  • the inclined surface (third inclined surface 35c, fourth inclined surface 35d) having a different angle from the previous one is entered. It hits. As a result, even light of such an angle can be extracted from the operation pattern of repeated reflection and extracted to the air layer.
  • the third inclined surface 35c and the second electrode having interfaces having different refractive indexes between the second light reflecting film 26 on the fourth inclined surface 35d and the second electrode 60 serving as the reflective electrode.
  • a plurality of first regions R11 in which the first inclined surface 35a and the second inclined surface 35b are arranged, and a plurality of second regions R12 in which the third inclined surface 35c and the fourth inclined surface 35d are arranged are planar. They are arranged adjacent to each other alternately in view.
  • the first region R11 the light having an angle that forms a repetitive reflection pattern that is not extracted from the light-emitting device is not located far from the first region R11 but is adjacent to the first region R11. It can be changed upward in the two regions R12. Therefore, there is a high possibility that the direction of the light can be changed to a direction in which the light can be extracted from the light extraction surface d before the light is attenuated.
  • the light having an angle that forms a repetitive reflection pattern that is not extracted from the light emitting device is adjacent to the second region R12, not far from the second region R12. It can be changed upward in the first region R11. Therefore, there is a high possibility that the direction of the light can be changed to a direction in which the light can be extracted from the light extraction surface d before the light is attenuated.
  • FIG. 27A is a perspective view of the light-emitting device according to the present example
  • FIG. 27B is a cross-sectional view of the light-emitting device according to the present example when viewed in the direction of arrow A in FIG.
  • the light-emitting device includes a first light reflecting film 25 disposed along the first inclined surface 35a and a first light reflecting film 25 disposed along the second inclined surface 35b.
  • the first light reflecting film 25 is formed along each first inclined surface 35a in the left region, and each second inclined surface is formed in the right region.
  • a first light reflecting film 25 is formed along 35b.
  • the first light reflection film 25 can be oriented in two directions. Therefore, it is possible to increase the possibility that light having various angles can be extracted from the light emitting device to the outside.
  • the third light transmitting material made of a material having a softening point or a melting point lower than that of the second light transmitting layer 120 (for example, ITO or IZO).
  • a layer is formed on the lower surface of the second light transmitting layer 120 by sputtering or vapor deposition, and a fourth light transmitting layer made of a high refractive index material is formed on the lower surface of the third light transmitting layer.
  • the 1st translucent layer 110 which consists of a 3rd translucent layer and a 4th translucent layer can be formed.
  • the second light transmission layer 120 of the high refraction material is directly formed on the lower surface of the second light transmission layer 120.
  • the uneven shape (reverse V-groove shape) on the lower surface of the second light transmitting layer 120 is greatly broken (blunted), and the first inclined surface 35a and the second inclined surface 36b are not flat.
  • a fourth light-transmitting layer made of a high refractive material is formed, thereby forming a concave-convex shape on the lower surface of the second light-transmitting layer 120 ( Even if the reverse V-groove shape is slightly collapsed, it can be prevented from being largely collapsed.

Abstract

This light-emitting device is provided with an organic functional layer (50) and a translucent layer (100). The translucent layer (100) has an interface (35) and an interface (36). The interface (35) comprises alternately arranged first inclined surfaces (35a) and second inclined surfaces (35b), and a first light reflecting film (25) is formed along the second inclined surfaces (35b). The interface (36) comprises multiple protrusions (70). Each of the protrusions (70) includes three or more inclined surfaces inclined relative to the organic functional layer (50) in mutually different directions, and at least one of these inclined surfaces is not perpendicular to the organic functional layer (50).

Description

発光装置Light emitting device
 本発明は、有機発光層を有する発光装置に関する。 The present invention relates to a light emitting device having an organic light emitting layer.
 発光装置の1つに有機発光層を有する発光装置がある。この発光装置においては、有機発光層で発生した光のうち外部に放射される光の割合(光取り出し効率)を向上することが望まれている。 There is a light emitting device having an organic light emitting layer as one of the light emitting devices. In this light emitting device, it is desired to improve the ratio of light emitted to the outside (light extraction efficiency) of the light generated in the organic light emitting layer.
 光取り出し効率の向上を目的とした技術としては、特許文献1に記載のものがある。特許文献1に記載された面光源装置は、発光素子の出光面を構成する光取り出し用の基板と、基板の出光面側の面上に設けられた透明樹脂層と、透明樹脂層の出光面側の面上に設けられた高屈折率薄膜とを有する。透明樹脂層は、その出光面側の面に、角錐形状又はプリズム形状の凹凸構造を有する。そして、角錐形状又はプリズム形状の斜面と、出光面とがなす角は40°超65°未満である。そして、高屈折率薄膜は、凹凸構造に沿って設けられるとともに、各箇所での膜厚が平均膜厚±30%以内であり、高屈折率薄膜の屈折率は、透明樹脂層の屈折率より15~30%高い。 As a technique for improving the light extraction efficiency, there is a technique described in Patent Document 1. A surface light source device described in Patent Document 1 includes a light extraction substrate that constitutes a light emission surface of a light emitting element, a transparent resin layer provided on the light emission surface side of the substrate, and a light emission surface of the transparent resin layer. And a high refractive index thin film provided on the side surface. The transparent resin layer has a pyramid-shaped or prism-shaped concavo-convex structure on its light-emitting surface side. The angle formed between the pyramid-shaped or prism-shaped slope and the light exit surface is more than 40 ° and less than 65 °. The high refractive index thin film is provided along the concavo-convex structure, and the film thickness at each location is within an average film thickness ± 30%. The refractive index of the high refractive index thin film is higher than the refractive index of the transparent resin layer. 15-30% higher.
 また、特許文献2には、発光層の側方に反射板を斜めに配置したことにより、全反射により発光層に閉じ込められる光を発光層の外部に取り出すための技術が記載されている。 Further, Patent Document 2 describes a technique for taking out light confined in the light emitting layer by total reflection to the outside of the light emitting layer by arranging the reflector obliquely on the side of the light emitting layer.
 また、特許文献3の技術では、発光装置において光放出空間に面する部分を三角柱形状の2つの面により構成している。これら2つの面は、発光層に対して平行なx方向において交互に配置され、発光層に対して平行で且つx方向に対して直交するy方向に延在し、且つ、それぞれ発光層に対して傾斜している。これら2つの面のうち一方の面は光反射性となっている。 Further, in the technique of Patent Document 3, the portion facing the light emission space in the light emitting device is constituted by two faces of a triangular prism shape. These two surfaces are alternately arranged in the x direction parallel to the light emitting layer, extend in the y direction parallel to the light emitting layer and orthogonal to the x direction, and Is inclined. One of these two surfaces is light reflective.
特開2009-146654号公報JP 2009-146654 A 特表2001-507503号公報JP-T-2001-507503 特表2011-507164号公報Special table 2011-507164
 ガラス基板等の透光性基板上に透光性電極、発光層を含む有機機能層、金属電極を積層して構成される有機EL(Electro Luminescence)発光装置において、光取り出し効率を低下させている要因としては、以下の3つが挙げられる。(1)透光性基板と透光性電極との屈折率差に起因して、これらの界面で全反射が起こり、発光層で生成された光が透光性基板に入射しない。(2)透光性基板と光放出空間(空気)との屈折率差に起因して、これらの界面で全反射が起こり、発光層で生成された光が外部に放出されない。(3)有機EL発光装置を構成する各層の光透過率に応じて各層を透過する光が減衰する。特に、光透過率の比較的低い透光性電極に対して斜め方向に入射する光は、光路長が長くなる故、減衰が顕著となる。 Light extraction efficiency is reduced in an organic EL (Electro Luminescence) light emitting device configured by laminating a light transmitting electrode, an organic functional layer including a light emitting layer, and a metal electrode on a light transmitting substrate such as a glass substrate. There are the following three factors. (1) Due to the difference in refractive index between the translucent substrate and the translucent electrode, total reflection occurs at these interfaces, and light generated in the light emitting layer does not enter the translucent substrate. (2) Due to the difference in refractive index between the translucent substrate and the light emission space (air), total reflection occurs at these interfaces, and the light generated in the light emitting layer is not emitted to the outside. (3) The light transmitted through each layer is attenuated according to the light transmittance of each layer constituting the organic EL light emitting device. In particular, the light incident in an oblique direction with respect to the light-transmitting electrode having a relatively low light transmittance has a significant attenuation because the optical path length becomes long.
 図1は発光層の発光点から光が放射される方向を模式的に示す図である。発光層の発光点からは、全方向に(球状に)光が放射される。なお、図1では、図面を見やすくするために、発光点P1から半球状に光が放射される様子を示している。現在の一般的な発光装置においては、透光性電極に対して垂直な線を基準として20度程度以内の角度の光(図1に示す円状の領域R101の光)しか発光装置から取り出せていない。しかし、透光性電極に対して垂直な線との角度が大きい領域(例えば図1に示す環状の領域R102)の方が、発光点P1から放射される光の総量が多い。なぜなら、図1に示す領域R101よりも領域R102の方が面積が大きいためである。このため、発光装置から取り出される光の角度について、透光性電極に対して垂直な線を基準として20度程度以内であるところを例えば5度改善して25度程度とするよりも、より角度が大きい光(例えば図1に示す領域R102の光)の取り出し効率を5度分改善する方が、光取り出し効率の改善効果が大きい。 FIG. 1 is a diagram schematically showing the direction in which light is emitted from the light emitting point of the light emitting layer. Light is emitted in all directions (spherically) from the light emitting point of the light emitting layer. Note that FIG. 1 shows a state in which light is emitted in a hemispherical form from the light emitting point P1 in order to make the drawing easy to see. In the present general light emitting device, only light having an angle of about 20 degrees or less (light in the circular region R101 shown in FIG. 1) can be extracted from the light emitting device with reference to a line perpendicular to the translucent electrode. Absent. However, the region having a larger angle with the line perpendicular to the translucent electrode (for example, the annular region R102 shown in FIG. 1) has a larger total amount of light emitted from the light emitting point P1. This is because the area of the region R102 is larger than that of the region R101 shown in FIG. For this reason, the angle of the light extracted from the light emitting device is more than the angle that is within about 20 degrees with respect to a line perpendicular to the translucent electrode, for example, improved by 5 degrees to about 25 degrees. The improvement effect of the light extraction efficiency is larger when the extraction efficiency of light having a large current (for example, light in the region R102 shown in FIG. 1) is improved by 5 degrees.
 特許文献1の技術では、透光性基板と光放出空間(空気)との界面で生じる全反射を抑制して光取り出し効率の向上を図るものであり、上記(2)の要因を排除しようとするものと認められる。しかしながら、上記(2)の要因を排除したとしても、透光性電極と透光性基板との界面で生じる全反射を効率的に抑制しない限り(すなわち、上記(1)の要因を効率よく排除しない限り)光取り出し効率を飛躍的に高めることはできない。すなわち、上記した特許文献1に記載の構造でも、外部に取り出すことのできない光が多く存在し、更なる光取り出し効率の向上を図る必要があるものと考えられる。 In the technique of Patent Document 1, the total reflection occurring at the interface between the translucent substrate and the light emission space (air) is suppressed to improve the light extraction efficiency, and the above factor (2) is to be eliminated. Admitted to do. However, even if the above factor (2) is eliminated, unless the total reflection generated at the interface between the translucent electrode and the translucent substrate is efficiently suppressed (that is, the above factor (1) is efficiently eliminated). Unless it is) light extraction efficiency cannot be increased dramatically. That is, even in the structure described in Patent Document 1 described above, there is a lot of light that cannot be extracted to the outside, and it is considered that further improvement in light extraction efficiency is required.
 有機EL発光装置の発光層の厚みは非常に薄い。このため、特許文献2の技術では、発光層の面方向において短い間隔で発光層と反射板とを交互に配置しないと、光が発光層内で反射を繰り返すことにより減衰してしまう。このため、発光装置の面積に比して発光層を配置できる面積が小さくなることから、発光装置全体での発光効率が悪い。 The thickness of the light emitting layer of the organic EL light emitting device is very thin. For this reason, in the technique of Patent Document 2, unless the light emitting layers and the reflectors are alternately arranged at short intervals in the surface direction of the light emitting layer, light is attenuated by repeated reflection in the light emitting layer. For this reason, since the area which can arrange | position a light emitting layer becomes small compared with the area of a light-emitting device, the light emission efficiency in the whole light-emitting device is bad.
 特許文献3の技術では、y方向の方向成分を持つ臨界角以上の角度の光のうちx方向の方向成分を持たない光は上記2つの面にて全反射し光放出空間に取り出されないため、光取り出し効率に改善の余地がある。 In the technique of Patent Document 3, light having no directional component in the x direction out of light having a directional component in the y direction that is greater than or equal to the critical angle is totally reflected by the two surfaces and is not extracted into the light emission space. There is room for improvement in light extraction efficiency.
 本発明が解決しようとする課題としては、発光装置の光取り出し効率を向上することが一例として挙げられる。 An example of a problem to be solved by the present invention is to improve the light extraction efficiency of the light emitting device.
 請求項1に記載の発明は、発光層を含む有機機能層と、
 前記有機機能層の一方の面側に配置された透光層と、
 を備え、
 前記透光層における前記有機機能層とは反対側の面は、前記発光層が発光した光を出射する光取り出し面を構成し、
 前記透光層は、
 前記有機機能層に近い側から順に、
 第1透光層と、
 前記第1透光層との間に界面を有する第2透光層と、
 を有し、
 前記第1透光層と前記第2透光層との界面は、前記有機機能層に対して傾斜している第1傾斜面と、前記有機機能層に対して前記第1傾斜面の傾斜方向とは反対方向に傾斜している第2傾斜面と、を有し、
 前記有機機能層と平行な第1方向において前記第1傾斜面と前記第2傾斜面とが交互に位置するように、複数の前記第1傾斜面と複数の前記第2傾斜面とが前記第1方向において並んで配置され、
 前記第2透光層と、前記第2透光層に対して前記第1透光層とは反対側に隣接する領域である隣接領域と、の界面は、複数の突起を含み、
 前記複数の第1傾斜面と前記複数の第2傾斜面とのうちの少なくとも何れか1つの傾斜面に沿って第1光反射膜が形成され、
 前記複数の突起の各々は、前記有機機能層に対して互いに異なる向きに傾斜する3つ以上の傾斜面を含み、且つ、これら傾斜面のうちの少なくとも何れか1つは前記有機機能層に対して直交していない発光装置である。
The invention according to claim 1 includes an organic functional layer including a light emitting layer,
A translucent layer disposed on one side of the organic functional layer;
With
The surface opposite to the organic functional layer in the translucent layer constitutes a light extraction surface that emits light emitted by the light emitting layer,
The translucent layer is
In order from the side closer to the organic functional layer,
A first light transmissive layer;
A second light transmissive layer having an interface with the first light transmissive layer;
Have
The interface between the first light transmissive layer and the second light transmissive layer is a first inclined surface that is inclined with respect to the organic functional layer, and an inclination direction of the first inclined surface with respect to the organic functional layer A second inclined surface inclined in the opposite direction to
A plurality of the first inclined surfaces and a plurality of the second inclined surfaces are arranged in the first direction parallel to the organic functional layer such that the first inclined surfaces and the second inclined surfaces are alternately positioned. Arranged side by side in one direction,
An interface between the second light transmissive layer and an adjacent region that is a region adjacent to the second light transmissive layer opposite to the first light transmissive layer includes a plurality of protrusions;
A first light reflecting film is formed along at least one of the plurality of first inclined surfaces and the plurality of second inclined surfaces;
Each of the plurality of protrusions includes three or more inclined surfaces inclined in different directions with respect to the organic functional layer, and at least one of these inclined surfaces is defined with respect to the organic functional layer. The light emitting device is not orthogonal.
 請求項9に記載の発明は、発光層を含む有機機能層と、
 前記有機機能層の一方の面側に配置された透光層と、
 を備え、
 前記透光層における前記有機機能層とは反対側の面は、前記発光層が発光した光を出射する光取り出し面を構成し、
 前記透光層は、
 前記有機機能層に近い側から順に、
 第1透光層と、
 前記第1透光層との間に界面を有する第2透光層と、
 を有し、
 前記第1透光層と前記第2透光層との界面は、前記有機機能層に対して傾斜している第1傾斜面と、前記有機機能層に対して前記第1傾斜面の傾斜方向とは反対方向に傾斜している第2傾斜面と、を有し、
 前記有機機能層と平行な第1方向において前記第1傾斜面と前記第2傾斜面とが交互に位置するように、複数の前記第1傾斜面と複数の前記第2傾斜面とが前記第1方向において並んで配置され、
 前記第2透光層と、前記第2透光層に対して前記第1透光層とは反対側に隣接する領域である隣接領域と、の界面は、複数の突起を含み、
 前記複数の第1傾斜面と前記複数の第2傾斜面とのうちの少なくとも何れか1つの傾斜面に沿って第1光反射膜が形成され、
 前記複数の突起の各々は、多角錐状、円錐状、多角錐台状、円錐台状又は半球状に形成されている発光装置である。
The invention according to claim 9 includes an organic functional layer including a light emitting layer,
A translucent layer disposed on one side of the organic functional layer;
With
The surface opposite to the organic functional layer in the translucent layer constitutes a light extraction surface that emits light emitted by the light emitting layer,
The translucent layer is
In order from the side closer to the organic functional layer,
A first light transmissive layer;
A second light transmissive layer having an interface with the first light transmissive layer;
Have
The interface between the first light transmissive layer and the second light transmissive layer is a first inclined surface that is inclined with respect to the organic functional layer, and an inclination direction of the first inclined surface with respect to the organic functional layer A second inclined surface inclined in the opposite direction to
A plurality of the first inclined surfaces and a plurality of the second inclined surfaces are arranged in the first direction parallel to the organic functional layer such that the first inclined surfaces and the second inclined surfaces are alternately positioned. Arranged side by side in one direction,
An interface between the second light transmissive layer and an adjacent region that is a region adjacent to the second light transmissive layer opposite to the first light transmissive layer includes a plurality of protrusions;
A first light reflecting film is formed along at least one of the plurality of first inclined surfaces and the plurality of second inclined surfaces;
Each of the plurality of protrusions is a light emitting device formed in a polygonal pyramid shape, a conical shape, a polygonal frustum shape, a truncated cone shape, or a hemispherical shape.
 上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。 The above-described object and other objects, features, and advantages will be further clarified by a preferred embodiment described below and the following drawings attached thereto.
発光層の発光点から光が放射される方向を模式的に示す図である。It is a figure which shows typically the direction in which light is radiated | emitted from the light emission point of a light emitting layer. 図2(a)は実施形態に係る発光装置の斜視図、図2(b)は実施形態に係る発光装置を図2(a)の矢印A方向に見た断面図、図2(c)は実施形態に係る発光装置を図2(a)の矢印B方向に見た断面図である。2A is a perspective view of the light-emitting device according to the embodiment, FIG. 2B is a cross-sectional view of the light-emitting device according to the embodiment when viewed in the direction of arrow A in FIG. 2A, and FIG. It is sectional drawing which looked at the light-emitting device which concerns on embodiment in the arrow B direction of Fig.2 (a). 図3(a)は第2透光層の斜視図、図3(b)は第1透光層の斜視図である。FIG. 3A is a perspective view of the second light transmissive layer, and FIG. 3B is a perspective view of the first light transmissive layer. 図4(a)~図4(c)は、実施形態に係る発光装置において、有機機能層で生成された光が外部に放出されるまでの経路を例示した断面図である。FIG. 4A to FIG. 4C are cross-sectional views illustrating paths until light generated in the organic functional layer is emitted to the outside in the light emitting device according to the embodiment. 図5(a)~図5(c)は、実施形態に係る発光装置において、有機機能層で生成された光が外部に放出されるまでの経路を例示した断面図である。FIG. 5A to FIG. 5C are cross-sectional views illustrating paths until light generated in the organic functional layer is emitted to the outside in the light emitting device according to the embodiment. 図6(a)~図6(c)は、比較例に係る発光装置において、有機機能層で生成された光が外部に放出されるまでの経路を例示した断面図である。FIG. 6A to FIG. 6C are cross-sectional views illustrating paths through which light generated in the organic functional layer is emitted to the outside in the light emitting device according to the comparative example. 図7(a)~図7(c)は、比較例に係る発光装置において、有機機能層で生成された光が外部に放出されるまでの経路を例示した断面図である。FIG. 7A to FIG. 7C are cross-sectional views illustrating paths until light generated in the organic functional layer is emitted to the outside in the light emitting device according to the comparative example. 有機機能層の層構造の第1例を示す断面図である。It is sectional drawing which shows the 1st example of the layer structure of an organic functional layer. 有機機能層の層構造の第2例を示す断面図である。It is sectional drawing which shows the 2nd example of the layer structure of an organic functional layer. 図10(a)は実施例1に係る発光装置の平面図であり、図10(b)は図10(a)におけるC-C線に沿った断面図である。10A is a plan view of the light-emitting device according to Example 1, and FIG. 10B is a cross-sectional view taken along the line CC in FIG. 10A. 図11(a)および図11(b)は実施例2に係る発光装置の断面図である。FIG. 11A and FIG. 11B are cross-sectional views of the light emitting device according to the second embodiment. 図12(a)は実施例3に係る発光装置の一部分を示す断面図、図12(b)は実施例4に係る発光装置の一部分を示す断面図である。12A is a cross-sectional view illustrating a part of the light-emitting device according to the third embodiment, and FIG. 12B is a cross-sectional view illustrating a part of the light-emitting device according to the fourth embodiment. 図13(a)は実施例5に係る発光装置の一部分を示す断面図、図13(b)は実施例5における第1透光層の一部分を示す平面図、図13(c)は実施例5における第1透光層の一部分を示す斜視図である。13A is a cross-sectional view showing a part of the light emitting device according to Example 5, FIG. 13B is a plan view showing a part of the first light-transmitting layer in Example 5, and FIG. 13C is the example. FIG. 5 is a perspective view showing a part of a first light transmissive layer in FIG. 実施例6に係る発光装置の一部分を示す断面図である。10 is a cross-sectional view showing a part of a light emitting device according to Example 6. FIG. 実施例7に係る発光装置の一部分を示す断面図である。FIG. 10 is a cross-sectional view illustrating a part of the light emitting device according to Example 7. 図16(a)~図16(e)は実施例7に係る発光装置の製造方法を示す断面図である。FIG. 16A to FIG. 16E are cross-sectional views illustrating a method for manufacturing a light emitting device according to Example 7. 実施例8に係る発光装置の一部分を示す断面図である。FIG. 10 is a cross-sectional view illustrating a part of the light emitting device according to Example 8. 実施例9に係る発光装置の一部分を示す断面図である。FIG. 10 is a cross-sectional view illustrating a part of the light emitting device according to Example 9; 図19(a)~図19(d)は、実施例9に係る発光装置の製造方法を示す断面図である。FIG. 19A to FIG. 19D are cross-sectional views illustrating a method for manufacturing a light-emitting device according to Example 9. 図20(a)~図20(d)は、実施例10に係る発光装置の製造方法を示す断面図である。20A to 20D are cross-sectional views illustrating the method for manufacturing the light emitting device according to the tenth embodiment. 実施例11に係る発光装置の断面図である。12 is a sectional view of a light emitting device according to Example 11. FIG. 実施例12に係る発光装置の断面図である。It is sectional drawing of the light-emitting device based on Example 12. 実施例13に係る発光装置の断面図である。It is sectional drawing of the light-emitting device based on Example 13. 実施例14に係る発光装置の斜視図である。It is a perspective view of the light-emitting device concerning Example 14. 図25(a)は実施例14に係る発光装置を図24の矢印A方向に見た断面図、図25(b)は実施例14に係る発光装置を図24の矢印B方向に見た断面図である。25A is a cross-sectional view of the light-emitting device according to Example 14 as viewed in the direction of arrow A in FIG. 24, and FIG. 25B is a cross-sectional view of the light-emitting device according to Example 14 as viewed in the direction of arrow B of FIG. FIG. 実施例14に係る発光装置の平面図である。It is a top view of the light-emitting device concerning Example 14. 図27(a)は実施例15に係る発光装置の斜視図、図27(b)は実施例15に係る発光装置を図27(a)の矢印A方向に見た断面図である。FIG. 27A is a perspective view of the light emitting device according to the fifteenth embodiment, and FIG. 27B is a cross-sectional view of the light emitting device according to the fifteenth embodiment when viewed in the direction of arrow A in FIG.
 以下、実施の形態について、図面を用いて説明する。尚、すべての図面において、同様の構成要素には同一の符号を付し、適宜説明を省略する。 Hereinafter, embodiments will be described with reference to the drawings. In all the drawings, the same components are denoted by the same reference numerals, and description thereof will be omitted as appropriate.
 (実施形態)
 本実施形態に係る発光装置は、有機EL素子を含んで構成される。この発光装置は、例えばディスプレイ、照明装置、又は光通信装置の光源として用いることができる。
(Embodiment)
The light emitting device according to this embodiment includes an organic EL element. This light emitting device can be used as a light source of a display, a lighting device, or an optical communication device, for example.
 図2(a)は実施形態に係る発光装置の斜視図、図2(b)は実施形態に係る発光装置を図2(a)の矢印A方向に見た断面図、図2(c)は実施形態に係る発光装置を図2(a)の矢印B方向に見た断面図である。 2A is a perspective view of the light-emitting device according to the embodiment, FIG. 2B is a cross-sectional view of the light-emitting device according to the embodiment when viewed in the direction of arrow A in FIG. 2A, and FIG. It is sectional drawing which looked at the light-emitting device which concerns on embodiment in the arrow B direction of Fig.2 (a).
 本実施形態に係る発光装置は、発光層を含む有機機能層50と、有機機能層50の一方の面側に配置された透光層100と、を備える。透光層100における有機機能層50とは反対側の面は、発光層が発光した光を出射する光取り出し面dを構成している。透光層100は、有機機能層50に近い側から順に、第1透光層110と、第1透光層110との間に界面35を有する第2透光層120と、を有する。第1透光層110と第2透光層120との界面35は、有機機能層50に対して傾斜している第1傾斜面35aと、有機機能層50に対して第1傾斜面35aの傾斜方向とは反対方向に傾斜している第2傾斜面35bと、を有する。有機機能層50と平行な第1方向(矢印B方向)において第1傾斜面35aと第2傾斜面35bとが交互に位置するように、複数の第1傾斜面35aと複数の第2傾斜面35bとが第1方向において並んで配置されている。第2透光層120と、第2透光層120に対して第1透光層110とは反対側に隣接する領域である隣接領域200と、の界面36は、複数の突起70を有する。複数の第1傾斜面35aと複数の第2傾斜面35bとのうちの少なくとも何れか1つの傾斜面に沿って第1光反射膜25が形成されている。複数の突起70の各々は、有機機能層50に対して互いに異なる向きに傾斜する3つ以上の傾斜面を含み、且つ、これら傾斜面のうちの少なくとも何れか1つは有機機能層50に対して直交していない。ここで、有機機能層50に対して傾斜しているとは、有機機能層50が延在する面に対して傾斜していることを意味し、例えば、有機機能層50の上面に対して傾斜していることを意味する。また、各突起70は、例えば、第1透光層110を基準として有機機能層50側とは反対側に向けて縮径する形状に形成されている。また、各突起70の基端(各突起70を独立した構造体とみなした場合の各突起70の底面)は、例えば、同一平面上に位置している。例えば、突起70は、頂点が平面視における中心からずれた四角錐形状であり、その1つ又は2つの側面が有機機能層50に対して直交していても良い。また、突起70は、三角柱形状(横倒しの三角柱形状)であり、1つの側面と2つの底面とが有機機能層50に対して直交していても良い。なお、複数の突起70の各々は、有機機能層50に対して互いに異なる向きに傾斜する3つ以上の傾斜面を含み、且つ、これら傾斜面の何れも有機機能層50に対して直交していないことも好ましい。 The light-emitting device according to this embodiment includes an organic functional layer 50 including a light-emitting layer, and a light-transmitting layer 100 disposed on one surface side of the organic functional layer 50. The surface of the translucent layer 100 opposite to the organic functional layer 50 constitutes a light extraction surface d that emits light emitted from the light emitting layer. The light transmissive layer 100 includes a first light transmissive layer 110 and a second light transmissive layer 120 having an interface 35 between the first light transmissive layer 110 in order from the side closer to the organic functional layer 50. The interface 35 between the first light transmitting layer 110 and the second light transmitting layer 120 includes a first inclined surface 35 a that is inclined with respect to the organic functional layer 50 and a first inclined surface 35 a that is inclined with respect to the organic functional layer 50. And a second inclined surface 35b inclined in a direction opposite to the inclined direction. The plurality of first inclined surfaces 35a and the plurality of second inclined surfaces are arranged such that the first inclined surfaces 35a and the second inclined surfaces 35b are alternately positioned in the first direction (arrow B direction) parallel to the organic functional layer 50. 35b are arranged side by side in the first direction. An interface 36 between the second light-transmitting layer 120 and the adjacent region 200 that is adjacent to the second light-transmitting layer 120 on the opposite side of the first light-transmitting layer 110 has a plurality of protrusions 70. The first light reflection film 25 is formed along at least one of the plurality of first inclined surfaces 35a and the plurality of second inclined surfaces 35b. Each of the plurality of protrusions 70 includes three or more inclined surfaces inclined in different directions with respect to the organic functional layer 50, and at least one of these inclined surfaces is relative to the organic functional layer 50. Are not orthogonal. Here, being inclined with respect to the organic functional layer 50 means being inclined with respect to the surface on which the organic functional layer 50 extends, for example, with respect to the upper surface of the organic functional layer 50. Means that Moreover, each protrusion 70 is formed in the shape which diameter-reduces toward the opposite side to the organic functional layer 50 side on the basis of the 1st translucent layer 110, for example. Further, the base end of each projection 70 (the bottom surface of each projection 70 when each projection 70 is regarded as an independent structure) is located on the same plane, for example. For example, the protrusion 70 may have a quadrangular pyramid shape with a vertex shifted from the center in plan view, and one or two side surfaces thereof may be orthogonal to the organic functional layer 50. Further, the protrusion 70 may have a triangular prism shape (laterally triangular prism shape), and one side surface and two bottom surfaces may be orthogonal to the organic functional layer 50. Each of the plurality of protrusions 70 includes three or more inclined surfaces inclined in different directions with respect to the organic functional layer 50, and any of these inclined surfaces is orthogonal to the organic functional layer 50. It is also preferred not to.
