JP2006351211A - Surface emitting light source and liquid crystal display - Google Patents

Surface emitting light source and liquid crystal display Download PDF

Info

Publication number
JP2006351211A
JP2006351211A JP2005171887A JP2005171887A JP2006351211A JP 2006351211 A JP2006351211 A JP 2006351211A JP 2005171887 A JP2005171887 A JP 2005171887A JP 2005171887 A JP2005171887 A JP 2005171887A JP 2006351211 A JP2006351211 A JP 2006351211A
Authority
JP
Japan
Prior art keywords
light
light source
emitting
light emitting
emitting element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005171887A
Other languages
Japanese (ja)
Other versions
JP5023442B2 (en
Inventor
Tadashi Enomoto
正 榎本
Jun Shimizu
純 清水
Mitsuo Arima
光雄 有馬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2005171887A priority Critical patent/JP5023442B2/en
Publication of JP2006351211A publication Critical patent/JP2006351211A/en
Application granted granted Critical
Publication of JP5023442B2 publication Critical patent/JP5023442B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface emitting light source with improvement of brightness aimed at through enhancement of light extraction efficiency. <P>SOLUTION: The surface emitting light source 10 has a light-emitting element 11 made of a laminated body of a transparent electrode 13, a light-emitting layer 14 including an organic EL layer formed on the surface 12a of a transparent substrate 12, and the light-emitting element 11 has a prism-structure face 11A of a polyhedral structure on the surface of the transparent substrate 12. With this, the light-emitting layer 14 is given a bent part, so as to enable to effectively take out total reflection light inside the light-emitting layer 14 from the bent part. Further, by making the light-emitting element 11 in a polyhedral structure, substantial improvement in brightness due to increase in a light-emitting area is aimed at. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、有機エレクトロルミネッセンス素子(以下「有機EL素子」ともいう)等の電界発光素子でなる面発光光源およびこれを備えた液晶表示装置に関する。   The present invention relates to a surface-emitting light source including an electroluminescent element such as an organic electroluminescent element (hereinafter also referred to as “organic EL element”) and a liquid crystal display device including the same.

従来より、液晶表示装置のバックライトには、冷陰極型の蛍光ランプが広く用いられている。冷陰極型の蛍光ランプは、発光波長域や輝度等に関しては優れた特性を有しているものの、面全体を照明するために反射板や導光板等を必要とし部品コストが嵩む、消費電力が高い等の改善すべき点がある。   Conventionally, cold cathode fluorescent lamps have been widely used for backlights of liquid crystal display devices. Although the cold cathode fluorescent lamp has excellent characteristics in terms of emission wavelength range, brightness, etc., it requires a reflector, a light guide plate, etc. to illuminate the entire surface, which increases the cost of components and consumes power. There are some points that need to be improved.

そこで近年、有機EL素子等の面発光デバイスをバックライトに用いた液晶表示装置が提案されている(例えば下記特許文献1参照)。有機EL素子は自発光素子であり、薄膜プロセスで製造でき、消費電力が低く、波長選択範囲が広い等の数多くの優れた点を有している。   Therefore, in recent years, a liquid crystal display device using a surface light emitting device such as an organic EL element as a backlight has been proposed (see, for example, Patent Document 1 below). The organic EL element is a self-luminous element, and can be manufactured by a thin film process, has many excellent points such as low power consumption and a wide wavelength selection range.

図9は有機EL素子の基本構成を示している。一般に、有機EL素子1は、ガラス基板等の透明基板2上に、陽極としての透明電極3、有機EL層を含む発光層4および陰極としての反射電極5を積層した構成となっている。透明電極3はITO(Indium Tin Oxide)膜等で形成され、反射電極5はアルミニウム膜等で形成されている。発光層4は種々の構造が知られているが、例えば、正孔輸送層6、有機EL層7、電子輸送層8の3層型で構成されている。   FIG. 9 shows a basic configuration of the organic EL element. In general, the organic EL element 1 has a configuration in which a transparent electrode 3 as an anode, a light emitting layer 4 including an organic EL layer, and a reflective electrode 5 as a cathode are laminated on a transparent substrate 2 such as a glass substrate. The transparent electrode 3 is formed of an ITO (Indium Tin Oxide) film or the like, and the reflective electrode 5 is formed of an aluminum film or the like. Various structures are known for the light emitting layer 4. For example, the light emitting layer 4 is composed of a three-layer type including a hole transport layer 6, an organic EL layer 7, and an electron transport layer 8.

このような構成の有機EL素子1においては、透明電極3と反射電極5との間に直流電圧を印可することにより、透明電極3から注入された正孔(ホール)が正孔輸送層6を経て、また反射電極5から注入された電子が電子輸送層8を経て、有機EL層7に導入される。有機EL層7では、導入された正孔と電子の再結合が生じることで所定波長の光が発生し、発生した光は透明電極3および透明基板2を介して外部へ面状に射出される。   In the organic EL element 1 having such a configuration, by applying a direct current voltage between the transparent electrode 3 and the reflective electrode 5, holes injected from the transparent electrode 3 cause the hole transport layer 6 to be in contact. Then, electrons injected from the reflective electrode 5 are introduced into the organic EL layer 7 through the electron transport layer 8. In the organic EL layer 7, light having a predetermined wavelength is generated by recombination of the introduced holes and electrons, and the generated light is emitted to the outside through the transparent electrode 3 and the transparent substrate 2. .

ところで、この種の有機EL素子1においては、以下の理由で発光層4で発生した光の取り出し効率が低いという問題がある。   By the way, this kind of organic EL element 1 has a problem that extraction efficiency of light generated in the light emitting layer 4 is low for the following reason.

すなわち、発光層4における発光効率は、正孔と電子の再結合により励起された有機EL層分子の励起状態に依存する。有機EL層の発光は、励起1重項状態からの発光(蛍光)と、励起3重項状態からの発光(燐光)に分けられる。これらの励起状態は有機分子の電子スピンの方向で決まり、その生成確率は、励起1重項状態が25%、励起3重項状態が75%と見積もられている。しかし、有機EL層7の多くは、励起3重項状態からの発光(燐光)が禁制であるため、励起エネルギーは熱エネルギーとして消失される。従って、発光層4においては、励起1重項状態からの発光のみが得られることになる。   That is, the light emission efficiency in the light emitting layer 4 depends on the excited state of the organic EL layer molecules excited by the recombination of holes and electrons. The light emission from the organic EL layer is divided into light emission from the excited singlet state (fluorescence) and light emission from the excited triplet state (phosphorescence). These excited states are determined by the direction of the electron spin of the organic molecule, and the generation probability is estimated to be 25% for the excited singlet state and 75% for the excited triplet state. However, since most of the organic EL layer 7 is prohibited from emitting light (phosphorescence) from the excited triplet state, the excitation energy is lost as thermal energy. Therefore, in the light emitting layer 4, only light emission from the excited singlet state can be obtained.

また、発光層4で発生した光は、陽極(透明電極)3および透明基板2を通して外部へ取り出される。しかし、発光層4と透明電極3、透明基板2および空気層の屈折率の影響を受けて、図10に示すように、発光層4で発生した光が、発光層4と透明電極3との界面における全反射作用および透明電極3と透明基板2との界面における全反射作用によって、外部への出射効率が低下する。例えば発光層4の屈折率を1.7とした場合、取り出し効率は20%以下になってしまう。   The light generated in the light emitting layer 4 is extracted outside through the anode (transparent electrode) 3 and the transparent substrate 2. However, under the influence of the refractive index of the light emitting layer 4 and the transparent electrode 3, the transparent substrate 2 and the air layer, the light generated in the light emitting layer 4 is transmitted between the light emitting layer 4 and the transparent electrode 3 as shown in FIG. Due to the total reflection action at the interface and the total reflection action at the interface between the transparent electrode 3 and the transparent substrate 2, the emission efficiency to the outside is reduced. For example, when the refractive index of the light emitting layer 4 is 1.7, the extraction efficiency is 20% or less.

このような問題を解決するため、従来の有機EL素子においては、
(1)光の取り出し側にプリズムや半円柱状のマイクロレンズを形成する(下記特許文献2,3参照)、
(2)透明基板と発光層の間に回折格子等の光学素子を設ける(下記特許文献4参照)、(3)発光層内に光を拡散させる粒子を分散したり発光層に隣接して光拡散層を設ける(下記特許文献5参照)、
(4)透明基板と発光層の間に低屈折率層を設ける(下記特許文献6参照)、
(5)発光層を反射層とハーフミラーで挟みキャビティ効果を生じさせる(下記特許文献7参照)等の方法で、光の取り出し効率を高める試みがなされている。
In order to solve such a problem, in the conventional organic EL element,
(1) A prism or a semi-cylindrical microlens is formed on the light extraction side (see Patent Documents 2 and 3 below),
(2) An optical element such as a diffraction grating is provided between the transparent substrate and the light emitting layer (see Patent Document 4 below). (3) Particles that diffuse light in the light emitting layer are dispersed or light is adjacent to the light emitting layer. Providing a diffusion layer (see Patent Document 5 below);
(4) A low refractive index layer is provided between the transparent substrate and the light emitting layer (see Patent Document 6 below),
(5) Attempts have been made to increase the light extraction efficiency by a method such as sandwiching the light emitting layer between a reflective layer and a half mirror to cause a cavity effect (see Patent Document 7 below).

特開平10−125461号公報JP-A-10-125461 特許第2670572号公報Japanese Patent No. 2670572 特開2004−227929号公報JP 2004-227929 A 特許第2991183号公報Japanese Patent No. 2911183 特開平11−329742号公報JP 11-329742 A 特開2003−77647号公報JP 2003-77647 A 特開平9−190883号公報JP-A-9-190883

しかしながら、上記(1)および(4)の方法では、透明基板中での全反射光の取り出しには有効であるが、発光層内での全反射光に対する効果はない。また、(2)では陽極と発光層の界面の加工に問題があり、実施が難しいという問題がある。   However, the methods (1) and (4) are effective for taking out the totally reflected light in the transparent substrate, but have no effect on the totally reflected light in the light emitting layer. Further, in (2), there is a problem in the processing of the interface between the anode and the light emitting layer, which makes it difficult to implement.

さらに、上記(3)の発光層内に光拡散粒子を導入する方法では、平滑性と薄膜であることが要求される発光層に異物を入れることになり、素子性能の低下が懸念される。発光層に隣接して拡散層を形成する場合も表面の平滑性の問題があり、寿命等の素子性能を低下させるおそれがある。透明基板の外側に拡散層を形成する場合も、(1)のマイクロレンズを設ける場合と本質的に同じである。   Furthermore, in the method (3) for introducing light diffusing particles into the light emitting layer, foreign matter is put into the light emitting layer which is required to be smooth and thin, and there is a concern that the device performance is deteriorated. Even when the diffusion layer is formed adjacent to the light emitting layer, there is a problem of smoothness of the surface, and there is a possibility that the device performance such as lifetime is deteriorated. The case where the diffusion layer is formed outside the transparent substrate is essentially the same as the case of providing the microlens (1).

一方、上記(4)の方法では、各内層での全反射に対しては効果がなく、(5)の方法では正面方向の光取り出し効率は向上するが、見る角度により共鳴波長が変化し、色変化を起こすという問題がある。   On the other hand, the method (4) has no effect on the total reflection at each inner layer, and the method (5) improves the light extraction efficiency in the front direction, but the resonance wavelength changes depending on the viewing angle. There is a problem of causing a color change.

本発明は上述の問題に鑑みてなされ、光の取り出し効率を高めて輝度の向上を図ることができる面発光光源および液晶表示装置を提供することを課題とする。   The present invention has been made in view of the above-described problems, and an object of the present invention is to provide a surface-emitting light source and a liquid crystal display device capable of improving luminance by increasing light extraction efficiency.

以上の課題を解決するに当たり、本発明の面発光光源は、基板の表面に、透明電極と発光層と反射電極の積層体でなる発光素子が形成された面発光光源であって、上記発光素子は、基板表面において多面構造を有している。   In solving the above-described problems, a surface-emitting light source of the present invention is a surface-emitting light source in which a light-emitting element composed of a laminate of a transparent electrode, a light-emitting layer, and a reflective electrode is formed on the surface of a substrate. Has a polyhedral structure on the substrate surface.

本発明では、発光素子を多面構造とすることにより発光層に屈曲部をもたせ、発光層内の全反射光を当該屈曲部から有効に取り出せるようにしている。これにより、光の取り出し効率が高められ、輝度の向上が図れることになる。   In the present invention, the light emitting element has a polyhedral structure so that the light emitting layer has a bent portion, and the total reflected light in the light emitting layer can be effectively extracted from the bent portion. As a result, the light extraction efficiency is increased and the luminance can be improved.

また、発光素子を多面構造とすることにより、発光面積の増大による実質上の輝度向上が図れるようになる。更にこの多面体の構造を種々変更することにより、光の放射パターンをコントロールすることが可能となる。例えば、発光素子を頂角90度のプリズム構造とすることにより、正面方向の光照射強度を高めることができる。   Further, by making the light emitting element have a multi-face structure, the luminance can be substantially improved by increasing the light emitting area. Furthermore, the radiation pattern of light can be controlled by variously changing the structure of the polyhedron. For example, when the light emitting element has a prism structure with an apex angle of 90 degrees, the light irradiation intensity in the front direction can be increased.

本発明に係る発光素子は、真空蒸着法やスパッタ法等の真空薄膜プロセスを用いて基板表面に形成することができる。そして、当該基板の表面を多面構造とすることにより、本発明に係る発光素子を容易に形成することができる。この場合、発光素子の傾斜面は、平滑な平面または曲面に形成できるので、寿命等の素子性能の低下を抑えることができる。   The light emitting device according to the present invention can be formed on the substrate surface by using a vacuum thin film process such as a vacuum deposition method or a sputtering method. And the light emitting element which concerns on this invention can be easily formed by making the surface of the said board | substrate into a polyhedral structure. In this case, since the inclined surface of the light emitting element can be formed in a smooth plane or curved surface, it is possible to suppress a decrease in element performance such as lifetime.

本発明に係る発光素子は、傾斜面を含む多面体構造とすることにより、光の取り出し効率の改善を図ることができる。具体的に、発光素子の多面体構造には、少なくとも一方向に周期性をもつ立体構造、例えばプリズム構造、半円柱状構造、台形構造あるいはそれらの複合構造が採用可能である。また、直交する2方向に周期性をもつ三角錐、四角錐、六角錐、円錐等の錐体構造であってもよい。   The light emitting element according to the present invention has a polyhedral structure including an inclined surface, so that the light extraction efficiency can be improved. Specifically, a three-dimensional structure having periodicity in at least one direction, for example, a prism structure, a semi-cylindrical structure, a trapezoidal structure, or a composite structure thereof can be adopted as the polyhedral structure of the light emitting element. Further, a pyramid structure such as a triangular pyramid, a quadrangular pyramid, a hexagonal pyramid, or a cone having periodicity in two orthogonal directions may be used.

なお、本発明に係る発光素子は、有機EL素子のほか、無機EL素子といった電界発光素子、あるいは発光ダイオード等の他の自発光素子で構成することができる。   Note that the light emitting element according to the present invention can be composed of an organic EL element, an electroluminescent element such as an inorganic EL element, or another self-light emitting element such as a light emitting diode.

以上述べたように、本発明の面発光光源によれば、基板上の発光素子が多面構造を有しているので、層内における全反射光を効果的に外部へ取り出すことができる。これにより、光の取り出し効率を高めて、輝度の向上を図ることができる。
また、本発明の液晶表示装置によれば、上記構成の面発光光源をバックライトに備えているので、装置の薄型化、軽量化、部品コストの低減等を図ることができる。
As described above, according to the surface emitting light source of the present invention, since the light emitting element on the substrate has a multi-face structure, the total reflected light in the layer can be effectively extracted to the outside. Thereby, the light extraction efficiency can be increased and the luminance can be improved.
Further, according to the liquid crystal display device of the present invention, since the surface light source having the above-described configuration is provided in the backlight, it is possible to reduce the thickness and weight of the device, reduce the component cost, and the like.

以下、本発明の各実施の形態について図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the drawings.

(第1の実施の形態)
図1は、本発明の第1の実施の形態による面発光光源10の構成を示している。本実施の形態の面発光光源10は、例えば液晶表示装置用のバックライトに用いられる。ここで、図1Aは面発光光源10の発光素子11側から見たときの形態を模式的に示す斜視図、図1Bはその要部断面模式図である。
(First embodiment)
FIG. 1 shows the configuration of a surface-emitting light source 10 according to the first embodiment of the present invention. The surface-emitting light source 10 of the present embodiment is used for a backlight for a liquid crystal display device, for example. Here, FIG. 1A is a perspective view schematically showing a form of the surface-emitting light source 10 when viewed from the light emitting element 11 side, and FIG. 1B is a schematic cross-sectional view of an essential part thereof.

面発光光源10は、透明基板12の表面12aに、陽極としての透明電極13、発光層14および陰極としての反射電極15を順に積層した構造を備えている。これら透明電極13、発光層14および反射電極15の積層体11は、本発明に係る「発光素子」を構成し、特に本実施の形態では有機EL素子を構成している。   The surface emitting light source 10 has a structure in which a transparent electrode 13 as an anode, a light emitting layer 14 and a reflecting electrode 15 as a cathode are sequentially laminated on a surface 12a of a transparent substrate 12. The laminate 11 of the transparent electrode 13, the light emitting layer 14, and the reflective electrode 15 constitutes a “light emitting element” according to the present invention, and in particular, in the present embodiment, constitutes an organic EL element.

透明基板12には、ガラス、プラスチック等の光透過率が70%以上の透明性の基板が用いられている。プラスチック基板としては、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリイミド、ポリカーボネート(PC)等を用いることができる。透明基板12はリジッド性(自己支持性)のあるものに限らず、フレキシブル性のあるもので構成されてもよい。   As the transparent substrate 12, a transparent substrate having a light transmittance of 70% or more such as glass or plastic is used. As the plastic substrate, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyimide, polycarbonate (PC), or the like can be used. The transparent substrate 12 is not limited to a rigid (self-supporting) material and may be composed of a flexible material.

透明基板12の表面12aは、傾斜面を含む多面構造を有している。特に本実施の形態では、一方向に周期性をもって形成された断面三角形状のプリズム構造に形成されている。このプリズム形状の構造面は、例えば透明基板12の表面12aを高温プレスして形成することができる。一方、本実施の形態において、透明基板12の裏面12bは、平坦な平面に形成されている。   The surface 12a of the transparent substrate 12 has a polyhedral structure including an inclined surface. In particular, in the present embodiment, a prism structure having a triangular cross section formed with periodicity in one direction is formed. The prism-shaped structural surface can be formed, for example, by pressing the surface 12a of the transparent substrate 12 at a high temperature. On the other hand, in this Embodiment, the back surface 12b of the transparent substrate 12 is formed in the flat plane.

なお、透明基板12の表面12aは、プリズム構造に形成される場合に限らず、半円柱状構造、台形構造あるいはそれらの複合構造であってもよい。また、傾斜面を含まない凹凸形状でも構わない。   The surface 12a of the transparent substrate 12 is not limited to being formed in a prism structure, but may be a semi-cylindrical structure, a trapezoidal structure, or a composite structure thereof. Moreover, the uneven | corrugated shape which does not contain an inclined surface may be sufficient.

透明電極13、発光層14および反射電極15は、透明基板12の表面12aに、真空蒸着法やスパッタ法等の真空成膜手段を用いて成膜される。これらの積層体でなる発光素子11は、透明基板12の表面12aにならって一定の膜厚で成膜されることにより、透明基板12の表面において傾斜面Pを含む多面構造のプリズム構造面11Aが形成されている。   The transparent electrode 13, the light emitting layer 14, and the reflective electrode 15 are formed on the surface 12 a of the transparent substrate 12 by using a vacuum film forming means such as a vacuum evaporation method or a sputtering method. The light emitting element 11 composed of these laminates is formed with a constant film thickness following the surface 12 a of the transparent substrate 12, whereby a prism structure surface 11 </ b> A having a polyhedral structure including the inclined surface P on the surface of the transparent substrate 12. Is formed.

透明電極13は、ITO膜や酸化錫膜等の光透過性のある導電性酸化膜が用いられる。一方、反射電極15は、発光層4で発生した光を透明基板12側へ向けさせるために光反射性をもたせており、例えばアルミニウム、白金、金、クロム、タングステン、ニッケル等で形成される。   As the transparent electrode 13, a light-transmitting conductive oxide film such as an ITO film or a tin oxide film is used. On the other hand, the reflective electrode 15 has light reflectivity in order to direct light generated in the light emitting layer 4 toward the transparent substrate 12, and is formed of, for example, aluminum, platinum, gold, chromium, tungsten, nickel, or the like.

発光層14は、例えば、正孔輸送層/有機EL層/電子輸送層でなる3層型で構成されているが、これ以外にも、単層型や、正孔注入層および電子注入層を含む5層型等の他の素子構造を採用してもよい。発光層14は基板12の表面12aにベタ状に形成されてもよいし、パターン状に分布形成されてもよい。パターン形状は特に制限されず、マス状、ストライプ状等の種々の形状が採用可能である。   The light emitting layer 14 is configured by a three-layer type including, for example, a hole transport layer / organic EL layer / electron transport layer, but in addition to this, a single layer type, a hole injection layer, and an electron injection layer are provided. Other element structures such as a five-layer type may be adopted. The light emitting layer 14 may be formed in a solid shape on the surface 12a of the substrate 12, or may be distributed in a pattern. The pattern shape is not particularly limited, and various shapes such as a mass shape and a stripe shape can be employed.

なお、発光層14は発光色に応じて材料が選定される。発光色は、白色単色光でもよいし、RGB(赤、緑、青)の各単色光でもよい。発光層14の構成材料は公知のものを用いることができ、ここではその例示を省略する。   The material of the light emitting layer 14 is selected according to the light emission color. The emission color may be white monochromatic light or RGB (red, green, blue) monochromatic light. The constituent material of the light emitting layer 14 can use a well-known material, The illustration is abbreviate | omitted here.

本実施の形態の面発光光源10においては、透明電極13と反射電極15との間に直流電圧を印加することにより、透明電極13からは正孔が発光層14へ導入され、反射電極15からは電子が発光層14へ導入される。発光層14においては、導入された正孔と電子の再結合により有機EL分子が励起され、所定波長の光が発生する。発生した光は、透明電極13および透明基板12を通じて、外部(図1Bにおいて下方)へ面状に射出される。   In the surface-emitting light source 10 of the present embodiment, by applying a DC voltage between the transparent electrode 13 and the reflective electrode 15, holes are introduced from the transparent electrode 13 to the light-emitting layer 14, and from the reflective electrode 15. Electrons are introduced into the light emitting layer 14. In the light emitting layer 14, organic EL molecules are excited by recombination of the introduced holes and electrons, and light having a predetermined wavelength is generated. The generated light is emitted in a planar shape to the outside (downward in FIG. 1B) through the transparent electrode 13 and the transparent substrate 12.

本実施の形態では、発光素子11が透明基板12の表面12a上において、図1Bに示したように、頂部(稜)Tと底部(谷)Bとを有する多面のプリズム構造に形成されているので、発光層14が頂部Tと底部Bの各々に対応する部位で屈曲部が生成される。その結果、発光層14で発光した光のうち、透明電極13、反射電極15および透明基板12のそれぞれの界面において発生する全反射光は、当該発光層14の屈曲部から出射する。出射した光は隣接プリズム面を屈折透過するが、その一部は透明基板12の裏面12bで全反射した後、基板表面12aのプリズム面での反射を経て、最終的に基板裏面12bから出射される。   In the present embodiment, the light emitting element 11 is formed on the surface 12a of the transparent substrate 12 in a multi-faceted prism structure having a top (ridge) T and a bottom (valley) B as shown in FIG. 1B. Therefore, a bent portion is generated at a portion where the light emitting layer 14 corresponds to each of the top portion T and the bottom portion B. As a result, of the light emitted from the light emitting layer 14, the total reflected light generated at each interface of the transparent electrode 13, the reflective electrode 15, and the transparent substrate 12 is emitted from the bent portion of the light emitting layer 14. Although the emitted light is refracted and transmitted through the adjacent prism surface, a part of the light is totally reflected by the back surface 12b of the transparent substrate 12, and then reflected by the prism surface of the substrate surface 12a, and finally emitted from the substrate back surface 12b. The

以上のように、本実施の形態によれば、発光素子11の内層で全反射する光を外部へ有効に取り出すことが可能となるので、光の取り出し効率を従来よりも向上させることができる。また、発光素子11を多面構造とすることにより、発光面積の増大による実質上の輝度向上が図れるようになる。   As described above, according to the present embodiment, the light totally reflected by the inner layer of the light emitting element 11 can be effectively extracted to the outside, so that the light extraction efficiency can be improved as compared with the conventional case. Further, by making the light emitting element 11 have a multi-face structure, the luminance can be substantially improved by increasing the light emitting area.

例えば図2は、上記構成の面発光光源10の配向特性の一例を示す輝度分布図(シミュレーション結果)である。図2には、180度方向をフィルム正面方向とし、ここから左右90度にわたって測定した輝度データが示されている。径方向の軸は輝度の大きさを示している。比較として図4Bに、図4Aおよび図9に示したような発光面が平坦な従来構造の有機EL素子1の場合における輝度分布を示す。本実施の形態によれば、正面方向の輝度向上効果が認められ、全体の発光強度を従来に比べて1.28倍高めることができることが確認された。   For example, FIG. 2 is a luminance distribution diagram (simulation result) showing an example of the orientation characteristic of the surface-emitting light source 10 having the above configuration. FIG. 2 shows luminance data measured over 90 degrees on the left and right sides with the direction of 180 degrees as the film front direction. The axis in the radial direction indicates the magnitude of luminance. For comparison, FIG. 4B shows a luminance distribution in the case of the organic EL element 1 having a conventional structure with a flat light emitting surface as shown in FIGS. 4A and 9. According to the present embodiment, the effect of improving the luminance in the front direction is recognized, and it has been confirmed that the overall light emission intensity can be increased 1.28 times compared to the conventional case.

なお、この例では、透明基板を厚さ1μm(屈折率1.5)、透明電極の膜厚を150nm(屈折率2.0)、発光層の膜厚を150nm(屈折率1.7)、反射電極の膜厚を150nm、基板表面12aのプリズム頂角θ(図1A参照)を90度、プリズム形成ピッチd(図1A参照)を20μmとした。   In this example, the transparent substrate has a thickness of 1 μm (refractive index of 1.5), the transparent electrode has a thickness of 150 nm (refractive index of 2.0), the light emitting layer has a thickness of 150 nm (refractive index of 1.7), The thickness of the reflective electrode was 150 nm, the prism apex angle θ (see FIG. 1A) of the substrate surface 12a was 90 degrees, and the prism formation pitch d (see FIG. 1A) was 20 μm.

上述した透明基板12の構成において、その表面12aに形成されたプリズムの頂角θや形成ピッチdは、その上に成膜される透明電極層13、発光層14、反射電極層15のカバレージ性を確保できる大きさであれば特に制限されない。   In the configuration of the transparent substrate 12 described above, the apex angle θ and the formation pitch d of the prism formed on the surface 12a are the coverage of the transparent electrode layer 13, the light emitting layer 14, and the reflective electrode layer 15 formed thereon. The size is not particularly limited as long as the size can be secured.

具体的に、頂角θは10度以上170度以下、好ましくは30度以上150度以下、更に好ましくは40度以上140度以下とする。頂角θが10度未満ではプリズム頂部が鋭利すぎてその上に積層される透明電極と反射電極間が短絡するおそれがある。また、頂角θが170度を超えると、実質的に発光素子が平坦である場合と変わらなくなる。   Specifically, the apex angle θ is 10 degrees to 170 degrees, preferably 30 degrees to 150 degrees, and more preferably 40 degrees to 140 degrees. If the apex angle θ is less than 10 degrees, the prism apex is too sharp and there is a risk of short circuit between the transparent electrode and the reflective electrode laminated thereon. When the apex angle θ exceeds 170 degrees, the light emitting element is substantially the same as when the light emitting element is flat.

また、プリズムの頂部(稜)と底部(谷)の形成ピッチdは例えば50nm以上500μm以下の範囲で選定される。頂部(稜)と底部(谷)を連絡する傾斜面Pは平面で形成されているが、曲面でもよい。特に本実施の形態によれば、真空薄膜形成プロセスを用いて発光素子11を形成しているので、傾斜面Pを平滑面に形成でき、これにより寿命等の素子性能の低下を抑えることができる。
なお、発光素子11の各構成薄膜を成膜するに際しては、基板12を真空槽内で遊星運動させることで、面内の膜厚均一性を高めることができる。
The formation pitch d of the top (ridge) and bottom (valley) of the prism is selected in the range of, for example, 50 nm or more and 500 μm or less. The inclined surface P that connects the top (ridge) and the bottom (valley) is a flat surface, but it may be a curved surface. In particular, according to the present embodiment, since the light emitting element 11 is formed using the vacuum thin film forming process, the inclined surface P can be formed on a smooth surface, thereby suppressing a decrease in element performance such as lifetime. .
In addition, when forming each constituent thin film of the light emitting element 11, the in-plane film thickness uniformity can be enhanced by causing the substrate 12 to perform a planetary motion in a vacuum chamber.

そして、以上の構成の面発光光源10を液晶表示装置のバックライトに適用することにより、液晶表示装置全体の薄型化、軽量化を図ることができるとともに、バックライトの部品コストの低減等を図ることができる。   By applying the surface emitting light source 10 having the above configuration to the backlight of the liquid crystal display device, the entire liquid crystal display device can be reduced in thickness and weight, and the cost of the backlight components can be reduced. be able to.

更に、上述のように基板12の表面12aをプリズム構造とする場合、例えば図3に示したように、透明基板12の表面12aと透明電極13との間に、低屈折率材料と高屈折率材料とを交互に複数積層した誘電体多層膜16を介在させることにより、発光層14で発光した光をP波偏光成分とS波偏光成分とに分離する偏光分離機能をもたせることができる。この場合、液晶パネルの偏光板の透過軸を出射偏光方向に平行に配置することにより、液晶パネルでの光利用効率を高めて、更なる輝度の向上が図れるようになる。   Further, when the surface 12a of the substrate 12 has a prism structure as described above, a low refractive index material and a high refractive index are provided between the surface 12a of the transparent substrate 12 and the transparent electrode 13, for example, as shown in FIG. By interposing the dielectric multilayer film 16 in which a plurality of materials are alternately stacked, a polarization separation function for separating the light emitted from the light emitting layer 14 into a P-wave polarization component and an S-wave polarization component can be provided. In this case, by arranging the transmission axis of the polarizing plate of the liquid crystal panel in parallel with the outgoing polarization direction, the light use efficiency in the liquid crystal panel can be improved and the luminance can be further improved.

(第2の実施の形態)
続いて図5を参照して本発明の第2の実施の形態について説明する。ここで、図5Aは本発明の第2の実施の形態による面発光光源20の発光素子11側から見たときの形態を模式的に示す斜視図、図5Bはその要部断面模式図である。なお、図において上述の第1の実施の形態と対応する部分については同一の符号を付し、その詳細な説明は省略する。
(Second Embodiment)
Next, a second embodiment of the present invention will be described with reference to FIG. Here, FIG. 5A is a perspective view schematically showing a form of the surface emitting light source 20 according to the second embodiment of the present invention when viewed from the light emitting element 11 side, and FIG. 5B is a schematic cross-sectional view of an essential part thereof. . In the figure, portions corresponding to those of the first embodiment described above are denoted by the same reference numerals, and detailed description thereof is omitted.

本実施の形態の面発光光源20は、透明基板12の表面12aがプリズム構造を有し、この上に積層される発光素子11もまたプリズム構造面11Aを形成する点で上述の第1の実施の形態と共通する。しかし、本実施の形態では、透明基板12の裏面12bにも同様なプリズム構造を形成している点で上述の第1の実施の形態と異なっている。   In the surface emitting light source 20 of the present embodiment, the surface 12a of the transparent substrate 12 has a prism structure, and the light emitting element 11 stacked thereon also forms the prism structure surface 11A. It is common with the form. However, this embodiment is different from the first embodiment in that a similar prism structure is formed on the back surface 12b of the transparent substrate 12.

透明基板12の裏面12bをプリズム構造とすることにより、発光層14で発生し透明基板12から射出される光を、基板裏面12b側のプリズム面による屈折透過作用で正面方向に向けて出射させることが可能となる。これにより、正面方向の輝度の向上を図ることができる。   By making the back surface 12b of the transparent substrate 12 into a prism structure, the light generated in the light emitting layer 14 and emitted from the transparent substrate 12 is emitted in the front direction by the refractive transmission action by the prism surface on the substrate back surface 12b side. Is possible. Thereby, the brightness | luminance of a front direction can be aimed at.

図6は、上記構成の面発光光源20の配向特性の一例を示す輝度分布図(シミュレーション結果)である。図中実線は水平方向の輝度分布、破線は水平方向の輝度分布をそれぞれ示している。図4Bと比較して明らかなように、本実施の形態によれば正面輝度が大きく増加している。また、上記構成により、全体の発光強度が従来に比べて2.24倍高まることが確認された。   FIG. 6 is a luminance distribution diagram (simulation result) showing an example of orientation characteristics of the surface-emitting light source 20 configured as described above. In the figure, the solid line indicates the luminance distribution in the horizontal direction, and the broken line indicates the luminance distribution in the horizontal direction. As apparent from the comparison with FIG. 4B, according to the present embodiment, the front luminance is greatly increased. In addition, it was confirmed that the overall light emission intensity increased by 2.24 times as compared with the conventional structure.

本実施の形態では、透明基板12の裏面12bのプリズム頂角およびピッチを、その表面12a側のプリズム構造と同等に構成したが、勿論これに限られない。また、基板12の表面12a側と裏面12b側とで、プリズムの頂部と底部とが互いに逆となるような関係に両プリズム構造を形成したが、他の構成を採用してもよい。更に、表面12a側と裏面12b側とでプリズムの延在方向を直交させてもよい。   In the present embodiment, the prism apex angle and pitch of the back surface 12b of the transparent substrate 12 are configured to be equivalent to the prism structure on the front surface 12a side, but of course not limited thereto. Further, although both prism structures are formed in such a relationship that the top and bottom of the prism are opposite to each other on the front surface 12a side and the back surface 12b side of the substrate 12, other configurations may be adopted. Furthermore, the extending direction of the prisms may be orthogonal to the front surface 12a side and the back surface 12b side.

(第3の実施の形態)
図7及び図8は本発明の第3の実施の形態を示している。ここで、図7は本実施の形態の面発光光源30の発光素子11側から見たときの形態を模式的に示す斜視図、図8はその配向特性の一例を示す輝度分布図(シミュレーション結果)である。なお、図において上述の第1の実施の形態と対応する部分については同一の符号を付し、その詳細な説明は省略するものとする。
(Third embodiment)
7 and 8 show a third embodiment of the present invention. Here, FIG. 7 is a perspective view schematically showing a form of the surface-emitting light source 30 of the present embodiment when viewed from the light emitting element 11 side, and FIG. 8 is a luminance distribution diagram showing an example of the orientation characteristic (simulation result). ). In the figure, portions corresponding to those of the first embodiment described above are denoted by the same reference numerals, and detailed description thereof is omitted.

本実施の形態では、透明基板12の表面12a上に形成される発光素子11を、直交する2方向に周期性をもたせた四角錐形状の多面構造11Bとした点で、上述の各実施の形態と異なっている。このような構成の発光素子11Bは、下地である透明基板12の表面を同様な四角錐形状の2次元配列構造とすることで形成することができる。また、本実施の形態では透明基板12の裏面12b側にも同様な四角錐形状の二次元配列構造を形成している。   In the present embodiment, each of the above-described embodiments is that the light emitting element 11 formed on the surface 12a of the transparent substrate 12 is a quadrangular pyramid-shaped polyhedral structure 11B having periodicity in two orthogonal directions. Is different. The light emitting element 11 </ b> B having such a configuration can be formed by forming the surface of the transparent substrate 12, which is a base, into a similar quadrangular pyramid two-dimensional array structure. In the present embodiment, a similar quadrangular pyramid two-dimensional array structure is also formed on the back surface 12 b side of the transparent substrate 12.

このような構成の面発光光源30によっても上述の各実施の形態と同様な光取り出し効率の向上を図ることができ、面内輝度の向上を図ることができる。また、透明基板12の裏面12b側にも錐体形状の構造面を多数配列させることにより、取り出し光の集光性を高めて正面方向の輝度向上効果を図ることができる。図8のシミュレーション結果から、上記構成により、面内の発光強度を従来の1.89倍にまで高められることが確認された。   Also with the surface emitting light source 30 having such a configuration, it is possible to improve the light extraction efficiency similar to the above-described embodiments, and to improve the in-plane luminance. Further, by arranging a large number of cone-shaped structural surfaces on the back surface 12b side of the transparent substrate 12, it is possible to enhance the condensing property of the extracted light and to improve the luminance in the front direction. From the simulation results of FIG. 8, it was confirmed that the in-plane emission intensity can be increased to 1.89 times that of the prior art by the above configuration.

なお、発光層11の多面構造11Bは、上述した例に挙げたような四角錐形状の2次元配列構造に限らず、三角錐、六角錐等の他の多角錐形状や円錐形状の2次元配列構造で形成してもよい。また、透明基板12の裏面12b側は、上述の第2の実施の形態で説明したようなプリズム構造であってもよい。   The polyhedral structure 11B of the light emitting layer 11 is not limited to the quadrangular pyramid-shaped two-dimensional array structure described in the above example, but other polygonal pyramid shapes such as a triangular pyramid, a hexagonal pyramid, and a conical two-dimensional array. You may form with a structure. Also, the back surface 12b side of the transparent substrate 12 may have a prism structure as described in the second embodiment.

以上、本発明の各実施の形態について説明したが、勿論、本発明はこれらに限定されることなく、本発明の技術的思想に基づいて種々の変形が可能である。   As mentioned above, although each embodiment of this invention was described, of course, this invention is not limited to these, A various deformation | transformation is possible based on the technical idea of this invention.

例えば以上の実施の形態では、透明基板12上に形成した発光素子11を有機EL素子で構成したが、これに代えて、他の電界発光素子、すなわち無機EL素子で構成することも可能である。また、発光ダイオード等の他の自発光素子についても本発明は適用可能である。   For example, in the above embodiment, the light-emitting element 11 formed on the transparent substrate 12 is configured by an organic EL element. However, instead of this, it may be configured by another electroluminescent element, that is, an inorganic EL element. . The present invention can also be applied to other self-luminous elements such as light-emitting diodes.

また、以上の実施の形態では、発光層14で発生した光を透明電極13および透明基板12を介して外部へ取り出すようにしたが、これに代えて、陰極15側を透明電極材料で構成することにより、光を陰極側から射出するいわゆるトップエミッション型を採用することも可能である。この場合、基板12は光透明性のものに限られない。   In the above embodiment, the light generated in the light emitting layer 14 is extracted to the outside through the transparent electrode 13 and the transparent substrate 12. Instead, the cathode 15 side is made of a transparent electrode material. Thus, it is possible to adopt a so-called top emission type in which light is emitted from the cathode side. In this case, the substrate 12 is not limited to a light transparent one.

本発明の第1の実施の形態による面発光光源10を模式的に示す図であり、Aは発光素子11側から見たときの斜視図、Bは要部断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows typically the surface emitting light source 10 by the 1st Embodiment of this invention, A is a perspective view when it sees from the light emitting element 11, and B is principal part sectional drawing. 面発光光源10の配向特性の一例を示す輝度分布のシミュレーション結果である。It is a simulation result of the luminance distribution showing an example of the orientation characteristic of the surface emitting light source 10. 本発明の第1の実施の形態の変形例を示す要部断面模式図である。It is a principal part cross-sectional schematic diagram which shows the modification of the 1st Embodiment of this invention. 従来の有機EL素子でなる面発光光源を説明する図であり、Aは斜視図、Bは輝度分布の一例を示すシミュレーション結果である。It is a figure explaining the surface emitting light source which consists of the conventional organic EL element, A is a perspective view, B is a simulation result which shows an example of luminance distribution. 本発明の第2の実施の形態による面発光光源20を模式的に示す図であり、Aは発光素子11側から見たときの斜視図、Bは要部断面図である。It is a figure which shows typically the surface emitting light source 20 by the 2nd Embodiment of this invention, A is a perspective view when it sees from the light emitting element 11, and B is principal part sectional drawing. 面発光光源20の配向特性の一例を示す輝度分布のシミュレーション結果である。It is the simulation result of the luminance distribution which shows an example of the orientation characteristic of the surface emitting light source 20. 本発明の第3の実施の形態による面発光光源30を発光素子11側から見たときの斜視図である。It is a perspective view when the surface emitting light source 30 by the 3rd Embodiment of this invention is seen from the light emitting element 11 side. 面発光光源30の配向特性の一例を示す輝度分布のシミュレーション結果である。It is a simulation result of luminance distribution showing an example of the orientation characteristic of the surface emitting light source 30. 従来の有機EL素子の構成を説明する断面図である。It is sectional drawing explaining the structure of the conventional organic EL element. 従来の有機EL素子の問題点を説明する断面図である。It is sectional drawing explaining the problem of the conventional organic EL element.

符号の説明Explanation of symbols

10,20,30…面発光光源、11…発光素子(有機EL素子)、11A,11B…構造面、12…透明基板、12a…表面、12b…裏面、13…透明電極(陽極)、14…発光層、15…反射電極(陰極)、16…誘電体多層膜、P…傾斜面。   DESCRIPTION OF SYMBOLS 10, 20, 30 ... Surface emitting light source, 11 ... Light emitting element (organic EL element), 11A, 11B ... Structural surface, 12 ... Transparent substrate, 12a ... Front surface, 12b ... Back surface, 13 ... Transparent electrode (anode), 14 ... Light emitting layer, 15 ... reflective electrode (cathode), 16 ... dielectric multilayer film, P ... inclined surface.

Claims (10)

基板表面に、透明電極と発光層と反射電極の積層体でなる発光素子が形成された面発光光源であって、
前記発光素子は、前記基板表面において多面構造を有している
ことを特徴とする面発光光源。
A surface emitting light source in which a light emitting element composed of a laminate of a transparent electrode, a light emitting layer, and a reflective electrode is formed on a substrate surface
The surface-emitting light source, wherein the light-emitting element has a polyhedral structure on the surface of the substrate.
前記発光素子は、傾斜面を含む多面構造を有している
ことを特徴とする請求項1に記載の面発光光源。
The surface-emitting light source according to claim 1, wherein the light-emitting element has a polyhedral structure including an inclined surface.
前記基板は光透過性のある材料で形成されている
ことを特徴とする請求項1に記載の面発光光源。
The surface-emitting light source according to claim 1, wherein the substrate is made of a light-transmitting material.
前記傾斜面は、平面または曲面である
ことを特徴とする請求項1に記載の面発光光源。
The surface-emitting light source according to claim 1, wherein the inclined surface is a flat surface or a curved surface.
前記発光素子は、少なくとも一方向に周期性をもつ立体構造を有している
ことを特徴とする請求項1に記載の面発光光源。
The surface emitting light source according to claim 1, wherein the light emitting element has a three-dimensional structure having periodicity in at least one direction.
前記基板の少なくとも表面側が傾斜面を含む多面構造を有しており、
この基板の表面に、前記発光素子が形成されている
ことを特徴とする請求項1に記載の面発光光源。
At least the surface side of the substrate has a polyhedral structure including an inclined surface;
The surface emitting light source according to claim 1, wherein the light emitting element is formed on a surface of the substrate.
前記基板表面と前記発光素子との間に、高屈折率材料と低屈折率材料とを交互に積層させた誘電体多層膜が形成されている
ことを特徴とする請求項6に記載の面発光光源。
7. The surface light emitting device according to claim 6, wherein a dielectric multilayer film in which a high refractive index material and a low refractive index material are alternately laminated is formed between the substrate surface and the light emitting element. light source.
前記発光素子は、電界発光素子である
ことを特徴とする請求項1に記載の面発光光源。
The surface-emitting light source according to claim 1, wherein the light-emitting element is an electroluminescent element.
前記発光素子は、有機エレクトロルミネッセンス素子である
ことを特徴とする請求項8に記載の面発光光源。
The surface-emitting light source according to claim 8, wherein the light-emitting element is an organic electroluminescence element.
液晶パネルと、この液晶パネルの背面側に配置され照明光を照射する面発光光源とを備えた液晶表示装置において、
前記面発光光源は、基板表面に、透明電極と発光層と反射電極の積層体でなる発光素子が形成されてなり、
前記発光素子は、前記基板表面において多面構造を有している
ことを特徴とする液晶表示装置。


In a liquid crystal display device provided with a liquid crystal panel and a surface-emitting light source that is disposed on the back side of the liquid crystal panel and emits illumination light,
The surface-emitting light source has a light emitting element formed of a laminate of a transparent electrode, a light emitting layer, and a reflective electrode formed on a substrate surface,
The liquid crystal display device, wherein the light emitting element has a polyhedral structure on the surface of the substrate.


JP2005171887A 2005-06-13 2005-06-13 Surface emitting light source and liquid crystal display device Expired - Fee Related JP5023442B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005171887A JP5023442B2 (en) 2005-06-13 2005-06-13 Surface emitting light source and liquid crystal display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005171887A JP5023442B2 (en) 2005-06-13 2005-06-13 Surface emitting light source and liquid crystal display device

Publications (2)

Publication Number Publication Date
JP2006351211A true JP2006351211A (en) 2006-12-28
JP5023442B2 JP5023442B2 (en) 2012-09-12

Family

ID=37646865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005171887A Expired - Fee Related JP5023442B2 (en) 2005-06-13 2005-06-13 Surface emitting light source and liquid crystal display device

Country Status (1)

Country Link
JP (1) JP5023442B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010135240A (en) * 2008-12-08 2010-06-17 Sony Corp Light-emitting device, and display
WO2011013276A1 (en) * 2009-07-29 2011-02-03 シャープ株式会社 Organic el illuminating device and method for manufacturing same
JP2011507164A (en) * 2007-12-12 2011-03-03 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Light emitting device
WO2012053625A1 (en) * 2010-10-22 2012-04-26 ソニー株式会社 Patterned base, method for manufacturing same, information input device, and display device
WO2012086396A1 (en) * 2010-12-20 2012-06-28 旭硝子株式会社 Organic el element and translucent substrate
WO2013047713A1 (en) * 2011-09-29 2013-04-04 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device
CN103280536A (en) * 2012-08-24 2013-09-04 厦门天马微电子有限公司 Top-transmitting type active matrix organic light emitting display
US9508682B2 (en) 2013-01-11 2016-11-29 Nec Lighting, Ltd. Organic EL luminescent device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108550615A (en) * 2018-05-31 2018-09-18 武汉华星光电半导体显示技术有限公司 Organic light emitting display panel and display

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0764085A (en) * 1993-08-27 1995-03-10 Asahi Glass Co Ltd Direct viewing type illumination device for display element and liquid crystal display device
JPH09115667A (en) * 1995-10-13 1997-05-02 Sony Corp Optical element
JP2002237381A (en) * 2001-02-09 2002-08-23 Nagase Inteko Kk Organic electroluminescence element
JP2002251145A (en) * 2001-02-23 2002-09-06 Matsushita Electric Ind Co Ltd Light emitting display device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0764085A (en) * 1993-08-27 1995-03-10 Asahi Glass Co Ltd Direct viewing type illumination device for display element and liquid crystal display device
JPH09115667A (en) * 1995-10-13 1997-05-02 Sony Corp Optical element
JP2002237381A (en) * 2001-02-09 2002-08-23 Nagase Inteko Kk Organic electroluminescence element
JP2002251145A (en) * 2001-02-23 2002-09-06 Matsushita Electric Ind Co Ltd Light emitting display device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8653548B2 (en) 2007-12-12 2014-02-18 Osram Opto Semiconductors Gmbh Light-emitting device
JP2011507164A (en) * 2007-12-12 2011-03-03 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Light emitting device
JP2010135240A (en) * 2008-12-08 2010-06-17 Sony Corp Light-emitting device, and display
WO2011013276A1 (en) * 2009-07-29 2011-02-03 シャープ株式会社 Organic el illuminating device and method for manufacturing same
US9112169B2 (en) 2009-07-29 2015-08-18 Sharp Kabushiki Kaisha Organic electroluminescence illuminating device and method for manufacturing the same
WO2012053625A1 (en) * 2010-10-22 2012-04-26 ソニー株式会社 Patterned base, method for manufacturing same, information input device, and display device
US9603257B2 (en) 2010-10-22 2017-03-21 Sony Corporation Pattern substrate, method of producing the same, information input apparatus, and display apparatus
WO2012086396A1 (en) * 2010-12-20 2012-06-28 旭硝子株式会社 Organic el element and translucent substrate
JP2013074286A (en) * 2011-09-29 2013-04-22 Semiconductor Energy Lab Co Ltd Light-emitting device
US9048453B2 (en) 2011-09-29 2015-06-02 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device
WO2013047713A1 (en) * 2011-09-29 2013-04-04 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device
CN103280536A (en) * 2012-08-24 2013-09-04 厦门天马微电子有限公司 Top-transmitting type active matrix organic light emitting display
US9508682B2 (en) 2013-01-11 2016-11-29 Nec Lighting, Ltd. Organic EL luminescent device

Also Published As

Publication number Publication date
JP5023442B2 (en) 2012-09-12

Similar Documents

Publication Publication Date Title
JP5023442B2 (en) Surface emitting light source and liquid crystal display device
US7478930B2 (en) Backlight unit with an oxide compound-laminated optical layer
JP6471905B2 (en) Light emitting device
JP5125717B2 (en) Organic electroluminescence light emitting device and liquid crystal display device
US20070201234A1 (en) Luminous element
US10295709B2 (en) Black matrix, flat panel display device and method for producing the same
US8987767B2 (en) Light emitting device having improved light extraction efficiency
JP2007234578A (en) Surface emitter, display device, and light control member
JP2010135240A (en) Light-emitting device, and display
TW201535821A (en) Organic electroluminescent element, lighting device and display device
JP2012054040A (en) Organic electroluminescent light-emitting device
JP5481825B2 (en) EL element and display device
JP6171317B2 (en) Surface emitting unit
JP2007207471A (en) Surface emitter and display device
JP2007149591A (en) Surface emitting body and display device
JP2008010245A (en) Light emitting device
JP5854173B2 (en) Surface emitting unit
JP6477493B2 (en) Surface emitting unit
JPWO2014188631A1 (en) Light emitting device
WO2004112434A1 (en) El device, process for manufacturing the same, and liquid crystal display employing el device
JP2004265850A (en) El device, manufacturing method of same, and liquid crystal display device using el device
JP2004265851A (en) El device, manufacturing method of same, and liquid crystal display device using el device
JP2013152811A (en) Lighting device, display device, and television receiving apparatus
JP2009272069A (en) El element, backlight device for liquid-crystal display using the element, lighting device using the element, electronic advertising display device using the element, display device using the element, and optical sheet
JP2004265852A (en) El device, manufacturing method of same, and liquid crystal display device using el device

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20071028

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120522

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120604

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150629

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees