WO2014106383A1 - 空气煤气双蓄热燃烧装置 - Google Patents

空气煤气双蓄热燃烧装置 Download PDF

Info

Publication number
WO2014106383A1
WO2014106383A1 PCT/CN2013/081379 CN2013081379W WO2014106383A1 WO 2014106383 A1 WO2014106383 A1 WO 2014106383A1 CN 2013081379 W CN2013081379 W CN 2013081379W WO 2014106383 A1 WO2014106383 A1 WO 2014106383A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
air
heat storage
nozzle
brick
Prior art date
Application number
PCT/CN2013/081379
Other languages
English (en)
French (fr)
Inventor
陈婉
张道明
雍海泉
程奇伯
Original Assignee
重庆赛迪工业炉有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 重庆赛迪工业炉有限公司 filed Critical 重庆赛迪工业炉有限公司
Priority to BR112015016380-7A priority Critical patent/BR112015016380B1/pt
Publication of WO2014106383A1 publication Critical patent/WO2014106383A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/20Non-premix gas burners, i.e. in which gaseous fuel is mixed with combustion air on arrival at the combustion zone
    • F23D14/22Non-premix gas burners, i.e. in which gaseous fuel is mixed with combustion air on arrival at the combustion zone with separate air and gas feed ducts, e.g. with ducts running parallel or crossing each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23KFEEDING FUEL TO COMBUSTION APPARATUS
    • F23K5/00Feeding or distributing other fuel to combustion apparatus
    • F23K5/002Gaseous fuel
    • F23K5/007Details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L15/00Heating of air supplied for combustion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Definitions

  • Air gas double regenerative combustion device Air gas double regenerative combustion device
  • the invention belongs to the technical field of burners, and in particular relates to an air gas double heat storage combustion device.
  • Double regenerative combustion technology can preheat the air and gas above the loocrc, resulting in a higher theoretical combustion temperature, thus achieving the direct application of low calorific value gas fuels on thermal equipment such as high temperature furnaces; regenerative combustion technology It can reduce the exhaust gas temperature to below 15CTC, realize the limit recovery of flue gas waste heat, and significantly improve fuel utilization. Therefore, the dual thermal storage combustion technology has been widely applied in steel, non-ferrous metals, mechanical processing and other industries.
  • the regenerative body disposed in the regenerative tank continuously changes the high temperature state and the low temperature state in the alternating combustion and exhausting state, and the high aluminum material regenerator is thermally shocked.
  • the effect will be shrinkage or partial damage, which will cause the regenerator to sink away or be shattered and then be evacuated by the airflow.
  • a large gap is formed in the upper part of the tank. Because the airflow resistance at the gap is the smallest, the high-temperature smoke flow is easy to pass.
  • the gap flows out to form a short circuit of the airflow, and the heat of the high-temperature airflow cannot be sufficiently effectively absorbed, resulting in a high exhaust gas temperature, and the low-temperature airflow is also easily inflowed through the gap, and the low-temperature airflow does not sufficiently absorb the heat of the regenerator, resulting in a low preheating temperature, which cannot be achieved.
  • the combustion temperature required by the furnace, and the inflowing gas is more than the gas flowing out, causing the furnace pressure to be uncontrollable;
  • the air and gas enter the double regenerative combustion device from the pipeline respectively.
  • the cross-sectional area of the pipeline is small, the gas flow rate in the pipeline is high, and the cross-section of the regenerator in the airflow direction is larger, and the high-speed airflow in the smaller area enters larger.
  • the regenerator of the area is prone to drift phenomenon, and there is a dead angle of airflow. After the gas is biased, some of the regenerators flow into the excess cold gas, while some of the regenerators do not flow into the cold gas, making the heat exchange uneven, and the heat of the flue gas is not sufficient.
  • the use of the regenerator is low, the air and gas storage temperatures are insufficient, and the exhaust gas temperature is easily overheated;
  • the high temperature flue gas enters the regenerative tank from the spout brick, and the hot state speed is up to 50m/s ⁇ 80 m/s. If the spout is unevenly distributed or concentrated at a certain point, the flow will also occur when the airflow reaches the cross section of the regenerator. After the gas is deflected, some of the regenerators flow into the excessive hot flue gas, and some of the regenerators do not have the hot flue gas flow, so that the heat exchange is not uniform, the flue gas heat is not fully absorbed, and the exhaust gas temperature may also occur. Easy to exceed Warm phenomenon
  • the burner nozzle design of the dual regenerative combustion device is unreasonable, the flame rigidity is not enough, the NOx emission concentration is high, the temperature uniformity is poor, and the fuel combustion is incomplete.
  • the present invention aims to improve the existing dual regenerative combustion device, and the improved air-gas dual-storage combustion device can effectively solve the problems of airflow bias and airflow short-circuit in the existing dual thermal storage combustion device, and improve The utilization rate of the regenerator, prolonging the service life of the regenerator, reducing NOx emissions, and improving the flame temperature distribution.
  • the technical problem to be solved by the present invention is to provide an air-gas double-storage combustion device, which can effectively solve the problem of airflow bias and airflow short-circuit of the existing dual-storage combustion device, and improve the heat storage body. Utilization and extended service life.
  • the air-gas dual-storage combustion device of the present invention comprises an air heat storage box and a gas heat storage box, wherein the air heat storage box is provided with an air inlet and an air nozzle brick, the gas a gas inlet and a gas vent brick are arranged on the regenerative tank;
  • the air heat storage tank is provided with at least two air heat storage chambers, and in the adjacent two air storage heat chambers, the air storage chamber near the air inlet side has a cavity top higher/lower than a cavity of the air regenerator on one side of the air vent brick, and a heat storage body in each of the air regenerators;
  • the gas heat storage tank is provided with at least two sections of gas regenerators, and in the adjacent two sections of the gas regenerator, the chamber top of the gas regenerator adjacent to the gas inlet side is higher/lower than the vicinity
  • a gas storage tank on one side of the gas vent brick is provided with a heat storage body in each of the gas heat storage chambers.
  • the air nozzle brick is provided with at least one air nozzle group;
  • the gas nozzle brick is provided with at least one gas nozzle group, and each group of the air nozzle group includes at least one air nozzle, each group
  • the gas vent group includes at least one gas vent.
  • each set of said air nozzle groups includes at least two air nozzles whose axes are parallel to each other, and each of said gas nozzle groups includes at least two gas nozzles whose axes are parallel to each other.
  • At least two sets of air nozzle groups are disposed on the air nozzle brick, and an axis of the air nozzle of the air nozzle group away from the side of the gas heat storage box and the air in the adjacent two groups of air nozzle groups
  • the angle of the axis of the heat storage tank is smaller than the angle between the axis of the air nozzle of the air nozzle group on the side of the gas heat storage tank and the axis of the air heat storage tank; and/or
  • the gas nozzle brick is provided with at least two sets of gas nozzle groups, and among the two groups of gas nozzle groups, the axis of the gas nozzle of the gas nozzle group away from the side of the air heat storage box and the gas storage heat
  • the angle of the axis of the casing is smaller than the angle between the axis of the gas nozzle of the gas nozzle group on the side of the air heat storage tank and the axis of the gas storage tank.
  • the angle between the axis of the air nozzles in any one of the air nozzle groups and the axis of the gas nozzles in any one of the gas nozzle groups is 5-50°.
  • the air heat storage box is provided with an air flow diffusion section between the air nozzle brick and the air heat storage chamber; the gas heat storage box is provided with the gas nozzle brick and a gas gas diffusion section between the gas heat storage chambers.
  • the air nozzle brick is integrally provided with the air heat storage box, or the air heat storage box is provided with a pair interface I for installing an air nozzle brick, and the air nozzle brick is docked and installed
  • the air heat storage box body, or the air heat storage box body is provided with an insertion port I for installing an air nozzle brick, and the air nozzle brick is embedded and installed in the insertion port I;
  • the gas vent brick is integrally provided with the gas storage tank, or the gas storage tank is provided with a pair interface II for installing a gas vent brick, and the gas vent brick is docked and installed in the gas storage On the hot box body, or the gas heat storage box body is provided with an inserting port II for installing the gas spout brick, and the gas spout brick is embedded in the embedding port II.
  • an air baffle is provided between the air inlet and the air regenerator for draining air and uniformly entering the air regenerator; and the gas inlet and the gas regenerator are provided with a gas for drainage The gas is evenly introduced into the gas deflector in the gas storage chamber.
  • the air heat storage box and the gas heat storage box are disposed separately.
  • the air-gas dual-storage combustion device of the present invention has at least two air storage chambers disposed in the air heat storage tank, and the chamber top of the air heat storage chamber located on the side close to the air inlet is disposed.
  • the thermal storage body installed in the air regenerator is contracted or partially damaged to form a gap at the top of the air regenerator cavity, the cavity top of the air regenerator adjacent to the side of the air vent brick is higher/lower. Since the height of the cavity top of each section of the air regenerator is not equal, the regenerator installed in the air regenerator with a higher cavity top can block the gap formed between the lower air regenerator and the regenerator.
  • the gas flow resistance and the heat storage heat exchange capacity of the heat storage body are ensured, and the occurrence of a short circuit of the air flow is prevented, that is, the air gas double heat storage combustion device of the present invention is used, even if In the case of shrinkage or partial breakage of the hot body, the airflow can be prevented from being short-circuited, the heat storage heat transfer capacity of the heat storage body can be maintained, the utilization rate of the heat storage body can be improved, and the service life of the heat storage body can be extended;
  • the cavity top of the regenerator can prevent the airflow from being short-circuited, maintain the heat storage heat transfer capacity of the regenerator, increase the heat storage heat utilization rate, and prolong the service life under the condition that the regenerator shrinks or partially breaks.
  • each group of air nozzles forms a flow of airflow with all gas nozzle groups.
  • each group of gas nozzles also forms an airflow with all air nozzle groups, that is, the airflow formed by the entire air gas dual heat storage combustion device.
  • the number of intersections is the product of the number of groups of air nozzle groups and the number of groups of gas nozzle groups; air and gas are gradually mixed on the discharge route to achieve staged combustion, which avoids excessive concentration of oxidant and combustibles in the reaction zone. Can reduce NOx production;
  • the angle between the body axes is set to be unequal.
  • the air flow and the gas flow can form different angles, thereby facilitating adjustment of the flame length.
  • the angle between the air flow and the gas flow is large, the flame length is short.
  • the angle between the air flow and the gas flow is small, the flame length is longer, and the air and gas are further on the discharge route. Mixing can better achieve staged combustion, avoiding excessive concentration of oxidant and combustibles in the reaction zone, and reducing NOx formation.
  • the flow rate is reduced and then uniformly flows into the air regenerator, and the air flow diffusion section can reduce the flow velocity of the higher velocity airflow, so that the concentrated airflow of the stream disperses the flow beam, thereby achieving the purpose of uniform airflow distribution;
  • the purpose of uniform discharge under the combustion condition is to achieve the purpose of reducing the flow rate, dispersing the flow, and evenly distributing the airflow under the exhausting condition.
  • the air guiding plate guides the airflow, which can improve the airflow distribution, so that the cold air uniformly flows into the air regenerator, and the cold air fully absorbs the heat accumulating body. Heat, no airflow dead angle, the regenerator is fully utilized, so that the air discharge temperature reaches the required high temperature, and the exhaust gas discharge temperature in the air regenerator tank is stabilized at a lower low temperature;
  • FIG. 1 is a schematic structural view of an embodiment of an air-gas dual-heat storage combustion apparatus according to the present invention
  • FIG. 2 is a schematic view showing the internal structure of an air-gas dual-storage combustion device of the present embodiment
  • Figure 3 is a cross-sectional view taken along line A-A of Figure 2;
  • Figure 4 is a detailed view of B of Figure 3;
  • Figure 5 is a schematic view showing the structure of an air nozzle group and a gas nozzle group
  • FIG. 6 is a schematic structural view of an air flow diffusion section
  • Figure 7 is a schematic structural view of an air inlet and a deflector
  • Figure 8 is a schematic view of the integrated arrangement between the air nozzle brick and the air heat storage box
  • Figure 9 is a schematic view of the docking assembly structure between the air nozzle brick and the air heat storage box
  • Figure 10 is an air nozzle brick and air Schematic diagram of the embedded assembly structure between the regenerative tanks
  • FIG. 1 is a schematic structural view of an embodiment of an air-gas dual-heat storage combustion apparatus according to the present invention.
  • the air-gas dual-heat storage combustion device of the present embodiment includes an air heat storage tank 10 and a gas heat storage tank 20, and the air heat storage tank 10 is provided with an air inlet 11 and an air nozzle brick 12, and the gas heat storage box There is a gas inlet 21 and a gas vent brick 22 on the 20th.
  • the air heat storage tank 10 and the gas heat storage tank 20 are disposed separately, and the air heat storage tank 10 and the gas heat storage tank 20 can be easily installed on the furnace body 2.
  • the air heat storage tank 10 is provided with at least two air heat storage chambers 13 and two adjacent air heat storage chambers 13
  • the top of the air regenerator 13 on the side close to the air inlet 11 is higher/lower than the top of the air regenerator 13 on the side close to the air spout 12, and each section of the air regenerator 13 is provided.
  • the air heat storage tank 10 of the present embodiment is provided with two air heat storage chambers 13, and the air heat storage chamber 13 on the air inlet 11 side has a higher ceiling height than the air nozzle bricks 12. - The side of the air regenerator chamber on the side.
  • At least two sections of the gas regenerator chamber 23 are disposed in the gas regenerator tank 20, and in the adjacent two sections of the gas regenerator 23, the crest of the gas regenerator 23 near the gas inlet 21 is higher/lower than
  • the gas storage heat storage chamber 23 is disposed near the gas storage chamber 23 on the side of the gas vent brick 22, and each of the gas heat storage chambers 23 is provided with a heat storage body 1.
  • the gas storage heat storage chamber of the structure can conveniently install the heat storage body 1 .
  • the gas heat storage tank 20 of the present embodiment is provided with two gas storage chambers 23, and the gas storage chamber 23 located at the gas inlet 21 side has a higher chamber top height than the gas storage chamber 22. The top of the cavity of the hot chamber.
  • At least two stages of the air regenerator chamber 13 are disposed in the air regenerator housing 10, and the chamber top of the air regenerator chamber 13 located on the side close to the air inlet 11 is set to Above/lower than the top of the air regenerator 13 near the side of the air spout 12, when the regenerator 1 installed in the air regenerator 13 is contracted or partially broken, it is caused at the top of the air regenerator 13
  • the gap formed between the heat storage bodies 1 is as shown in FIG.
  • the heat-burning device can prevent the airflow from being short-circuited even when the heat storage body is contracted or partially damaged, maintains the heat storage heat exchange capacity of the heat storage body 1, improves the utilization rate of the heat storage body, and can extend the use of the heat storage body. life.
  • the top of the gas regenerator chamber 23 located near the gas inlet 21 side is set higher/lower than the gas nozzle.
  • the cavity top of the gas regenerator 23 on the brick side can prevent the airflow from being short-circuited under the condition that the regenerator 1 shrinks or partially breaks, maintains the heat storage heat transfer capacity of the regenerator 1, and improves the utilization of the heat storage heat. And can extend the service life.
  • the air spout brick 12 is provided with at least one set of air spouts
  • the gas spout brick 22 is provided with at least one set of gas spouts, each set of air spouts including at least one air spout 14, each A set of gas vents includes at least one gas vent 24 .
  • At least one set of air spouts is disposed on the gas spouting bricks 22, and at least one set of spouting groups is disposed on the gas spouting bricks 22.
  • each group The air vent group forms a flow of airflow with all the gas vent groups.
  • each group of gas vents also forms an airflow with all air vent groups, that is, the number of intersecting airflows formed by the entire air-gas dual-storage combustion device.
  • the air gas dual heat storage combustion device includes three sets of gas vent groups and two sets of air vent groups, which can form six groups of intersecting airflows. The air and gas are gradually mixed on the discharge route to achieve staged combustion, which avoids excessive concentration of oxidant and combustibles in the reaction zone, and can reduce NOx formation;
  • each set of air nozzles comprises at least two air nozzles 14 having mutually parallel axes, each group of gas nozzles comprising at least two gas nozzles 24 parallel to each other, each group of air nozzles of the embodiment comprising The three air jets are parallel to each other, and each set of gas nozzles includes three gas nozzles 24 whose axes are parallel to each other.
  • the axis of the air nozzle 14 and the air heat storage box of the air nozzle group away from the gas heat storage tank 20 side in the adjacent two air nozzle groups The angle of the 10 axis is smaller than the angle between the axis of the air nozzle 24 of the air nozzle group near the gas storage tank 20 side and the axis of the air heat storage tank 10; when at least two sets of gas nozzle groups are arranged on the gas nozzle brick In the adjacent two gas nozzle groups, the axis of the gas nozzle 24 of the gas nozzle group away from the air heat storage tank 10 side and the axis of the gas heat storage tank 20 are smaller than the air heat storage tank 10 side.
  • the axis of the gas nozzle 24 of the gas nozzle group is at an angle to the axis of the gas heat storage tank 20.
  • the air flow between the air nozzle 14 and the gas nozzle 24 can be adjusted by adjusting the angle between the axis of the air nozzle 14 and the axis of the air heat storage tank 10.
  • the junction, and/or, adjusts the point of intersection of the gas flow between the gas nozzle 24 and the air vent 14 by adjusting the angle of the axis of the gas vent 24 to the axis of the gas storage tank 20.
  • the angle 9 1 between the axis of the air nozzle 14 in any group of air nozzle groups and the axis of the gas nozzle 24 in any group of gas nozzle groups is 5-50°, which can satisfy the use of the furnace body 2.
  • the angle between the axis of the air vent 14 of each set of air vents and the axis of the air regenerator housing 10 is set to be unequal, and/or the axis of the gas vent 24 of each set of gas vents and air
  • the angle between the axes of the heat storage tanks 20 is set to be unequal.
  • the air heat storage tank 10 is provided with an air flow diffusion section 15 between the air nozzle brick 12 and the air heat storage chamber 13, and the gas heat storage tank 20 is provided with a gas nozzle.
  • the gas flow diffusion section 25 between the brick 22 and the gas regenerator 23 is provided with an air flow diffusion section 15 between the air spout brick 12 and the air regenerator chamber 13, and when the combustion apparatus is in a combustion condition, the airflow is from After the air heat storage chamber 13 enters the air flow diffusion section, the air flow area in the air flow diffusion section 15 becomes larger, the gas flow rate decreases, and the gas can be effectively filled in the air flow diffusion section, and then uniformly flows out from the air air outlets 14; When the combustion device is in the exhausting condition, the flue gas enters the airflow diffusing section 15 from the air nozzle 14 at a relatively high speed, the flow rate is reduced, and then uniformly flows into the air regenerator chamber 13, and the airflow diffusing section 15 can make the speed higher.
  • the airflow reduces the flow rate, so that the concentrated airflow of the stream is dispersed into the stream, thereby achieving the purpose of uniform airflow distribution; for the same reason, by spraying in the gas
  • the gas flow diffusion section 25 is disposed between the brick 22 and the gas regenerator chamber 23, and the uniform discharge can be realized under the combustion condition, and the flow rate is reduced, the flow is dispersed, and the air flow is distributed under the exhaust operation condition. Uniform purpose.
  • the air nozzle brick 12 can be mounted to the air heat storage box 10 in various structures: as shown in FIG. 8, the air nozzle brick 12 can be integrally formed with the air heat storage box 10; As shown in FIG. 9, the air heat storage tank 10 is provided with a pair of interfaces I for installing the air nozzle bricks 12, and the air nozzle bricks 12 can be docked and mounted on the air heat storage tank 10; as shown in FIG.
  • the hot box body 10 is provided with an insertion port I for installing the air spout brick 12, and the air spout brick 12 can be embedded and installed in the embedding port 1.
  • the air spout brick 12 of the embodiment is installed in the air heat storage box by docking. 10 on.
  • the gas vent brick 22 can also be installed on the gas heat storage tank 20 in various structures: for example, the gas vent brick 22 can be integrated with the gas heat storage tank 20; the gas heat storage tank 20 is provided with The gas vent brick 22 can be docked and mounted on the gas heat storage tank 20; the gas heat storage tank 20 is provided with an inserting port II for installing the gas vent brick 22, and the gas vent brick 22 Can be embedded in the embedded port II.
  • the gas vent brick 22 of the present embodiment is mounted on the air heat storage tank 20 in a butt joint manner.
  • the air inlet 11 and the air regenerator 13 are provided for guiding The air is ventilated and the air is evenly introduced into the air baffle 16 in the air regenerator 13; a gas guide for diverting the gas and uniformly introducing the gas into the gas regenerator 23 is provided between the gas inlet 21 and the gas regenerator 23 Flow board.
  • the air baffle 16 guides the air flow, thereby improving the air flow distribution, so that the cold air uniformly flows into the air regenerator 13 and the cold air is sufficiently
  • the heat in the heat storage body 1 is absorbed, and there is no air flow dead angle, and the heat storage body 1 is fully utilized, so that the discharge temperature of the air reaches a desired high temperature, and the discharge temperature of the smoke in the air heat storage tank 10 is stabilized at a low temperature.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Supply (AREA)
  • Feeding And Controlling Fuel (AREA)

Abstract

一种空气煤气双蓄热燃烧装置,包括空气蓄热箱体(10)和煤气蓄热腔体(20),空气蓄热箱体(10)上设有空气入口(11)和空气喷口砖(12),煤气蓄热箱体(20)上设有煤气入口(21)和煤气喷口砖(22);空气蓄热箱体(10)内设有至少两段空气蓄热腔(13),且相邻两段空气蓄热腔(13)中,靠近空气入口(11)一侧的空气蓄热腔(13)的腔顶高于/低于靠近空气喷口砖(12)—侧的空气蓄热腔(13)的腔顶,且每一段空气蓄热腔(13)内均设有蓄热体(1);煤气蓄热箱体(20)内设有至少两段煤气蓄热腔(23),且相邻两段煤气蓄热腔(23)中,靠近煤气入口(21)一侧的煤气蓄热腔(23)的腔顶高于/低于靠近煤气喷口砖(22)一侧的煤气蓄热腔(23)的腔顶,且每一段煤气蓄热腔(23)内均设有蓄热体(1)。在蓄热体(1)收缩或局部损坏的情况下,也能防止气流短路,保持蓄热体(1)的蓄热能力,并能够延长使用寿命。

Description

空气煤气双蓄热燃烧装置 技术领域
本发明属于燃烧器技术领域, 具体的为一种空气煤气双蓄热燃烧装置。
背景技术
双蓄热燃烧技术可以把空气和煤气都预热到 loocrc以上,产生较高的理论燃 烧温度, 从而实现低热值气体燃料在高温炉窑等热工设备上的直接应用; 蓄热式 燃烧技术还能把排烟温度降低到 15CTC以下, 实现烟气余热的极限回收, 显著提 高燃料利用率。 因此双蓄热燃烧技术在钢铁、有色金属、机械加工等行业有较大 范围的推广应用。
在双蓄热燃烧技术的推广应用中, 双蓄热燃烧装置还存在一些不足:
1、 当双蓄热燃烧装置水平安装时, 在交替进行的燃烧和排烟状态下, 设置 在蓄热箱体内的蓄热体不断改变高温状态和低温状态,高铝材质的蓄热体受热震 影响, 会出现收縮或局部破损的情况, 使得蓄热体下沉或变碎后被气流抽走, 在 箱体上部形成较大的间隙, 由于间隙处的气流阻力最小, 高温烟气流易于经过缝 隙流出,形成气流短路,高温气流的热量无法被充分有效吸收,造成排烟温度高, 低温气流也容易经间隙流入,低温气流没有充分吸收蓄热体的热量,造成预热温 度低, 无法达到炉膛要求的燃烧温度, 而且流入的气体比流出的气体多, 造成炉 膛压力高不可控制;
2、 空气和煤气分别从管道内进入双蓄热燃烧装置, 管道流通截面积较小, 管道内气体流速较高, 而蓄热体在气流方向截面较大,较小面积的高速气流进入 较大面积的蓄热体, 容易发生偏流现象, 出现气流死角, 气体偏流后, 部分蓄热 体流入过多冷气体, 而部分蓄热体没有冷气体流入, 使得热量交换不均匀, 烟气 热量没有充分利用, 就出现了蓄热体利用率低, 空气、 煤气蓄热温度不够, 并且 排烟温度容易超温的现象;
3、 高温烟气从喷口砖进入蓄热箱, 热态速度高达 50m/s〜80 m/s, 如果喷口 分布不均匀或集中在某一点, 气流到达蓄热体截面时, 也会发生偏流现象, 出现 气流死角, 气体偏流后, 部分蓄热体流入过多热烟气, 而部分蓄热体没有热烟气 流入, 使得热量交换不均匀, 烟气热量没有充分吸收, 也会出现排烟温度容易超 温的现象;
4、双蓄热燃烧装置的烧嘴喷口设计不合理,火焰刚性不够, NOx排放浓度高, 温度均匀性差, 燃料燃烧不完全。
有鉴于此,本发明旨在对现有的双蓄热燃烧装置进行改进, 改进后得到的空 气煤气双蓄热燃烧装置能够有效解决现有双蓄热燃烧装置气流偏流和气流短路 的问题, 提高蓄热体的利用率, 延长蓄热体的使用寿命, 减小 NOx排放, 改善火 焰温度分布。
发明内容
本发明要解决的技术问题是提出一种空气煤气双蓄热燃烧装置,该空气煤气 双蓄热燃烧装置能够有效解决现有双蓄热燃烧装置气流偏流和气流短路的问题, 提高蓄热体的利用率和延长使用寿命。
要实现上述技术目的,本发明的空气煤气双蓄热燃烧装置,包括空气蓄热箱 体和煤气蓄热箱体,所述空气蓄热箱体上设有空气入口和空气喷口砖,所述煤气 蓄热箱体上设有煤气入口和煤气喷口砖;
所述空气蓄热箱体内设有至少两段空气蓄热腔, 且相邻两段空气蓄热腔中, 靠近所述空气入口一侧的空气蓄热腔的腔顶高于 /低于靠近所述空气喷口砖一侧 的空气蓄热腔的腔顶, 且每一段所述空气蓄热腔内均设有蓄热体;
所述煤气蓄热箱体内设有至少两段煤气蓄热腔, 且相邻两段煤气蓄热腔中, 靠近所述煤气入口一侧的煤气蓄热腔的腔顶高于 /低于靠近所述煤气喷口砖一侧 的煤气蓄热腔的腔顶, 且每一段所述煤气蓄热腔内均设有蓄热体。
进一步,所述空气喷口砖上设有至少一组空气喷口组; 所述煤气喷口砖上设 有至少一组煤气喷口组,每一组所述空气喷口组包括至少一个空气喷口,每一组 所述煤气喷口组包括至少一个煤气喷口。
进一步,每一组所述空气喷口组包括至少两个轴线相互平行的空气喷口,每 一组所述煤气喷口组包括至少两个轴线相互平行的煤气喷口。
进一步,所述空气喷口砖上设有至少两组空气喷口组, 且相邻两组空气喷口 组中,远离所述煤气蓄热箱体一侧的空气喷口组的空气喷口的轴线与所述空气蓄 热箱体轴线的夹角小于靠近所述煤气蓄热箱体一侧的空气喷口组的空气喷口的 轴线与所述空气蓄热箱体轴线的夹角; 和 /或, 所述煤气喷口砖上设有至少两组煤气喷口组, 且相邻两组煤气喷口组中,远 离所述空气蓄热箱体一侧的煤气喷口组的煤气喷口的轴线与所述煤气蓄热箱体 轴线的夹角小于靠近所述空气蓄热箱体一侧的煤气喷口组的煤气喷口的轴线与 所述煤气蓄热箱体轴线的夹角。
进一步,任意一组所述空气喷口组中的空气喷口的轴线与任意一组所述煤气 喷口组中的煤气喷口的轴线之间的夹角为 5-50° 。
进一步,所述空气蓄热箱体内设有位于所述空气喷口砖与所述空气蓄热腔之 间的空气气流扩散段;所述煤气蓄热箱体内设有位于所述煤气喷口砖与所述煤气 蓄热腔之间的煤气气流扩散段。
进一步,所述空气喷口砖与所述空气蓄热箱体设置为一体, 或所述空气蓄热 箱体上设有用于安装空气喷口砖的对接口 I, 所述空气喷口砖对接安装在所述空 气蓄热箱体上, 或所述空气蓄热箱体上设有用于安装空气喷口砖的嵌入口 I, 所 述空气喷口砖嵌入安装在所述嵌入口 I内;
所述煤气喷口砖与所述煤气蓄热箱体设置为一体,或所述煤气蓄热箱体上设 有用于安装煤气喷口砖的对接口 I I, 所述煤气喷口砖对接安装在所述煤气蓄热 箱体上, 或所述煤气蓄热箱体上设有用于安装煤气喷口砖的嵌入口 I I, 所述煤 气喷口砖嵌入安装在所述嵌入口 I I内。
进一步,所述空气入口和空气蓄热腔之间设有用于引流空气并使空气均匀进 入空气蓄热腔内的空气导流板;所述煤气入口和煤气蓄热腔之间设有用于引流煤 气并使煤气均匀进入煤气蓄热腔内的煤气导流板。
进一步, 所述空气蓄热箱体和煤气蓄热箱体呈分体设置。
本发明的有益效果为: 本发明的空气煤气双蓄热燃烧装置,通过空气蓄热箱体内设置至少两段空气 蓄热腔, 且将位于靠近空气入口一侧的空气蓄热腔的腔顶设置为高于 /低于靠近 空气喷口砖一侧的空气蓄热腔的腔顶,当安装在空气蓄热腔内的蓄热体收縮或局 部破损导致在空气蓄热腔腔顶处形成间隙时,由于每一段空气蓄热腔的腔顶高度 不相等,腔顶较高的空气蓄热腔内安装的蓄热体能够阻挡住腔顶较低的空气蓄热 腔与蓄热体之间形成的间隙, 从而保证气体流动阻力和蓄热体的蓄热换热能力, 防止气流短路情况的出现, 即采用本发明的空气煤气双蓄热燃烧装置, 即使在蓄 热体收縮或局部破损的状况下,也能防止气流短路,保持蓄热体的蓄热换热能力, 提高蓄热体的利用率, 并能够蓄热体的延长使用寿命;
同理,通过在煤气蓄热箱体内设置至少两段煤气蓄热腔, 并将位于靠近煤气 入口一侧的煤气蓄热腔的腔顶设置为高于 /低于靠近煤气喷口砖一侧的煤气蓄热 腔的腔顶, 能够在蓄热体收縮或局部破损的状况下, 防止气流短路, 保持蓄热体 的蓄热换热能力, 提高蓄热热量的利用率, 并能够延长使用寿命。
通过在空气喷口砖上设置至少一组空气喷口组和在煤气喷口砖上设置至少 一组喷口组, 当空气和煤气经过蓄热体升温后, 分别从空气喷口组和煤气喷口组 内喷出, 每一组空气喷口组与所有煤气喷口组之间形成气流交汇, 同理, 每一组 煤气喷口组也与所有空气喷口组之间组成气流交汇,即整个空气煤气双蓄热燃烧 装置形成的气流交汇的数量为空气喷口组的组数与煤气喷口组的组数的乘积;空 气和煤气在喷出路线上, 逐步进行混合, 实现分级燃烧, 避免了反应区内氧化剂 和可燃物浓度过高, 能够减少 NOx生成;
通过将每一组空气喷口组的空气喷口的轴线与空气蓄热箱体轴线之间的夹 角设置为不等, 和 /或将每一组煤气喷口组的煤气喷口的轴线与空气蓄热箱体轴 线之间的夹角设置为不等,当从空气喷口和煤气喷口喷出的空气与煤气的气流交 汇时, 空气气流和煤气气流之间能够组成不同的夹角,进而能够方便调节火焰长 度, 即当空气气流与煤气气流的夹角较大时, 火焰长度较短, 当空气气流与煤气 气流的夹角较小时, 火焰长度较长, 进一步使空气和煤气在喷出路线上, 逐步进 行混合, 能够更好地实现分级燃烧, 避免了反应区内氧化剂和可燃物浓度过高, 能够减少 NOx生成。
通过在空气喷口砖与空气蓄热腔体之间设置空气气流扩散段,当燃烧装置处 于燃烧工况时,气流从空气蓄热腔进入空气气流扩散段之后, 空气气流扩散段内 的气流流通面积变大, 气体流速降低, 在空气气流扩散段内气体能够有效充满, 再从各空气喷口均匀流出; 当燃烧装置处于排烟工况时,烟气从空气喷口以较高 速度进入空气气流扩散段之后, 流速降低, 再均匀流入空气蓄热腔中, 空气气流 扩散段能够使速度较高的气流降低流速,使流束集中的气流分散流束, 从而达到 气流分布均匀的目的;
同理,通过在煤气喷口砖与煤气蓄热腔体之间设置煤气气流扩散段, 也能够 在燃烧工况下实现均匀喷出的目的, 在排烟工况下实现降低流速、分散流束, 并 使气流分布均匀的目的。
通过在空气入口和空气蓄热腔之间设置空气导流板,导空气流板对气流进行 引导, 能够改善气流分布, 使得冷空气均匀流入空气蓄热腔内, 冷空气充分吸收 蓄热体内的热量, 没有气流死角, 蓄热体得到充分利用, 使空气的喷出温度达到 所需的高温, 烟气在空气蓄热箱体的排出温度稳定在较低的低温;
同理,通过在煤气入口和煤气蓄热腔之间设置煤气导流板, 也能够实现煤气 均匀流入煤气蓄热腔内, 冷煤气充分吸收蓄热体内的热量, 没有气流死角, 蓄热 体得到充分利用,使煤气的喷出温度达到所需的高温,烟气在煤气蓄热箱体的排 出温度稳定在较低的低温。
附图说明
图 1为本发明空气煤气双蓄热燃烧装置实施例的结构示意图;
图 2为本实施例空气煤气双蓄热燃烧装置的内部结构示意图;
图 3为图 2的 A-A剖面图;
图 4为图 3的 B详图;
图 5为空气喷口组和煤气喷口组的结构示意图;
图 6为空气气流扩散段的结构示意图;
图 7为空气入口和导流板的结构示意图;
图 8为空气喷口砖与空气蓄热箱体之间的一体式设置结构示意图; 图 9为空气喷口砖与空气蓄热箱体之间的对接式装配结构示意图; 图 10为空气喷口砖与空气蓄热箱体之间的嵌入式装配结构示意图;
具体实施方式
下面结合附图对本发明的具体实施方式作详细说明。
如图 1所示, 为本发明空气煤气双蓄热燃烧装置实施例的结构示意图。本实 施例的空气煤气双蓄热燃烧装置, 包括空气蓄热箱体 10和煤气蓄热箱体 20, 空 气蓄热箱体 10上设有空气入口 11和空气喷口砖 12, 煤气蓄热箱体 20上设有煤 气入口 21和煤气喷口砖 22。 优选的, 空气蓄热箱体 10和煤气蓄热箱体 20呈分 体设置, 能够便于在炉体 2上安装空气蓄热箱体 10和煤气蓄热箱体 20。
空气蓄热箱体 10内设有至少两段空气蓄热腔 13,且相邻两段空气蓄热腔 13 中, 靠近空气入口 11一侧的空气蓄热腔 13的腔顶高于 /低于靠近空气喷口砖 12 一侧的空气蓄热腔 13的腔顶, 且每一段空气蓄热腔 13内均设有蓄热体 1, 采用 该结构的空气蓄热箱体 10能够方便安装蓄热体 1。 如图 3所示, 本实施例的空 气蓄热箱体 10内设有两段空气蓄热腔 13, 位于空气入口 11一侧的空气蓄热腔 13的腔顶高度高于位于空气喷口砖 12—侧的空气蓄热腔腔顶。
煤气蓄热箱体 20内设有至少两段煤气蓄热腔 23,且相邻两段煤气蓄热腔 23 中, 靠近煤气入口 21—侧的煤气蓄热腔 23的腔顶高于 /低于靠近煤气喷口砖 22 一侧的煤气蓄热腔 23的腔顶, 且每一段煤气蓄热腔 23内均设有蓄热体 1, 采用 该结构的煤气蓄热腔体能够方便安装蓄热体 1。 本实施例的煤气蓄热箱体 20 内 设有两段煤气蓄热腔 23, 且位于煤气入口 21—侧的煤气蓄热腔 23的腔顶高度 高于位于煤气喷口砖 22—侧的煤气蓄热腔的腔顶。
本实施例的空气煤气双蓄热燃烧装置, 通过空气蓄热箱体 10内设置至少两 段空气蓄热腔 13, 且将位于靠近空气入口 11一侧的空气蓄热腔 13的腔顶设置 为高于 /低于靠近空气喷口砖 12—侧的空气蓄热腔 13的腔顶, 当安装在空气蓄 热腔 13内的蓄热体 1收縮或局部破损导致在空气蓄热腔 13腔顶处形成间隙时, 由于每一段空气蓄热腔 13的腔顶高度不相等,腔顶较高的空气蓄热腔 13内安装 的蓄热体 1能够阻挡住腔顶较低的空气蓄热腔 13与蓄热体 1之间形成的间隙, 如图 4所示, 从而保证气体流动阻力和蓄热体 1的蓄热换热能力, 防止气流短路 情况的出现, 即采用本实施例的空气煤气双蓄热燃烧装置, 即使在蓄热体收縮或 局部破损的状况下, 也能防止气流短路, 保持蓄热体 1的蓄热换热能力, 提高蓄 热体的利用率, 并能够延长蓄热体使用寿命。
同理, 通过在煤气蓄热箱体 20内设置至少两段煤气蓄热腔 23, 并将位于靠 近煤气入口 21—侧的煤气蓄热腔 23的腔顶设置为高于 /低于靠近煤气喷口砖一 侧的煤气蓄热腔 23的腔顶, 能够在蓄热体 1收縮或局部破损的状况下, 防止气 流短路, 保持蓄热体 1的蓄热换热能力, 提高蓄热热量的利用率, 并能够延长使 用寿命。
作为本实施例的进一步改进, 空气喷口砖 12上设有至少一组空气喷口组, 煤气喷口砖 22上设有至少一组煤气喷口组, 每一组空气喷口组包括至少一个空 气喷口 14, 每一组煤气喷口组包括至少一个煤气喷口 24。 通过在空气喷口砖 12 上设置至少一组空气喷口组和在煤气喷口砖 22上设置至少一组喷口组, 当空气 和煤气经过蓄热体 1升温后, 分别从空气喷口组和煤气喷口组内喷出,每一组空 气喷口组与所有煤气喷口组之间形成气流交汇, 同理,每一组煤气喷口组也与所 有空气喷口组之间组成气流交汇,即整个空气煤气双蓄热燃烧装置形成的交汇气 流的数量为空气喷口组的组数与煤气喷口组的组数的乘积, 如图 1所示, 该空气 煤气双蓄热燃烧装置包括三组煤气喷口组和两组空气喷口组,能够形成六组交汇 气流, 使空气和煤气在喷出路线上, 逐步进行混合, 实现分级燃烧, 避免了反应 区内氧化剂和可燃物浓度过高, 能够减少 NOx生成;
优选的, 每一组空气喷口组包括至少两个轴线相互平行的空气喷口 14, 每 一组煤气喷口组包括至少两个轴线相互平行的煤气喷口 24, 本实施例的每一组 空气喷口组包括三个轴线相互平行的空气喷口 14, 每一组煤气喷口组包括三个 轴线相互平行的煤气喷口 24。且当空气喷口砖 13上设置至少两组空气喷口组时, 相邻两组空气喷口组中, 远离煤气蓄热箱体 20—侧的空气喷口组的空气喷口 14 的轴线与空气蓄热箱体 10轴线的夹角小于靠近煤气蓄热箱体 20—侧的空气喷口 组的空气喷口 24的轴线与空气蓄热箱体 10轴线的夹角;当煤气喷口砖上设置至 少两组煤气喷口组时, 相邻两组煤气喷口组中, 远离空气蓄热箱体 10—侧的煤 气喷口组的煤气喷口 24的轴线与煤气蓄热箱体 20轴线的夹角小于靠近空气蓄热 箱体 10—侧的煤气喷口组的煤气喷口 24的轴线与煤气蓄热箱体 20轴线的夹角。 采用该结构的空气蓄热箱体 10和煤气蓄热箱体 20, 能够通过调节空气喷口 14 轴线与空气蓄热箱体 10轴线的夹角的形式调节空气喷口 14和煤气喷口 24之间 的气流交汇点, 和 /或, 通过调节煤气喷口 24轴线与煤气蓄热箱体 20轴线的夹 角的方法调节煤气喷口 24与空气喷口 14之间的气流交汇点。优选的,任意一组 空气喷口组中的空气喷口 14的轴线与任意一组煤气喷口组中的煤气喷口 24的轴 线之间的夹角 9 1为 5-50° , 能够满足炉体 2的使用要求。
通过将每一组空气喷口组的空气喷口 14的轴线与空气蓄热箱体 10轴线之间 的夹角设置为不等,和 /或将每一组煤气喷口组的煤气喷口 24的轴线与空气蓄热 箱体 20轴线之间的夹角设置为不等, 当从空气喷口 14和煤气喷口 24喷出的空 气与煤气的气流交汇时, 空气气流和煤气气流之间能够组成不同的夹角,进而能 够方便调节火焰长度, 如图 5所示, 即当空气气流与煤气气流的夹角较大时, 火 焰长度较短, 当空气气流与煤气气流的夹角较小时, 火焰长度较长, 进一步使空 气和煤气在喷出路线上, 逐步进行混合, 能够更好地实现分级燃烧, 避免了反应 区内氧化剂和可燃物浓度过高, 能够减少 NOx生成。
作为本实施例的进一步改进, 空气蓄热箱体 10 内设有位于空气喷口砖 12 与空气蓄热腔 13之间的空气气流扩散段 15, 所煤气蓄热箱体 20内设有位于煤 气喷口砖 22与煤气蓄热腔 23之间的煤气气流扩散段 25, 通过在空气喷口砖 12 与空气蓄热腔体 13之间设置空气气流扩散段 15, 当燃烧装置处于燃烧工况时, 气流从空气蓄热腔 13进入空气气流扩散段之后,空气气流扩散段 15内的气流流 通面积变大, 气体流速降低, 在空气气流扩散段内气体能够有效充满, 再从各空 气喷口 14均匀流出; 当燃烧装置处于排烟工况时,烟气从空气喷口 14以较高速 度进入空气气流扩散段 15之后, 流速降低, 再均匀流入空气蓄热腔 13中, 空气 气流扩散段 15能够使速度较高的气流降低流速, 使流束集中的气流分散流束, 从而达到气流分布均匀的目的; 同理, 通过在煤气喷口砖 22与煤气蓄热腔体 23 之间设置煤气气流扩散段 25, 也能够在燃烧工况下实现均匀喷出的目的, 在排 烟工况下实现降低流速、 分散流束, 并使气流分布均匀的目的。
作为本实施例的进一步改进, 空气喷口砖 12可以采用多种结构形式安装到 空气蓄热箱体 10上: 如图 8所示, 空气喷口砖 12可以与空气蓄热箱体 10设置 为一体; 如图 9所示, 空气蓄热箱体 10上设有用于安装空气喷口砖 12的对接口 I, 空气喷口砖 12可以对接安装在空气蓄热箱体 10上; 如图 10所示, 空气蓄热 箱体 10上设有用于安装空气喷口砖 12的嵌入口 I, 空气喷口砖 12可以嵌入安 装在嵌入口 I内, 本实施例的空气喷口砖 12采用对接的方式安装在空气蓄热箱 体 10上。
同理,煤气喷口砖 22也可以采用多种结构安装在煤气蓄热箱体 20上: 如煤 气喷口砖 22可以与煤气蓄热箱体 20设置为一体; 煤气蓄热箱体 20上设有用于 安装煤气喷口砖 22的对接口 II, 煤气喷口砖 22可以对接安装在煤气蓄热箱体 20上; 煤气蓄热箱体 20上设有用于安装煤气喷口砖 22的嵌入口 II, 煤气喷口 砖 22可以嵌入安装在嵌入口 II内。 本实施例的煤气喷口砖 22采用对接的方式 安装在空气蓄热箱体 20上。
作为本实施例的进一步改进,空气入口 11和空气蓄热腔 13之间设有用于引 流空气并使空气均匀进入空气蓄热腔 13内的空气导流板 16; 煤气入口 21和煤 气蓄热腔 23之间设有用于引流煤气并使煤气均匀进入煤气蓄热腔 23内的煤气导 流板。 通过在空气入口 11和空气蓄热腔 13之间设置空气导流板 16, 空气导流 板 16对气流进行引导, 能够改善气流分布, 使得冷空气均匀流入空气蓄热腔 13 内,冷空气充分吸收蓄热体 1内的热量,没有气流死角,蓄热体 1得到充分利用, 使空气的喷出温度达到所需的高温, 烟气在空气蓄热箱体 10的排出温度稳定在 较低的低温; 同理, 通过在煤气入口 21和煤气蓄热腔 23之间设置煤气导流板, 也能够实现煤气均匀流入煤气蓄热腔 23内,冷煤气充分吸收蓄热体 1内的热量, 没有气流死角, 蓄热体 1得到充分利用, 使煤气的喷出温度达到所需的高温, 烟 气在煤气蓄热箱体 20的排出温度稳定在较低的低温。
最后说明的是, 以上实施例仅用以说明本发明的技术方案而非限制,尽管参 照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解, 可以 对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的宗旨和 范围, 其均应涵盖在本发明的权利要求范围当中。

Claims

权利要求书
1. 一种空气煤气双蓄热燃烧装置, 包括空气蓄热箱体和煤气蓄热箱体, 所 述空气蓄热箱体上设有空气入口和空气喷口砖,所述煤气蓄热箱体上设有煤气入 口和煤气喷口砖, 其特征在于:
所述空气蓄热箱体内设有至少两段空气蓄热腔, 且相邻两段空气蓄热腔中, 靠近所述空气入口一侧的空气蓄热腔的腔顶高于 /低于靠近所述空气喷口砖一侧 的空气蓄热腔的腔顶, 且每一段所述空气蓄热腔内均设有蓄热体;
所述煤气蓄热箱体内设有至少两段煤气蓄热腔, 且相邻两段煤气蓄热腔中, 靠近所述煤气入口一侧的煤气蓄热腔的腔顶高于 /低于靠近所述煤气喷口砖一侧 的煤气蓄热腔的腔顶, 且每一段所述煤气蓄热腔内均设有蓄热体。
2. 根据权利要求 1所述的空气煤气双蓄热燃烧装置, 其特征在于: 所述空 气喷口砖上设有至少一组空气喷口组;所述煤气喷口砖上设有至少一组煤气喷口 组,每一组所述空气喷口组包括至少一个空气喷口,每一组所述煤气喷口组包括 至少一个煤气喷口。
3. 根据权利要求 2所述的空气煤气双蓄热燃烧装置, 其特征在于: 每一组 所述空气喷口组包括至少两个轴线相互平行的空气喷口,每一组所述煤气喷口组 包括至少两个轴线相互平行的煤气喷口。
4. 根据权利要求 3所述的空气煤气双蓄热燃烧装置, 其特征在于: 所述空气喷口砖上设有至少两组空气喷口组, 且相邻两组空气喷口组中,远 离所述煤气蓄热箱体一侧的空气喷口组的空气喷口的轴线与所述空气蓄热箱体 轴线的夹角小于靠近所述煤气蓄热箱体一侧的空气喷口组的空气喷口的轴线与 所述空气蓄热箱体轴线的夹角; 和 /或,
所述煤气喷口砖上设有至少两组煤气喷口组, 且相邻两组煤气喷口组中,远 离所述空气蓄热箱体一侧的煤气喷口组的煤气喷口的轴线与所述煤气蓄热箱体 轴线的夹角小于靠近所述空气蓄热箱体一侧的煤气喷口组的煤气喷口的轴线与 所述煤气蓄热箱体轴线的夹角。
5. 根据权利要求 4所述的空气煤气双蓄热燃烧装置, 其特征在于: 任意一 组所述空气喷口组中的空气喷口的轴线与任意一组所述煤气喷口组中的煤气喷 口的轴线之间的夹角为 5-50° 。
6. 根据权利要求 1所述的空气煤气双蓄热燃烧装置, 其特征在于: 所述空 气蓄热箱体内设有位于所述空气喷口砖与所述空气蓄热腔之间的空气气流扩散 段;所述煤气蓄热箱体内设有位于所述煤气喷口砖与所述煤气蓄热腔之间的煤气 气流扩散段。
7. 根据权利要求 1所述的空气煤气双蓄热燃烧装置, 其特征在于: 所述空 气喷口砖与所述空气蓄热箱体设置为一体,或所述空气蓄热箱体上设有用于安装 空气喷口砖的对接口 I, 所述空气喷口砖对接安装在所述空气蓄热箱体上, 或所 述空气蓄热箱体上设有用于安装空气喷口砖的嵌入口 I, 所述空气喷口砖嵌入安 装在所述嵌入口 I内;
所述煤气喷口砖与所述煤气蓄热箱体设置为一体,或所述煤气蓄热箱体上设 有用于安装煤气喷口砖的对接口 II, 所述煤气喷口砖对接安装在所述煤气蓄热 箱体上, 或所述煤气蓄热箱体上设有用于安装煤气喷口砖的嵌入口 II, 所述煤 气喷口砖嵌入安装在所述嵌入口 II内。
8.根据权利要求 1-7任一项所述的空气煤气双蓄热燃烧装置,其特征在于: 所述空气入口和空气蓄热腔之间设有用于引流空气并使空气均匀进入空气蓄热 腔内的空气导流板;所述煤气入口和煤气蓄热腔之间设有用于引流煤气并使煤气 均匀进入煤气蓄热腔内的煤气导流板。
9. 根据权利要求 8所述的空气煤气双蓄热燃烧装置, 其特征在于: 所述空 气蓄热箱体和煤气蓄热箱体呈分体设置。
PCT/CN2013/081379 2013-01-07 2013-08-13 空气煤气双蓄热燃烧装置 WO2014106383A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
BR112015016380-7A BR112015016380B1 (pt) 2013-01-07 2013-08-13 Dispositivo de combustão com dupla regeneração de ar e gás

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310004592.XA CN103047654B (zh) 2013-01-07 2013-01-07 空气煤气双蓄热燃烧装置
CN201310004592.X 2013-01-07

Publications (1)

Publication Number Publication Date
WO2014106383A1 true WO2014106383A1 (zh) 2014-07-10

Family

ID=48060401

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/081379 WO2014106383A1 (zh) 2013-01-07 2013-08-13 空气煤气双蓄热燃烧装置

Country Status (3)

Country Link
CN (1) CN103047654B (zh)
BR (1) BR112015016380B1 (zh)
WO (1) WO2014106383A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107606614A (zh) * 2017-10-26 2018-01-19 重庆赛迪热工环保工程技术有限公司 一种双燃料蓄热式烧嘴系统及其控制方法
CN109631574A (zh) * 2018-12-20 2019-04-16 唐山钢铁集团有限责任公司 一种双蓄热辊底式加热炉
CN113897223A (zh) * 2021-09-24 2022-01-07 国家能源集团宁夏煤业有限责任公司 烧嘴室的砖结构和水煤浆气化炉
US11925684B2 (en) 2005-10-11 2024-03-12 Amgen Research (Munich) Gmbh Compositions comprising cross-species-specific antibodies and uses thereof

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103047654B (zh) * 2013-01-07 2015-05-20 重庆赛迪工业炉有限公司 空气煤气双蓄热燃烧装置
CN104154542A (zh) * 2014-09-02 2014-11-19 中冶华天工程技术有限公司 热交换燃烧设备
CN105651091B (zh) * 2016-02-19 2017-08-15 上海交通大学 传热增强型化学蓄热装置及应用该蓄热装置的蓄热系统
CN108167830A (zh) * 2018-02-05 2018-06-15 上海嘉德环境能源科技有限公司 一种辊底炉用双蓄热烧嘴

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2697469Y (zh) * 2003-07-24 2005-05-04 吴道洪 组合式双预热蓄热式燃烧器
CN200989588Y (zh) * 2006-10-19 2007-12-12 鞍钢股份有限公司 复合型蓄热式烧嘴
CN201014448Y (zh) * 2007-03-20 2008-01-30 重庆赛迪工业炉有限公司 一种双蓄热式烧嘴
US20080233524A1 (en) * 2007-03-19 2008-09-25 Ngk Insulators, Ltd. Heat accumulating-type burner
CN202082933U (zh) * 2011-05-31 2011-12-21 北京安信中元科技发展有限公司 一体式多细流股空煤气双蓄热式烧嘴
WO2012174749A1 (zh) * 2011-06-24 2012-12-27 北京京诚凤凰工业炉工程技术有限公司 燃烧低热值煤气的蓄热式均热炉
CN103047654A (zh) * 2013-01-07 2013-04-17 重庆赛迪工业炉有限公司 空气煤气双蓄热燃烧装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201318670Y (zh) * 2008-12-19 2009-09-30 河北九鼎冶金设备制造有限公司 一种蓄热式喷嘴
CN202419651U (zh) * 2011-10-27 2012-09-05 北京首钢国际工程技术有限公司 多流股二级燃烧、高温低氧、低NOx组合式蓄热烧嘴
CN102607030B (zh) * 2012-04-09 2015-04-08 武汉钢铁(集团)公司 双蓄热式燃烧器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2697469Y (zh) * 2003-07-24 2005-05-04 吴道洪 组合式双预热蓄热式燃烧器
CN200989588Y (zh) * 2006-10-19 2007-12-12 鞍钢股份有限公司 复合型蓄热式烧嘴
US20080233524A1 (en) * 2007-03-19 2008-09-25 Ngk Insulators, Ltd. Heat accumulating-type burner
CN201014448Y (zh) * 2007-03-20 2008-01-30 重庆赛迪工业炉有限公司 一种双蓄热式烧嘴
CN202082933U (zh) * 2011-05-31 2011-12-21 北京安信中元科技发展有限公司 一体式多细流股空煤气双蓄热式烧嘴
WO2012174749A1 (zh) * 2011-06-24 2012-12-27 北京京诚凤凰工业炉工程技术有限公司 燃烧低热值煤气的蓄热式均热炉
CN103047654A (zh) * 2013-01-07 2013-04-17 重庆赛迪工业炉有限公司 空气煤气双蓄热燃烧装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11925684B2 (en) 2005-10-11 2024-03-12 Amgen Research (Munich) Gmbh Compositions comprising cross-species-specific antibodies and uses thereof
CN107606614A (zh) * 2017-10-26 2018-01-19 重庆赛迪热工环保工程技术有限公司 一种双燃料蓄热式烧嘴系统及其控制方法
CN107606614B (zh) * 2017-10-26 2024-02-23 重庆赛迪热工环保工程技术有限公司 一种双燃料蓄热式烧嘴系统及其控制方法
CN109631574A (zh) * 2018-12-20 2019-04-16 唐山钢铁集团有限责任公司 一种双蓄热辊底式加热炉
CN109631574B (zh) * 2018-12-20 2024-01-16 唐山钢铁集团有限责任公司 一种双蓄热辊底式加热炉
CN113897223A (zh) * 2021-09-24 2022-01-07 国家能源集团宁夏煤业有限责任公司 烧嘴室的砖结构和水煤浆气化炉
CN113897223B (zh) * 2021-09-24 2022-11-25 国家能源集团宁夏煤业有限责任公司 烧嘴室的砖结构和水煤浆气化炉

Also Published As

Publication number Publication date
BR112015016380B1 (pt) 2021-06-15
BR112015016380A2 (pt) 2018-04-24
CN103047654A (zh) 2013-04-17
CN103047654B (zh) 2015-05-20

Similar Documents

Publication Publication Date Title
WO2014106383A1 (zh) 空气煤气双蓄热燃烧装置
CN102230623B (zh) 扁平燃烧装置
US10724797B2 (en) Continuous low oxygen and high temperature combustion aluminum melting furnace with porous injection pipe heat exchanger
CN103486572B (zh) 一种基于文丘里管的低NOx燃气燃烧器
CN102967048B (zh) 使用醇基液体燃料的间接式热风炉
WO2019104614A1 (zh) 一种能用于固体燃料和气体燃料的氧化剂-多燃料烧嘴
WO2019007001A1 (zh) 一种蓄热燃烧式煤基竖炉及一种直接还原生产方法
CN103398379A (zh) 富氧燃烧器
CN204944159U (zh) 隧道窑
CN107477578A (zh) 燃烧器及热水器
CN203628653U (zh) 富氧烧嘴
CN104006405A (zh) 一种陶瓷窑炉富氧助燃节能装置
CN109695875A (zh) 一种多引射管式火片
CN105020703A (zh) 一种新型燃烧装置
CN111256110B (zh) 一种对冲燃煤锅炉侧墙水冷壁高温腐蚀防治方法
CN208186346U (zh) 一种可控混合弥散式蓄热燃烧装置
CN201212676Y (zh) 一种墙式布置的水平浓淡直流燃烧装置
CN207298940U (zh) 燃烧器及热水器
CN205560751U (zh) 天然气加热炉烧嘴冷却保护装置
CN209639002U (zh) 一种多引射管式火片
CN103292318B (zh) 布置于拱上翼墙上方的w型火焰锅炉缝隙式燃尽风装置
CN112696681A (zh) 一种二次风喷嘴、二次风系统及垃圾焚烧炉
JP3721033B2 (ja) 蓄熱式バーナー
CN102305536B (zh) 辊道窑高温空气燃烧技术
CN205560739U (zh) 一种带有文丘里管的弯状非对称式燃烧器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13869983

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13869983

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015016380

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112015016380

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20150707