 また、本実施形態に係る発光装置は、発光層を含む有機機能層50と、有機機能層50の一方の面側に配置された透光層100と、を備える。透光層100における有機機能層50とは反対側の面は、発光層が発光した光を出射する光取り出し面dを構成している。透光層100は、有機機能層50に近い側から順に、第1透光層110と、第1透光層110との間に界面35を有する第2透光層120と、を有する。第1透光層110と第2透光層120との界面35は、有機機能層50に対して傾斜している第1傾斜面35aと、有機機能層50に対して第1傾斜面35aの傾斜方向とは反対方向に傾斜している第2傾斜面35bと、を有する。有機機能層50と平行な第1方向(矢印B方向)において第1傾斜面35aと第2傾斜面35bとが交互に位置するように、複数の第1傾斜面35aと複数の第2傾斜面35bとが第1方向において並んで配置されている。第2透光層120と、第2透光層120に対して第1透光層110とは反対側に隣接する領域である隣接領域200と、の界面36は、複数の突起70を有する。複数の第1傾斜面35aと複数の第2傾斜面35bとのうちの少なくとも何れか1つの傾斜面に沿って第1光反射膜25が形成されている。複数の突起70の各々は、多角錐状、円錐状、多角錐台状、円錐台状又は半球状に形成されている。各突起70は、例えば、第1透光層110を基準として有機機能層50側とは反対側に向けて縮径する向きに配置されている。また、各突起70の基端(各突起70を独立した構造体とみなした場合の各突起70の底面)は、例えば、同一平面上に位置している。 Further, the light emitting device according to the present embodiment includes an organic functional layer 50 including a light emitting layer, and a light transmissive layer 100 disposed on one surface side of the organic functional layer 50. The surface of the translucent layer 100 opposite to the organic functional layer 50 constitutes a light extraction surface d that emits light emitted from the light emitting layer. The light transmissive layer 100 includes a first light transmissive layer 110 and a second light transmissive layer 120 having an interface 35 between the first light transmissive layer 110 in order from the side closer to the organic functional layer 50. The interface 35 between the first light transmitting layer 110 and the second light transmitting layer 120 includes a first inclined surface 35 a that is inclined with respect to the organic functional layer 50 and a first inclined surface 35 a that is inclined with respect to the organic functional layer 50. And a second inclined surface 35b inclined in a direction opposite to the inclined direction. The plurality of first inclined surfaces 35a and the plurality of second inclined surfaces are arranged such that the first inclined surfaces 35a and the second inclined surfaces 35b are alternately positioned in the first direction (arrow B direction) parallel to the organic functional layer 50. 35b are arranged side by side in the first direction. An interface 36 between the second light-transmitting layer 120 and the adjacent region 200 that is adjacent to the second light-transmitting layer 120 on the opposite side of the first light-transmitting layer 110 has a plurality of protrusions 70. The first light reflection film 25 is formed along at least one of the plurality of first inclined surfaces 35a and the plurality of second inclined surfaces 35b. Each of the plurality of protrusions 70 is formed in a polygonal pyramid shape, a conical shape, a polygonal frustum shape, a truncated cone shape, or a hemispherical shape. For example, each protrusion 70 is arranged in a direction to reduce the diameter toward the side opposite to the organic functional layer 50 side with respect to the first light transmitting layer 110. Further, the base end of each projection 70 (the bottom surface of each projection 70 when each projection 70 is regarded as an independent structure) is located on the same plane, for example.
 なお、互いに隣り合う第1傾斜面35aと第2傾斜面35bとのうち少なくとも何れか一方は、光反射膜が形成されておらず、光透過面となっている。 Note that at least one of the first inclined surface 35a and the second inclined surface 35b adjacent to each other is not formed with a light reflecting film, and is a light transmitting surface.
 以下においては、説明を簡単にするため、発光装置の各構成要素の位置関係(上下関係等)が各図に示す関係であるものとして説明を行う。ただし、この説明における位置関係は、発光装置の使用時の位置関係とは無関係である。 In the following, in order to simplify the description, the positional relationship (vertical relationship, etc.) of each component of the light emitting device will be described as the relationship shown in each drawing. However, the positional relationship in this description is irrelevant to the positional relationship when the light emitting device is used.
 本実施形態の場合、隣接領域200は、例えば、発光装置の外部の光放出空間である。したがって、本実施形態の場合、隣接領域200は空気層(屈折率1)からなる。すなわち、隣接領域200は、気体からなる。また、例えば、第2透光層120の上面が、この空気層に接しているとともに光取り出し面dを構成している。なお、第2透光層120の上面には、光取り出しフィルムが貼り付けられており、この光取り出しフィルムの上面が、光取り出し面dを構成していても良い。 In the case of this embodiment, the adjacent region 200 is, for example, a light emission space outside the light emitting device. Therefore, in the present embodiment, the adjacent region 200 is composed of an air layer (refractive index 1). That is, the adjacent region 200 is made of gas. Further, for example, the upper surface of the second light transmitting layer 120 is in contact with the air layer and constitutes a light extraction surface d. In addition, the light extraction film is affixed on the upper surface of the 2nd translucent layer 120, and the upper surface of this light extraction film may comprise the light extraction surface d.
 発光装置は、更に、有機機能層50と第1透光層110との間に配置された透光性の第1電極(透光性電極)40と、有機機能層50を基準として第1電極40とは反対側に配置された第2電極60と、を有している。 The light emitting device further includes a translucent first electrode (translucent electrode) 40 disposed between the organic functional layer 50 and the first translucent layer 110, and the first electrode based on the organic functional layer 50. 40 and a second electrode 60 disposed on the opposite side of 40.
 例えば、第1電極40は、第1透光層110における有機機能層50側の面に接している。第1電極40は、例えばITO(Indium Tin Oxide)やIZO(Indium Zinc Oxide)などの金属酸化物導電体からなる透明電極とすることができる。ただし、第1電極40は、光が透過する程度に薄い金属薄膜であっても良い。 For example, the first electrode 40 is in contact with the surface of the first light transmitting layer 110 on the organic functional layer 50 side. The first electrode 40 may be a transparent electrode made of a metal oxide conductor such as ITO (Indium Tin Oxide) or IZO (Indium Zinc Oxide). However, the first electrode 40 may be a metal thin film that is thin enough to transmit light.
 第2電極60は、例えば、Alなどの金属膜からなる反射電極である。第2電極60は、有機機能層50から第2電極60側に向かう光を、光取り出し面d側に向けて反射する。 The second electrode 60 is a reflective electrode made of a metal film such as Al. The second electrode 60 reflects light traveling from the organic functional layer 50 toward the second electrode 60 toward the light extraction surface d.
 第1電極40と第2電極60との間に電圧が印加されることにより、有機機能層50の発光層が発光する。透光層100(本実施形態の場合、第1透光層110及び第2透光層120)、第1電極40、及び、有機機能層50は、いずれも、有機機能層50の発光層が発光した光の少なくとも一部を透過する。発光層が発光した光の一部は、透光層100の光取り出し面dから、発光装置の外部(つまり上記光放出空間)に放射される(取り出される)。 When a voltage is applied between the first electrode 40 and the second electrode 60, the light emitting layer of the organic functional layer 50 emits light. The light-transmitting layer 100 (in the case of the present embodiment, the first light-transmitting layer 110 and the second light-transmitting layer 120), the first electrode 40, and the organic functional layer 50 are all the light-emitting layers of the organic functional layer 50. Transmits at least part of the emitted light. Part of the light emitted from the light emitting layer is emitted (extracted) from the light extraction surface d of the light transmitting layer 100 to the outside of the light emitting device (that is, the light emission space).
 図3(a)は第2透光層120の斜視図、図3(b)は第1透光層110の斜視図である。 3A is a perspective view of the second light transmitting layer 120, and FIG. 3B is a perspective view of the first light transmitting layer 110. FIG.
 図3(a)に示すように、第2透光層120は、透光性の板状のものである。第2透光層120における第1透光層110側の面すなわち下面122に、第1傾斜面35a及び第2傾斜面35bが形成され、第2透光層120における隣接領域200側の面すなわち上面121に、複数の突起70が形成されている。 As shown in FIG. 3A, the second light transmissive layer 120 is a light transmissive plate. A first inclined surface 35 a and a second inclined surface 35 b are formed on the surface of the second light transmitting layer 120 on the first light transmitting layer 110 side, that is, the lower surface 122, and the surface of the second light transmitting layer 120 on the adjacent region 200 side, A plurality of protrusions 70 are formed on the upper surface 121.
 図3(b)に示すように、第1透光層110は、透光性の板状のものである。第1透光層110の上面111は、第2透光層120の下面122の凹凸形状と噛み合う凹凸形状に形成されている。上面111と下面122との界面が、界面35である。第1透光層110の下面112は、平坦に形成されている。ただし、下面112の、ある程度の表面粗さは、許容される。下面112は、有機機能層50に対して平行に配置されている。 As shown in FIG. 3B, the first light transmissive layer 110 is a light transmissive plate. The top surface 111 of the first light transmissive layer 110 is formed in a concavo-convex shape that meshes with the concavo-convex shape of the bottom surface 122 of the second light transmissive layer 120. The interface between the upper surface 111 and the lower surface 122 is the interface 35. The lower surface 112 of the first light transmissive layer 110 is formed flat. However, a certain degree of surface roughness of the lower surface 112 is allowed. The lower surface 112 is disposed in parallel to the organic functional layer 50.
 図3(a)に示すように、第2透光層120の上面121は界面36を形成する。例えば、第2透光層120の上面121に凹凸を形成することによって、上面121に複数の突起70を形成することができる。この凹凸は、切削研磨、レーザー加工、化学的エッチング、熱インプリントなどの公知の表面加工技術を用いて第2透光層120の表面を加工することにより形成することができる。ただし、平坦に形成された第2透光層120の本体の上面に、別途形成した複数の突起70を取り付けることによって、第2透光層120が構成されていても良い。或いは、平坦に形成された第2透光層120の本体の上面に、複数の突起70を有するシートを貼り付けることによって、第2透光層120が構成されていても良い。 As shown in FIG. 3A, the upper surface 121 of the second light transmitting layer 120 forms an interface 36. For example, a plurality of protrusions 70 can be formed on the upper surface 121 by forming irregularities on the upper surface 121 of the second light transmitting layer 120. The unevenness can be formed by processing the surface of the second light transmitting layer 120 using a known surface processing technique such as cutting and polishing, laser processing, chemical etching, or thermal imprinting. However, the 2nd light transmission layer 120 may be comprised by attaching the several protrusion 70 formed separately on the upper surface of the main body of the 2nd light transmission layer 120 formed flat. Or the 2nd light transmission layer 120 may be comprised by affixing the sheet | seat which has several protrusion 70 on the upper surface of the main body of the 2nd light transmission layer 120 formed flat.
 複数の突起70は、第1透光層110の上面において、二次元的に分散して配置されている。具体的には、例えば、複数の突起70は、平面視においてマトリクス状や千鳥状などの配置で一定間隔で配列されている。ただし、隣り合う突起70同士の間隔は一定でなくても良い。 The plurality of protrusions 70 are two-dimensionally distributed on the upper surface of the first light transmissive layer 110. Specifically, for example, the plurality of protrusions 70 are arranged at regular intervals in a matrix or zigzag arrangement in plan view. However, the interval between the adjacent protrusions 70 may not be constant.
 複数の突起70には、錐状に形成された突起70が含まれていることが挙げられる。より具体的には、複数の突起70の各々は、例えば、錐状に形成されていることが挙げられる。 It can be mentioned that the plurality of protrusions 70 include protrusions 70 formed in a cone shape. More specifically, each of the plurality of protrusions 70 may be formed in a conical shape, for example.
 或いは、複数の突起70には、多角錐状に形成された突起70が含まれていることが挙げられる。より具体的には、複数の突起70の各々は、例えば、多角錐状に形成されていることが挙げられる。 Alternatively, the plurality of protrusions 70 may include protrusions 70 formed in a polygonal pyramid shape. More specifically, each of the plurality of protrusions 70 may be formed in a polygonal pyramid shape, for example.
 より具体的には、複数の突起70の各々は、例えば、四角錐形状に形成されていることが挙げられる。この場合、複数の突起70の各々は、有機機能層50に対して互いに異なる向きに傾斜する4つの傾斜面を含み、且つ、これら傾斜面の何れも有機機能層50に対して直交していない。この場合、複数の突起70は、例えば、平面視においてマトリクス状に、互いに隙間無く配置することができる。なお、四角錐形状の突起70の1つ又は2つの側面が有機機能層50に対して直交していても良い。
 また、突起70の形状は、例えば、三角錐形状、五角錐形状、六角錐形状などの、その他の多角錐形状でも良い。
More specifically, each of the plurality of protrusions 70 may be formed in a quadrangular pyramid shape, for example. In this case, each of the plurality of protrusions 70 includes four inclined surfaces inclined in different directions with respect to the organic functional layer 50, and none of these inclined surfaces is orthogonal to the organic functional layer 50. . In this case, for example, the plurality of protrusions 70 can be arranged in a matrix in a plan view without any gap. One or two side surfaces of the quadrangular pyramid-shaped protrusion 70 may be orthogonal to the organic functional layer 50.
Further, the shape of the protrusion 70 may be other polygonal pyramid shapes such as a triangular pyramid shape, a pentagonal pyramid shape, and a hexagonal pyramid shape, for example.
 また、複数の突起70には、円錐状に形成された突起70が含まれていても良い。この場合、複数の突起70の各々が円錐状に形成されていても良い。 Further, the plurality of protrusions 70 may include a protrusion 70 formed in a conical shape. In this case, each of the plurality of protrusions 70 may be formed in a conical shape.
 或いは、複数の突起70には、半球状に形成された突起70が含まれていても良い。この場合、複数の突起70の各々が半球状に形成されていても良い。 Alternatively, the plurality of protrusions 70 may include a hemispherical protrusion 70. In this case, each of the plurality of protrusions 70 may be formed in a hemispherical shape.
 また、突起70の形状は、多角錐台形状や、円錐台形状や、半球の頂部が切断されたような形状であっても良い。更には、突起70の形状は、これらの形状に限らず、有機機能層50に対して互いに異なる向きに傾斜する3つ以上の傾斜面を含み、且つ、これら傾斜面のうちの少なくとも何れか1つは有機機能層50に対して直交していない、という条件を満たす形状であれば、如何なる形状であっても良い。 Further, the shape of the protrusion 70 may be a polygonal frustum shape, a truncated cone shape, or a shape in which the top of the hemisphere is cut. Furthermore, the shape of the protrusion 70 is not limited to these shapes, and includes three or more inclined surfaces inclined in different directions with respect to the organic functional layer 50, and at least one of these inclined surfaces. Any shape may be used as long as it satisfies the condition that it is not orthogonal to the organic functional layer 50.
 界面35を形成する第2透光層120の下面122は、第1傾斜面35aと第2傾斜面35bとを有する凹凸形状に形成されている。例えば、第2透光層120の下面に、互いに並列な複数の逆V溝を形成することによって、複数の第1傾斜面35a及び複数の第2傾斜面35bが形成されている。この凹凸形状は、切削研磨、レーザー加工、化学的エッチング、熱インプリントなどの公知の表面加工技術を用いて第2透光層120の表面を加工することにより形成することができる。ただし、平坦に形成された第2透光層120の本体部の下面に複数の突条を互いに並列に取り付けることによって、複数の第1傾斜面35a及び複数の第2傾斜面35bが形成されていても良い。例えば、有機機能層50と平行な第1方向(矢印B方向)に沿って、第1傾斜面35aと第2傾斜面35bとが交互に隙間無く並んで配置されている。このため、互いに隣り合って配置された第1傾斜面35a及び第2傾斜面35bにより、第1透光層110側に向けて突出する切妻屋根状の突条が形成されている。 The lower surface 122 of the second translucent layer 120 forming the interface 35 is formed in an uneven shape having a first inclined surface 35a and a second inclined surface 35b. For example, a plurality of first inclined surfaces 35 a and a plurality of second inclined surfaces 35 b are formed by forming a plurality of inverted V grooves parallel to each other on the lower surface of the second light transmitting layer 120. The uneven shape can be formed by processing the surface of the second light transmitting layer 120 using a known surface processing technique such as cutting and polishing, laser processing, chemical etching, or thermal imprinting. However, a plurality of first inclined surfaces 35a and a plurality of second inclined surfaces 35b are formed by attaching a plurality of protrusions in parallel to the lower surface of the main body portion of the second light transmitting layer 120 formed flat. May be. For example, along the first direction (arrow B direction) parallel to the organic functional layer 50, the first inclined surface 35a and the second inclined surface 35b are alternately arranged with no gap. For this reason, the gable roof-shaped protrusion which protrudes toward the 1st translucent layer 110 side is formed of the 1st inclined surface 35a and the 2nd inclined surface 35b which were mutually arrange | positioned mutually.
 より具体的には、例えば、第1傾斜面35aは、有機機能層50に対して平行な長方形状の面を、有機機能層50に対して平行な第1回転軸を中心に第1回転方向に第1角度だけ回転させた面である。また、この第1傾斜面35aの隣に位置する第2傾斜面35bは、有機機能層50に対して平行な長方形状の面を、上記第1回転軸を中心に第1回転方向とは反対方向の第2回転方向に第2角度だけ回転させた面である。第1回転軸は、例えば、第1方向に対して直交している。また、有機機能層50に対する各第1傾斜面35aの傾斜角度(第1角度)は、例えば、互いに等しい。同様に、有機機能層50に対する各第2傾斜面35bの傾斜角度(第2角度)は、例えば、互いに等しい。第1角度と第2角度の大きさは、例えば、互いに等しい。ただし、第1角度と第2角度との大きさは、互いに異なっていても良い。 More specifically, for example, the first inclined surface 35 a has a rectangular surface parallel to the organic functional layer 50, and the first rotation direction about the first rotation axis parallel to the organic functional layer 50. The surface is rotated by a first angle. The second inclined surface 35b located next to the first inclined surface 35a is a rectangular surface parallel to the organic functional layer 50 and is opposite to the first rotation direction around the first rotation axis. It is a surface rotated by a second angle in the second rotation direction of the direction. For example, the first rotation axis is orthogonal to the first direction. In addition, the inclination angles (first angles) of the first inclined surfaces 35a with respect to the organic functional layer 50 are equal to each other, for example. Similarly, the inclination angle (second angle) of each second inclined surface 35b with respect to the organic functional layer 50 is equal to each other, for example. The magnitudes of the first angle and the second angle are, for example, equal to each other. However, the magnitudes of the first angle and the second angle may be different from each other.
 第1傾斜面35aと第2傾斜面35bとは、例えば互いに同じ形状及びサイズに形成されている。第1傾斜面35aおよび第2傾斜面35bの短手方向の寸法(上記長方形状の短手寸法)は、有機機能層50において生成される光の波長よりも十分に大きいことが好ましい。 The first inclined surface 35a and the second inclined surface 35b are formed in the same shape and size, for example. It is preferable that the dimension of the first inclined surface 35 a and the second inclined surface 35 b in the short direction (the rectangular short dimension) is sufficiently larger than the wavelength of the light generated in the organic functional layer 50.
 例えば、第1及び第2傾斜面35a、35bは同一平面に沿って配置されている。より具体的には、第1及び第2傾斜面35a、35bは、例えば、有機機能層50に対して平行な一の平面に沿って配置されている。すなわち、有機機能層50から各第1傾斜面35aまでの距離と、有機機能層50から各第2傾斜面35bまでの距離とは、互いに等しい。 For example, the first and second inclined surfaces 35a and 35b are arranged along the same plane. More specifically, the first and second inclined surfaces 35 a and 35 b are arranged along one plane parallel to the organic functional layer 50, for example. That is, the distance from the organic functional layer 50 to each first inclined surface 35a is equal to the distance from the organic functional layer 50 to each second inclined surface 35b.
 例えば、互いに隣り合う第1傾斜面35aと第2傾斜面35bとのうち何れか一方に沿って第1光反射膜25が形成されている。例えば、複数の第2傾斜面35bの各々に沿って第1光反射膜25が形成されている。例えば、第1光反射膜25は、第2傾斜面35bの全面に沿って形成されている。ただし、後述する実施例のように、第1光反射膜25は、第2傾斜面35bの一部分に沿って形成されていても良い。 For example, the first light reflection film 25 is formed along one of the first inclined surface 35a and the second inclined surface 35b adjacent to each other. For example, the first light reflecting film 25 is formed along each of the plurality of second inclined surfaces 35b. For example, the first light reflecting film 25 is formed along the entire surface of the second inclined surface 35b. However, the 1st light reflection film 25 may be formed along a part of 2nd inclined surface 35b like the Example mentioned later.
 第1光反射膜25は、高反射率を有する材料、例えばAgやAlなどの金属により構成される。第1光反射膜25は、例えば、第2透光層120の下面に対して金属膜を斜め蒸着することによって、第1傾斜面35aと第2傾斜面35bとのうち一方(例えば第2傾斜面35b)に対して選択的に金属膜を成膜することにより形成されている。 The first light reflecting film 25 is made of a material having high reflectivity, for example, a metal such as Ag or Al. For example, the first light reflecting film 25 is formed by obliquely depositing a metal film on the lower surface of the second light-transmitting layer 120, whereby one of the first inclined surface 35a and the second inclined surface 35b (for example, the second inclined surface). A metal film is selectively formed on the surface 35b).
 第2透光層120は、例えば、ガラス又は樹脂などの透光性の材料により構成されている。第2透光層120がガラスにより構成される場合、第2透光層120の屈折率は、例えば、1.5程度である。第2透光層120は、透光性のフィルムであっても良い。第2透光層120の屈折率は、第1透光層110の屈折率よりも小さい。 The second light transmissive layer 120 is made of a light transmissive material such as glass or resin. When the 2nd translucent layer 120 is comprised with glass, the refractive index of the 2nd translucent layer 120 is about 1.5, for example. The second light transmissive layer 120 may be a light transmissive film. The refractive index of the second light transmissive layer 120 is smaller than the refractive index of the first light transmissive layer 110.
 第1透光層110の屈折率は、第2透光層120の屈折率よりも大きい。これにより、第1電極40側から第1透光層110側への光の取り出しが容易となる。第1透光層110の屈折率は、例えば、第1電極40の屈折率と同程度である。第1透光層110は、例えば屈折率1.8程度のエポキシ樹脂と有機材料への影響を抑制するバリア膜とにより構成される。あるいは、第1透光層110は、BaTiOを用いたナノパーティクルを含有する高屈折率材料や高屈折率ナノコンポジット薄膜などによって構成しても良い。ただし、第1透光層110は、有機機能層50と同じ材料により構成されていても良い。 The refractive index of the first light transmissive layer 110 is larger than the refractive index of the second light transmissive layer 120. This facilitates extraction of light from the first electrode 40 side to the first light transmissive layer 110 side. The refractive index of the first light transmissive layer 110 is, for example, about the same as the refractive index of the first electrode 40. The first light transmissive layer 110 includes, for example, an epoxy resin having a refractive index of about 1.8 and a barrier film that suppresses the influence on the organic material. Alternatively, the first light transmissive layer 110 may be formed of a high refractive index material containing nanoparticles using BaTiO 3 or a high refractive index nanocomposite thin film. However, the first light transmissive layer 110 may be made of the same material as the organic functional layer 50.
 第1透光層110の屈折率は、例えば、第1電極40の屈折率以上であり、且つ、2.3以下である。 The refractive index of the first light transmitting layer 110 is, for example, not less than the refractive index of the first electrode 40 and not more than 2.3.
 第1透光層110は、例えば、第2透光層120の下面に有機材料を塗布し、これを硬化させることにより構成されている。これにより、第1透光層110の上面111は、第2透光層120の下面の凹凸形状を反映した形状となる。ただし、第1透光層110は、第2透光層120とは別個に形成した後に、第2透光層120に対して貼り付けられても良い。 The first light-transmitting layer 110 is configured, for example, by applying an organic material to the lower surface of the second light-transmitting layer 120 and curing it. Accordingly, the upper surface 111 of the first light transmissive layer 110 has a shape reflecting the uneven shape of the lower surface of the second light transmissive layer 120. However, the first light transmissive layer 110 may be attached to the second light transmissive layer 120 after being formed separately from the second light transmissive layer 120.
 第1電極40は、例えば、第1透光層110の下面112に対してITOやIZOなどの金属酸化物導電体をスパッタリングすることにより構成されている。更に、第1電極40の下面には、例えば隔壁部が形成されている。 The first electrode 40 is configured, for example, by sputtering a metal oxide conductor such as ITO or IZO on the lower surface 112 of the first light transmitting layer 110. Furthermore, for example, a partition wall is formed on the lower surface of the first electrode 40.
 有機機能層50は、隔壁部間に発光層を含む有機材料を蒸着又は塗布することによって構成されている。第2電極60は、有機機能層50の下面に金属材料を蒸着することにより構成されている。 The organic functional layer 50 is configured by depositing or applying an organic material including a light emitting layer between the partition walls. The second electrode 60 is configured by evaporating a metal material on the lower surface of the organic functional layer 50.
 なお、第1透光層110における第2透光層120側とは反対側の面(下面)と第1電極40の一方の面(上面)とが相互に接している。また、第1電極40の他方の面(下面)と有機機能層50の一方の面(上面)とが相互に接している。また、有機機能層50の他方の面(下面)と第2電極60の一方の面(上面)とが相互に接している。ただし、第1透光層110と第1電極40との間には他の層が存在していても良い。同様に、第1電極40と有機機能層50との間には他の層が存在していても良い。同様に、有機機能層50と第2電極60との間には他の層が存在していても良い。 Note that the surface (lower surface) of the first light transmitting layer 110 opposite to the second light transmitting layer 120 side and one surface (upper surface) of the first electrode 40 are in contact with each other. Further, the other surface (lower surface) of the first electrode 40 and one surface (upper surface) of the organic functional layer 50 are in contact with each other. Further, the other surface (lower surface) of the organic functional layer 50 and one surface (upper surface) of the second electrode 60 are in contact with each other. However, another layer may exist between the first light-transmissive layer 110 and the first electrode 40. Similarly, another layer may exist between the first electrode 40 and the organic functional layer 50. Similarly, another layer may exist between the organic functional layer 50 and the second electrode 60.
 図4(a)~(c)及び図5(a)~(c)は、本実施形態に係る発光装置において、有機機能層50で生成された光が外部に放出されるまでの経路のいくつかを例示した断面図である。図4(a)~(c)及び図5(a)~(c)において、領域R1が低屈折率側(第2透光層120)であり、領域R2が高屈折率側(第1透光層110)である。図4(a)~(c)及び図5(a)~(c)は、特に、第2透光層120の下側の界面35の機能を説明するためのものである。 4 (a) to 4 (c) and FIGS. 5 (a) to 5 (c) show how many paths until the light generated in the organic functional layer 50 is emitted to the outside in the light emitting device according to the present embodiment. It is sectional drawing which illustrated this. 4A to 4C and FIGS. 5A to 5C, the region R1 is on the low refractive index side (second light transmitting layer 120), and the region R2 is on the high refractive index side (first light transmitting layer). Optical layer 110). 4 (a) to 4 (c) and FIGS. 5 (a) to 5 (c) are particularly for explaining the function of the lower interface 35 of the second light transmitting layer 120. FIG.
 ここで、第1透光層110、第1電極40及び有機機能層50は、例えば、互いに同程度の屈折率を有するため、互いの界面において屈折や反射が生じない。また、第2透光層120における発光層側の界面35の凹凸構造(第1傾斜面35aおよび第2傾斜面35bの配置)は周期的である。更に、第1透光層110及び第2透光層120の厚みはそれぞれ例えば10μm程度であるのに対して、第1電極40及び有機機能層50の厚みはそれぞれ例えば100nm程度であることから、第1透光層110及び第2透光層120の厚みに比して第1電極40及び有機機能層50の厚みは無視しうる。これらのことから、第2電極60及び発光点が、第2透光層120における発光層側の突条の各頂部に接する平面c上の位置に存在するものとみなしても実質的に問題はない。よって、第2電極60及び発光点が平面c上の位置しているものとして、以下、図4(a)~(c)及び図5(a)~(c)の説明を行う。 Here, since the first light-transmissive layer 110, the first electrode 40, and the organic functional layer 50 have, for example, the same refractive index, refraction and reflection do not occur at the interfaces. Moreover, the uneven structure (arrangement of the first inclined surface 35a and the second inclined surface 35b) of the interface 35 on the light emitting layer side in the second light transmitting layer 120 is periodic. Furthermore, the thickness of the first light transmitting layer 110 and the second light transmitting layer 120 is about 10 μm, for example, whereas the thickness of the first electrode 40 and the organic functional layer 50 is about 100 nm, for example. The thicknesses of the first electrode 40 and the organic functional layer 50 are negligible compared to the thicknesses of the first light transmitting layer 110 and the second light transmitting layer 120. From these facts, even if it is considered that the second electrode 60 and the light emitting point are present at a position on the plane c in contact with the top of the protrusion on the light emitting layer side in the second light transmitting layer 120, there is substantially a problem. Absent. Accordingly, the following description will be made with reference to FIGS. 4A to 4C and FIGS. 5A to 5C assuming that the second electrode 60 and the light emitting point are located on the plane c.
 図4(a)に示すように、光線Aは、第1光反射膜25を有する面a1(第2傾斜面35b)の法線n1に対して角度θ1で、第1透光層110(領域R2)側から面a1に達する。この光線Aは、面a1にて反射した後、面a1に隣接する面b1(第1傾斜面35a)の法線n2に対して角度θ2にて、面b1に達する。角度θ2が臨界角未満の場合、光線Aは、面b1にて屈折して角度θ3で第2透光層120に入射し、隣接する面a2(第2傾斜面35b)にて面b1側の方向成分をもって反射し、界面36へ向かう。 As shown in FIG. 4A, the light ray A is incident on the first light transmitting layer 110 (region) at an angle θ1 with respect to the normal line n1 of the surface a1 (second inclined surface 35b) having the first light reflecting film 25. The surface a1 is reached from the R2) side. The light ray A is reflected by the surface a1, and then reaches the surface b1 at an angle θ2 with respect to the normal line n2 of the surface b1 (first inclined surface 35a) adjacent to the surface a1. When the angle θ2 is less than the critical angle, the light beam A is refracted at the surface b1 and is incident on the second light transmitting layer 120 at the angle θ3, and is adjacent to the surface b1 side at the adjacent surface a2 (second inclined surface 35b). Reflects with a directional component and travels toward interface 36.
 図4(b)に示すように、光線Bの角度θ1は、光線Aの角度θ1よりも大きい。光線Bは、光線Aと同様に、面a1にて反射した後に面b1にて屈折して第1透光層110(領域R2)から第2透光層120(領域R1)に入射し、面a2にて面b1とは反対側の第1傾斜面35aである面b2側の方向成分をもって反射し、界面36へ向かう。 As shown in FIG. 4B, the angle θ1 of the light beam B is larger than the angle θ1 of the light beam A. Similarly to the light ray A, the light beam B is reflected by the surface a1 and then refracted by the surface b1, and enters the second light transmitting layer 120 (region R1) from the first light transmitting layer 110 (region R2). Reflected with a direction component on the surface b2 side, which is the first inclined surface 35a opposite to the surface b1 at a2, and travels toward the interface 36.
 図4(c)に示すように、光線Cは殆ど面a1に対して平行な光である。光線Cは、面b1にて屈折して第1透光層110(領域R2)から第2透光層120(領域R1)へ入射し、界面36へ向かう。 As shown in FIG. 4 (c), the light ray C is almost parallel to the surface a1. The light ray C is refracted at the surface b1 and enters the second light-transmitting layer 120 (region R1) from the first light-transmitting layer 110 (region R2) and travels toward the interface 36.
 図5(a)に示すように、面a1で反射して元に戻る光線Dは、第2電極60の上面である平面cにて反射し、面b1へ向かう。光線Dは、面b1に対して垂直に入射するので、そのまま第1透光層110(領域R2)から第2透光層120(領域R1)へ入射して、界面36へ向かう。 As shown in FIG. 5 (a), the light ray D reflected by the surface a1 and returning to the original is reflected by the plane c which is the upper surface of the second electrode 60 and travels to the surface b1. Since the light beam D is incident on the surface b1 perpendicularly, the light beam D is directly incident on the second light-transmitting layer 120 (region R1) from the first light-transmitting layer 110 (region R2) and travels toward the interface 36.
 図5(b)に示すように、光線Eは光線Aの角度θ1とは極性が異なる光線であり、法線n1の左側から面a1に入射する。光線Eは、面a1で反射し、第2電極60の上面である平面cにて反射した後、再度、面a1で反射する。その後、光線Eは面b1から第2透光層120(領域R1)へ入射した後、面a2にて反射し、界面36へ向かう。 As shown in FIG. 5B, the light beam E is a light beam having a polarity different from that of the angle θ1 of the light beam A, and enters the surface a1 from the left side of the normal line n1. The light beam E is reflected on the surface a1, reflected on the plane c which is the upper surface of the second electrode 60, and then reflected again on the surface a1. Thereafter, the light beam E enters the second light transmitting layer 120 (region R1) from the surface b1, reflects off the surface a2, and travels toward the interface 36.
 図5(c)に示すように、光線Fは面b1に対して全反射角以上の角度で入射する光である。面b1で全反射した光線Fは、面a1で反射した後、第2電極60の上面である平面cにて反射した後、再度、面b1に達する。光線Fは、更に面b1から第2透光層120(領域R1)へ入射した後、界面36へ向かう。 As shown in FIG. 5 (c), the light beam F is incident on the surface b1 at an angle greater than or equal to the total reflection angle. The light beam F totally reflected by the surface b1 is reflected by the surface a1, then reflected by the plane c which is the upper surface of the second electrode 60, and then reaches the surface b1 again. The light beam F further enters the second light transmitting layer 120 (region R1) from the surface b1, and then travels toward the interface 36.
 こうして、様々な向きで界面35に到達する光線を、界面35の第1傾斜面35a、第2傾斜面35b及び第1光反射膜25の働きにより、界面36側に向かわせることができる。 In this way, light rays that reach the interface 35 in various directions can be directed toward the interface 36 by the functions of the first inclined surface 35a, the second inclined surface 35b, and the first light reflecting film 25 of the interface 35.
 また、界面36には、複数の突起70が形成され、各突起70は、有機機能層50に対して互いに異なる向きに傾斜する3つ以上の傾斜面を含み、且つ、これら傾斜面のうちの少なくとも何れか1つは有機機能層50に対して直交していない。例えば、各突起70は、多角錐状、円錐状又は半球状に形成されている。このため、界面35の第1傾斜面35a、第2傾斜面35b及び第1光反射膜25の働きによっては十分に上向きに変更できないような光についても、突起70の傾斜面の働きによって十分に上向きに変更し、発光装置から外部に取り出せるようにすることができる。よって、発光装置の光取り出し効率を向上することができる。また、界面35から界面36側に向かった光について、当該光の発光点から平面的に遠く離れた位置ではなく、この発光点のほぼ直上において、界面36の突起70の傾斜面によって経路を上向きに変更することができる。よって、この光が減衰する前に、この光の向きを、光取り出し面dから外部に取り出すことが可能な向きに変更できる可能性が高まる。 In addition, a plurality of protrusions 70 are formed on the interface 36, and each protrusion 70 includes three or more inclined surfaces that are inclined in different directions with respect to the organic functional layer 50. At least one of them is not orthogonal to the organic functional layer 50. For example, each protrusion 70 is formed in a polygonal pyramid shape, a conical shape, or a hemispherical shape. Therefore, even for light that cannot be changed upward sufficiently by the functions of the first inclined surface 35a, the second inclined surface 35b, and the first light reflecting film 25 of the interface 35, the light is sufficiently increased by the function of the inclined surface of the protrusion 70. It can be changed upward so that it can be taken out from the light emitting device. Therefore, the light extraction efficiency of the light emitting device can be improved. Further, with respect to the light traveling from the interface 35 toward the interface 36, the path is directed upward by the inclined surface of the projection 70 of the interface 36 not directly at a position far from the light emission point of the light but directly above the light emission point. Can be changed. Therefore, there is a high possibility that the direction of the light can be changed to a direction in which the light can be extracted from the light extraction surface d before the light is attenuated.
 次に、比較例として、界面35に光反射膜(第1光反射膜25)が形成されておらず、第2透光層120の上面121が平坦な発光装置について説明する。図6(a)、図6(b)、図6(c)、図7(a)、図7(b)及び図7(c)は、比較例に係る発光装置において、有機機能層で生成された光が外部に放出されるまでの経路を例示した断面図である。図6(a)~図6(c)及び図7(a)~図7(c)に示される光線A~光線Fの角度は、それぞれ図4(a)~図4(c)及び図5(a)~図5(c)に示される光線A~光線Fの角度と同じである。 Next, as a comparative example, a light emitting device in which the light reflecting film (first light reflecting film 25) is not formed on the interface 35 and the upper surface 121 of the second light transmitting layer 120 is flat will be described. FIG. 6A, FIG. 6B, FIG. 6C, FIG. 7A, FIG. 7B, and FIG. 7C are generated in the organic functional layer in the light emitting device according to the comparative example. It is sectional drawing which illustrated the path | route until emitted light was discharge | released outside. The angles of the light rays A to F shown in FIGS. 6 (a) to 6 (c) and FIGS. 7 (a) to 7 (c) are shown in FIGS. 4 (a) to 4 (c) and 5 respectively. The angles are the same as those of the light rays A to F shown in (a) to FIG. 5 (c).
 比較例の場合、光線A~Fのうち、光線A(図6(a))、光線B(図6(b))、光線E(図7(b))及び光線F(図7(c))について、それぞれ界面36に向かう角度が緩くなっている。したがって、比較例では、本実施形態と比べて、光が界面36において全反射する可能性(光が光取り出し面dから外部に放出されない可能性)が高くなっている。つまり、本実施形態によれば、比較例と比べて光取り出し効率を高めることができる。 In the comparative example, among the light beams A to F, the light beam A (FIG. 6A), the light beam B (FIG. 6B), the light beam E (FIG. 7B), and the light beam F (FIG. 7C). ), The angles toward the interface 36 are respectively gentle. Therefore, in the comparative example, the possibility that the light is totally reflected at the interface 36 (the possibility that the light is not emitted outside from the light extraction surface d) is higher than that in the present embodiment. That is, according to the present embodiment, the light extraction efficiency can be increased as compared with the comparative example.
 次に、有機機能層140の層構造の例について説明する。 Next, an example of the layer structure of the organic functional layer 140 will be described.
 図8は有機機能層50の層構造の第1例を示す図である。この有機機能層50は、正孔注入層51、正孔輸送層52、発光層53、電子輸送層54、及び電子注入層55をこの順に積層した構造を有している。すなわち有機機能層50は、有機エレクトロルミネッセンス発光層である。なお、正孔注入層51及び正孔輸送層52の代わりに、これら2つの層の機能を有する一つの層を設けてもよい。同様に、電子輸送層54及び電子注入層55の代わりに、これら2つの層の機能を有する一つの層を設けてもよい。 FIG. 8 is a view showing a first example of the layer structure of the organic functional layer 50. The organic functional layer 50 has a structure in which a hole injection layer 51, a hole transport layer 52, a light emitting layer 53, an electron transport layer 54, and an electron injection layer 55 are stacked in this order. That is, the organic functional layer 50 is an organic electroluminescence light emitting layer. Instead of the hole injection layer 51 and the hole transport layer 52, one layer having the functions of these two layers may be provided. Similarly, instead of the electron transport layer 54 and the electron injection layer 55, one layer having the functions of these two layers may be provided.
 図8の例において、発光層53は、例えば赤色の光を発光する層、青色の光を発光する層、黄色の光を発光する層、又は緑色の光を発光する層である。この場合、例えば、平面視において、赤色の光を発光する発光層53を有する領域、緑色の光を発光する発光層53を有する領域、及び青色の光を発光する発光層53を有する領域が繰り返し設けられていても良い。この場合、各領域を同時に発光させると、発光装置は白色等の単一の発光色で発光する。 In the example of FIG. 8, the light emitting layer 53 is, for example, a layer that emits red light, a layer that emits blue light, a layer that emits yellow light, or a layer that emits green light. In this case, for example, in a plan view, a region having the light emitting layer 53 that emits red light, a region having the light emitting layer 53 that emits green light, and a region having the light emitting layer 53 that emits blue light are repeated. It may be provided. In this case, when each region emits light simultaneously, the light emitting device emits light in a single light emission color such as white.
 なお、発光層143は、複数の色を発光するための材料を混ぜることにより、白色等の単一の発光色で発光するように構成されていても良い。 Note that the light emitting layer 143 may be configured to emit light in a single light emission color such as white by mixing materials for emitting a plurality of colors.
 図9は有機機能層50の層構造の第2例を示す図である。この有機機能層50の発光層53は、発光層53a、53b、53cをこの順に積層した構成を有している。発光層53a、53b、53cは、互いに異なる色の光(例えば赤、緑、及び青)を発光する。そして発光層53a、53b、53cが同時に発光することにより、発光装置は白色等の単一の発光色で発光する。 FIG. 9 is a diagram showing a second example of the layer structure of the organic functional layer 50. The light emitting layer 53 of the organic functional layer 50 has a structure in which light emitting layers 53a, 53b, and 53c are laminated in this order. The light emitting layers 53a, 53b, and 53c emit light of different colors (for example, red, green, and blue). The light emitting layers 53a, 53b, and 53c emit light at the same time, so that the light emitting device emits light in a single emission color such as white.
 以上のような実施形態によれば、界面35は、複数の第1傾斜面35aと複数の第2傾斜面35bとを有している。よって、界面35に対して臨界角以上の角度で入射する光を減じることができ、界面35での全反射を抑制することができる。これにより、角度が大きい光を第1透光層110から第2透光層120へ入射させやすくなるため、光取り出し効率が向上する。とくに、発光層により近い第1傾斜面35aおよび第2傾斜面35bにおいて、角度が大きい光を隣の層へ入射できるようにすることによる光取り出し効率の向上効果が大きい(図1参照)。そして、複数の第1傾斜面35aと複数の第2傾斜面35bとのうちの少なくとも何れか1つの傾斜面に沿って第1光反射膜25が形成されている。これにより、光反射膜(第1光反射膜25)が形成されていない傾斜面は、光を透過させ、光反射膜が形成されている傾斜面は、光を反射させる。これら傾斜面の組み合わせを有することにより、界面35において、光の向きを、光取り出し面dから取り出せる方向に変換できる確率を高めることができる。よって、発光装置の光取り出し効率を向上することができる。 According to the embodiment as described above, the interface 35 has a plurality of first inclined surfaces 35a and a plurality of second inclined surfaces 35b. Therefore, light incident on the interface 35 at an angle greater than the critical angle can be reduced, and total reflection at the interface 35 can be suppressed. As a result, light with a large angle can be easily incident on the second light transmitting layer 120 from the first light transmitting layer 110, so that the light extraction efficiency is improved. In particular, in the first inclined surface 35a and the second inclined surface 35b closer to the light emitting layer, the effect of improving the light extraction efficiency by allowing light having a large angle to enter the adjacent layer is great (see FIG. 1). The first light reflection film 25 is formed along at least one of the plurality of first inclined surfaces 35a and the plurality of second inclined surfaces 35b. Thereby, the inclined surface on which the light reflecting film (first light reflecting film 25) is not formed transmits light, and the inclined surface on which the light reflecting film is formed reflects light. By having a combination of these inclined surfaces, it is possible to increase the probability that the direction of light can be converted into a direction that can be extracted from the light extraction surface d at the interface 35. Therefore, the light extraction efficiency of the light emitting device can be improved.
 また、界面36には、複数の突起70が形成され、各突起70は、有機機能層50に対して互いに異なる向きに傾斜する3つ以上の傾斜面を含み、且つ、これら傾斜面のうちの少なくとも何れか1つは有機機能層50に対して直交していない。例えば、各突起70は、多角錐状、円錐状又は半球状に形成されている。このため、界面35の第1傾斜面35a、第2傾斜面35b及び第1光反射膜25の働きによっては十分に上向きに変更できないような光についても、突起70の傾斜面の働きによって十分に上向きに変更し、発光装置から外部に取り出せるようにすることができる。よって、発光装置の光取り出し効率を向上することができる。また、界面35から界面36側に向かった光について、当該光の発光点から平面的に遠く離れた位置ではなく、この発光点のほぼ直上において、界面36の突起70の傾斜面によって経路を上向きに変更することができる。よって、この光が減衰する前に、この光の向きを、光取り出し面dから外部に取り出すことが可能な向きに変更できる可能性が高まる。 In addition, a plurality of protrusions 70 are formed on the interface 36, and each protrusion 70 includes three or more inclined surfaces that are inclined in different directions with respect to the organic functional layer 50. At least one of them is not orthogonal to the organic functional layer 50. For example, each protrusion 70 is formed in a polygonal pyramid shape, a conical shape, or a hemispherical shape. Therefore, even for light that cannot be changed upward sufficiently by the functions of the first inclined surface 35a, the second inclined surface 35b, and the first light reflecting film 25 of the interface 35, the light is sufficiently increased by the function of the inclined surface of the protrusion 70. It can be changed upward so that it can be taken out from the light emitting device. Therefore, the light extraction efficiency of the light emitting device can be improved. Further, with respect to the light traveling from the interface 35 toward the interface 36, the path is directed upward by the inclined surface of the projection 70 of the interface 36 not directly at a position far from the light emission point of the light but directly above the light emission point. Can be changed. Therefore, there is a high possibility that the direction of the light can be changed to a direction in which the light can be extracted from the light extraction surface d before the light is attenuated.
 また、発光装置は、有機機能層50と第1透光層110との間に配置された第1電極40を備え、第1電極40は、第1透光層110における有機機能層50側の面に接しており、第1透光層110の屈折率は、第1電極40の屈折率以上であり、且つ、2.3以下である。これにより、第1電極40から第1透光層110側への光の取り出しが容易になるとともに、第1透光層110から第2透光層120への光の取り出し効率の低下を抑制することができる。 In addition, the light emitting device includes a first electrode 40 disposed between the organic functional layer 50 and the first light transmitting layer 110, and the first electrode 40 is located on the organic functional layer 50 side in the first light transmitting layer 110. The refractive index of the first translucent layer 110 that is in contact with the surface is not less than the refractive index of the first electrode 40 and not more than 2.3. This facilitates extraction of light from the first electrode 40 toward the first light transmissive layer 110 and suppresses a decrease in light extraction efficiency from the first light transmissive layer 110 to the second light transmissive layer 120. be able to.
 また、互いに隣り合う第1傾斜面35aと第2傾斜面35bとのうち何れか一方に沿って第1光反射膜25が形成されている。これにより、界面35における第1光反射膜25の配置の周期性を持たせることができるので、発光装置の何れの領域においても、まんべんなく取り出し効率を向上することができる。 The first light reflecting film 25 is formed along one of the first inclined surface 35a and the second inclined surface 35b adjacent to each other. Thereby, since the periodicity of the arrangement of the first light reflecting film 25 at the interface 35 can be provided, the extraction efficiency can be improved evenly in any region of the light emitting device.
 また、第1光反射膜25は、複数の第2傾斜面35bの各々に沿って配置されているので、界面35における第1光反射膜25の配置の周期性をより均一にできる。よって、発光装置の何れの領域においても、より均一に取り出し効率を向上することができる。 Further, since the first light reflecting film 25 is disposed along each of the plurality of second inclined surfaces 35b, the periodicity of the arrangement of the first light reflecting film 25 at the interface 35 can be made more uniform. Therefore, the extraction efficiency can be improved more uniformly in any region of the light emitting device.
 また、複数の突起70には錐状に形成された突起70が含まれている場合、その突起70が有機機能層50に対して互いに異なる向きに傾斜する3つ以上の傾斜面を含み、且つ、これら傾斜面のうちの少なくとも何れか1つは有機機能層50に対して直交していない構造を容易に実現できる。 Further, when the plurality of protrusions 70 include the protrusions 70 formed in the shape of cones, the protrusions 70 include three or more inclined surfaces that are inclined in different directions with respect to the organic functional layer 50, and A structure in which at least one of these inclined surfaces is not orthogonal to the organic functional layer 50 can be easily realized.
 また、複数の突起70には、多角錐状に形成された突起70が含まれている場合、互いに隣り合う突起70同士の隙間を極力小さくし、複数の突起70をなるべく隙間無く配置することを容易に実現できる。例えば、図2(a)に示すように四角錐形状の複数の突起70は互いに隙間無くマトリクス状に配置することが可能である。 In addition, when the plurality of protrusions 70 include protrusions 70 formed in a polygonal pyramid shape, the gap between the protrusions 70 adjacent to each other should be made as small as possible, and the plurality of protrusions 70 should be arranged with as little gap as possible. It can be easily realized. For example, as shown in FIG. 2A, the plurality of quadrangular pyramid-shaped projections 70 can be arranged in a matrix without any gap.
 また、複数の突起70には、円錐状に形成された突起70が含まれている場合、その円錐状の突起70の側面は、角錐形状などの突起70と比べて非常に多くの種類の角度の(実質的に無限の種類の角度の)傾斜面を含む。このため、様々な角度の光の取り出し効率を向上することが期待できる。 In addition, when the plurality of protrusions 70 includes a conical protrusion 70, the side surface of the conical protrusion 70 has a very large number of angles compared to the protrusion 70 having a pyramid shape or the like. Of inclined surfaces (of virtually infinite kinds of angles). For this reason, it can be expected to improve the light extraction efficiency at various angles.
 また、複数の突起70には、半球状に形成された突起70が含まれている場合、その半球状の突起70の外面は、角錐形状などの突起70と比べて非常に多くの種類の角度の(実質的に無限の種類の角度の)傾斜面を含む。このため、様々な角度の光の取り出し効率を向上することが期待できる。更に、半球状に形成された突起70の外面は、錐状の突起70と比べて、側面視において非常に多くの種類の角度の(実質的に無限の種類の角度の)傾斜面を含む。このため、円錐状の突起70を用いる場合と比べても、より多くの角度の光の取り出し効率を向上することが期待できる。 In addition, when the plurality of protrusions 70 include a hemispherical protrusion 70, the outer surface of the hemispherical protrusion 70 has an extremely large number of angles compared to the protrusion 70 having a pyramid shape or the like. Of inclined surfaces (of virtually infinite kinds of angles). For this reason, it can be expected to improve the light extraction efficiency at various angles. Furthermore, the outer surface of the projection 70 formed in a hemispherical shape includes inclined surfaces having a very large number of angles (substantially infinite types of angles) in a side view as compared with the conical projection 70. For this reason, it can be expected that the light extraction efficiency of more angles can be improved as compared with the case where the conical protrusion 70 is used.
 (実施例1)
 実施例1では、実施形態に係る発光装置のより具体的な構成の例を説明する。図10(a)は実施例1に係る発光装置の平面図であり、図10(b)は図10(a)におけるC-C線に沿った断面図である。なお、図10(b)及び図10(a)においては、図2とは上下が反転している。
(Example 1)
In Example 1, an example of a more specific configuration of the light emitting device according to the embodiment will be described. 10A is a plan view of the light-emitting device according to Example 1, and FIG. 10B is a cross-sectional view taken along the line CC in FIG. 10A. In FIGS. 10B and 10A, the top and bottom are reversed from those in FIG.
 第1電極40は、陽極を構成する。複数の第1電極40が、それぞれ帯状にY方向に延在している。隣り合う第1電極40同士は、Y方向に対して直交するX方向において一定間隔ずつ離間している。第1電極40の各々は、例えばITOやIZO等の金属酸化物導電体等からなる。なお、第1電極40は、透光性を有する程度の厚さを有する金属薄膜であっても良い。第1電極40の屈折率は、例えば、第1透光層110と同程度(例えば屈折率1.8程度)である。第1電極40の各々の表面には、第1電極40に電源電圧を供給するためのバスライン(バス電極)72が形成されている。第1透光層110及び第1電極40上には絶縁膜が形成されている。絶縁膜には、それぞれY方向に延在するストライプ状の開口部が複数形成されている。これにより、絶縁膜からなる複数の隔壁部71が形成されている。また、この絶縁膜に形成された開口部の各々は、第1電極40に達しており、開口部の底部において各第1電極40の表面が露出している。絶縁膜の各開口部内において、第1電極40上には、有機機能層50が形成されている。有機機能層50は、正孔注入層51、正孔輸送層52、発光層53(発光層53R、53G、53B)、電子輸送層54がこの順序で積層されることにより構成されている。正孔注入層51及び正孔輸送層52の材料としては、芳香族アミン誘導体、フタロシアニン誘導体、ポルフィリン誘導体、オリゴチオフェン誘導体、ポリチオフェン誘導体、ベンジルフェニル誘導体、フルオレン基で3級アミンを連結した化合物、ヒドラゾン誘導体、シラザン誘導体、シラナミン誘導体、ホスファミン誘導体、キナクリドン誘導体、ポリアニリン誘導体、ポリピロール誘導体、ポリフェニレンビニレン誘導体、ポリチエニレンビニレン誘導体、ポリキノリン誘導体、ポリキノキサリン誘導体、カーボン等が挙げられる。発光層53R、53G、53Bは、それぞれ、赤色発光、緑色発光、青色発光を行う蛍光性有機金属化合物等からなる。発光層53R、53G、53Bは、隔壁部71によって互いに隔てられた状態で並んで配置されている。すなわち、有機機能層50は、隔壁部71によって隔てられた複数の発光領域を形成している。発光層53R、53G、53Bおよび隔壁部71の表面を覆うように電子輸送層54が形成されている。電子輸送層54の表面を覆うように第2電極60が形成されている。第2電極60は、陰極を構成する。第2電極60は、帯状に形成されている。第2電極60は、仕事関数が低く且つ高反射率を有するAlやAgなどの金属または合金等からなる。尚、有機機能層50の屈折率は、第1電極40および第1透光層110と同程度(例えば屈折率1.8程度)である。 The first electrode 40 constitutes an anode. The plurality of first electrodes 40 each extend in the Y direction in a strip shape. Adjacent first electrodes 40 are spaced apart at regular intervals in the X direction orthogonal to the Y direction. Each of the first electrodes 40 is made of, for example, a metal oxide conductor such as ITO or IZO. In addition, the 1st electrode 40 may be a metal thin film which has the thickness of the grade which has translucency. The refractive index of the first electrode 40 is, for example, about the same as that of the first light-transmitting layer 110 (for example, the refractive index is about 1.8). A bus line (bus electrode) 72 for supplying a power supply voltage to the first electrode 40 is formed on each surface of the first electrode 40. An insulating film is formed on the first light transmitting layer 110 and the first electrode 40. A plurality of stripe-shaped openings each extending in the Y direction are formed in the insulating film. Thereby, a plurality of partition walls 71 made of an insulating film are formed. Each opening formed in the insulating film reaches the first electrode 40, and the surface of each first electrode 40 is exposed at the bottom of the opening. An organic functional layer 50 is formed on the first electrode 40 in each opening of the insulating film. The organic functional layer 50 is configured by laminating a hole injection layer 51, a hole transport layer 52, a light emitting layer 53 ( light emitting layers 53R, 53G, 53B), and an electron transport layer 54 in this order. Examples of materials for the hole injection layer 51 and the hole transport layer 52 include aromatic amine derivatives, phthalocyanine derivatives, porphyrin derivatives, oligothiophene derivatives, polythiophene derivatives, benzylphenyl derivatives, compounds in which tertiary amines are linked by fluorene groups, hydrazones. Derivatives, silazane derivatives, silanamine derivatives, phosphamine derivatives, quinacridone derivatives, polyaniline derivatives, polypyrrole derivatives, polyphenylene vinylene derivatives, polythienylene vinylene derivatives, polyquinoline derivatives, polyquinoxaline derivatives, carbon and the like. The light emitting layers 53R, 53G, and 53B are made of a fluorescent organometallic compound that emits red light, green light, and blue light, respectively. The light emitting layers 53R, 53G, and 53B are arranged side by side in a state of being separated from each other by the partition wall portion 71. That is, the organic functional layer 50 forms a plurality of light emitting regions separated by the partition wall 71. An electron transport layer 54 is formed so as to cover the surfaces of the light emitting layers 53R, 53G, 53B and the partition wall 71. A second electrode 60 is formed so as to cover the surface of the electron transport layer 54. The second electrode 60 constitutes a cathode. The second electrode 60 is formed in a strip shape. The second electrode 60 is made of a metal or alloy such as Al or Ag having a low work function and high reflectivity. The refractive index of the organic functional layer 50 is about the same as that of the first electrode 40 and the first light transmitting layer 110 (for example, the refractive index is about 1.8).
 このように、赤、緑、青の光をそれぞれ発する発光層53R、53G、53Bは、ストライプ状に繰り返し配置されており、光取り出し面dとなる第2透光層120の表面からは、赤、緑、青の光が任意の割合で混色されて単一の発光色(例えば白色)として認識される光が放出される。 In this manner, the light emitting layers 53R, 53G, and 53B that emit red, green, and blue light, respectively, are repeatedly arranged in a stripe shape, and red light is emitted from the surface of the second light transmissive layer 120 that serves as the light extraction surface d. , Green and blue light are mixed at an arbitrary ratio to emit light that is recognized as a single emission color (for example, white).
 実施例1によっても、上記実施形態と同様の効果が得られる。 Also in Example 1, the same effect as the above embodiment can be obtained.
 (実施例2)
 図11(a)及び図11(b)は本実施例に係る発光装置の断面図である。図11(a)は図2(b)に対応し、図11(b)は図2(c)に対応している。上記においては、第1透光層110と第1電極40とを別々に設ける構成としたが、図11(a)および(b)に示すように、第1透光層110は透光性電極の機能を兼ね備えていてもよい。すなわち、この場合、第1透光層110は、ITOなどの金属酸化物導電体などの透光性導電体により構成される。本実施例によれば、第1透光層110は透光性電極の機能を兼ねるので、発光装置の部品点数の低減が可能である。
(Example 2)
FIG. 11A and FIG. 11B are cross-sectional views of the light emitting device according to this example. FIG. 11A corresponds to FIG. 2B, and FIG. 11B corresponds to FIG. In the above description, the first light transmissive layer 110 and the first electrode 40 are separately provided. However, as shown in FIGS. 11A and 11B, the first light transmissive layer 110 is formed of a light transmissive electrode. You may have the function of. That is, in this case, the first light transmissive layer 110 is made of a light transmissive conductor such as a metal oxide conductor such as ITO. According to this embodiment, since the first light transmissive layer 110 also functions as a light transmissive electrode, the number of components of the light emitting device can be reduced.
 (実施例3)
 図12(a)は本実施例に係る発光装置の一部分を示す断面図である。この発光装置は、第1透光層110の上面の凹凸形状を構成する切妻屋根状の突条31の頂部および隣接する突条31間の谷部が、有機機能層50に対して実質的に平行な面31aおよび31bを有する。面31aおよび31b上には第1光反射膜25が形成されておらず、面31aおよび31bは、光透過面となっている。すなわち、本実施例に係る発光装置の界面35は、有機機能層50に対して平行に形成された光透過面である面31a、31bを有する。
(Example 3)
FIG. 12A is a cross-sectional view showing a part of the light emitting device according to this example. In this light-emitting device, the top of the gable roof-shaped ridge 31 and the valley between the adjacent ridges 31 constituting the concavo-convex shape of the upper surface of the first light-transmitting layer 110 are substantially from the organic functional layer 50. It has parallel surfaces 31a and 31b. The first light reflecting film 25 is not formed on the surfaces 31a and 31b, and the surfaces 31a and 31b are light transmitting surfaces. That is, the interface 35 of the light emitting device according to the present embodiment has the surfaces 31 a and 31 b that are light transmission surfaces formed in parallel to the organic functional layer 50.
 有機機能層50と実質的に平行な面31aおよび31bを光透過面とすることにより、有機機能層50に対して略直交する光線を外部に取り出しやすくすることができる。このような方向の光に関しては、第1光反射膜25による反射を経ることなく外部に取り出すことで光取り出し効率を向上させることが可能となる。 By making the surfaces 31a and 31b substantially parallel to the organic functional layer 50 light transmitting surfaces, it is possible to easily extract light rays that are substantially orthogonal to the organic functional layer 50 to the outside. With respect to the light in such a direction, it is possible to improve the light extraction efficiency by extracting the light outside without being reflected by the first light reflection film 25.
 (実施例4)
 図12(b)は本実施例に係る発光装置の一部分を示す断面図である。図12(b)に示すように、有機機能層50に対して実質的に平行な面31aおよび31bが光透過面となるように面31aおよび31bを第1光反射膜25で覆うこととしてもよい。すなわち、第1光反射膜25において面31aおよび31bを覆う部分の膜厚は、第1光反射膜25において光反射面を形成している部分の膜厚よりも小さくなっている。第1光反射膜25を斜め蒸着によって形成することにより、このような膜厚分布を形成することが可能である。本実施例によっても実施例3と同様の効果が得られる。
Example 4
FIG. 12B is a cross-sectional view showing a part of the light emitting device according to this example. As shown in FIG. 12B, the surfaces 31a and 31b may be covered with the first light reflecting film 25 so that the surfaces 31a and 31b substantially parallel to the organic functional layer 50 become light transmission surfaces. Good. That is, the film thickness of the part covering the surfaces 31a and 31b in the first light reflection film 25 is smaller than the film thickness of the part forming the light reflection surface in the first light reflection film 25. It is possible to form such a film thickness distribution by forming the first light reflecting film 25 by oblique vapor deposition. According to the present embodiment, the same effect as that of the third embodiment can be obtained.
 (実施例5)
 図13(a)は本実施例に係る発光装置の一部分を示す断面図、図13(b)は本実施例における第1透光層110の一部分を示す平面図、図13(c)は本実施例における第1透光層110の一部分を示す斜視図である。本実施例では、第1透光層110の上面の突条31の各々の形状が変更されている。これらの図に示されるように、突条31の各々は断面形状が台形状となっており、その上底が有機機能層50に対して実質的に平行な面31dとなっている。換言すれば、突条31を構成する第1傾斜面35aと第2傾斜面35bとがそれらの並び方向において相互に離間している。面31dには第1光反射膜25が形成されておらす、面31dは光透過面を形成している。このように有機機能層50と実質的に平行な面31dを光透過面とすることにより、実施例3の場合と同様に、面31dに対して垂直に入射する光線は、第1光反射膜25による反射を経ることなく外部に放出されるので光取り出し効率を向上させることが可能となる。
(Example 5)
FIG. 13A is a cross-sectional view showing a part of the light emitting device according to this example, FIG. 13B is a plan view showing a part of the first light transmitting layer 110 in this example, and FIG. It is a perspective view which shows a part of 1st translucent layer 110 in an Example. In the present embodiment, the shape of each protrusion 31 on the upper surface of the first light transmissive layer 110 is changed. As shown in these drawings, each of the protrusions 31 has a trapezoidal cross-sectional shape, and the upper base is a surface 31 d substantially parallel to the organic functional layer 50. In other words, the 1st inclined surface 35a and the 2nd inclined surface 35b which comprise the protrusion 31 are mutually spaced apart in those arrangement directions. The first light reflection film 25 is formed on the surface 31d, and the surface 31d forms a light transmission surface. In this way, by making the surface 31d substantially parallel to the organic functional layer 50 as a light transmission surface, the light rays perpendicularly incident on the surface 31d are incident on the first light reflecting film as in the third embodiment. Since the light is emitted to the outside without being reflected by 25, the light extraction efficiency can be improved.
 (実施例6)
 図14は本実施例に係る発光装置の一部分を示す断面図である。本実施例では、隣り合う突条31同士が、それらの並び方向において相互に離間している。そして、隣り合う突条31同士の間に、有機機能層50に対して実質的に平行な面31dが形成されている。面31dには第1光反射膜25が形成されておらす、面31dは光透過面を形成している。本実施例によっても、実施例5と同様の効果が得られる。
(Example 6)
FIG. 14 is a cross-sectional view showing a part of the light emitting device according to the present embodiment. In the present embodiment, the adjacent protrusions 31 are separated from each other in the arrangement direction thereof. A surface 31 d substantially parallel to the organic functional layer 50 is formed between adjacent protrusions 31. The first light reflection film 25 is formed on the surface 31d, and the surface 31d forms a light transmission surface. According to the present embodiment, the same effect as that of the fifth embodiment can be obtained.
 (実施例7)
 図15は本実施例に係る発光装置の一部分を示す断面図である。この発光装置は、界面35に形成される光反射構造22が、上記の実施形態と相違する。すなわち、上記の実施形態においては、光反射構造が第1光反射膜25により構成されていたのに対し、本実施例における光反射構造22は、第1光反射膜25と、第2透光層120の屈折率よりも低い屈折率を有する材料(例えばSiOなど)からなる低屈折率膜21と、を積層することにより構成されている。第2透光層120側から臨界角よりも大きい入射角で光反射構造22に入射する光線Iは、第2透光層120と低屈折率膜21との界面で全反射されて界面36に向かう。ここで、全反射の反射率は100%であり、金属などの反射膜での反射率は90%程度なので、低屈折率膜21にて全反射させることにより、第1光反射膜25のみにより反射させる場合よりも、反射率の向上、ひいては光取り出し効率の向上が期待できる。一方、第2透光層120側から臨界角よりも小さい入射角で光反射構造22に入射する光線Jは、低屈折率膜21を透過して第1光反射膜25の表面で反射されて界面36に向かう。このように、第1光反射膜25上に低屈折率膜21を配置することにより、一部の光線(光線I等)を低屈折率膜21にて全反射させて界面36側に向かわせることができるので、反射率の向上、ひいては光取り出し効率の向上が期待できる。
(Example 7)
FIG. 15 is a cross-sectional view showing a part of the light emitting device according to the present embodiment. In this light emitting device, the light reflecting structure 22 formed on the interface 35 is different from the above embodiment. That is, in the above-described embodiment, the light reflecting structure is configured by the first light reflecting film 25, whereas the light reflecting structure 22 in the present example has the first light reflecting film 25 and the second light transmitting film. A low refractive index film 21 made of a material having a refractive index lower than that of the layer 120 (for example, SiO 2 ) is laminated. The light ray I incident on the light reflecting structure 22 at an incident angle larger than the critical angle from the second light transmitting layer 120 side is totally reflected at the interface between the second light transmitting layer 120 and the low refractive index film 21 and is reflected on the interface 36. Head. Here, the reflectivity of the total reflection is 100%, and the reflectivity of the reflective film such as metal is about 90%. Therefore, the total reflection by the low refractive index film 21 is performed only by the first light reflection film 25. Compared with the case of reflecting, it is possible to expect an improvement in reflectance and, in turn, an improvement in light extraction efficiency. On the other hand, the light beam J incident on the light reflecting structure 22 at an incident angle smaller than the critical angle from the second light transmitting layer 120 side is transmitted through the low refractive index film 21 and reflected by the surface of the first light reflecting film 25. Head to interface 36. In this way, by disposing the low refractive index film 21 on the first light reflecting film 25, a part of the light rays (light rays I and the like) are totally reflected by the low refractive index film 21 and directed toward the interface 36. Therefore, it is possible to expect an improvement in reflectance and, in turn, an improvement in light extraction efficiency.
 なお、図15には、低屈折率膜21が第2透光層120と接し、第1光反射膜25が第1透光層110と接している例を示しているが、第1光反射膜25と低屈折率膜21との配置を入れ替えても良い。 FIG. 15 shows an example in which the low refractive index film 21 is in contact with the second light transmitting layer 120 and the first light reflecting film 25 is in contact with the first light transmitting layer 110. The arrangement of the film 25 and the low refractive index film 21 may be interchanged.
 図16(a)~図16(e)は本実施例に係る発光装置の製造方法を示す断面図である。 FIGS. 16A to 16E are cross-sectional views showing a method for manufacturing a light emitting device according to this example.
 先ず、上面121に複数の突起70が形成され、下面122に凹凸形状が形成された第2透光層120を用意する(図16(a))。 First, a second light-transmitting layer 120 having a plurality of protrusions 70 formed on the upper surface 121 and an uneven shape formed on the lower surface 122 is prepared (FIG. 16A).
 次に、スパッタリング法などにより、第2透光層120の下面122に第2透光層120よりも屈折率が小さいSiOなどからなる低屈折率膜21を成膜する。その後、リフトオフ法やエッチング法などにより低屈折率膜21を部分的に除去して低屈折率膜21のパターニングを行う(図16(b))。 Next, the low refractive index film 21 made of SiO 2 or the like having a refractive index lower than that of the second light transmitting layer 120 is formed on the lower surface 122 of the second light transmitting layer 120 by sputtering or the like. Thereafter, the low refractive index film 21 is partially removed by a lift-off method, an etching method, or the like, and the low refractive index film 21 is patterned (FIG. 16B).
 次に、斜め蒸着法などにより、第2透光層120の下面にAgまたはAlなどの高反射率を有する金属などからなる第1光反射膜25を成膜する。第1光反射膜25は、低屈折率膜21上に積層され、例えば第2傾斜面35bに沿った光反射構造22が形成される(図16(c))。 Next, the first light reflection film 25 made of a metal having a high reflectance such as Ag or Al is formed on the lower surface of the second light transmission layer 120 by an oblique deposition method or the like. The first light reflecting film 25 is laminated on the low refractive index film 21 to form, for example, the light reflecting structure 22 along the second inclined surface 35b (FIG. 16C).
 次に、第2透光層120の下面に、第2透光層120の屈折率よりも高く且つ第1電極40および有機機能層50の屈折率と同程度の屈折率を有するUV硬化性樹脂を塗布する。その後、UV硬化性樹脂に紫外線を照射してこれを硬化させる。これにより、第2透光層120の下面に第2透光層120の凹凸形状および光反射構造22に接する第1透光層110が形成される(図16(d))。 Next, a UV curable resin having a refractive index higher than the refractive index of the second light transmissive layer 120 and similar to the refractive index of the first electrode 40 and the organic functional layer 50 is formed on the lower surface of the second light transmissive layer 120. Apply. Thereafter, the UV curable resin is irradiated with ultraviolet rays to be cured. As a result, the first light-transmitting layer 110 in contact with the uneven shape of the second light-transmitting layer 120 and the light reflecting structure 22 is formed on the lower surface of the second light-transmitting layer 120 (FIG. 16D).
 次に、スパッタリング法などにより第1透光層110の下面にITOなどの金属酸化物導電体からなる透明導電膜を成膜し、エッチングによりこれをパターニングして第1電極40を形成する。次に、第1電極40を覆うように感光性レジスト(図示せず)を塗布する。その後、露光、現像処理を経て感光性レジストに第1電極40に達する複数の開口部を形成する。これにより、有機機能層を発光色毎に隔てる隔壁部が形成される。次に、インクジェット法により、複数の開口部の各々の内側に有機材料を塗布することにより第1電極40上に正孔注入層、正孔輸送層、発光層、電子輸送層が積層されて構成される有機機能層50を形成する。次に、第2電極60のパタ-ンに対応する開口部を有するマスクを用いて蒸着法等により有機機能層50上に電極材料であるAlやAgなどを所望のパターンに堆積させて第2電極60を形成する(図16(e))。必要に応じて第2電極60上に封止層を形成することとしてもよい。以上の各工程を経ることにより、本実施例に係る発光装置が得られる。 Next, a transparent conductive film made of a metal oxide conductor such as ITO is formed on the lower surface of the first light transmissive layer 110 by sputtering or the like, and is patterned by etching to form the first electrode 40. Next, a photosensitive resist (not shown) is applied so as to cover the first electrode 40. Thereafter, a plurality of openings reaching the first electrode 40 are formed in the photosensitive resist through exposure and development processing. Thereby, the partition part which separates an organic functional layer for every luminescent color is formed. Next, a hole injection layer, a hole transport layer, a light-emitting layer, and an electron transport layer are stacked on the first electrode 40 by applying an organic material inside each of the plurality of openings by an inkjet method. The organic functional layer 50 to be formed is formed. Next, using a mask having an opening corresponding to the pattern of the second electrode 60, an electrode material such as Al or Ag is deposited on the organic functional layer 50 in a desired pattern by vapor deposition or the like. The electrode 60 is formed (FIG. 16E). It is good also as forming a sealing layer on the 2nd electrode 60 as needed. Through the above steps, the light-emitting device according to this example is obtained.
 (実施例8)
 図17は本実施例に係る発光装置の一部分を示す断面図である。本実施例では、低屈折率膜21と第1光反射膜25とにより形成される光反射構造を実施例7から変更した例を説明する。図17に示すように、光反射構造22aは、第2透光層120よりも屈折率が小さい低屈折率膜21が第1光反射膜25を扶持するサンドイッチ構造をなしている。これにより、第2透光層120側および第1透光層110側から光反射構造22aに入射する光を全反射させることが可能となり、実施例7よりも反射ロスを更に低減することが可能となる。
(Example 8)
FIG. 17 is a cross-sectional view showing a part of the light emitting device according to this example. In the present embodiment, an example in which the light reflection structure formed by the low refractive index film 21 and the first light reflection film 25 is changed from the seventh embodiment will be described. As shown in FIG. 17, the light reflecting structure 22 a has a sandwich structure in which a low refractive index film 21 having a refractive index smaller than that of the second light transmitting layer 120 holds the first light reflecting film 25. Thereby, it is possible to totally reflect the light incident on the light reflecting structure 22a from the second light transmitting layer 120 side and the first light transmitting layer 110 side, and it is possible to further reduce the reflection loss compared to the seventh embodiment. It becomes.
 (実施例9)
 図18は本実施例に係る発光装置の一部分を示す断面図である。本実施例では、第1光反射膜25と低屈折率層とからなる光反射構造の変形例を説明する。図18に示すように、光反射構造24の低屈折率層は、第2透光層120と第1透光層110との間に設けられた空隙部23からなる。すなわち、光反射構造24は、空隙部23と第1光反射膜25とによって構成されている。空隙部23は、第2透光層120よりも屈折率が小さい空気またはその他のガスで充たされていてもよいし、真空であってもよい。空隙部23の屈折率は、第2透光層120の屈折率よりも小さいので、空隙部23は上記の低屈折率膜21と同様の機能を持つ。尚、図18には、空隙部23が第2透光層120と接し、第1光反射膜25が第1透光層110と接している場合が例示されているが、空隙部23と第1光反射膜25との配置を入れ替えても良い。
Example 9
FIG. 18 is a cross-sectional view showing a part of the light emitting device according to this example. In the present embodiment, a modification of the light reflecting structure including the first light reflecting film 25 and the low refractive index layer will be described. As shown in FIG. 18, the low refractive index layer of the light reflecting structure 24 includes a gap portion 23 provided between the second light transmitting layer 120 and the first light transmitting layer 110. That is, the light reflecting structure 24 is constituted by the gap portion 23 and the first light reflecting film 25. The gap 23 may be filled with air or other gas having a refractive index smaller than that of the second light transmissive layer 120, or may be a vacuum. Since the refractive index of the gap 23 is smaller than the refractive index of the second light transmissive layer 120, the gap 23 has the same function as the low refractive index film 21 described above. FIG. 18 illustrates the case where the gap portion 23 is in contact with the second light transmission layer 120 and the first light reflection film 25 is in contact with the first light transmission layer 110. The arrangement with the one-light reflecting film 25 may be exchanged.
 図19(a)~図19(d)は本実施例に係る発光装置の製造方法を示す断面図である。 FIG. 19A to FIG. 19D are cross-sectional views showing a method for manufacturing a light emitting device according to this example.
 先ず、上面121に複数の突起70が形成され、下面122に凹凸形状が形成された第2透光層120を用意する(図19(a))。 First, a second light-transmissive layer 120 having a plurality of protrusions 70 formed on the upper surface 121 and an uneven shape formed on the lower surface 122 is prepared (FIG. 19A).
 次に、斜め蒸着法などにより、第2透光層120の下面122にAgまたはAlなどの高反射率を有する金属等からなる第1光反射膜25を成膜する(図19(b))。 Next, a first light reflecting film 25 made of a metal having a high reflectance such as Ag or Al is formed on the lower surface 122 of the second light transmitting layer 120 by an oblique deposition method or the like (FIG. 19B). .
 次に、第1透光層110を用意する。第1透光層110は、第2透光層120よりも屈折率が大きく且つ第1電極40および有機機能層50と同程度の屈折率を有するエポキシ樹脂などからなる。この第1透光層110の上面には、第2透光層120の下面の凹凸形状と噛み合う凹凸形状が形成されている。更に、この第1透光層110の上面には、微小突起32が形成されている(図19(c))。 Next, the first light transmissive layer 110 is prepared. The first light transmissive layer 110 is made of an epoxy resin having a refractive index larger than that of the second light transmissive layer 120 and having a refractive index comparable to that of the first electrode 40 and the organic functional layer 50. On the upper surface of the first light transmissive layer 110, a concavo-convex shape that meshes with the concavo-convex shape on the lower surface of the second light transmissive layer 120 is formed. Furthermore, a minute protrusion 32 is formed on the upper surface of the first light transmitting layer 110 (FIG. 19C).
 次に、微小突起32をスペーサとして、第2透光層120の下面の凹凸形状と第1透光層110の上面の凹凸形状とを当接させる。微小突起32は第1光反射膜25に当接し、第1光反射膜25と第1透光層110の上面との間に空隙部23が形成される。これにより、第2透光層120と第1透光層110との間には、第1光反射膜25と空隙部23とからなる光反射構造24が形成される(図19(d))。 Next, using the minute protrusions 32 as spacers, the uneven shape on the lower surface of the second light transmitting layer 120 and the uneven shape on the upper surface of the first light transmitting layer 110 are brought into contact with each other. The minute protrusions 32 are in contact with the first light reflecting film 25, and a gap 23 is formed between the first light reflecting film 25 and the upper surface of the first light transmissive layer 110. As a result, a light reflecting structure 24 including the first light reflecting film 25 and the gap 23 is formed between the second light transmitting layer 120 and the first light transmitting layer 110 (FIG. 19D). .
 なお、第1光反射膜25は、第1透光層110の上面に形成されていてもよいし、第1透光層110の上面と第2透光層120の下面との双方に形成されていてもよい。また、スペーサとして機能する微小突起32は、第2透光層120の下面に設けられていても良いし、第1透光層110の上面と第2透光層120の下面との双方に設けられていてもよい。また、第1透光層110及び第2透光層120とは別体の構造物を第1透光層110の上面と第2透光層120の下面との間に配置して、これをスペーサとして機能させても良い。 The first light reflecting film 25 may be formed on the upper surface of the first light transmitting layer 110, or formed on both the upper surface of the first light transmitting layer 110 and the lower surface of the second light transmitting layer 120. It may be. Further, the minute protrusions 32 functioning as spacers may be provided on the lower surface of the second light transmitting layer 120, or provided on both the upper surface of the first light transmitting layer 110 and the lower surface of the second light transmitting layer 120. It may be done. In addition, a structure separate from the first light-transmitting layer 110 and the second light-transmitting layer 120 is disposed between the upper surface of the first light-transmitting layer 110 and the lower surface of the second light-transmitting layer 120. It may function as a spacer.
 (実施例10)
 図20(a)~図20(d)は、本実施例に係る発光装置の製造方法を示す断面図である。本実施例では、第1光反射膜25と空隙部23とからなる光反射構造24を変更した例とその製造方法を説明する。
(Example 10)
20 (a) to 20 (d) are cross-sectional views illustrating a method for manufacturing a light-emitting device according to this example. In this embodiment, an example in which the light reflecting structure 24 including the first light reflecting film 25 and the gap 23 is changed and a manufacturing method thereof will be described.
 はじめに、製造方法を説明する。先ず、上面121に複数の突起70が形成され、下面122に凹凸形状が形成された第2透光層120を用意する(図20(a))。 First, the manufacturing method will be described. First, a second light transmitting layer 120 having a plurality of protrusions 70 formed on the upper surface 121 and an uneven shape formed on the lower surface 122 is prepared (FIG. 20A).
 一方、上記の実施例9と同様に、第1透光層110を用意する。ただし、本実施例の場合、第1透光層110には微小突起32は形成されていない。 On the other hand, the first light transmissive layer 110 is prepared in the same manner as in Example 9 above. However, in the present embodiment, the minute protrusion 32 is not formed on the first light transmitting layer 110.
 次に、斜め蒸着法などにより、第1透光層110の上面にAgまたはAlなどの高反射率を有する金属などからなる第1光反射膜25を選択的に成膜する(図20(b))。 Next, a first light reflecting film 25 made of a metal having a high reflectance such as Ag or Al is selectively formed on the upper surface of the first light transmitting layer 110 by an oblique deposition method or the like (FIG. 20B). )).
 次に、第1透光層110と第1光反射膜25の熱膨張係数の差を利用して第1光反射膜25にバックリング構造(皺状のうねり)を形成する。すなわち第1光反射膜25を断面視で上下に波打った形状にする。例えば、第1光反射膜25を100℃程度に加熱した後、室温まで温度を下げることにより第1光反射膜25にバックリング構造を形成することができる(図20(c))。 Next, using the difference in thermal expansion coefficient between the first light transmissive layer 110 and the first light reflecting film 25, a buckling structure (sag-like swell) is formed in the first light reflecting film 25. That is, the first light reflection film 25 is shaped to wave up and down in a sectional view. For example, a buckling structure can be formed in the first light reflection film 25 by heating the first light reflection film 25 to about 100 ° C. and then lowering the temperature to room temperature (FIG. 20C).
 次に、バックリング構造が形成された第1光反射膜25を間に挟んで第1透光層110の上面の凹凸形状と第2透光層120の下面の凹凸形状とを当接させ噛み合わせる。これにより、第1透光層110と第2透光層120との間には、第1光反射膜25と、第1光反射膜25のバックリング構造に伴って生じた空隙部23と、からなる光反射構造24が形成される(図22(d))。 Next, the concave / convex shape on the upper surface of the first light-transmitting layer 110 and the concave / convex shape on the lower surface of the second light-transmitting layer 120 are brought into contact with each other with the first light reflecting film 25 having the buckling structure interposed therebetween. Match. Thereby, between the 1st light transmission layer 110 and the 2nd light transmission layer 120, the space | gap part 23 produced with the buckling structure of the 1st light reflection film 25 and the 1st light reflection film 25, A light reflecting structure 24 is formed (FIG. 22D).
 したがって、本実施例に係る発光装置は、第1光反射膜25と、第1光反射膜25のバックリング構造に伴って生じた空隙部23と、からなる光反射構造24を有している。本実施例によっても実施例9と同様の効果が得られる。 Therefore, the light emitting device according to the present embodiment has the light reflecting structure 24 including the first light reflecting film 25 and the gap portion 23 generated with the buckling structure of the first light reflecting film 25. . According to the present embodiment, the same effect as that of the ninth embodiment can be obtained.
 (実施例11)
 図21は本実施例に係る発光装置の断面図である。本実施例に係る発光装置は、上記の実施形態の構成に加えて、透光性の保護膜130を有している。保護膜130は、第2透光層120の上面121の複数の突起70を覆っている。保護膜130は、例えば酸化シリコン膜などの無機材料により構成されていてもよいし、第1電極40と同様の材料により構成されていてもよい。保護膜130は、例えば、CVD法又はスパッタリング法などの気相成長法を用いて形成される。本実施例の場合、透光層100は、第1透光層110及び第2透光層120の他に、保護膜130を含んで構成されている。また、保護膜130の上面が光取り出し面dを構成している。
(Example 11)
FIG. 21 is a cross-sectional view of the light emitting device according to this example. The light emitting device according to this example has a light-transmitting protective film 130 in addition to the configuration of the above embodiment. The protective film 130 covers the plurality of protrusions 70 on the upper surface 121 of the second light transmissive layer 120. The protective film 130 may be made of an inorganic material such as a silicon oxide film, or may be made of the same material as the first electrode 40. The protective film 130 is formed using, for example, a vapor deposition method such as a CVD method or a sputtering method. In this embodiment, the light transmissive layer 100 includes a protective film 130 in addition to the first light transmissive layer 110 and the second light transmissive layer 120. Further, the upper surface of the protective film 130 constitutes a light extraction surface d.
 本実施例によっても、実施形態と同様の効果を得ることができる。また、第2透光層120が保護膜130により保護されているので、発光装置の耐久性を向上させることができる。 Also in this example, the same effect as in the embodiment can be obtained. In addition, since the second light transmissive layer 120 is protected by the protective film 130, the durability of the light emitting device can be improved.
 (実施例12)
 図22は本実施例に係る発光装置の断面図である。本実施例に係る発光装置は、上記の実施形態に係る発光装置の第2透光層120の上方に、透光性の保護部材(例えば保護ガラス)140を配置したものである。保護部材140は、例えば支持部材84を介してベース部材80上に支持されている。ベース部材80上には上記の実施形態で説明した構造の発光装置が固定されている。そして、ベース部材80、保護部材140、及び支持部材84で囲まれた空間は密閉されている。なお、保護部材140と第2透光層120との間には、気体(例えば空気や不活性ガス)が充填されている。ここで、保護部材140と第2透光層120との間の空間は、隣接領域200である。本実施例の場合、透光層100は、第1透光層110及び第2透光層120の他に、気体からなる隣接領域200と、保護部材140と、を含んで構成されている。また、保護部材140の上面が光取り出し面dを構成している。
Example 12
FIG. 22 is a cross-sectional view of the light emitting device according to this example. In the light emitting device according to this example, a translucent protective member (for example, protective glass) 140 is disposed above the second light transmissive layer 120 of the light emitting device according to the above embodiment. The protection member 140 is supported on the base member 80 via the support member 84, for example. On the base member 80, the light emitting device having the structure described in the above embodiment is fixed. The space surrounded by the base member 80, the protection member 140, and the support member 84 is sealed. Note that a gas (for example, air or inert gas) is filled between the protective member 140 and the second light transmissive layer 120. Here, the space between the protection member 140 and the second light transmissive layer 120 is the adjacent region 200. In the case of the present embodiment, the light transmissive layer 100 includes an adjacent region 200 made of a gas and a protective member 140 in addition to the first light transmissive layer 110 and the second light transmissive layer 120. Further, the upper surface of the protection member 140 constitutes a light extraction surface d.
 本実施例によっても、上記の実施形態と同様の効果を得ることができる。また、第2透光層120を保護部材140で保護しているため、発光装置の耐久性を向上させることができる。さらに、保護部材140で反射して第2透光層120へ戻った光の一部も、界面35にて反射させることにより、光取り出し面dから取り出せる方向に変換することができる。 Also in this example, the same effect as in the above embodiment can be obtained. Moreover, since the 2nd light transmission layer 120 is protected by the protection member 140, durability of a light-emitting device can be improved. Furthermore, part of the light reflected by the protective member 140 and returned to the second light transmissive layer 120 can also be converted into a direction that can be extracted from the light extraction surface d by being reflected by the interface 35.
 (実施例13)
 図23は本実施例に係る発光装置の断面図である。本実施例では、実施例12に係る発光装置のより具体的な構成の例を説明する。図23に示すように、ベース部材80は、例えば、封止体とすることができる。ベース部材80において、隔壁部71を被覆する部位には、第2電極60を外部に電気的に接続するための導電体191が、ベース部材80を貫通して設けられている。本実施例によっても、実施例12と同様の効果が得られる。
(Example 13)
FIG. 23 is a cross-sectional view of the light emitting device according to this example. In this example, an example of a more specific configuration of the light emitting device according to Example 12 will be described. As shown in FIG. 23, the base member 80 can be a sealing body, for example. In the base member 80, a conductor 191 for electrically connecting the second electrode 60 to the outside is provided through the base member 80 at a portion covering the partition wall 71. According to this embodiment, the same effect as that of Embodiment 12 can be obtained.
 (実施例14)
 図24は本実施例に係る発光装置の斜視図である。図25(a)は本実施例に係る発光装置を図24の矢印A方向に見た断面図、図25(b)は本実施例に係る発光装置を図24の矢印B方向に見た断面図である。図26は本実施例に係る発光装置の界面35の平面図である。この発光装置は、例えば、以下に説明する他の構成については、上記の実施形態に係る発光装置(図2)と同様に構成されている。
(Example 14)
FIG. 24 is a perspective view of the light emitting device according to this example. 25A is a cross-sectional view of the light-emitting device according to the present embodiment as viewed in the direction of arrow A in FIG. 24, and FIG. 25B is a cross-sectional view of the light-emitting device according to the present embodiment as viewed in the direction of arrow B in FIG. FIG. FIG. 26 is a plan view of the interface 35 of the light emitting device according to this example. For example, this light-emitting device is configured in the same manner as the light-emitting device according to the above-described embodiment (FIG. 2) with respect to other configurations described below.
 図24乃至図26に示すように、第1透光層110と第2透光層120との界面35は、有機機能層50に対して第1傾斜面35a及び第2傾斜面35bの何れの傾斜方向とも異なる方向に傾斜している第3傾斜面35cと、有機機能層50に対して第3傾斜面35cの傾斜方向とは反対方向に傾斜している第4傾斜面35dと、を有している。有機機能層50と平行で且つ第1方向(矢印B方向)に対して交差する第2方向において第3傾斜面35cと第4傾斜面35dとが交互に位置するように、複数の第3傾斜面35cと複数の第4傾斜面35dとが第2方向において並んで配置されている。複数の第3傾斜面35cと複数の第4傾斜面35dとのうちの少なくとも何れか1つの傾斜面に沿って第2光反射膜26が形成されている。第2光反射膜26は、第1光反射膜25と同様のものである。
 具体的には、例えば、複数の第4傾斜面35dの各々に沿って第2光反射膜26が形成されている。また、複数の第3傾斜面35cは、第2光反射膜26が形成されておらず、光透過面となっている。
As shown in FIGS. 24 to 26, the interface 35 between the first light transmitting layer 110 and the second light transmitting layer 120 is either the first inclined surface 35 a or the second inclined surface 35 b with respect to the organic functional layer 50. A third inclined surface 35c inclined in a direction different from the inclined direction; and a fourth inclined surface 35d inclined in a direction opposite to the inclined direction of the third inclined surface 35c with respect to the organic functional layer 50. is doing. A plurality of third inclined surfaces are arranged such that the third inclined surfaces 35c and the fourth inclined surfaces 35d are alternately positioned in a second direction that is parallel to the organic functional layer 50 and intersects the first direction (arrow B direction). The surface 35c and the plurality of fourth inclined surfaces 35d are arranged side by side in the second direction. The second light reflection film 26 is formed along at least one of the plurality of third inclined surfaces 35c and the plurality of fourth inclined surfaces 35d. The second light reflecting film 26 is the same as the first light reflecting film 25.
Specifically, for example, the second light reflecting film 26 is formed along each of the plurality of fourth inclined surfaces 35d. In addition, the plurality of third inclined surfaces 35c are light-transmitting surfaces on which the second light reflecting film 26 is not formed.
 図26に示すように、平面視において、第1傾斜面35a及び第2傾斜面35bが配置されている領域R11と、第3傾斜面35c及び第4傾斜面35dが配置されている領域R12と、が相互に異なる。
 例えば、第2方向は第1方向に対して直交している。すなわち、第2方向は、例えば、矢印A方向である。第3傾斜面35c及び第4傾斜面35dの向きは、例えば、第1傾斜面35a及び第2傾斜面35bをそれぞれ平面内において90度回転させた向きとなっている。ただし、第1方向と第2方向とは、互いに交差していれば良く、第1方向と第2方向とのなす角度は90度以外であっても良い。
As shown in FIG. 26, in plan view, a region R11 in which the first inclined surface 35a and the second inclined surface 35b are disposed, and a region R12 in which the third inclined surface 35c and the fourth inclined surface 35d are disposed. Are different from each other.
For example, the second direction is orthogonal to the first direction. That is, the second direction is, for example, the arrow A direction. The directions of the third inclined surface 35c and the fourth inclined surface 35d are, for example, directions obtained by rotating the first inclined surface 35a and the second inclined surface 35b by 90 degrees in the plane. However, the first direction and the second direction only need to cross each other, and the angle formed by the first direction and the second direction may be other than 90 degrees.
 本実施例では、このように、界面35において、領域ごとに傾斜面の向きを異ならせる。領域R11における発光装置の構造と、領域R12における発光装置の構造とは、傾斜面の向きが異なる点の他は、互いに同様に構成されている。 In the present embodiment, the direction of the inclined surface is changed for each region in the interface 35 as described above. The structure of the light emitting device in the region R11 and the structure of the light emitting device in the region R12 are configured in the same manner except that the direction of the inclined surface is different.
 例えば、図26に示すように、複数の第1領域R11(第1傾斜面35aおよび第2傾斜面35bが配置された領域)と複数の第2領域R12(第3傾斜面35cおよび第4傾斜面35dが配置された領域)とが平面視において交互に隣接して配置されている。具体的には、例えば、複数の第1領域R11と複数の第2領域R12とが千鳥状に互いに隣接して配置されている。 For example, as shown in FIG. 26, a plurality of first regions R11 (a region where the first inclined surface 35a and the second inclined surface 35b are arranged) and a plurality of second regions R12 (the third inclined surface 35c and the fourth inclined surface). And the area where the surface 35d is arranged) are alternately arranged in plan view. Specifically, for example, a plurality of first regions R11 and a plurality of second regions R12 are arranged adjacent to each other in a staggered manner.
 なお、第2透光層120において、各第1領域R11に配置される部分と、各第2領域R12に配置される部分と、を個別のブロックとして形成し、それら同一平面上に並べて配置しても良い。この場合、第2透光層120を同一形状の複数のブロックとして形成し、それらブロックを互いの向きを90度異ならせて複数並べて配置することにより、容易に第2透光層120の全体を作製することができる。同様に、第1透光層110についても、各第1領域R11に配置される部分と、各第2領域R12に配置される部分と、を個別のブロックとして形成し、それらを同一平面上に並べて配置しても良い。ただし、第2透光層120および第1透光層110は、それぞれ全体を一体形成しても良い。 In the second light-transmitting layer 120, the portion disposed in each first region R11 and the portion disposed in each second region R12 are formed as individual blocks and arranged side by side on the same plane. May be. In this case, the second light-transmitting layer 120 is formed as a plurality of blocks having the same shape, and a plurality of these blocks are arranged side by side with their directions different from each other by 90 degrees. Can be produced. Similarly, also about the 1st light transmission layer 110, the part arrange | positioned in each 1st area | region R11 and the part arrange | positioned in each 2nd area | region R12 are formed as a separate block, and they are on the same plane. They may be arranged side by side. However, the second light transmissive layer 120 and the first light transmissive layer 110 may be integrally formed as a whole.
 本実施例によれば、界面35により多くの角度の傾斜面が存在するので、界面35において、より様々な角度の光を、発光装置から取り出せる方向に変換することが可能である。また、領域R11においては、第2傾斜面35bの第1光反射膜25と反射電極である第2電極60との間や、屈折率の異なる界面を有する第1傾斜面35aと第2電極60との間で反射を繰り返す動作パターンとなるような角度の光線についても、隣接する領域R12に入ることにより、それまでとは異なる角度の傾斜面(第3傾斜面35c、第4傾斜面35d)に当たる。その結果、そのような角度の光についても、反射の繰り返しの動作パターンから抜け出せるようにし、空気層へ取り出すことができる。
 同様に、領域R12においては、第4傾斜面35dの第2光反射膜26と反射電極である第2電極60との間や、屈折率の異なる界面を有する第3傾斜面35cと第2電極60との間で反射を繰り返す動作パターンとなるような角度の光線についても、隣接する領域R11に入ることにより、それまでとは異なる角度の傾斜面(第1傾斜面35a、第2傾斜面35b)に当たる。その結果、そのような角度の光についても、反射の繰り返しの動作パターンから抜け出せるようにし、空気層へ取り出すことができる。
According to the present embodiment, since there are inclined surfaces at many angles at the interface 35, it is possible to convert light at various angles into directions that can be extracted from the light emitting device at the interface 35. In the region R11, the first inclined surface 35a and the second electrode 60 having interfaces having different refractive indexes between the first light reflecting film 25 on the second inclined surface 35b and the second electrode 60 that is a reflective electrode. Even for a light beam having an angle that causes an operation pattern that repeats reflection between the inclined surface and the adjacent region R12, the inclined surface (third inclined surface 35c, fourth inclined surface 35d) having a different angle from the previous one is entered. It hits. As a result, even light of such an angle can be extracted from the operation pattern of repeated reflection and extracted to the air layer.
Similarly, in the region R12, the third inclined surface 35c and the second electrode having interfaces having different refractive indexes between the second light reflecting film 26 on the fourth inclined surface 35d and the second electrode 60 serving as the reflective electrode. Even for a light beam having an angle that causes an operation pattern that repeats reflection with respect to 60, by entering the adjacent region R11, inclined surfaces (first inclined surface 35a and second inclined surface 35b having different angles from that of the previous region). ). As a result, even light of such an angle can be extracted from the operation pattern of repeated reflection and extracted to the air layer.
 また、第1傾斜面35aおよび第2傾斜面35bが配置された複数の第1領域R11と、第3傾斜面35cおよび第4傾斜面35dが配置された複数の第2領域R12と、が平面視において交互に隣接して配置されている。これにより、第1領域R11においては発光装置から取り出されないような反射の繰り返しパターンとなるような角度の光について、第1領域R11から遠く離れた位置ではなく、第1領域R11に隣接する第2領域R12にて上向きに変更することができる。よって、この光が減衰する前に、この光の向きを、光取り出し面dから外部に取り出すことが可能な向きに変更できる可能性が高まる。同様に、第2領域R12においては発光装置から取り出されないような反射の繰り返しパターンとなるような角度の光についても、第2領域R12から遠く離れた位置ではなく、第2領域R12に隣接する第1領域R11にて上向きに変更することができる。よって、この光が減衰する前に、この光の向きを、光取り出し面dから外部に取り出すことが可能な向きに変更できる可能性が高まる。 In addition, a plurality of first regions R11 in which the first inclined surface 35a and the second inclined surface 35b are arranged, and a plurality of second regions R12 in which the third inclined surface 35c and the fourth inclined surface 35d are arranged are planar. They are arranged adjacent to each other alternately in view. Thereby, in the first region R11, the light having an angle that forms a repetitive reflection pattern that is not extracted from the light-emitting device is not located far from the first region R11 but is adjacent to the first region R11. It can be changed upward in the two regions R12. Therefore, there is a high possibility that the direction of the light can be changed to a direction in which the light can be extracted from the light extraction surface d before the light is attenuated. Similarly, in the second region R12, the light having an angle that forms a repetitive reflection pattern that is not extracted from the light emitting device is adjacent to the second region R12, not far from the second region R12. It can be changed upward in the first region R11. Therefore, there is a high possibility that the direction of the light can be changed to a direction in which the light can be extracted from the light extraction surface d before the light is attenuated.
 (実施例15)
 図27(a)は本実施例に係る発光装置の斜視図、図27(b)は本実施例に係る発光装置を図27(a)の矢印A方向に見た断面図である。
(Example 15)
FIG. 27A is a perspective view of the light-emitting device according to the present example, and FIG. 27B is a cross-sectional view of the light-emitting device according to the present example when viewed in the direction of arrow A in FIG.
 実施例16に係る発光装置は、第1傾斜面35aに沿って配置された第1光反射膜25と、第2傾斜面35bに沿って配置された第1光反射膜25とを有する。 The light-emitting device according to Example 16 includes a first light reflecting film 25 disposed along the first inclined surface 35a and a first light reflecting film 25 disposed along the second inclined surface 35b.
 例えば、図27(b)において、領域Eを境界として、その左側の領域では、各第1傾斜面35aに沿って第1光反射膜25が形成され、右側の領域では、各第2傾斜面35bに沿って第1光反射膜25が形成されている。 For example, in FIG. 27B, with the region E as a boundary, the first light reflecting film 25 is formed along each first inclined surface 35a in the left region, and each second inclined surface is formed in the right region. A first light reflecting film 25 is formed along 35b.
 本実施例によれば、上記の実施形態と同様の効果が得られる他に、以下の効果が得られる。すなわち界面35において、第1光反射膜25の向きをそれぞれ2方向にできる。よって、より様々な角度の光を発光装置から外部に取り出せる可能性を高めることができる。 According to the present example, in addition to the same effects as the above embodiment, the following effects can be obtained. That is, at the interface 35, the first light reflection film 25 can be oriented in two directions. Therefore, it is possible to increase the possibility that light having various angles can be extracted from the light emitting device to the outside.
 以上、図面を参照して実施形態及び実施例について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。 As mentioned above, although embodiment and the Example were described with reference to drawings, these are the illustrations of this invention, Various structures other than the above are also employable.
 例えば、第2透光層120の下面に第1光反射膜25を蒸着した後で、第2透光層120よりも軟化点または融点が低い材料(例えばITOやIZO)からなる第3透光層をスパッタ又は蒸着により第2透光層120の下面に成膜し、第3透光層の下面に高屈折率材料からなる第4透光層を成膜する。これにより、第3透光層と第4透光層とからなる第1透光層110を形成することができる。ここで、高屈折材料の軟化点が第2透光層120と同じくらいかまたはそれ以上の場合に、第2透光層120の下面に直接高屈折材料の第2透光層120を形成すると、第2透光層120の下面の凹凸形状(逆V溝形状)が大きく崩れ(鈍り)、第1傾斜面35aおよび第2傾斜面36bが平らでなくなる。これに対し、ITOやIZOなどの第3透光層を中間層として形成した後で、高屈折材料の第4透光層を形成することにより、第2透光層120の下面の凹凸形状(逆V溝形状)が多少崩れることはあっても、大きく崩れてしまうことを抑制できる。 For example, after the first light reflecting film 25 is deposited on the lower surface of the second light transmitting layer 120, the third light transmitting material made of a material having a softening point or a melting point lower than that of the second light transmitting layer 120 (for example, ITO or IZO). A layer is formed on the lower surface of the second light transmitting layer 120 by sputtering or vapor deposition, and a fourth light transmitting layer made of a high refractive index material is formed on the lower surface of the third light transmitting layer. Thereby, the 1st translucent layer 110 which consists of a 3rd translucent layer and a 4th translucent layer can be formed. Here, when the softening point of the high refraction material is about the same as or higher than that of the second light transmission layer 120, the second light transmission layer 120 of the high refraction material is directly formed on the lower surface of the second light transmission layer 120. The uneven shape (reverse V-groove shape) on the lower surface of the second light transmitting layer 120 is greatly broken (blunted), and the first inclined surface 35a and the second inclined surface 36b are not flat. On the other hand, after forming a third light-transmitting layer such as ITO or IZO as an intermediate layer, a fourth light-transmitting layer made of a high refractive material is formed, thereby forming a concave-convex shape on the lower surface of the second light-transmitting layer 120 ( Even if the reverse V-groove shape is slightly collapsed, it can be prevented from being largely collapsed.

Claims (9)

  1.  発光層を含む有機機能層と、
     前記有機機能層の一方の面側に配置された透光層と、
     を備え、
     前記透光層における前記有機機能層とは反対側の面は、前記発光層が発光した光を出射する光取り出し面を構成し、
     前記透光層は、
     前記有機機能層に近い側から順に、
     第1透光層と、
     前記第1透光層との間に界面を有する第2透光層と、
     を有し、
     前記第1透光層と前記第2透光層との界面は、前記有機機能層に対して傾斜している第1傾斜面と、前記有機機能層に対して前記第1傾斜面の傾斜方向とは反対方向に傾斜している第2傾斜面と、を有し、
     前記有機機能層と平行な第1方向において前記第1傾斜面と前記第2傾斜面とが交互に位置するように、複数の前記第1傾斜面と複数の前記第2傾斜面とが前記第1方向において並んで配置され、
     前記第2透光層と、前記第2透光層に対して前記第1透光層とは反対側に隣接する領域である隣接領域と、の界面は、複数の突起を含み、
     前記複数の第1傾斜面と前記複数の第2傾斜面とのうちの少なくとも何れか1つの傾斜面に沿って第1光反射膜が形成され、
     前記複数の突起の各々は、前記有機機能層に対して互いに異なる向きに傾斜する3つ以上の傾斜面を含み、且つ、これら傾斜面のうちの少なくとも何れか1つは前記有機機能層に対して直交していない発光装置。
    An organic functional layer including a light emitting layer;
    A translucent layer disposed on one side of the organic functional layer;
    With
    The surface opposite to the organic functional layer in the translucent layer constitutes a light extraction surface that emits light emitted by the light emitting layer,
    The translucent layer is
    In order from the side closer to the organic functional layer,
    A first light transmissive layer;
    A second light transmissive layer having an interface with the first light transmissive layer;
    Have
    The interface between the first light transmissive layer and the second light transmissive layer is a first inclined surface that is inclined with respect to the organic functional layer, and an inclination direction of the first inclined surface with respect to the organic functional layer A second inclined surface inclined in the opposite direction to
    A plurality of the first inclined surfaces and a plurality of the second inclined surfaces are arranged in the first direction parallel to the organic functional layer such that the first inclined surfaces and the second inclined surfaces are alternately positioned. Arranged side by side in one direction,
    An interface between the second light transmissive layer and an adjacent region that is a region adjacent to the second light transmissive layer opposite to the first light transmissive layer includes a plurality of protrusions;
    A first light reflecting film is formed along at least one of the plurality of first inclined surfaces and the plurality of second inclined surfaces;
    Each of the plurality of protrusions includes three or more inclined surfaces inclined in different directions with respect to the organic functional layer, and at least one of these inclined surfaces is defined with respect to the organic functional layer. Light emitting device that is not orthogonal.
  2.  前記有機機能層と前記第1透光層との間に配置された透光性電極を備え、
     前記透光性電極は、前記第1透光層における前記有機機能層側の面に接しており、
     前記第1透光層の屈折率は、前記透光性電極の屈折率以上であり、且つ、2.3以下である請求項1に記載の発光装置。
    A translucent electrode disposed between the organic functional layer and the first translucent layer;
    The translucent electrode is in contact with the surface of the first translucent layer on the organic functional layer side,
    2. The light emitting device according to claim 1, wherein a refractive index of the first light transmissive layer is equal to or higher than a refractive index of the light transmissive electrode and equal to or lower than 2.3.
  3.  互いに隣り合う前記第1傾斜面と前記第2傾斜面とのうち何れか一方に沿って前記第1光反射膜が形成されている請求項1又は2に記載の発光装置。 3. The light emitting device according to claim 1, wherein the first light reflecting film is formed along one of the first inclined surface and the second inclined surface adjacent to each other.
  4.  前記複数の突起には、錐状に形成された突起が含まれている請求項1~3の何れか一項に記載の発光装置。 4. The light emitting device according to claim 1, wherein the plurality of protrusions include protrusions formed in a cone shape.
  5.  前記複数の突起には、多角錐状に形成された突起が含まれている請求項4に記載の発光装置。 The light emitting device according to claim 4, wherein the plurality of protrusions include protrusions formed in a polygonal pyramid shape.
  6.  前記複数の突起には、円錐状に形成された突起が含まれている請求項4又は5に記載の発光装置。 The light emitting device according to claim 4 or 5, wherein the plurality of protrusions include a conical protrusion.
  7.  前記複数の突起には、半球状に形成された突起が含まれている請求項1~6の何れか一項に記載の発光装置。 The light emitting device according to any one of claims 1 to 6, wherein the plurality of protrusions include a hemispherical protrusion.
  8.  前記第1透光層と前記第2透光層との界面は、前記有機機能層に対して前記第1傾斜面及び前記第2傾斜面の何れの傾斜方向とも異なる方向に傾斜している第3傾斜面と、前記有機機能層に対して前記第3傾斜面の傾斜方向とは反対方向に傾斜している第4傾斜面と、を有し、
     前記有機機能層と平行で且つ前記第1方向に対して交差する第2方向において前記第3傾斜面と前記第4傾斜面とが交互に位置するように、複数の前記第3傾斜面と複数の前記第4傾斜面とが前記第2方向において並んで配置され、
     前記複数の第3傾斜面と前記複数の第4傾斜面とのうちの少なくとも何れか1つの傾斜面に沿って第2光反射膜が形成されている請求項1~5の何れか一項に記載の発光装置。
    The interface between the first light transmissive layer and the second light transmissive layer is inclined with respect to the organic functional layer in a direction different from any of the first inclined surface and the second inclined surface. 3 inclined surfaces, and a fourth inclined surface inclined in a direction opposite to the inclination direction of the third inclined surface with respect to the organic functional layer,
    A plurality of the third inclined surfaces and a plurality of the third inclined surfaces are arranged so that the third inclined surfaces and the fourth inclined surfaces are alternately positioned in a second direction parallel to the organic functional layer and intersecting the first direction. Are arranged side by side in the second direction,
    6. The second light reflecting film is formed along at least one of the plurality of third inclined surfaces and the plurality of fourth inclined surfaces. The light emitting device described.
  9.  発光層を含む有機機能層と、
     前記有機機能層の一方の面側に配置された透光層と、
     を備え、
     前記透光層における前記有機機能層とは反対側の面は、前記発光層が発光した光を出射する光取り出し面を構成し、
     前記透光層は、
     前記有機機能層に近い側から順に、
     第1透光層と、
     前記第1透光層との間に界面を有する第2透光層と、
     を有し、
     前記第1透光層と前記第2透光層との界面は、前記有機機能層に対して傾斜している第1傾斜面と、前記有機機能層に対して前記第1傾斜面の傾斜方向とは反対方向に傾斜している第2傾斜面と、を有し、
     前記有機機能層と平行な第1方向において前記第1傾斜面と前記第2傾斜面とが交互に位置するように、複数の前記第1傾斜面と複数の前記第2傾斜面とが前記第1方向において並んで配置され、
     前記第2透光層と、前記第2透光層に対して前記第1透光層とは反対側に隣接する領域である隣接領域と、の界面は、複数の突起を含み、
     前記複数の第1傾斜面と前記複数の第2傾斜面とのうちの少なくとも何れか1つの傾斜面に沿って第1光反射膜が形成され、
     前記複数の突起の各々は、多角錐状、円錐状、多角錐台状、円錐台状又は半球状に形成されている発光装置。
    An organic functional layer including a light emitting layer;
    A translucent layer disposed on one side of the organic functional layer;
    With
    The surface opposite to the organic functional layer in the translucent layer constitutes a light extraction surface that emits light emitted by the light emitting layer,
    The translucent layer is
    In order from the side closer to the organic functional layer,
    A first light transmissive layer;
    A second light transmissive layer having an interface with the first light transmissive layer;
    Have
    The interface between the first light transmissive layer and the second light transmissive layer is a first inclined surface that is inclined with respect to the organic functional layer, and an inclination direction of the first inclined surface with respect to the organic functional layer A second inclined surface inclined in the opposite direction to
    A plurality of the first inclined surfaces and a plurality of the second inclined surfaces are arranged in the first direction parallel to the organic functional layer such that the first inclined surfaces and the second inclined surfaces are alternately positioned. Arranged side by side in one direction,
    An interface between the second light transmissive layer and an adjacent region that is a region adjacent to the second light transmissive layer opposite to the first light transmissive layer includes a plurality of protrusions;
    A first light reflecting film is formed along at least one of the plurality of first inclined surfaces and the plurality of second inclined surfaces;
    Each of the plurality of protrusions is a light emitting device formed in a polygonal pyramid shape, a conical shape, a polygonal frustum shape, a truncated cone shape, or a hemispherical shape.
PCT/JP2012/084166 2012-12-28 2012-12-28 Light-emitting device WO2014103042A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/084166 WO2014103042A1 (en) 2012-12-28 2012-12-28 Light-emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/084166 WO2014103042A1 (en) 2012-12-28 2012-12-28 Light-emitting device

Publications (1)

Publication Number Publication Date
WO2014103042A1 true WO2014103042A1 (en) 2014-07-03

Family

ID=51020192

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/084166 WO2014103042A1 (en) 2012-12-28 2012-12-28 Light-emitting device

Country Status (1)

Country Link
WO (1) WO2014103042A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005055481A (en) * 2003-06-09 2005-03-03 Toyota Industries Corp Optical element, planar illumination apparatus and display apparatus
JP2007538363A (en) * 2004-05-17 2007-12-27 トムソン ライセンシング Organic light emitting diode (OLED) with improved light extraction and corresponding display unit
JP2011507164A (en) * 2007-12-12 2011-03-03 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Light emitting device
JP2012142142A (en) * 2010-12-28 2012-07-26 Nippon Zeon Co Ltd Surface light source device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005055481A (en) * 2003-06-09 2005-03-03 Toyota Industries Corp Optical element, planar illumination apparatus and display apparatus
JP2007538363A (en) * 2004-05-17 2007-12-27 トムソン ライセンシング Organic light emitting diode (OLED) with improved light extraction and corresponding display unit
JP2011507164A (en) * 2007-12-12 2011-03-03 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Light emitting device
JP2012142142A (en) * 2010-12-28 2012-07-26 Nippon Zeon Co Ltd Surface light source device

Similar Documents

Publication Publication Date Title
CN111108602B (en) Method of reducing color separation of reflection of ambient light in a display panel, display device and method of manufacturing a display panel
JP4464370B2 (en) Lighting device and display device
US8987767B2 (en) Light emitting device having improved light extraction efficiency
US20070290607A1 (en) Organic electroluminescent display device
KR20040088537A (en) Electroluminescent panel which is equipped with light extraction elements
US20220020963A1 (en) Metasurface, light-emitting device including the metasurface, display device including the light-emitting device, and method of fabricating the metasurface
JP2007234591A (en) Double emission white pled for illumination
KR20180003967A (en) Organic Light Emitting Display Device and Method for Manufacturing thereof
WO2013065177A1 (en) Light-emitting device
CN113659093B (en) Display panel and manufacturing method thereof
CN112130236B (en) Low-reflection structure, display panel, display device and manufacturing method of display panel
JP2009151945A (en) Organic el light-emitting device and its manufacturing method
US20210011340A1 (en) Display substrate and method for manufacturing the same, and display apparatus
JP5138569B2 (en) Organic EL light emitting device
WO2014103042A1 (en) Light-emitting device
KR20140130734A (en) Light emitting panel
CN115377320A (en) Display panel and display device
WO2013065172A1 (en) Light-emitting device and method for producing light-emitting device
WO2014103043A1 (en) Light-emitting device
WO2013065178A1 (en) Light-emitting device
WO2014103041A1 (en) Light-emitting device
JP6804591B2 (en) Display device
WO2014109028A1 (en) Light-emitting element
WO2013065170A1 (en) Light-emitting device
JP2015179584A (en) Light emitting element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12891311

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12891311

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP