WO2012174749A1 - 燃烧低热值煤气的蓄热式均热炉 - Google Patents
燃烧低热值煤气的蓄热式均热炉 Download PDFInfo
- Publication number
- WO2012174749A1 WO2012174749A1 PCT/CN2011/076325 CN2011076325W WO2012174749A1 WO 2012174749 A1 WO2012174749 A1 WO 2012174749A1 CN 2011076325 W CN2011076325 W CN 2011076325W WO 2012174749 A1 WO2012174749 A1 WO 2012174749A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- furnace
- low
- calorific value
- value gas
- air
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/70—Furnaces for ingots, i.e. soaking pits
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D17/00—Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
- F27D17/004—Systems for reclaiming waste heat
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D17/00—Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
- F27D17/008—Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases cleaning gases
Definitions
- the invention relates to a soaking furnace in the metallurgical industry, for example, a soaking furnace for wide and thick plate production and steel ingot heating, in particular to a low-calorific value gas (such as blast furnace gas) using high-temperature regenerative combustion technology, using high temperature And a regenerative soaking furnace with a low-temperature heating double heating system.
- a low-calorific value gas such as blast furnace gas
- the soaking furnace is a conventional furnace type structure, first appeared at the end of the 19th century, and the steel ingots after demolding were soaked.
- the rise of the large-scale and integrated shipbuilding industry and the manufacturing industry has promoted the demand for the wide and heavy plate rolling processing industry. Therefore, the soaking furnace can meet the heating needs of the large-sized billet required for the wide and thick plate production line.
- most of the heating equipment adopts or reserves the heating process of the soaking furnace.
- the existing soaking furnace using blast furnace gas generally cannot meet the requirements of the soaking furnace low temperature heating process.
- the previous preheating method was a regenerative soaking furnace using a clay heat exchanger, which has been eliminated due to its large volume and high air leakage rate.
- the technical problem solved by the present invention is to provide a regenerative soaking furnace for burning low calorific value gas, which can satisfy the heating temperature requirement of the soaking furnace.
- the technical solution of the present invention is: a regenerative soaking furnace for burning low calorific value gas, the soaking furnace comprising a furnace body and a furnace cover, wherein the soaking furnace is provided with a high calorific value gas
- the heated low temperature heating system and the regenerative high temperature heating system heated by the low calorific value gas, and the low temperature heating system and the regenerative high temperature heating system share the supply and exhaust pipes.
- the invention employs a high temperature and low temperature dual heating system.
- the blast furnace gas has a high ignition temperature (>750 ° C), and the heating of the wide plate or steel ingot requires heating and insulation at various temperature ranges.
- the present invention additionally provides a set of low-temperature heating system, which shares the air supply and exhaust pipe with the regenerative combustion high-temperature heating system. Now the furnace is not switched.
- the present invention employs a regenerative combustion system using a high-temperature heat storage combustion technology, thereby enabling use of low calorific value gas (blast furnace gas) as a fuel.
- the soaking furnace has a high heating temperature.
- pure blast furnace gas is used for the heating of the soaking furnace, if it is not preheated, it cannot be directly used for heating up to 1320 °C.
- the invention adopts the modern regenerative combustion method to realize the waste heat recovery technology for directly using the blast furnace gas for the heating process.
- the high-temperature heating system uses a separate air and gas storage tank with a high-temperature external passage to preheat the air and gas to above 1000 °C. Since the air and gas storage tanks are independent structures, air and air do not occur. The danger of explosion due to gas mixing ensures the safety of production.
- the regenerator Due to the high temperature of the soaking furnace and the high dust content of the furnace gas, the regenerator is made of a ball type regenerator, which is resistant to high temperatures and easy to replace the regenerator.
- the roof structure of the precast bricks or the castables is suspended by flat tops, and the service life is short due to unreasonable force.
- the present invention changes the flat roof furnace cover to an arched furnace cover, and the structure is more reasonable in force; at the same time, the hanging method of the hanging brick is changed into a double clamp tube type hanging, The structure that makes the hanging is more compact, and the adaptability to adapt to the angle change is better.
- the furnace cover adopts a multi-layer composite heat preservation structure, which is lighter in weight and better in heat preservation.
- the furnace floor brick of the soaking furnace is a vulnerable part, and in order to reduce the maintenance cost, the present invention adopts a replaceable prefabricated brick structure.
- Prefabricated bricks can be replaced not only with uniform specifications, but also interchangeable, which facilitates partial maintenance and replacement.
- the bottom of the prefabricated brick has a groove, combined with the channel locking structure, which can effectively block the inner wall of the furnace wall caused by the sliding of the sealing sand, and can reliably position the furnace brick.
- FIG. 1 is a schematic view of a combustion system of a specific embodiment of a regenerative soaking furnace of the present invention.
- Fig. 2 is a schematic cross-sectional view showing a specific embodiment of the regenerative soaking furnace of the present invention (all not shown, the gas passages and the air passages on the outside of the furnace body are respectively shown on both sides).
- Fig. 2A is an enlarged schematic view showing a partial structure of Fig. 2;
- Figure 3 is a top plan view of the regenerative soaking furnace of Figure 2.
- FIG. 3A is an enlarged schematic view showing a partial structure of FIG. 3.
- FIG. 4 is a partial structural view of a thermal storage tank used in an embodiment of the present invention, mainly showing a schematic diagram of a composite lining of a castable and a fiber module.
- Fig. 5 is a schematic view showing the model of a large cross-angle air and gas upper and lower rectification nozzle according to an embodiment of the present invention.
- Figure 6 is a schematic view showing the structure of an arched furnace cover used in an embodiment of the present invention.
- Fig. 6A is a schematic view showing the structure of the double-clamp type hanging body used in the arched furnace cover of Fig. 6, and also showing the metal skeleton for hanging the hanging pipe on the upper part of the furnace cover.
- Fig. 6B is a structural schematic view showing the other direction of the double pinch type hanging in the arched cover of Fig. 6.
- Figure 7 is a schematic view showing the structure of a replaceable furnace brick used in an embodiment of the present invention.
- Fig. 7A is a schematic view showing the furnace mouth brick of Fig. 7 applied to the furnace head of the regenerative soaking furnace. detailed description
- FIG. 1 it is a schematic diagram of a combustion system of a regenerative soaking furnace for burning blast furnace gas according to the present invention.
- the soaking furnace 200 includes a furnace body and a furnace cover (the specific structure is shown in FIG. 2 ), and both The hot furnace 200 is provided with a regenerative high-temperature heating system 21 that uses blast furnace gas for heating and a low-temperature heating system 23 that heats with high calorific value gas, and the low-temperature heating system 23 shares the air supply line 225 and the exhaust gas with the high-temperature heating system 21.
- Pipeline empty pipe 227).
- the high temperature heating system 21 preferably includes first and second high temperature channel combinations and switching mechanisms disposed in pairs on both sides of the soaking furnace 200.
- Each high temperature channel combination includes a blast furnace gas channel 211 disposed on the same side.
- the blast furnace gas passage 211 is connected to the blast furnace gas line 222 and the soot line 228, and the air passage 215 is connected to the air supply line 225 and the empty smoke line 227;
- the switching mechanism makes the first and second The combination of high temperature channels can be switched alternately as a combination of combustion channel combinations or exhaust channels.
- the exhaust pipe is divided into an empty smoke pipe 227 and a soot pipe 228, which are respectively connected with the air passage 215 and the blast furnace gas passage 211.
- the combustion system of the present invention is provided with corresponding valves on each of the pipes, wherein the switching mechanism of the high-temperature heating system 21 includes an air/smoke reversing valve disposed on one side of each air passage and is disposed on one side of each blast furnace gas passage
- the coal/smoke reversing valve, each air/smoke reversing valve is connected with an air passage, a supply air line and an empty smoke line, and each coal/smoke reversing valve is connected to the blast furnace gas passage, the gas supply line and the soot line.
- the switching mechanism includes a first coal/smoke reversing valve 212.
- each of the reversing valves is a two-position three-way valve, including a closing position, and the operation timing of each reversing valve is, for example: OFF -> opening a valve plate of the three-way valve -> exhausting smoke -> off -> Opening another valve plate of the three-way valve->air supply air intake, wherein the first outer interface of the first coal/smoke reversing valve 212 is connected to the blast furnace gas passage through a pipeline, the second outer interface and the third outer The interface is respectively connected to the blast furnace gas pipeline and the soot pipeline, and the switching of the blast furnace gas/exhaust soot function is realized by the reversing valve; the first outer interface of the first air/smoke reversing valve 216 is connected to the pipeline through the pipeline The air passage, the
- the low temperature heating system 23 includes a low temperature heating burner 231 disposed on both side walls of the furnace wall of the soaking furnace 200, and the low temperature heating burner 231 is connected to the high calorific value gas pipe 234 and the air supply pipe 225.
- natural gas is used as the fuel of the low temperature heating system, that is, the high calorific value gas is natural gas, but is not limited thereto.
- the natural gas combustion system for the low-temperature heating function of the embodiment is provided with an independent natural gas pipeline and an air pipeline, and the natural gas burner is used for combustion heating, and the air pipeline of the natural gas burner is a branch pipeline of the high-temperature heating system. That is, the air manifold taken from the high temperature heating system.
- the blast furnace gas portion (including the pipeline and the passage) of the regenerative combustion system is in a closed state, but the commutation switching and the air supply of the regenerative combustion are still in operation, so that low-temperature heating can be achieved.
- Combustion heating and waste heat recovery of natural gas combustion systems are possible.
- the preferred embodiment of the present invention employs a high temperature and low temperature heating dual heating system to adequately meet the needs of low temperature heating.
- the low-temperature heating system and the regenerative combustion system share the supply and exhaust pipes, which can realize the non-stop furnace switching.
- the normal temperature air blown by the combustion air blower 226 is switched to the side of the furnace body through the first air/smoke reversing valve 216 of the air supply duct 225 passing through the side of the furnace body (the left side orientation as shown in FIG. 1).
- the air passage (the combination of the high temperature passage on the other side has been switched to the smoke exhaust state), and then heated in the heat storage body of the air passage, thereby heating the normal temperature air to a temperature close to the furnace in a very short time.
- the blast furnace gas Since the first coal/smoke reversing valve 212 on the side blast furnace gas line 222 is in the intake position, the blast furnace gas enters the blast furnace gas passage on the side from the reversing valve, and is in the regenerator tank of the passage. Heating to near the furnace temperature, therefore, the heated high-temperature hot air enters the soaking furnace body, and is mixed and burned with the blast furnace gas, and at the same time, part of the hot flue gas after combustion in the furnace body is in the soot draft fan 281, the empty smoke induced draft fan Under the action of 271, the high-temperature passage in the exhaust state through the other side of the furnace body (the right side shown in Fig.
- the blast furnace gas line and the soot line of the regenerative combustion should be turned off, the natural gas line and the air supply line should be opened, and the natural gas burner on the side wall of the furnace body can be used to realize combustion and heat supply.
- the air supply lines on both sides and the associated reversing valve work normally, that is, the air passage on one side (left side as shown in Figure 1) is switched from the reversing valve to the intake position, and the other side (as in Figure 1).
- the air passage shown on the right side is switched from the corresponding reversing valve to the exhaust position to realize the function of exhausting smoke and heat storage; after working for a period of time, switching the reversing valve corresponding to the air passage on one side to the exhaust Positioning, and switching the reversing valve corresponding to the air passage on the other side to the intake air position, since the regenerator of the air passage has previously performed exhaust heat storage, the ambient air entering at this time can be Heating in a short period of time to the temperature close to the furnace, as part of the air required for the combustion of the natural gas burner to participate in the combustion, is conducive to the recovery of waste heat.
- the low temperature heating system 23 can be used to achieve heating or soaking at a temperature below 800 ° C, and the high temperature heating system can be used to achieve heating or soaking at a temperature between 800 ° C and 1320 ° C, thereby achieving high and low temperature double heating.
- a manual shut-off valve (with the "M” symbol), a temperature detecting element (with the “P” symbol), and automatic flow adjustment are provided on each blast furnace gas line and each air line as needed.
- Valve (with “V” symbol), etc., to facilitate control and maintenance of the overall combustion system.
- the setting of the relevant valve can be accurately understood by those skilled in the art based on the foregoing and the accompanying drawings, and thus will not be described again.
- a low-calorific value gas such as blast furnace gas
- a regenerative combustion system using a high-temperature regenerative combustion technology is equipped with an independent empty gas storage tank, which is completed with the use of a reversing valve. High temperature regenerative combustion function.
- fuels used for low-temperature heating can also use other high-calorie gas fuels, such as coke oven gas, mixed gas, city gas, etc., and the fuel used in the regenerative combustion system can also use other low heat. Value of gaseous fuel, such as furnace gas.
- FIG. 2 it is a schematic structural view of a specific embodiment of the regenerative soaking furnace of the present invention. This embodiment The low-temperature heating burner 14 is disposed on the side wall of the furnace body of the soaking furnace. The specific arrangement manner can be referred to other embodiments, and details are not described herein. The main feature of the embodiment is that each channel of the high-temperature heating system The structure is provided with a heat storage tank independent of the furnace body.
- the soaking furnace comprises a furnace body 101 and a furnace cover 102.
- the furnace body of the soaking furnace comprises a metal furnace shell 143 and a composite furnace lining 144 therein, and the high temperature heating system is Independent air and gas storage tank with high temperature external passage and ball regenerator.
- the high temperature heating system of the soaking furnace includes first and second channel structures 10, 10' disposed in pairs on one side of the soaking furnace, and a third pair disposed on the opposite side of the other side.
- the fourth channel structure 30, 30', the first and second channel structures and the third and fourth channel structures have the same basic structure, and each includes a high temperature gas channel 11, a heat storage tank 12, and a low temperature gas channel 13, each of which stores heat
- the tank 12 includes a heat storage tank 120 and a heat storage body 121 disposed therein.
- One end of the heat storage tank 120 is provided with a low temperature gas passage 13 connected to the pipeline, and the other end thereof is provided with a high temperature gas connected to the furnace body 101.
- the first channel structure 10 on the side wall of the furnace body 101 is provided with a first nozzle 103 for contacting the first channel structure, and the corresponding second channel structure 10' is provided for the second channel structure.
- the second nozzle 103' is connected, and the third and fourth channel structures are provided on the other side wall corresponding to the third nozzle 303 for contacting the third channel structure 30 and for the fourth Channel structure 30' connected fourth Port 303 '.
- the blast furnace gas is used as the fuel of the high-temperature heating system. Therefore, the first and second passage structures actually correspond to the blast furnace gas passage and the air passage, and the first nozzle 103 and the third nozzle 303 are blast furnace gas nozzles. The second nozzle 103' and the fourth nozzle 303' are air nozzles. The specific composition and characteristics of each channel structure are described in detail below.
- each of the high-temperature gas passages 11 is bent and connected to the furnace body 101.
- the high-temperature gas passages 11 are bent and connected after being bent twice.
- this can effectively absorb the structural stress and strain caused by the temperature expansion of the high-temperature passage at a high temperature; in addition, as shown in FIG. 2A, the joint portion A is subjected to a flexible sealing treatment to ensure the sealing. effect.
- the specific structure and process of the flexible sealing process those skilled in the art can fully implement the prior art, and will not be described herein.
- the first end of the blast furnace gas storage tank 12 is dispersed with a plurality of low temperature gas passages 13.
- FIG. 4 is a partial structural schematic diagram of a thermal storage box used in a specific embodiment of the present invention, and mainly shows a schematic diagram of a composite lining structure of a castable and a fiber module.
- the regenerative tank 120 includes a metal skeleton 122, a casing 123, and an inner insulating lining 124.
- the high temperature gas passage 11 is formed together with the heat storage tank 120, and the high temperature gas passage 11 and the top inner wall of the heat storage tank 120 are preferably provided with a heat insulating lining.
- the side wall 127 of the thermal storage tank 120 is preferably a castable monolithic casting structure.
- the side wall of the thermal storage tank 120 may be made of a lightweight high-strength castable having high strength and low thermal conductivity (for example, a lightweight moiré). Cast stone, etc.), and heat resistant steel anchor hook 129 can be used as anchor.
- the thermal storage tank 120 is a fiber module ceiling structure.
- the top of the heat storage box 120 is made of a light-weight, high-temperature resistant refractory fiber as a refractory working layer and a heat insulating layer in contact with a high temperature gas, preferably a temperature resistant 1350.
- the special refractory fiber above °C is suspended from the top metal frame 122 by the heat-resistant steel anchor 129, and the heat-resistant steel members 126 are interposed and fixed between the fiber modules 125.
- the top of the thermal storage box 120 can also be made of the same material and structure as the side walls, such as integral casting or sequential casting, which will not be repeated here.
- the furnace body 101 is connected to the high-temperature gas passages 11, 1 of the blast furnace gas passage and the air passage on the same side of the furnace body 101.
- the first nozzle 103 and the second nozzle 103' are formed to form a spout combination structure in which air and gas meet up and down to facilitate rapid and thorough mixing of high-temperature combustion under a large gas flow state.
- the gas nozzle corresponding to a combination of a certain high temperature channel is disposed above and below the air nozzle to form a nozzle combination structure.
- the first (gas) nozzle 103 and the second (air) nozzle 103' corresponding thereto are arranged up and down and obliquely intersect to form a nozzle combination structure.
- the furnace body 101 has inclined nozzle segments 105, 105' near the two nozzles.
- the spout sections 105, 105' are obliquely intersected to form a spout assembly.
- the furnace body is also provided with a straight connection.
- the segments 107, 107' and the two connecting segments 107, 107' are parallel to each other and are arranged in a vertical relationship in the vertical direction.
- the center line of the two nozzle segments 105, 105' has a large angle of intersection preferably between 3 ( ⁇ 90 °, for example, a large angle of intersection of about 45 ° can be used, thereby facilitating the empty,
- the high-temperature combustion of the gas is rapidly and thoroughly mixed under a large gas flow state, and the uniformity of the temperature distribution of the temperature field in the furnace can be improved.
- the width of the second nozzle 103' and the first nozzle 103 are preferably kept similar or Equal, but there is no specific requirement in height, which can be determined as needed.
- the nozzle assembly structure is preferably a rectifying nozzle combination structure, that is, a first (gas) nozzle 103 and a second (air) disposed above and below.
- a rectifying structure is formed to form a rectifying nozzle structure.
- the rectifying structure preferably has a smooth convex structure, and may be, for example, an arcuate convex surface, preferably a semi-cylindrical convex structure 108 as shown in FIG.
- the convex surface smoothed for the polygon such as a smooth transition convex surface formed by a trapezoid, a triangle or the like, is located between the first spout 103 and the second spout 103', thereby better facilitating high-quality mixing of the airflow.
- the realization process of high-temperature regenerative combustion is through the switching function of the reversing valve, so that the air storage tank and the gas storage tank on one side are in the state of air supply and gas supply, and through the nozzle in the furnace.
- the fuel is supplied into the furnace to achieve combustion and heat supply.
- the air storage tank and the gas storage tank on the other side pump the exhaust gas generated by the combustion through the nozzles and the high temperature passage in the furnace, so that the exhaust gas stores heat to the heat storage body in the heat storage tank, and the realization will be realized.
- the exhaust gas of heat storage heat exchange is passed through the air smoke and soot pipes at a very low temperature (150 °C), and is discharged into the atmosphere through the induced draft fan and the chimney, thereby realizing combustion heating on one side.
- T150 S a certain period of time
- the combustion supply state of one side is switched to the exhaust gas discharge state, and the exhaust gas discharge state of the other side is switched to the combustion supply.
- the state is implemented in a manner similar to that described above, thus completing a cycle of regenerative combustion.
- the present embodiment adopts a heat storage tank of a single body (independent of the furnace body), thereby obtaining a large-section, large gas exchange amount regenerative combustion device, so that the inner passage size of the cross-sectional area can be greater than 1 m 2 . It can be 1.5 m 2 or more, and in an application embodiment of the present invention, it is 2.88 m 2 , and the gas exchange amount can reach 12,000 Nm 3 /h, which is impossible for the existing regenerative combustion equipment.
- FIG. 6 it is a schematic structural view of an arched furnace cover used in a specific embodiment of the present invention. In this embodiment, in order to improve the service life of the furnace cover, the flat roof cover structure of the existing soaking furnace is changed into an arched furnace cover structure, and the furnace cover adopts an integral casting structure, thereby making the force More reasonable.
- each double pinch type hanging structure 132 includes a hanging pipe 133 and hanging.
- Two hanging clips at the two ends of the brick are suspended from the hanging wire 134 on both sides of the upper part of the hanging brick, and the two wires 134 are cross-fixed and fixed.
- the hooks of the ends are respectively hooked and fixed to the positions of the hanging pipes 133 corresponding to the two ends of the hanging bricks, and the double pinch type hanging is formed, so that the hanging bricks 135 are hung on the hanging pipes 133, so that the hanging structure is further Compact and adaptable to angle changes.
- the hanging brick 135 is suspended from the hanging pipe 133 by double-clamping hanging, and then integrally poured to form the furnace cover 102.
- the heat insulating structure of the furnace cover is preferably a multi-layer composite form to make the weight lighter and the heat preservation property better.
- FIG. 7A which may be used in a specific embodiment of the regenerative soaking furnace of the present invention. Schematic diagram of the replacement furnace floor tile 131 and the locking structure.
- the embodiment adopts a replaceable prefabricated brick structure, that is, the furnace mouth of the soaking furnace is composed of a plurality of furnace bricks 131, thereby Prefabricated bricks can be replaced not only with uniform specifications, but also interchangeable, which facilitates partial maintenance and replacement.
- a channel locking structure may be provided at the furnace mouth of the furnace body 101, that is, a channel steel is arranged at the upper end of the furnace body 101.
- the bottom of the furnace brick 131 is preferably provided with a fitting groove 136 which cooperates with the channel steel 138.
- the channel steel 138 is disposed at the upper end of the furnace body, and one end thereof is welded and fixed to the furnace body casing 143, and the other end is It is combined with the groove 136 at the bottom of the furnace brick 131, so as to effectively block the inversion of the furnace wall caused by the sliding of the sealing sand, and can reliably position the furnace brick.
- the upper portion of the mouth tile 131 is provided with a bendable lifting lug 137 in a groove corresponding to the sand sealing structure, and the lifting lug 137 is erected when the furnace opening 131 is installed and replaced, so as to provide better The hoisting is fixed; when it is installed, it can be bent horizontally without affecting the sand sealing effect.
- the present invention proposes a soaking furnace that uses a low calorific value gas (e.g., blast furnace gas) and employs a modern regenerative commutation high temperature combustion technique.
- the soaking furnace does not need to have an additional exhaust passage (conventional flue), and the waste heat generated by the combustion can be completely recovered, which has extremely high heating efficiency.
- the combustion system is also equipped with a natural gas combustion system suitable for low-temperature heating to meet low-temperature heating. need. Therefore, the combustion system is a high and low temperature double heating system having a high temperature and low temperature heating function.
- the present invention employs a high temperature regenerative combustion technology for burning low calorific value gas (blast furnace gas), which has a high temperature external passage and is provided with a ball type regenerator and is independent. In the air and gas storage tank of the furnace body.
- the preferred embodiment of the present invention also improves the structure of the furnace cover and the furnace wall of the soaking furnace, respectively adopting a long-shoulder arch furnace with double-clamping type hanging
- the cover and the slot lock structure and the replaceable furnace brick make the structure of the soaking furnace more reasonable and can greatly reduce the maintenance cost.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
Abstract
一种燃烧低热值煤气的蓄热式均热炉(200)包括炉体(101)和炉盖(102),所述均热炉(200)设有利用高热值燃气进行加热的低温加热系统(23)及利用低热值煤气进行加热的蓄热式高温加热系统(21),且低温加热系统(23)与蓄热式高温加热系统(21)共用供风管路(225)及排烟管路(227)。由于高炉煤气的着火温度较高,而钢锭或宽厚板需要在不同温度段的加热保温,为满足低温加热的需要,设置了包括蓄热式高温加热系统和低温加热系统的双加热系统。该双加热系统共用供风管路及排烟管路,均热炉的工作可以实现不停炉切换。
Description
燃烧低热值煤气的蓄热式均热炉 技术领域
本发明技术涉及一种冶金行业的均热炉,例如用于宽厚板生产及钢锭加热的均热 炉, 特别是涉及一种燃低热值煤气 (如高炉煤气)采用高温蓄热燃烧技术、 使用高温及 低温加热双加热系统的蓄热式均热炉。 背景技术
均热炉是一种传统的炉型结构形式, 首先出现在 19世纪末, 用于脱模后的钢锭进 行均热。 近年来, 船舶业和制造业的大型化、 一体化的兴起, 促进了对于宽厚板轧制加 工业的需求, 而均热炉由于可满足宽厚板生产线所需大规格钢坯的加热需要, 所以, 在 新建的宽厚板生产线中, 加热设备大多都采用或预留了均热炉的加热工艺。
由于高炉煤气在低温下 (〈750°C)不能组织燃烧, 所以, 现有采用高炉煤气的均热炉 通常无法满足均热炉低温加热工艺的要求。
另外,采用纯高炉煤气用于均热炉的加热时,如果不预热,则不能直接用于钢锭 1320
°。的加热。 之前的预热方式是采用陶土换热器的蓄热式均热炉, 由于体积庞大, 漏风率 高的原因, 该技术目前已被淘汰。 发明内容
本发明解决的技术问题是, 提供一种燃烧低热值煤气的蓄热式均热炉, 该蓄热式均 热炉能够满足均热炉的加热温度要求。
本发明的技术解决方案是: 一种燃烧低热值煤气的蓄热式均热炉, 所述均热炉包括 炉体和炉盖, 其特征在于, 所述均热炉设有利用高热值燃气进行加热的低温加热系统及 利用低热值煤气进行加热的蓄热式高温加热系统, 且所述低温加热系统与蓄热式高温加 热系统共用供风及排烟管路。
本发明的特点和优点如下:
①本发明采用高温及低温双加热系统。
高炉煤气的着火温度较高(>750°C ) , 而宽厚板或钢锭的加热需要在各个温度段的 加热保温。 为满足低温加热的需要, 本发明除了设置蓄热式高温加热系统外, 还另外设 置了一套低温加热系统, 该系统与蓄热燃烧高温加热系统共用供风及排烟管路, 可以实
现不停炉切换。
②本发明采用高温蓄热燃烧技术的蓄热式燃烧系统,从而能够利用低热值煤气(高 炉煤气) 作为燃料。
均热炉的加热温度较高, 采用纯高炉煤气用于均热炉的加热时, 如果不预热, 则不 能直接用于钢锭高达 1320°C的加热。本发明采用现代蓄热燃烧方式实现了将高炉煤气直 接用于加热过程的余热全回收技术。
高温加热系统采用带高温外置通道的独立空、 煤气蓄热箱, 可以将空气和煤气预热 到 1000°C以上, 由于空气和煤气蓄热箱是各自独立的结构,所以不会发生空气和煤气掺 混而发生爆炸的危险, 保证了生产的安全性。
由于均热炉高温和炉气含尘高, 所以蓄热体选用了球式蓄热体, 既耐高温, 又便于 蓄热体的更换。
③采用双夹管式吊挂的长寿命拱形炉盖。
现有的均热炉多采用平顶吊挂预制砖或浇注料的炉盖结构, 受力不合理导致其使用 寿命较短。 为了提高炉盖的使用寿命, 本发明将平顶炉盖改为拱形炉盖, 这样的结构受 力更为合理; 同时, 将吊挂砖的吊挂方法改为双夹管式吊挂, 使吊挂的结构更紧凑, 适 应角度变化的适应性更好。
炉盖采用多层复合形式的保温结构, 重量更轻, 保温性更好。
④采用可更换式炉口砖、 槽口锁挂结构, 增强可维护性。
均热炉的炉口砖是易损部位,为了降低维修成本,本发明采用可更换的预制砖结构。 预制砖不仅可以更换, 而且规格统一, 还具有互换性, 方便了局部的维修更换。
预制砖底部有嵌槽, 结合槽钢锁挂结构, 可有效阻挡封口砂滑落造成的炉墙内倾, 并能可靠地使炉口砖定位。 附图说明
图 1为本发明的蓄热式均热炉的一具体实施例的燃烧系统的示意图。
图 2为本发明的蓄热式均热炉的一具体实施例的剖视示意图 (未显示全部, 两侧分 别显示了炉体外部的煤气通道和空气通道) 。
图 2A为图 2的局部结构放大示意图。
图 3为图 2中蓄热式均热炉的俯视示意图。
图 3A为图 3的局部结构放大示意图。
图 4为本发明的一具体实施例采用的蓄热箱体的局部结构示意图, 主要显示了浇注 料和纤维模块组合内衬结构示意图。
图 5为本发明的一具体实施例采用的大交角空、煤气上下交汇整流喷口的模型示意 图。
图 6为本发明的一具体实施例中所采用的拱形炉盖的结构示意图。
图 6A为图 6中拱形炉盖中所采用的双夹管式吊挂的结构示意图, 其中还示出了炉 盖上部用于吊挂管悬挂的金属骨架。
图 6B为图 6中拱形炉盖中所采用的双夹管式吊挂的另一方向的结构示意图。
图 7为本发明一具体实施例中所采用可更换式炉口砖的结构示意图。
图 7A为图 7中的炉口砖应用于蓄热式均热炉炉口处的示意图。 具体实施方式
为了能够更清楚了解本发明的技术手段, 而可依照说明书的内容予以实施, 并且为 了让本发明的上述和其他目的、 特征和优点能够更明显易懂, 以下特举较佳实施例, 并 配合附图, 详细说明如下。
如图 1所示, 其为本发明的燃烧高炉煤气的蓄热式均热炉的燃烧系统示意图, 该均 热炉 200包括炉体和炉盖(具体结构请结合图 2所示) , 且均热炉 200设有利用高炉煤 气进行加热的蓄热式高温加热系统 21和利用高热值燃气进行加热的低温加热系统 23, 且低温加热系统 23与高温加热系统 21共用供风管路 225及排烟管路(空烟管路 227 )。
本实施例中, 高温加热系统 21较佳是包括均热炉 200两侧成对设置的第一、 第二 高温通道组合及切换机构, 每一高温通道组合均包括同侧设置的高炉煤气通道 211与空 气通道 215,高炉煤气通道 211与高炉煤气管路 222及煤烟管路 228相连,空气通道 215 与供风管路 225及空烟管路 227相连; 所述切换机构使得第一、 第二高温通道组合可以 被切换而交替作为燃烧通道组合或排烟通道组合。 本实施例中, 为了更好地保证排烟安 全, 排烟管路分为空烟管路 227和煤烟管路 228, 分别与空气通道 215、 高炉煤气通道 211相对应连通。
本发明的燃烧系统在各管道上设有相应的阀门, 其中, 高温加热系统 21 的切换机 构包括设于各空气通道一侧管路上的空 /烟换向阀以及设于各高炉煤气通道一侧的煤 / 烟换向阀, 各空 /烟换向阀连接空气通道、 供风管路及空烟管路, 各煤 /烟换向阀连接高 炉煤气通道、 供气管路及煤烟管路。 具体到图 1 中, 该切换机构包括第一煤 /烟换向阀
212、 第一空 /烟换向阀 216、 第二煤 /烟换向阀 213、 第二空 /烟换向阀 217。 较佳地, 各 换向阀为两位三通阀, 包括一关闭位, 各换向阀的动作时序例如为: 关-〉打开三通阀的 一个阀板-〉排烟-〉关-〉打开三通阀的另一个阀板-〉送风进气, 其中, 第一煤 /烟换向阀 212的第一外接口通过管路连接到高炉煤气通道, 其第二外接口及第三外接口分别接高 炉煤气管路及煤烟管路, 通过该换向阀实现通入高炉煤气 /排出煤烟功能的切换; 第一 空 /烟换向阀 216 的第一外接口通过管路连接到空气通道, 其第二外接口及第三外接口 分别接供风管路 225及空烟管路 227, 通过该换向阀实现通入空气 /排出空烟功能的切 换。 另一侧的第二煤 /烟换向阀 213、 第二空 /烟换向阀 217的设置方式类似, 此处不再 赘述。
如图 1所示, 低温加热系统 23包括于均热炉 200的炉墙两侧壁上设置的低温加热 烧嘴 231,低温加热烧嘴 231与高热值燃气管道 234及供风管路 225相连,本实施例中, 是以天然气作为低温加热系统的燃料, 即该高热值燃气为天然气, 但不限于此。 本实施 例用于低温加热功能的天然气燃烧系统配置有独立的天然气管路和空气管路,利用天然 气烧嘴实现燃烧供热, 天然气烧嘴的空气管路是高温加热系统的一个分支管路, 即取自 高温加热系统的空气总管。该低温加热系统在使用时,蓄热燃烧系统的高炉煤气部分(包 括管路及通道) 处于关闭状态, 但蓄热燃烧的换向切换和空气供入仍然处于工作状态, 因此可以实现低温加热时天然气燃烧系统的燃烧供热和余热回收功能。
本发明较佳实施例采用高温及低温加热双加热系统, 可以充分满足低温加热的需 要。 低温加热系统与蓄热燃烧系统共用供风及排烟管路, 可以实现不停炉切换。
下面简要说明本实施例的工作原理:
对于高温加热系统, 由助燃风机 226吹出的常温空气通过供风管道 225经过炉体一 侧(如图 1中所示左侧方位)的第一空 /烟换向阀 216切换进入炉体该侧的空气通道(另 一侧的高温通道组合已被切换成排烟状态) , 随后在该空气通道的蓄热体内被加热, 从 而在极短的时间内将常温空气加热到接近炉温, 此时, 由于该侧高炉煤气管路 222上的 第一煤 /烟换向阀 212处于进气位置, 高炉煤气由该换向阀进入该侧的高炉煤气通道, 并在该通道的蓄热箱内被加热到接近炉温, 因此, 被加热的高温热空气进入均热炉炉体 后, 与高炉煤气混合燃烧, 同时, 炉体内燃烧后的部分热烟气在煤烟引风机 281、 空烟 引风机 271的作用下经过炉体另一侧(图 1所示的右侧)处于排烟状态的高温通道组合 排出至煤烟烟囱 283和空烟烟囱 273夕卜,在此排烟过程中同时对高炉煤气通道和空气通 道中的蓄热体进行蓄热。
燃烧预定时间(如 120-150s)后, 即可关闭该第一煤 /烟换向阀 212、 第一空 /烟换向 阀 216, 再利用切换机构将该侧高温通道组合切换为排烟状态, 而将另一侧高温通道组 合切换为进气状态, 从而实现功能的转换, 由已经完成蓄热的蓄热体对所输入的气体进 行迅速加热, 使其升温至接近炉温的水平, 以利于实现高温加热燃烧, 如此即完成一个 周期的高温蓄热燃烧过程。
在需要进行低温加热时, 应关闭蓄热燃烧的高炉煤气管路和煤烟管路, 开启天然气 管路和供风管路, 利用炉体侧壁的天然气烧嘴实现燃烧供热, 此时, 两侧的供风管路及 相关的换向阀正常工作, 即一侧 (如图 1中所示左侧) 的空气通道由换向阀切换至进风 位置, 另一侧 (如图 1中所示右侧) 的空气通道由对应的换向阀切换至排烟位置, 实现 排烟和蓄热的功能; 在工作一段时间后, 将一侧的空气通道对应的换向阀切换至排烟位 置, 而将另一侧的空气通道对应的换向阀切换至进风位置, 由于该空气通道的蓄热箱此 前已进行了排烟蓄热, 因此, 可以将此时进入的常温空气在极短的时间内加热到接近炉 温, 作为天然气烧嘴燃烧时所需空气的一部分参与燃烧, 利于烟气余热回收。
在利用低温加热系统进行一段时间的加热或均热后, 如需进一步对炉内的钢锭或宽 厚板等产品进行高温加热, 则只需关闭天然气管路, 而对高温加热系统(尤其是高炉煤 气管路) 进行适当的切换即可实现, 由于其实现方式与前述内容一致, 此处不再赘述。
本实施例中,可以利用低温加热系统 23实现 800°C以下温度的加热或均热,利用高 温加热系统实现 800°C〜1320°C之间温度的加热或均热, 从而实现高低温双加热功能。
如图 1所示, 本实施例在各高炉煤气管路、 各空气管路上还根据需要设有手动截断 阀 (带 "M"符号) 、 温度检测元件 (带 "P "符号) 、 流量自动调节阀 (带 "V"符号) 等等, 以利于对整体燃烧系统的控制及检修维护。 本领域的技术人员根据前述内容及附 图已可准确理解相关阀的设置, 故此不再赘述。
如图 1所示, 本实施例燃低热值煤气 (如高炉煤气) , 采用高温蓄热燃烧技术的蓄 热式燃烧系统, 配备有独立的空煤气蓄热箱, 配合换向阀的使用, 完成高温蓄热燃烧功 能。
另外, 用于低温加热的燃料除了可以使用天然气外, 还可以使用其它高热值的气体 燃料, 如焦炉煤气, 混合煤气, 城市煤气等, 而且, 蓄热燃烧系统所用的燃料也可以使 用其它低热值的气体燃料, 如发生炉煤气等。 如图 2所示, 其为本发明的蓄热式均热炉的一具体实施例的结构示意图。 本实施例
中, 均热炉的炉体侧壁上设有低温加热烧嘴 14, 其具体设置方式可参照其他实施例, 此 处不再赘述, 本实施例的主要特点在于, 其高温加热系统的各通道结构均设有独立于炉 体的蓄热箱。
具体地, 在本发明的该实施例中, 均热炉包括炉体 101与炉盖 102, 均热炉的炉体 包括金属炉壳 143及其内部的复合炉衬 144, 其高温加热系统采用的是带有高温外置通 道并采用球式蓄热体的独立空、 煤气蓄热箱。 结合图 2A至图 3A所示, 均热炉的高温加 热系统包括均热炉一侧成对设置的第一、第二通道结构 10、 10 ' 以及其相对的另一侧成 对设置的第三、 第四通道结构 30、 30 ' , 第一、 第二通道结构及第三、 第四通道结构的 基本结构相同, 均包括高温气体通道 11、 蓄热箱 12及低温气体通道 13, 各蓄热箱 12 包括蓄热箱体 120及其内部设置的蓄热体 121, 蓄热箱体 120的一端设置有与管道相连 的低温气体通道 13, 其另一端设有与炉体 101相接的高温气体通道 11 ; 炉体 101—侧 的侧壁上对应第一通道结构 10设有用于与第一通道结构相接的第一喷口 103,对应第二 通道结构 10 ' 设有用于与第二通道结构相接的第二喷口 103 ' , 同理, 在其另一侧的侧 壁上对应第三、 第四通道结构设有用于与第三通道结构 30相接的第三喷口 303和用于 与第四通道结构 30 ' 相接的第四喷口 303 ' 。
本实施例中, 是以高炉煤气作为高温加热系统的燃料, 因此, 上述第一、 第二通道 结构实际对应于高炉煤气通道、 空气通道, 第一喷口 103、 第三喷口 303为高炉煤气喷 口, 第二喷口 103 ' 、 第四喷口 303 ' 为空气喷口。 下面针对各通道结构的具体组成和 特点进行详细说明。
如图 3、 图 3A所示, 本实施例中, 各高温气体通道 11是与炉体 101弯转相接, 如 图所示, 高温气体通道 11在延伸方向上是经过两次弯折后连接至炉体 101,这样可有效 吸收高温通道在高温下因温度膨胀而产生的结构应力和应变; 另外, 请参见图 2A所示, 对二者相接部位 A处进行柔性密封处理, 以保证密封效果。 至于柔性密封处理的具体结 构和工艺, 本领域的技术人员完全可以采用现有技术来实现, 此处不再赘述。
可选地, 请参考图 2、 图 2A所示, 该高炉煤气蓄热箱 12的第一端分散设置有多个 低温气体通道 13。
请结合图 4所示, 其为本发明的一具体实施例采用的蓄热箱体的局部结构示意图, 主要显示了浇注料和纤维模块组合内衬结构示意图。该蓄热箱体 120包括金属骨架 122、 外壳 123以及内部的绝热内衬 124。 请参见图 4, 高温气体通道 11与蓄热箱体 120是一 同制作留设, 且高温气体通道 11 内以及蓄热箱体 120顶部内壁优选是均设有绝热内衬
作为保温结构。
如图 4所示, 蓄热箱体 120的侧壁 127较佳为浇注料整体浇注结构, 进一步地, 其侧壁可采用强度高、导热系数低的轻质高强浇注料(例如轻质莫来石浇注料等)浇注, 并可用耐热钢锚固钩 129作为锚固件。较佳地,蓄热箱体 120是采用纤维模块吊顶结构, 具体地, 其顶部采用重量轻、 耐高温的耐火纤维作为与高温气体接触的耐火工作层和绝 热保温层,较佳是耐温 1350°C以上的特种耐火纤维,用耐热钢锚固件 129悬挂在顶部金 属骨架 122上, 并且各纤维模块 125间采用耐热钢构件 126穿插固定。 当然, 该蓄热箱 体 120的顶部也可采用与侧壁相同的材质和结构, 如采用整体浇注或顺序浇注的方式, 此处不再一一赘述。
基于具有上述构成特点的通道结构, 请结合图 3A、 图 5所示, 本发明的一具体实 施例中, 炉体 101同侧的与该高炉煤气通道、 空气通道的高温气体通道 11、 1 相连 通的第一喷口 103、 第二喷口 103 ' 间形成空、 燃气上下交汇的喷口组合结构, 以利于 高温燃烧在大气体流量状态下的快速、 充分混合。
本发明的一具体实施例中, 对应于某一高温通道组合的燃气喷口与空气喷口上下 设置并倾斜交汇形成喷口组合结构。以第一高温通道组合为例,与其对应的第一(燃气) 喷口 103与第二 (空气) 喷口 103 ' 呈上下设置并倾斜交汇状态形成喷口组合结构。
再结合前述通道结构与炉体的结合特点来说, 由于各高温气体通道是与炉体 101 弯转相接, 因此, 炉体 101的靠近二喷口处具有倾斜的喷口段 105、 105 ' , 二喷口段 105、 105 ' 倾斜相交, 形成喷口组合结构。 较佳地, 为了便于炉体与各通道结构的顺利 相接, 本实施例中, 在二喷口段 105、 105 ' 与二高温气体通道 11、 1 间, 该炉体还 设有平直的连接段 107、 107 ' , 二连接段 107、 107 ' 相互平行, 且在垂直方向呈上下 设置关系。
本发明的具体实施例中, 二喷口段 105、 105' 的中心线间具有较佳为介于 3(Γ90 ° 之间的大交角, 例如可采用约 45 ° 的大交角, 从而有利于空、煤气的高温燃烧在大气 体流量状态下的快速、 充分混合, 且能够提高炉内温度场温度分布的均匀性。
为了进一步加强空、 煤气的高温燃烧在大气体流量状态下的快速、 充分混合并提 高炉内温度场温度分布的均匀性, 第二喷口 103 ' 与第一喷口 103的宽度较佳是保持相 近或相等, 而在高度上则没有具体要求, 可以根据需要确定。
为了使气流的燃烧混合更好、 流动的阻力更小, 本发明中, 该喷口组合结构较佳 为整流式喷口组合结构,亦即上下设置的第一(燃气)喷口 103、第二(空气)喷口 103 '
间设有整流结构, 形成整流式喷口结构, 该整流结构较佳是具有平滑凸面的结构, 例如 可以为弧状凸面, 较佳是如图 5所示的半圆柱状凸起结构 108, 当然, 也可为多边形进 行平滑处理过的凸面, 如可为梯形、 三角形等形成的平滑过渡凸面, 该弧状凸面位于第 一喷口 103和第二喷口 103 ' 之间, 从而更佳有利于气流的高质量混合。
如图中所示, 高温蓄热燃烧的实现过程是通过换向阀的切换功能, 使一侧的空气 蓄热箱和煤气蓄热箱处于空气供入和煤气供入状态,通过炉内的喷口,将燃料供入炉内, 实现燃烧供热。 同时, 另一侧的空气蓄热箱和煤气蓄热箱通过炉内的喷口和高温通道对 燃烧产生的废气进行抽吸, 使废气对蓄热箱内的蓄热体蓄热, 并将实现了蓄热换热的废 气以极低的温度(150 °C)分别通过空烟和煤烟管路, 经过引风机和烟囱排放到大气中, 从而实现了一侧的燃烧供热。经过一定的时间后(12(T150S),再通过换向阀的换向功能, 将一侧的燃烧供入状态切换成废气排放状态, 同时将另一侧的废气排放状态切换成燃烧 供入状态, 实现的方式与上面描述的类似, 这样, 就完成了一个周期的蓄热燃烧过程。
由上述可知, 本实施例采用单体 (独立于炉体) 的蓄热箱, 从而获得一种大截面、 大气体交换量蓄热燃烧设备, 使得截面面积的内通道尺寸能够大于 1 m2, 可以为 1. 5 m2 以上, 本发明的一应用实施例中达到 2. 88m2, 气体的交换量能够达到 12000Nm3/h, 这是 现有的蓄热式燃烧设备所无法实现的。 结合图 6所示, 其为本发明的一具体实施例中所采用的拱形炉盖的结构示意图。 本 实施例中, 为了提高炉盖的使用寿命, 本实施例将现有均热炉的平顶炉盖结构改为拱形 炉盖结构, 且该炉盖采用整体浇注结构, 从而使得其受力更为合理。
另一方面, 如图 6A、 6B所示, 本实施例将吊挂砖 135的吊挂方法改为双夹管式吊 挂, 每一双夹管式吊挂结构 132包括吊挂管 133和吊挂砖两端的二吊挂夹, 一具体实施 例中, 二吊挂夹是由吊挂钢丝 134呈交叉状绕设于吊挂砖上部两侧的吊挂部, 且交叉固 定后吊挂钢丝 134两端的挂钩分别钩设固定于吊挂管 133对应于各吊挂砖两端的位置, 而形成双夹管式吊挂, 从而将吊挂砖 135吊设于吊挂管 133上, 使吊挂结构更紧凑, 对 于角度变化的适应性更好。
利用双夹管式吊挂将吊挂砖 135 吊设于吊挂管 133上后进行整体浇注, 形成炉盖 102。 炉盖的保温结构较佳是采用多层复合形式, 以使得重量更轻、 保温性更好。 再如图 7、图 7A所示,其为本发明的蓄热式均热炉的一具体实施例中所采用的可更
换式炉口砖 131及锁挂结构的示意图。 由于均热炉的炉口砖是易损部位, 为了降低维修 成本, 本实施例采用可更换的预制砖结构, 即均热炉的炉口是由多块炉口砖 131组合而 成, 从而使得预制砖不仅可以更换, 而且规格统一, 还具有互换性, 方便了局部的维修 更换。
进一步地, 可在炉体 101的炉口处设置槽钢锁挂结构, 即在炉体 101上端设置槽钢
138作为锁挂结构, 炉口砖 131的底部较佳是设有与槽钢 138相配合的嵌槽 136, 槽钢 138设置于炉体上端, 其一端焊接固定于炉体外壳 143上, 另一端供与炉口砖 131底部 的嵌槽 136相结合, 从而能有效阻挡封口砂滑落造成的炉墙内倾, 并能可靠地使炉口砖 定位。
较佳地, 炉口砖 131上部与砂封结构相对应的凹槽内设有可弯折的吊耳 137, 在安 装和更换该炉口砖 131时使得该吊耳 137直立,以便提供更好的吊装固定;待安装完毕, 即可将其弯折呈水平, 而不会影响砂封效果。
本实施例可根据实际需要采用合理的结构尺寸和固定锁挂方式,便于炉口砖的更换 和维护, 从而可降低维修费用, 提高经济效益。 综上所述, 本发明提出了一种使用低热值煤气 (如高炉煤气) 并采用现代蓄热式换 向高温燃烧技术的均热炉。 均热炉无需留设额外的排烟通道(常规烟道) , 燃烧产生的 烟气余热可以全部得到回收, 具有极高的加热效率。
考虑到高炉煤气通常在低温下 (〈750°C)不能组织燃烧, 所以, 为了满足均热炉低温 加热工艺的要求, 燃烧系统还配备了适用于低温加热的天然气燃烧系统, 以满足低温加 热的需要。 因此, 该燃烧系统是具有高温和低温加热功能的高低温双加热系统。 另外, 为了保证高炉煤气的燃烧效率, 本发明采用了燃烧低热值煤气 (高炉煤气) 的高温蓄热 燃烧技术,该燃烧系统带有高温外置通道,并设置采用球式蓄热体的并独立于炉体的空、 煤气蓄热箱。
为了提高均热炉的使用性能和寿命,本发明的较佳实施例还对均热炉的炉盖和炉口 砖结构进行了改进, 分别采用了双夹管式吊挂的长寿命拱形炉盖以及槽口锁挂结构、 可 更换式炉口砖, 从而使均热炉的结构更为合理, 可大幅度降低维护成本。
以上所述, 仅是本发明的较佳实施例而已, 并非对本发明作任何形式上的限制。 虽 然本发明已以较佳实施例揭露如上, 然而并非用以限定本发明, 任何熟悉本专业的技术 人员在不脱离本发明技术方案范围内, 当可利用上述揭示的技术内容作出些许更动或修
饰为等同变化的等效实施例, 但凡是未脱离本发明技术方案的内容, 依据本发明的技术 实质对以上实施例所作的任何简单修改、 等同变化与修饰, 均仍属于本发明技术方案的 范围内。
Claims
1、 一种燃烧低热值煤气的蓄热式均热炉, 所述均热炉包括炉体和炉盖, 其特征在 于,所述均热炉设有利用高热值燃气进行加热的低温加热系统及利用低热值煤气进行加 热的蓄热式高温加热系统, 且所述低温加热系统与蓄热式高温加热系统共用供风及排烟 管路。
2、 如权利要求 1所述的燃烧低热值煤气的蓄热式均热炉, 其特征在于, 所述高温 加热系统包括所述均热炉两侧成对设置的第一、 第二高温通道组合及切换机构, 所述第 一、 第二高温通道组合均包括同侧设置的空气通道结构、 低热值煤气通道结构, 所述空 气通道与供风管路、 排烟管路相连, 所述低热值煤气通道与低热值煤气管路、 排烟管路 相连, 所述空气通道结构、 低热值煤气通道结构均包括在该均热炉炉体外部相对独立设 置的蓄热箱, 所述切换机构使得所述第一、 第二高温通道组合交替作为燃烧通道组合或 排烟通道组合。
3、 如权利要求 2所述的燃烧低热值煤气的蓄热式均热炉, 其特征在于, 所述空气 通道结构、 低热值煤气通道结构均包括高温气体通道、 所述蓄热箱及低温气体通道, 所 述蓄热箱包括蓄热箱体及其内部设置的蓄热体,所述蓄热箱体的一端设置有与管道相连 的所述低温气体通道, 其另一端设有与炉体相接的所述高温气体通道; 所述炉体一侧的 侧壁上设有分别与第一高温通道组合的空气、低热值煤气通道结构对应相接的空气喷口 和低热值煤气喷口, 其另一侧的侧壁上设有分别与第二高温通道组合的空气、 低热值煤 气通道结构对应相接的空气喷口和低热值煤气喷口。
4、 如权利要求 3所述的燃烧低热值煤气的蓄热式均热炉, 其特征在于, 所述切换 机构包括设于所述各空气通道的低温气体通道一侧的空 /烟换向阀以及设于所述各低热 值煤气通道的低温气体通道一侧的煤 /烟换向阀,所述空 /烟换向阀连接空气通道的低温 气体通道、 供风管路及空烟管路, 所述煤 /烟换向阀连接低热值煤气通道的低温气体通 道、 供气管路及煤烟管路。
5、 如权利要求 1所述的燃烧低热值煤气的蓄热式均热炉, 其特征在于, 所述低温 加热系统包括于所述均热炉的炉墙两侧壁上设置的低温加热烧嘴,所述低温加热烧嘴与 高热值燃气管道及供风管路相连。
6、 如权利要求 1所述的燃烧低热值煤气的蓄热式均热炉, 其特征在于, 所述均热 炉的炉盖为拱形炉盖,该炉盖采用整体浇注结构,其内的吊挂砖采用双夹管式吊挂结构。
7、 如权利要求 6所述的燃烧低热值煤气的蓄热式均热炉, 其特征在于, 所述双夹 管式吊挂结构包括吊挂管和二吊挂夹, 所述二吊挂夹呈交叉状将吊挂砖吊设于吊挂管 上, 然后进行整体浇注, 形成炉盖。
8、 如权利要求 1所述的燃烧低热值煤气的蓄热式均热炉, 其特征在于, 所述均热 炉的炉口是由多块炉口砖组合而成, 所述炉体上端设有槽钢作为锁挂结构, 所述炉口砖 的底部设有与槽钢相配合的嵌槽。
9、 如权利要求 8所述的燃烧低热值煤气的蓄热式均热炉, 其特征在于, 所述炉口 砖上部设有与砂封结构相对应的凹槽, 所述凹槽内设有可弯折的吊耳。
10、 如权利要求 4所述的燃烧低热值煤气的蓄热式均热炉, 其特征在于, 所述 低温加热系统包括于所述均热炉的炉墙两侧壁上设置的低温加热烧嘴,所述低温加热烧 嘴与高热值燃气管道及供风管路相连; 所述均热炉的炉盖为拱形炉盖, 该炉盖采用整体 浇注结构, 其内的吊挂砖采用双夹管式吊挂结构; 所述双夹管式吊挂结构包括吊挂管和 二吊挂夹, 所述二吊挂夹呈交叉状将吊挂砖吊设于吊挂管上, 然后进行整体浇注, 形成 炉盖; 所述均热炉的炉口是由多块炉口砖组合而成, 所述炉口砖的底部设有与槽钢相配 合的嵌槽; 所述炉口砖上部与砂封结构相对应的凹槽内设有可弯折的吊耳。
11、 如权利要求 3所述的燃烧低热值煤气的蓄热式均热炉, 其特征在于, 所述 蓄热箱的第一端分散设置有多个所述低温气体通道,所述低温气体通道位于蓄热箱内的 出口还设有对气流具有分散整流作用的结构。
12、 如权利要求 11所述的燃烧低热值煤气的蓄热式均热炉, 其特征在于, 所述 高温气体通道与蓄热箱体顶部内壁设有绝热内衬作为保温结构; 所述蓄热箱体的侧壁为 浇注料整体浇注结构; 所述蓄热箱体采用纤维模块吊顶结构, 其顶部采用耐高温的耐火 纤维作为工作层和绝热层。
13、 如权利要求 3所述的燃烧低热值煤气的蓄热式均热炉, 其特征在于, 所述 空气通道及 /或低热值煤气通道的高温气体通道与燃烧炉体弯转相接, 且相接部位具有 柔性密封结构。
14、 如权利要求 3所述的燃烧低热值煤气的蓄热式均热炉, 其特征在于, 所述 炉体位于同侧配合使用的低热值煤气喷口与对应的空气喷口上下设置并倾斜交汇。
15、 如权利要求 3所述的燃烧低热值煤气的蓄热式均热炉, 其特征在于, 所述 空气喷口与低热值煤气喷口间具有 3(Γ90 ° 大交角, 有利于空、 煤气的高温燃烧在大气 体流量下状态下的快速、 充分混合, 以及对于炉内温度场温度分布的均匀性。
16、 如权利要求 3所述的燃烧低热值煤气的蓄热式均热炉, 其特征在于, 所述 空气喷口与低热值煤气喷口的宽度相似或相等。
17、 如权利要求 14所述的燃烧低热值煤气的蓄热式均热炉, 其特征在于, 所述 上下设置的低热值煤气喷口、 空气喷口间设有凸起状整流结构, 形成整流式喷口组合结 构, 以使气流的燃烧混合更好、 流动的阻力更小。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2011/076325 WO2012174749A1 (zh) | 2011-06-24 | 2011-06-24 | 燃烧低热值煤气的蓄热式均热炉 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2011/076325 WO2012174749A1 (zh) | 2011-06-24 | 2011-06-24 | 燃烧低热值煤气的蓄热式均热炉 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012174749A1 true WO2012174749A1 (zh) | 2012-12-27 |
Family
ID=47422008
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2011/076325 WO2012174749A1 (zh) | 2011-06-24 | 2011-06-24 | 燃烧低热值煤气的蓄热式均热炉 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2012174749A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103014310A (zh) * | 2012-12-03 | 2013-04-03 | 攀钢集团西昌钢钒有限公司 | 蓄热炉定时定温换向装置及其方法 |
CN103047654A (zh) * | 2013-01-07 | 2013-04-17 | 重庆赛迪工业炉有限公司 | 空气煤气双蓄热燃烧装置 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU1211317A1 (ru) * | 1984-07-26 | 1986-02-15 | Коммунарский горно-металлургический институт | Регенеративный нагревательный колодец |
CN2075206U (zh) * | 1990-06-16 | 1991-04-17 | 冶金部建筑研究总院 | 弹性吊挂均热炉炉盖 |
JP2002106832A (ja) * | 2000-09-27 | 2002-04-10 | Nkk Corp | 蓄熱式バーナ炉およびその操業方法 |
CN201137928Y (zh) * | 2007-09-14 | 2008-10-22 | 首钢总公司 | 单蓄热式燃烧装置 |
CN201778080U (zh) * | 2010-08-18 | 2011-03-30 | 宝山钢铁股份有限公司 | 蓄热式均热炉 |
-
2011
- 2011-06-24 WO PCT/CN2011/076325 patent/WO2012174749A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SU1211317A1 (ru) * | 1984-07-26 | 1986-02-15 | Коммунарский горно-металлургический институт | Регенеративный нагревательный колодец |
CN2075206U (zh) * | 1990-06-16 | 1991-04-17 | 冶金部建筑研究总院 | 弹性吊挂均热炉炉盖 |
JP2002106832A (ja) * | 2000-09-27 | 2002-04-10 | Nkk Corp | 蓄熱式バーナ炉およびその操業方法 |
CN201137928Y (zh) * | 2007-09-14 | 2008-10-22 | 首钢总公司 | 单蓄热式燃烧装置 |
CN201778080U (zh) * | 2010-08-18 | 2011-03-30 | 宝山钢铁股份有限公司 | 蓄热式均热炉 |
Non-Patent Citations (1)
Title |
---|
FANG, CHENG ET AL.: "Regenerative Soaking Furnace for Wide and Thick Plate Production.", INDUSTRIAT FURNACE., vol. 32, no. 6, November 2010 (2010-11-01), pages 12 - 14 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103014310A (zh) * | 2012-12-03 | 2013-04-03 | 攀钢集团西昌钢钒有限公司 | 蓄热炉定时定温换向装置及其方法 |
CN103047654A (zh) * | 2013-01-07 | 2013-04-17 | 重庆赛迪工业炉有限公司 | 空气煤气双蓄热燃烧装置 |
WO2014106383A1 (zh) * | 2013-01-07 | 2014-07-10 | 重庆赛迪工业炉有限公司 | 空气煤气双蓄热燃烧装置 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015043295A1 (zh) | 一种交替切换蓄热式燃烧设备及其控制方法 | |
CN102251094B (zh) | 燃烧低热值煤气的蓄热式均热炉 | |
WO2013060242A1 (zh) | 悬挂式立卧两用还原炉及其加热方法 | |
WO2013060241A1 (zh) | 炉膛同轴分段燃烧炉及其加热方法 | |
CN110530152B (zh) | 一种具有环形热气保温层的金属熔化系统及金属熔化工艺 | |
WO2012174749A1 (zh) | 燃烧低热值煤气的蓄热式均热炉 | |
CN201301270Y (zh) | 蓄热式玻璃坩埚圆窑 | |
CN201724547U (zh) | 一种蓄热熔铅炉 | |
CN212688113U (zh) | 用于气基还原生产海绵铁的还原气加热炉 | |
CN107559812A (zh) | 模块化多级相变蓄热式高温空气燃烧节能装置 | |
CN207002775U (zh) | 一种高炉的热风炉系统 | |
CN202116623U (zh) | 燃烧低热值煤气的蓄热式均热炉 | |
CN203550637U (zh) | 熔铝竖炉板式预热装置 | |
CN105466212A (zh) | 一种垂直换热式合金烘烤炉系统 | |
CN101871727A (zh) | 蓄热熔铅炉 | |
CN201106926Y (zh) | 一种热风炉预热装置 | |
CN204787795U (zh) | 一种双蓄热熔铝炉装置 | |
CN102260034A (zh) | 新型坩埚玻璃窑炉 | |
CN208414469U (zh) | 用于高炉炼铁热风管道的修复模具 | |
CN210569935U (zh) | 一种具有热气保温结构的金属熔化炉 | |
CN210569934U (zh) | 一种具有换热结构的金属熔化炉 | |
CN209416082U (zh) | 气氛保护窑炉l型烟道装置 | |
CN102287818A (zh) | 燃烧设备通道结构及蓄热式燃烧设备 | |
CN207119786U (zh) | 一种大包烘烤器包盖 | |
CN202109478U (zh) | 燃烧设备通道结构及蓄热式燃烧设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11868158 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11868158 Country of ref document: EP Kind code of ref document: A1 |