JP2009211868A - Structure for extracting light from light emitting element - Google Patents

Structure for extracting light from light emitting element Download PDF

Info

Publication number
JP2009211868A
JP2009211868A JP2008051846A JP2008051846A JP2009211868A JP 2009211868 A JP2009211868 A JP 2009211868A JP 2008051846 A JP2008051846 A JP 2008051846A JP 2008051846 A JP2008051846 A JP 2008051846A JP 2009211868 A JP2009211868 A JP 2009211868A
Authority
JP
Japan
Prior art keywords
refractive index
light emitting
slant
index region
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008051846A
Other languages
Japanese (ja)
Other versions
JP5057076B2 (en
Inventor
Hideaki Morita
英明 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2008051846A priority Critical patent/JP5057076B2/en
Publication of JP2009211868A publication Critical patent/JP2009211868A/en
Application granted granted Critical
Publication of JP5057076B2 publication Critical patent/JP5057076B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To improve efficiency of a light emitting element by arranging a diffraction structure different from a conventional diffraction structure on a light extraction surface side of the light emitting element such as an organic electroluminescent element. <P>SOLUTION: In this structure for extracting light, a slant structural body having a slant structure in which high-refractive-index regions 2 and low-refractive-index regions 3 are repeated at a certain cycle in a one-dimensional direction along a flat plate 1, and the high-refractive-index regions 2 and the low-refractive-index regions 3 are inclined at a certain slant angle with respect to the normal of the flat plate 1 is arranged on a light extraction surface side of a luminescent layer 11 of the light emitting element. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、発光素子からの光取出し構造に関し、特に、発光素子から効率良く光を取出すための光学構造に関するものである。   The present invention relates to a light extraction structure from a light emitting element, and more particularly to an optical structure for efficiently extracting light from a light emitting element.

発光素子、例えば有機エレクトロルミネッセンス素子においては、その発光体の屈折率の影響のため、臨界角以上の出射角の光は全反射を起こし外部に取出すことができない。このため、発光体の屈折率が1.6とすると、発光量全体の20%程度しか有効に利用できない。   In a light-emitting element, for example, an organic electroluminescence element, light having an emission angle greater than a critical angle is totally reflected and cannot be taken out due to the influence of the refractive index of the light-emitting body. For this reason, if the refractive index of the light emitter is 1.6, only about 20% of the total amount of light emission can be used effectively.

この光の取出し効率を向上させる手法としては、特許文献1に示されるように、光取出し面側に回折格子やゾーンプレートを配置して光取出し効率を向上させるものが提案されている。   As a technique for improving the light extraction efficiency, as disclosed in Patent Document 1, a technique is proposed in which a diffraction grating or a zone plate is arranged on the light extraction surface side to improve the light extraction efficiency.

さらに、特許文献2、非特許文献1に示されるように、光取出し面側に高屈折率層とナノ多孔質層あるいはフォトニック結晶を配置して光取出し効率を向上させるものが提案されている。   Furthermore, as shown in Patent Document 2 and Non-Patent Document 1, there has been proposed a technique in which a high refractive index layer and a nanoporous layer or a photonic crystal are arranged on the light extraction surface side to improve the light extraction efficiency. .

また、特許文献3に示されるように、光取出し面側にプリズムレンズシートを配置して光取出し効率を向上させるものが提案されている。
特開平11−283751号公報 特開2006−12826号公報 特開平9−73983号公報 Appl.Phys.Lett,82,3779-3781(2003) “SPIE”Vol.883(1988),pp.8〜11
Further, as shown in Patent Document 3, a prism lens sheet is arranged on the light extraction surface side to improve the light extraction efficiency.
Japanese Patent Laid-Open No. 11-283951 JP 2006-12826 A JP-A-9-73983 Appl.Phys.Lett, 82,3779-3781 (2003) “SPIE” Vol. 883 (1988), p. 8-11

本発明は従来技術のこのような状況に鑑みてなされたものであり、その目的は、有機エレクトロルミネッセンス素子等の発光素子の光取出し面側に従来の回折構造とは異なる回折構造を配置して発光素子の高効率化を図ることである。   The present invention has been made in view of such a situation in the prior art, and its purpose is to arrange a diffractive structure different from the conventional diffractive structure on the light extraction surface side of a light emitting element such as an organic electroluminescent element. This is to increase the efficiency of the light emitting element.

上記目的を達成する本発明の発光素子からの光取出し構造は、高屈折率領域と低屈折率領域が平板に沿った1次元方向に一定周期で繰返し、その高屈折率領域及び低屈折率領域が平板の法線に対して一定のスラント角で傾いているスラント構造を有するスラント構造体が発光素子の発光層の光取出し面側に配置されていることを特徴とするものである。   The light extraction structure from the light emitting device of the present invention that achieves the above object has a high refractive index region and a low refractive index region that repeat at a constant period in a one-dimensional direction along the flat plate. Is characterized in that a slant structure having a slant structure inclined at a constant slant angle with respect to the normal line of the flat plate is disposed on the light extraction surface side of the light emitting layer of the light emitting element.

この場合、前記スラント構造体において、前記平板の面の法線周りで前記スラント構造が整数回の回転対称に配置されていることが望ましい。   In this case, in the slant structure, it is desirable that the slant structure is arranged in an integer number of rotational symmetry around the normal of the plane of the flat plate.

そして、前記スラント構造体において、高屈折率領域相互あるいは高屈折率領域と低屈折率領域が空間的に重なる部分は高屈折率領域、低屈折率領域相互が空間的に重なる部分は低屈折率領域となっていることが望ましい。   In the slant structure, a high refractive index region or a portion where the high refractive index region and the low refractive index region are spatially overlapped is a high refractive index region, and a portion where the low refractive index region is spatially overlapped is a low refractive index. It is desirable to be an area.

また、前記発光層と前記スラント構造体の間に前記発光層側の屈折率より大きな高屈折率層が配置されているか、前記発光層の出射側にアレイ状に四角錐状あるいは屋根型の微小なプリズムを多数配置してなるプリズムアレイが配置されていることがより望ましい。   In addition, a high refractive index layer larger than the refractive index on the light emitting layer side is disposed between the light emitting layer and the slant structure, or a square pyramid or roof type microscopic array is formed on the emission side of the light emitting layer. It is more desirable that a prism array in which a large number of prisms are arranged is arranged.

本発明によると、上記のようなスラント構造を用いることにより光取出し効率が向上し、高効率な発光素子が得られる。   According to the present invention, by using the slant structure as described above, the light extraction efficiency is improved, and a highly efficient light emitting device can be obtained.

以下、本発明の発光素子からの光取出し構造の原理と実施例を説明する。   Hereinafter, the principle and examples of the light extraction structure from the light emitting device of the present invention will be described.

本発明の光取出し構造の基本構造は、図1に断面図を示すように、平板1内において高屈折率空間領域2と低屈折率空間領域3(以下、空間領域は単に領域とする。)が平板1に沿った1次元方向に使用する光の波長からその波長の2倍程度の間の周期で繰返し、その高屈折率領域2及び低屈折率領域3が平板1の法線に対して一定のスラント角α(α≠0°,90°)で傾いてなるスラント構造を持つスラント構造体10を用い、この構造体10を発光体の発光層11の光取出し面側に透明性基板12を介して配置することで、透明性基板12を通して発光層11から外へ取出す光量をより多く(高効率化)するものである。なお、高屈折率領域2と低屈折率領域3は空間的には平板状をしており、相互に平行に配置されている。   The basic structure of the light extraction structure of the present invention is a high refractive index space region 2 and a low refractive index space region 3 (hereinafter, the space region is simply referred to as a region) in the flat plate 1 as shown in a sectional view in FIG. Is repeated with a period between the wavelength of light used in the one-dimensional direction along the flat plate 1 and about twice the wavelength, and the high refractive index region 2 and the low refractive index region 3 are in relation to the normal of the flat plate 1. A slant structure 10 having a slant structure inclined at a constant slant angle α (α ≠ 0 °, 90 °) is used, and this structure 10 is placed on the light extraction surface side of the light-emitting layer 11 of the light-emitting body on the transparent substrate 12. The amount of light taken out from the light emitting layer 11 through the transparent substrate 12 is increased (higher efficiency). The high refractive index region 2 and the low refractive index region 3 are spatially flat and are arranged in parallel to each other.

さらに、スラント構造体10は、図2に断面図を示すように、図1のようなスラント角αで傾いている高屈折率領域2と低屈折率領域3の繰返しのスラント構造を平板1の法線に対して整数回(図2では2回)回転対称に配置されたもの(高屈折率領域2相互あるいは高屈折率領域2と低屈折率領域3が空間的に重なる部分は高屈折率領域、低屈折率領域3相互が空間的に重なる部分は低屈折率領域とする。)でも、透明性基板12を通して発光層11から外へ取出す光量をより多くすることができる。回転対称の回数を多くすることで、取出し効率の法線周りでの均一性が良くなる。   Further, as shown in a cross-sectional view in FIG. 2, the slant structure 10 has a repetitive slant structure of a high refractive index region 2 and a low refractive index region 3 inclined at a slant angle α as shown in FIG. Arranged rotationally symmetrical integer times (2 times in FIG. 2) with respect to the normal (high refractive index region 2 mutually or a portion where the high refractive index region 2 and the low refractive index region 3 spatially overlap each other has a high refractive index. The portion where the region and the low refractive index region 3 spatially overlap each other is a low refractive index region.) However, it is possible to increase the amount of light extracted from the light emitting layer 11 through the transparent substrate 12. By increasing the number of times of rotational symmetry, the uniformity around the normal of extraction efficiency is improved.

図3は、回転対称の回数とスラント構造の関係を示す平板1を+z軸(図1、図2)方向から見た平面図であり、図3(a)は3回、図3(b)は4回、図3(c)は5回、図3(d)は6回、図3(e)は8回の場合である。図3(a)の3回の回転対称の場合、図の3本の一点鎖線に沿った断面図では、高屈折率領域2と低屈折率領域3の配置構造は、図1と同様に、高屈折率領域2が斜めにストライプ状に並んで配置される(図では、これを“/////”で示してある。)。図3(b)の4回の回転対称の場合、図の2本の一点鎖線に沿った断面図では、高屈折率領域2と低屈折率領域3の配置構造は、図2と同様に、高屈折率領域2が交差格子状に並んで配置される(図では、これを“XXXXX”で示してある。)。図3(c)の5回の回転対称の場合、図の5本の一点鎖線に沿った断面図では、高屈折率領域2と低屈折率領域3の配置構造は、図1と同様に、高屈折率領域2が斜めにストライプ状に並んで配置される。図3(d)の6回の回転対称の場合、図の3本の一点鎖線に沿った断面図では、高屈折率領域2と低屈折率領域3の配置構造は、図2と同様に、高屈折率領域2が交差格子状に並んで配置される。図3(e)の8回の回転対称の場合、図の4本の一点鎖線に沿った断面図では、高屈折率領域2と低屈折率領域3の配置構造は、図2と同様に、高屈折率領域2が交差格子状に並んで配置される。他の整数回の場合も同様であり、回転対称の回数が奇数の場合、回転対称の方向で図1と同様に高屈折率領域2が斜めにストライプ状に並んで配置される。回転対称の回数が偶数の場合、回転対称の方向で図2と同様に高屈折率領域2が交差格子状に並んで配置される。   FIG. 3 is a plan view of the flat plate 1 showing the relationship between the number of rotational symmetry and the slant structure as viewed from the + z-axis (FIGS. 1 and 2) direction, FIG. 3 (a) is three times, and FIG. Is 4 times, FIG. 3 (c) is 5 times, FIG. 3 (d) is 6 times, and FIG. 3 (e) is 8 times. In the case of the three-fold rotational symmetry in FIG. 3A, the arrangement structure of the high refractive index region 2 and the low refractive index region 3 is the same as that in FIG. The high refractive index regions 2 are arranged obliquely in a stripe pattern (in the figure, this is indicated by “/////”). In the case of the four-fold rotational symmetry in FIG. 3B, the arrangement structure of the high refractive index region 2 and the low refractive index region 3 is the same as in FIG. The high refractive index regions 2 are arranged side by side in a crossed lattice pattern (in the figure, this is indicated by “XXXX”). In the case of the five-fold rotational symmetry in FIG. 3C, in the cross-sectional view along the five dot-and-dash lines in the figure, the arrangement structure of the high refractive index region 2 and the low refractive index region 3 is the same as in FIG. The high refractive index regions 2 are arranged obliquely in a stripe pattern. In the case of the six-fold rotational symmetry in FIG. 3D, in the cross-sectional view along the three-dot chain line in the figure, the arrangement structure of the high refractive index region 2 and the low refractive index region 3 is the same as in FIG. The high refractive index regions 2 are arranged side by side in a cross grid pattern. In the case of the eight-fold rotational symmetry in FIG. 3 (e), in the cross-sectional view along the four-dot chain lines in the figure, the arrangement structure of the high refractive index region 2 and the low refractive index region 3 is the same as in FIG. The high refractive index regions 2 are arranged side by side in a cross grid pattern. The same applies to other integer times. When the number of rotational symmetry is an odd number, the high refractive index regions 2 are arranged obliquely in stripes in the rotationally symmetric direction as in FIG. When the number of rotational symmetry is an even number, the high refractive index regions 2 are arranged side by side in a crossed lattice pattern in the rotationally symmetric direction as in FIG.

さらに、図4に示すように、図1〜図3のスラント構造体10の発光層11側に透明性基板12の屈折率より大きな高屈折率層13を配置して、発光層11から放射される光束の発散角を縮小し、その発散角内の光をスラント構造体10に入射させるようにして、外へ取出す光量をより多くすることができる。   Further, as shown in FIG. 4, a high refractive index layer 13 larger than the refractive index of the transparent substrate 12 is disposed on the light emitting layer 11 side of the slant structure 10 of FIGS. The amount of light taken out can be increased by reducing the divergence angle of the luminous flux and making the light within the divergence angle incident on the slant structure 10.

また、図5に示すように、発光層11の出射側にアレイ状に四角錐状あるいは屋根型の微小なプリズムを多数配置してなる高屈折率のプリズムアレイ14を配置し、このプリズムアレイ14を比較的低屈折率の透明性基板12中に埋込むように配置しても、発光層11から放射される光束の発散角をそのプリズムアレイ14で縮小し、その発散角内の光をスラント構造体10に入射させることで、外へ取出す光量をより多くすることができる。   Further, as shown in FIG. 5, a high-refractive-index prism array 14 in which a large number of square pyramid or roof-shaped minute prisms are arranged in an array on the emission side of the light emitting layer 11 is arranged. Is embedded in the transparent substrate 12 having a relatively low refractive index, the divergence angle of the light beam emitted from the light emitting layer 11 is reduced by the prism array 14 and the light within the divergence angle is slanted. By making the light incident on the structure 10, the amount of light taken out can be increased.

次に、本発明の発光素子からの光取出し構造の数値例を示す。スラント構造体10の利用効率は、ベクトル回折理論(非特許文献2)により厳密に求めることができる。以下の説明で、ピッチ/波長、デューティ比、スラントを示すピッチ方向のズレ量、スラント角、溝深さ/波長等のパラメータは図6に示した通りである。ここで、若干説明を加えると、波長λは使用波長であり、ピッチΛは高屈折率領域2(低屈折率領域3)の平板1の面に沿った方向の繰返しピッチであり、デューティ比w/Λは高屈折率領域2の1ピッチ当たりの割合であり、スラント角αは前記のように高屈折率領域2及び低屈折率領域3の平板1の法線に対する角度であり、スラントを示すピッチ方向のズレ量sは高屈折率領域2又は低屈折率領域3の平板1の表面と裏面でのズレ量であり、溝深さdは高屈折率領域2及び低屈折率領域3が設けられた平板1の厚さである。   Next, numerical examples of the light extraction structure from the light emitting element of the present invention will be shown. The utilization efficiency of the slant structure 10 can be determined strictly by vector diffraction theory (Non-Patent Document 2). In the following description, parameters such as pitch / wavelength, duty ratio, pitch direction shift amount indicating slant, slant angle, groove depth / wavelength, and the like are as shown in FIG. Here, to add a little explanation, the wavelength λ is a used wavelength, the pitch Λ is a repetitive pitch in the direction along the surface of the flat plate 1 of the high refractive index region 2 (low refractive index region 3), and the duty ratio w / Λ is a ratio per pitch of the high refractive index region 2, and the slant angle α is an angle with respect to the normal of the flat plate 1 of the high refractive index region 2 and the low refractive index region 3 as described above, and indicates a slant. The shift amount s in the pitch direction is the shift amount between the front and back surfaces of the flat plate 1 of the high refractive index region 2 or the low refractive index region 3, and the groove depth d is provided by the high refractive index region 2 and the low refractive index region 3. The thickness of the obtained flat plate 1.

図3(b)のような4回の回転対称のスラント構造体10であって、発光層11からTE偏光とTM偏光が等しく、入射角0〜90°、方位角0〜90°(方位角は実際には0〜360°であるが、対称性を考慮して0〜90°で計算を行った。)で等方的に放射されてスラント構造体10に入射する場合、高屈折率領域2の屈折率が1.5、低屈折率領域3の屈折率1(空気)である実施例1〜8について、そのスラント構造体10のパラメータと光取出し効率を以下に示す。なお、波長λは1に規格化した。

実施例1 実施例2 実施例3 実施例4
ピッチ/波長(x方向、y方向共) 1.8 1.6 1.8 1.6
デューティ比(x方向、y方向共) 0.4 0.5 0.4 0.5
スラントを示すピッチ方向のズレ量 2.0 2.0 1.0 2.5
スラント角 38.7 ° 42.4 ° 24.2 ° 41.6 °
溝深さ/波長 4.5 3.5 4.0 4.5
光取出し効率 29.5 % 29.5 % 29.0 % 28.8 %

実施例5 実施例6 実施例7 実施例8
ピッチ/波長(x方向、y方向共) 1.8 1.8 1.2 1.8
デューティ比(x方向、y方向共) 0.6 0.3 0.3 0.4
スラントを示すピッチ方向のズレ量 2.0 1.0 2.0 1.5
スラント角 35.8 ° 35.8 ° 34.4 ° 42.0 °
溝深さ/波長 5.0 2.5 3.5 3.0
光取出し効率 28.7 % 28.7 % 28.6 % 28.5 % 。
FIG. 3B shows a four-fold rotationally symmetric slant structure 10 in which TE and TM polarized light are equal from the light emitting layer 11, and an incident angle of 0 to 90 ° and an azimuth angle of 0 to 90 ° (azimuth angle). Is actually 0 to 360 °, but calculation is performed at 0 to 90 ° in consideration of symmetry.) When isotropically radiated and incident on the slant structure 10, the high refractive index region For Examples 1 to 8 in which the refractive index of 2 is 1.5 and the refractive index of the low refractive index region 3 is 1 (air), the parameters of the slant structure 10 and the light extraction efficiency are shown below. The wavelength λ was normalized to 1.

Example 1 Example 2 Example 3 Example 4
Pitch / wavelength (both x and y directions) 1.8 1.6 1.8 1.6
Duty ratio (both x and y directions) 0.4 0.5 0.4 0.5
Amount of deviation in the pitch direction indicating slant 2.0 2.0 1.0 2.5
Slant angle 38.7 ° 42.4 ° 24.2 ° 41.6 °
Groove depth / wavelength 4.5 3.5 4.0 4.5
Light extraction efficiency 29.5% 29.5% 29.0% 28.8%

Example 5 Example 6 Example 7 Example 8
Pitch / wavelength (both x and y directions) 1.8 1.8 1.2 1.8
Duty ratio (both x and y directions) 0.6 0.3 0.3 0.4
Amount of deviation in the pitch direction indicating slant 2.0 1.0 2.0 1.5
Slant angle 35.8 ° 35.8 ° 34.4 ° 42.0 °
Groove depth / wavelength 5.0 2.5 3.5 3.0
Light extraction efficiency 28.7% 28.7% 28.6% 28.5%.

比較例として、屈折率が1.5でスラント構造のない平板のみの場合の光取出し効率は約23%である。   As a comparative example, the light extraction efficiency in the case of only a flat plate having a refractive index of 1.5 and no slant structure is about 23%.

以上の実施例1〜8の場合の利用効率の入射角及び方位角依存性をそれぞれ図7〜図14に示す。なお、図7〜図14には平板の場合の入射角依存性も示してある。   The incident angle dependency and the azimuth angle dependency of the utilization efficiency in Examples 1 to 8 are shown in FIGS. 7 to 14 also show the incident angle dependency in the case of a flat plate.

以上、本発明の発光素子からの光取出し構造を実施例に基づいて説明してきたが、本発明はこれら実施例に限定されず種々の変形が可能である。   The light extraction structure from the light emitting device of the present invention has been described based on the embodiments. However, the present invention is not limited to these embodiments, and various modifications can be made.

本発明の光取出し構造における基本構造であるスラント構造を示す断面図である。It is sectional drawing which shows the slant structure which is the basic structure in the light extraction structure of this invention. スラント構造体を偶数回の回転対称に配置されたものとする場合の断面図である。It is sectional drawing in the case of assuming that a slant structure is arrange | positioned by the rotational symmetry of even number of times. 回転対称の回数とスラント構造の関係を示す平面図である。It is a top view which shows the relationship between the frequency | count of rotational symmetry, and a slant structure. 本発明の光取出し構造の変形例を示す断面図である。It is sectional drawing which shows the modification of the light extraction structure of this invention. 本発明の別の光取出し構造の変形例を示す断面図である。It is sectional drawing which shows the modification of another light extraction structure of this invention. スラント構造体の諸パラメータを説明するための図である。It is a figure for demonstrating the various parameters of a slant structure. 実施例1の利用効率の入射角及び方位角依存性を示す図である。It is a figure which shows the incident angle and azimuth angle dependence of the utilization efficiency of Example 1. FIG. 実施例2の利用効率の入射角及び方位角依存性を示す図である。It is a figure which shows the incident angle and azimuth angle dependence of the utilization efficiency of Example 2. FIG. 実施例3の利用効率の入射角及び方位角依存性を示す図である。It is a figure which shows the incident angle and azimuth angle dependence of the utilization efficiency of Example 3. 実施例4の利用効率の入射角及び方位角依存性を示す図である。It is a figure which shows the incident angle and azimuth angle dependence of the utilization efficiency of Example 4. 実施例5の利用効率の入射角及び方位角依存性を示す図である。It is a figure which shows the incident angle and azimuth angle dependence of the utilization efficiency of Example 5. 実施例6の利用効率の入射角及び方位角依存性を示す図である。It is a figure which shows the incident angle and azimuth | direction angle dependence of the utilization efficiency of Example 6. FIG. 実施例7の利用効率の入射角及び方位角依存性を示す図である。It is a figure which shows the incident angle and azimuth angle dependence of the utilization efficiency of Example 7. FIG. 実施例8の利用効率の入射角及び方位角依存性を示す図である。It is a figure which shows the incident angle and azimuth angle dependence of the utilization efficiency of Example 8. FIG.

符号の説明Explanation of symbols

1…平板
2…高屈折率空間領域(高屈折率領域)
3…低屈折率空間領域(低屈折率領域)
10…スラント構造体
11…発光層
12…透明性基板
13…高屈折率層
14…プリズムアレイ
DESCRIPTION OF SYMBOLS 1 ... Flat plate 2 ... High refractive index space area (high refractive index area)
3. Low refractive index space region (low refractive index region)
DESCRIPTION OF SYMBOLS 10 ... Slant structure 11 ... Light emitting layer 12 ... Transparent substrate 13 ... High refractive index layer 14 ... Prism array

Claims (5)

高屈折率領域と低屈折率領域が平板に沿った1次元方向に一定周期で繰返し、その高屈折率領域及び低屈折率領域が平板の法線に対して一定のスラント角で傾いているスラント構造を有するスラント構造体が発光素子の発光層の光取出し面側に配置されていることを特徴とする発光素子からの光取出し構造。 A slant in which a high-refractive index region and a low-refractive index region repeat in a one-dimensional direction along a flat plate at a constant period, and the high-refractive index region and low-refractive index region are inclined at a constant slant angle with respect to the normal line of the flat plate. A light extraction structure from a light emitting element, wherein a slant structure having a structure is disposed on a light extraction surface side of a light emitting layer of the light emitting element. 前記スラント構造体において、前記平板の面の法線周りで前記スラント構造が整数回の回転対称に配置されていることを特徴とする請求項1記載の発光素子からの光取出し構造。 2. The light extraction structure from a light emitting device according to claim 1, wherein in the slant structure, the slant structure is arranged in an integer number of rotational symmetry around a normal line of the surface of the flat plate. 前記スラント構造体において、高屈折率領域相互あるいは高屈折率領域と低屈折率領域が空間的に重なる部分は高屈折率領域、低屈折率領域相互が空間的に重なる部分は低屈折率領域となっていることを特徴とする請求項2記載の発光素子からの光取出し構造。 In the slant structure, a high refractive index region or a portion where the high refractive index region and the low refractive index region are spatially overlapped is a high refractive index region, and a portion where the low refractive index region is spatially overlapped is a low refractive index region. The light extraction structure from the light emitting device according to claim 2, wherein 前記発光層と前記スラント構造体の間に前記発光層側の屈折率より大きな高屈折率層が配置されていることを特徴とする請求項1から3の何れか1項記載の発光素子からの光取出し構造。 The high-refractive-index layer larger than the refractive index by the side of the said light emitting layer is arrange | positioned between the said light emitting layer and the said slant structure, The light emitting element from any one of Claim 1 to 3 characterized by the above-mentioned. Light extraction structure. 前記発光層の出射側にアレイ状に四角錐状あるいは屋根型の微小なプリズムを多数配置してなるプリズムアレイが配置されていることを特徴とする請求項1から3の何れか1項記載の発光素子からの光取出し構造。 4. The prism array according to claim 1, wherein a prism array having a large number of quadrangular pyramid or roof-shaped prisms arranged in an array is disposed on the emission side of the light emitting layer. Light extraction structure from light emitting element.
JP2008051846A 2008-03-03 2008-03-03 Light extraction structure from light emitting element Expired - Fee Related JP5057076B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008051846A JP5057076B2 (en) 2008-03-03 2008-03-03 Light extraction structure from light emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008051846A JP5057076B2 (en) 2008-03-03 2008-03-03 Light extraction structure from light emitting element

Publications (2)

Publication Number Publication Date
JP2009211868A true JP2009211868A (en) 2009-09-17
JP5057076B2 JP5057076B2 (en) 2012-10-24

Family

ID=41184835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008051846A Expired - Fee Related JP5057076B2 (en) 2008-03-03 2008-03-03 Light extraction structure from light emitting element

Country Status (1)

Country Link
JP (1) JP5057076B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011095563A (en) * 2009-10-30 2011-05-12 Toppan Printing Co Ltd Optical member, and el (electroluminescent) display apparatus
JP2013525978A (en) * 2010-04-22 2013-06-20 スリーエム イノベイティブ プロパティズ カンパニー OLED light extraction film with internal nanostructure and external microstructure
WO2014109028A1 (en) * 2013-01-10 2014-07-17 パイオニア株式会社 Light-emitting element
WO2014156420A1 (en) * 2013-03-29 2014-10-02 リンテック株式会社 Light diffusion film and light diffusion film manufacturing method
US8890395B2 (en) 2010-05-28 2014-11-18 Koninklijke Philips N.V. Beamshaping optical stack, a light source and a luminaire
WO2017049652A1 (en) * 2015-09-22 2017-03-30 深圳市华星光电技术有限公司 Organic light-emitting device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0973983A (en) * 1995-06-30 1997-03-18 Seiko Precision Kk El luminous device
JPH11283751A (en) * 1998-03-27 1999-10-15 Nec Corp Organic electroluminescent element
JP2002359069A (en) * 2001-06-01 2002-12-13 Seiko Epson Corp El device, el display, el lighting system, liquid crystal device using this lighting system and electronic equipment
JP2002359068A (en) * 2001-05-31 2002-12-13 Seiko Epson Corp El device, el display, el lighting system, liquid crystal device using this lighting system and electronic equipment
JP2004349111A (en) * 2003-05-22 2004-12-09 Samsung Sdi Co Ltd Organic electroluminescent element
JP2006012826A (en) * 2004-06-26 2006-01-12 Samsung Sdi Co Ltd Organic electroluminescent element and its manufacturing method
JP2007207471A (en) * 2006-01-31 2007-08-16 Konica Minolta Holdings Inc Surface emitter and display device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0973983A (en) * 1995-06-30 1997-03-18 Seiko Precision Kk El luminous device
JPH11283751A (en) * 1998-03-27 1999-10-15 Nec Corp Organic electroluminescent element
JP2002359068A (en) * 2001-05-31 2002-12-13 Seiko Epson Corp El device, el display, el lighting system, liquid crystal device using this lighting system and electronic equipment
JP2002359069A (en) * 2001-06-01 2002-12-13 Seiko Epson Corp El device, el display, el lighting system, liquid crystal device using this lighting system and electronic equipment
JP2004349111A (en) * 2003-05-22 2004-12-09 Samsung Sdi Co Ltd Organic electroluminescent element
JP2006012826A (en) * 2004-06-26 2006-01-12 Samsung Sdi Co Ltd Organic electroluminescent element and its manufacturing method
JP2007207471A (en) * 2006-01-31 2007-08-16 Konica Minolta Holdings Inc Surface emitter and display device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011095563A (en) * 2009-10-30 2011-05-12 Toppan Printing Co Ltd Optical member, and el (electroluminescent) display apparatus
JP2013525978A (en) * 2010-04-22 2013-06-20 スリーエム イノベイティブ プロパティズ カンパニー OLED light extraction film with internal nanostructure and external microstructure
US8890395B2 (en) 2010-05-28 2014-11-18 Koninklijke Philips N.V. Beamshaping optical stack, a light source and a luminaire
WO2014109028A1 (en) * 2013-01-10 2014-07-17 パイオニア株式会社 Light-emitting element
WO2014156420A1 (en) * 2013-03-29 2014-10-02 リンテック株式会社 Light diffusion film and light diffusion film manufacturing method
US9753191B2 (en) 2013-03-29 2017-09-05 Lintec Corporation Light diffusion film and light diffusion film manufacturing method
US10288779B2 (en) 2013-03-29 2019-05-14 Lintec Corporation Light diffusion film and light diffusion film manufacturing method
WO2017049652A1 (en) * 2015-09-22 2017-03-30 深圳市华星光电技术有限公司 Organic light-emitting device
GB2558456A (en) * 2015-09-22 2018-07-11 Shenzhen China Star Optoelect Organic light-emitting device
JP2018527725A (en) * 2015-09-22 2018-09-20 深▲せん▼市華星光電技術有限公司Shenzhen China Star Optoelectronics Technology Co., Ltd. Organic light emitting device
GB2558456B (en) * 2015-09-22 2020-07-15 Shenzhen China Star Optoelect Organic light-emitting device

Also Published As

Publication number Publication date
JP5057076B2 (en) 2012-10-24

Similar Documents

Publication Publication Date Title
US8779424B2 (en) Sheet and light-emitting device
JP5057076B2 (en) Light extraction structure from light emitting element
KR100437886B1 (en) High extraction efficiency photonic crystal organic light emitting device
KR20170018417A (en) Organic electroluminescent element, base material, and light emitting device
JP2016036008A (en) Light emission element and light emission device
JP2016034016A (en) Light emission element and light emission device
KR20150141955A (en) Light-emitting device
JP2016034018A (en) Light emission element and light emission device
JP2008283037A (en) Light-emitting device
JP6528039B2 (en) Broadband light emitting device with electrodes of lattice structure
US20080024053A1 (en) Three-dimensional structure, light emitting element including the structure, and method for manufacturing the structure
CN109994584A (en) Photonic crystal in micro-led device
Shim et al. An extremely low-index photonic crystal layer for enhanced light extraction from organic light-emitting diodes
JP2016034017A (en) Light emission device
JP2015144118A (en) Optical sheet and light-emitting device
WO2015129220A1 (en) Light-emitting element and light-emitting device
JP2012216753A (en) Group iii nitride semiconductor light-emitting element
WO2015129219A1 (en) Light-emitting element and light-emitting device
JP2006351211A (en) Surface emitting light source and liquid crystal display
JP2015130386A (en) Ultraviolet light-emitting element
JP2008010245A (en) Light emitting device
MY165794A (en) Light emitting diode and fabrication method thereof
Liu et al. Enhancement of the light-extraction efficiency of light-emitting diodes with SiO2 photonic crystals
ES2631178T3 (en) Procedure for manufacturing a surface plasmon wave generating structure
JPWO2015115046A1 (en) Optical sheet and light emitting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120411

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120704

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120717

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150810

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees