WO2014104559A1 - Led heat-dissipation flexible module using carbon fiber substrate and method for manufacturing same - Google Patents

Led heat-dissipation flexible module using carbon fiber substrate and method for manufacturing same Download PDF

Info

Publication number
WO2014104559A1
WO2014104559A1 PCT/KR2013/009815 KR2013009815W WO2014104559A1 WO 2014104559 A1 WO2014104559 A1 WO 2014104559A1 KR 2013009815 W KR2013009815 W KR 2013009815W WO 2014104559 A1 WO2014104559 A1 WO 2014104559A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
circuit board
printed circuit
conductive
insulating layer
Prior art date
Application number
PCT/KR2013/009815
Other languages
French (fr)
Korean (ko)
Inventor
최은국
추정훈
Original Assignee
하이쎌 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 하이쎌 주식회사 filed Critical 하이쎌 주식회사
Publication of WO2014104559A1 publication Critical patent/WO2014104559A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0366Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement reinforced, e.g. by fibres, fabrics
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/12Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/24Reinforcing the conductive pattern
    • H05K3/245Reinforcing conductive patterns made by printing techniques or by other techniques for applying conductive pastes, inks or powders; Reinforcing other conductive patterns by such techniques
    • H05K3/246Reinforcing conductive paste, ink or powder patterns by other methods, e.g. by plating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/032Materials
    • H05K2201/0323Carbon
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10106Light emitting diode [LED]

Definitions

  • the present invention relates to a heat dissipation flexible module for a LED using a carbon fiber substrate and a method for manufacturing the same, and more particularly, a high heat dissipation printed circuit using a carbon fiber substrate as a heat dissipation plate, and including a printed circuit of a conductive paste. It relates to a substrate and a method of manufacturing the same.
  • the high heat dissipation printed circuit board according to the present invention may have more improved heat dissipation characteristics, light weight and ductility, and thus may be applied as a heat dissipation flexible module for LEDs.
  • PCB printed circuit board
  • electrical components such as integrated circuits, resistors, or switches are soldered. Circuits used in most computers and various display devices are installed on the printed circuit board.
  • Common methods for manufacturing the printed circuit board include an etching method and a method using a conductive paste.
  • a laminated plate is manufactured by casting, laminating, and sputtering a copper foil, which is a conductor, on an insulating material of a polymer resin, and applying a photolithography method to dissolving and removing unnecessary parts of the copper foil with chemicals, thereby requiring only a conductive pattern.
  • a photolithography method to dissolving and removing unnecessary parts of the copper foil with chemicals, thereby requiring only a conductive pattern.
  • this etching method uses an etching solution that is harmful to the human body. Therefore, these etching solutions have to be collected and processed, which is not environmentally friendly. Moreover, the cost of the photoresist used in the etching process is high, and the copper layer is used. There are many problems in the loss of material by etching and removing.
  • PCB printed circuit board
  • the conductive ink is generally a material in which metal particles of several tens to several tens of nanometers in diameter are dispersed in a solvent.
  • organic additives such as a dispersant are volatilized, and the metal particles are dispersed. The voids between them shrink and sinter to form conductors that are electrically and mechanically connected to each other.
  • the conductive paste is generally a material in which metal particles of several hundreds to thousands of nanometers in diameter are dispersed in an adhesive resin, and the conductive paste is printed on a substrate, and the resin is cured when heat is applied at a predetermined temperature. And electrical and mechanical contacts between the metal particles are fixed to form conductors connected to each other.
  • LEDs which are expanding their use not only for LCD TV backlights but also for lighting, emit light and heat, unlike ordinary lamps, while driving light, which accounts for about 20-30% and 70-80% of heat. Done. In particular, when heat generated during operation is quickly radiated, the light efficiency is also improved. In order to effectively transmit such heat, a metal circuit board is generally used.
  • a heat sink may be provided under the substrate, and a metal such as aluminum or magnesium is mainly used as a conventional substrate material.
  • the metal has the disadvantage that the weight of the substrate can not be reduced, and has a limitation that easy processing is difficult.
  • Japanese Patent Application Laid-Open No. 10-2012-0082947 discloses an aluminum substrate layer and a technology related to a heat dissipating laminate in which an adhesive layer, a resin layer, an adhesive layer, and a copper layer or an aluminum layer are laminated on the aluminum substrate layer.
  • Patent Application Publication No. 10-2012-0072801 Discloses an electrodeposition coating in which a first insulating layer by anodizing is formed, electrodeposited, and a second insulating layer is formed to form a circuit. The high heat dissipation substrate used and its manufacturing method are described.
  • an object of the present invention is to provide a novel high heat dissipation printed circuit board and a manufacturing method thereof having excellent heat dissipation efficiency and high strength.
  • Another object of the present invention is to provide a printed circuit board that includes a light-weight heat-dissipating substrate and improves conductivity while reducing the thickness of a wiring layer when forming a pattern by a direct printing method of a conductive paste.
  • the present invention is to provide a heat-dissipating flexible module for LED that can reduce heat generation and slim the product by using the high heat-dissipation printed circuit board and excellent electrical conductivity and uniformity and thickness of the wiring layer. For other purposes.
  • the present invention is a heat radiation layer comprising a carbon fiber fabric; An insulation layer formed on the heat dissipation layer; A wiring layer formed on the insulating layer and patterned by a printing method of a conductive paste composition; And a metal plating layer formed on the patterned wiring layer.
  • the wiring shape of the patterned wiring layer is formed between the insulating layer and the wiring layer patterned by the printing method of the conductive paste composition so as to partially support the patterned wiring layer by being formed on the insulating layer. Accordingly, a second insulating layer may be additionally formed.
  • the present invention comprises a carbon fiber fabric by heating the binder having fluidity at high temperature to convert it into a liquid phase and filling it in the empty space made by the weft and warp of at least one or more carbon fiber fabrics to be used as a heat dissipation layer, Forming a heat dissipation layer;
  • the base substrate is attached by attaching one insulating layer selected from polybutylene terephthalate, polyethylene terephthalate, polysulfone, polyether, polyetherimide, heat resistant epoxy, polyarylate and polyimide to the heat dissipating layer.
  • Forming Forming a patterned wiring layer by printing a conductive paste composition comprising any one or a mixture thereof selected from conductive Ag paste, conductive Cu paste, conductive polymer, and gravure paste on the insulating layer of the base substrate in a predetermined pattern. step; And forming a metal plating layer on the patterned wiring layer by plating.
  • the method of manufacturing the printed circuit board may include:
  • the present invention is a conductive Ag paste on any one insulating layer selected from polybutylene terephthalate, polyethylene terephthalate, polysulfone, polyether, polyetherimide, heat-resistant epoxy, polyarylate and polyimide, Forming a patterned wiring layer by printing a conductive paste composition including any one or a mixture thereof selected from a conductive Cu paste, a conductive polymer, and a gravure paste in a predetermined pattern; Forming a metal plating layer on the patterned wiring layer by plating; Forming a heat dissipating layer comprising a carbon fiber fabric by heating the binder having fluidity at a high temperature to convert it into a liquid phase and filling it into an empty space formed by the weft and warp of at least one carbon fiber fabric to be used as a heat dissipating layer. ; And attaching an insulating layer including the wiring layer and the metal plating layer by the conductive paste to the heat dissipating layer.
  • the present invention can provide a heat dissipation flexible module for an LED including the high heat dissipation printed circuit board.
  • the high heat dissipation printed circuit board of the present invention is excellent in heat dissipation efficiency, has a high strength, and has the advantage of meeting the slimming of electronic products.
  • the present invention includes a heat-dissipating substrate which is light in weight, and can provide a printed circuit board having improved conductivity while thinning the thickness of the wiring layer by metal plating after forming the wiring by the direct printing method of the conductive paste.
  • the high heat dissipation printed circuit board of the present invention can reduce heat generation by reducing the uniformity and thickness of the wiring layer and the excellent electrical conductivity when used as a heat dissipation module for LEDs, and also can reduce the product weight with light weight and ductility. There is an advantage.
  • FIG. 1 is a cross-sectional view of a high heat radiation printed circuit board according to an embodiment of the present invention.
  • Figure 2 is a view showing a carbon fiber fabric which is a material of the heat sink used in the present invention.
  • FIG 3 is a cross-sectional view of a high heat radiation printed circuit board in which a binder is filled in a void space of a carbon fiber fabric when the heat dissipation layer is manufactured according to an embodiment of the present invention.
  • Figure 4 is a cross-sectional view of a high heat radiation printed circuit board according to another embodiment of the present invention.
  • FIG. 5 is a diagram illustrating a manufacturing method of a high heat radiation printed circuit board according to an exemplary embodiment of the present invention.
  • FIG. 6 is a diagram illustrating a manufacturing method of a high heat radiation printed circuit board according to another embodiment of the present invention.
  • the high heat radiation printed circuit board according to the present invention is a heat radiation layer 12 including a carbon fiber fabric, an insulating layer 11 formed on the heat radiation layer, formed on the insulating layer and conductive
  • a high heat radiation printed circuit board comprising a wiring layer 10 patterned by a printing method of a paste composition and a metal plating layer 13 formed on the patterned wiring layer.
  • the heat dissipation layer of the high heat radiation printed circuit board includes a carbon fiber fabric.
  • carbon materials have high strength and thermal conductivity, and have a low density compared to metals, so that a lightweight substrate can be produced.
  • the present invention is to use the carbon fiber in the form of a fabric to improve the durability to use as a heat radiation layer.
  • carbon fiber is carbonized as polyacrylonitrile yarn, viscose yarn, pitch-based yarn, etc. are stretched in the longitudinal direction, and the carbon fiber has advantages of high strength and thermal conductivity such as electrical and mechanical properties. It is researched in various applications such as materials and precision machine parts.
  • Figure 2 shows a figure showing a carbon fiber fabric as a material of the heat dissipation layer used in the present invention.
  • the carbon fiber fabric is a woven fabric of carbon fibers by warp and weft yarns, and as shown in FIG. 2, the structure is not a flat structure but has a half space between the warp yarns and the weft yarns.
  • the portion directly contacting the insulating layer may have a problem in adhesive strength and heat dissipation effect.
  • a binder may be used to fill the half space between the warp yarn and the weft yarn.
  • the binder used should have fluidity at a high temperature, and a high thermal conductivity should be used.
  • the binder may be used regardless of its kind as long as it has excellent chemical resistance, but preferably, epoxy or silicone may be used.
  • epoxy or silicone may be used.
  • Figure 3 is a view showing a cross-sectional view of a high heat radiation printed circuit board in which the bonding agent is filled in the empty space of the carbon fiber fabric in the manufacture of the heat dissipation layer.
  • the binder shown in the voids of the carbon fiber fabric flows sufficiently between the voids of the carbon fiber fabric to fill the voids, and there is no air or void space between the bonding surface with the insulating layer.
  • the bonding agent must be melted in a viscous liquid state by heating to be introduced into the carbon fabric to form a bonding surface with the insulating layer without the void space, thereby having good thermal conductivity.
  • the binder component may include a metal powder, a polymer material powder, a ceramic powder, or a mixed powder thereof having excellent thermal conductivity selected from among aluminum, copper, and nickel.
  • the average particle diameter of the metal powder which may be additionally included in the binder component may range from 0.1 um to 10 um.
  • the heat dissipation layer in the present invention may be a plurality of carbon fiber fabric is laminated.
  • the binder component may be obtained by laminating each carbon fiber fabric with the binder component already filled or by filling the binder at once after laminating each carbon fiber fabric.
  • a heat dissipation layer can be formed.
  • the thickness of the heat dissipation layer of the carbon fiber fabric containing the binder may be 10um to 150um, preferably 40um to 80um.
  • the insulating layer and the heat dissipating layer may be more easily attached to the heat dissipating layer made of the carbon fiber fabric including the bonding agent by using an additional adhesive or an additional adhesive of epoxy or silicon type.
  • the insulating layer may be used a variety of substrates such as polymer materials, ceramics, glass, silicon, more preferably polybutylene terephthalate, polyethylene terephthalate, polysulfone, polyether, polyetherimide, It may be any one selected from heat resistant epoxy, polyarylate and polyimide.
  • the thickness of the insulating layer should be thin in order to improve heat dissipation characteristics, but when the insulating layer becomes thinner, withstand voltage characteristics (the highest voltage that can withstand without destroying the insulation mechanism, MPCB generally used Must withstand 5,000 V / min.) And fall off to find the balance of both characteristics and adjust accordingly.
  • the thickness of the insulating layer that can be used may be 10um to 100um, preferably 12um to 25um.
  • the conductive paste wiring layer formed on the insulating layer may be formed by printing the conductive paste composition by a printing method.
  • the conductive paste used in the present invention includes particles of electrically conductive materials, which are conductive metals, nonmetals or powders of oxides, carbides, borides, nitrides, carbonitrides, and carbon such as carbon black and graphite. It includes a system powder.
  • the conductive paste particles may be formed of, for example, gold, aluminum, copper, indium, antimony, magnesium, chromium, tin, nickel, silver, iron, titanium, alloys thereof, and oxides, carbides, borides, nitrides, and carbonitrides thereof. It may include particles.
  • the shape of the particles is not particularly limited, and for example, plate-shaped, fiber-type and nano-sized nanoparticle nanotubes may be used. These conductive particles may be used alone or in combination.
  • the conductive paste may further include a binder to improve adhesion to the substrate, and generally, an epoxy resin, a phenol resin (phenol + formaldehyde), and a polyurethane resin.
  • Organic binders such as polyamide resin, acrylic resin, urea / melamine resin and silicone resin can be used.
  • the content of the binder may generally range from 10 to 50 wt% with respect to the content of the total paste composition, preferably from 15 to 40 wt%, but is not limited thereto.
  • the binder serves to reduce the electrical conductivity of the wiring layer including the conductive paste.
  • the viscosity of the conductive paste composition used in the present invention may be used in the range of 23 °C, 50 rpm HAKKE RHeoscope measurement standard 10,000 cps ⁇ 100,000 cps, but is not limited thereto.
  • additives may include Ag powder (pigment), natural and synthetic resins (binder), solvents, dispersants, coupling agents, viscosity modifiers and the like.
  • the conductive paste composition in the present invention may be preferably any one selected from conductive Ag paste, conductive Cu paste, conductive polymer, paste for gravure, or a mixture thereof.
  • the gravure paste is a kind of conductive silver (Ag) paste and has a particle size of 0.1 to 3 ⁇ m.
  • the gravure paste may be composed of 75% Ag powder, 10% resin, and 13% solvent 13% additive.
  • the particle size of the conductive paste composition may be in the range of 10 nm to 10 um, and a conductive paste having a 30 to 1,000 nm nanoparticle size or a conductive paste having a micro particle size of 1 to 7 um is preferable.
  • the conductive paste may form a wiring layer patterned in a pattern of a shape desired by a user by a direct printing method on a substrate.
  • the direct printing method may include a printing method such as screen printing, flexographic printing, rotary printing, gravure printing, offset printing, or dispenser on a substrate.
  • a conventionally well-known means can be used.
  • screen printing, gravure printing or offset printing is preferable.
  • the circuit wiring implemented by printing a conductive paste on the substrate has a high resistance, so the conductivity is not good, so it is difficult to use it as a circuit wiring, and there is a problem in that adhesion is not performed when using general solder paste. .
  • a metal plating layer may be formed on the conductive paste wiring.
  • the metal plating layer formed on the conductive paste wiring layer may be formed by electrolytic plating or electroless plating.
  • the thickness of the metal plating layer formed on the patterned wiring layer is 1 um to 10 um, preferably 2 to 5 um.
  • the metal plating layer in the present invention may be formed by electroless plating.
  • the uniformity of the wiring can be better than that of the metal plating layer formed by electroplating. This will be described in more detail below.
  • the start point of the wiring during the electroplating is located close to the electrode, and the reduction reaction of the metal occurs well so that the plating layer can be smoothly formed on the conductive paste layer, but as the wiring layer including the paste layer moves away from the starting point, The electrical conductivity of the paste is not as good as that of metal, and the efficiency of the reduction of metal ions is reduced due to the presence of a resistance along the length of the conductive paste. Therefore, as the wiring moves away from the starting point of the electrode, the thickness of the plating layer formed may become thin, and even the wiring may be formed discontinuously.
  • the thickness of the plating layer is made thick, the thickness of the finally manufactured circuit board may be thickened, and it may also provide a cause of defects during printing due to the high thickness.
  • the disadvantage of thickening the circuit board which is a problem caused by thickening the plating layer to improve the conductivity of the wiring, can be improved. It is possible to form a narrower width (pitch width) between the wiring lines than forming the metal plating layer by electroplating. Because in order to overcome the disadvantage that the thickness of the electroplating layer according to the length of the wiring during the electroplating, it is necessary to increase the thickness of the plating layer as described above, for this purpose, the plating amount should be increased during the electroplating, in this case, the wiring layer Only the upper end portion of is not plated, and the side portion of the wiring layer may be plated.
  • the plating layer is formed on the side of the wiring layer by making the thickness of the plating layer thick, so that the width (pitch width) between the wiring lines is narrowly formed.
  • the thickness of the electroplating layer according to the length of the wiring is not solved.
  • the width (pitch width) between the wiring lines can be formed narrower than that in the case of forming the plating layer by electroplating.
  • the metal plating layer is formed by electroless plating, and optionally, a metal plating layer by electroplating may be additionally formed on the plating layer formed by the electroless plating.
  • the metal used in the electroless metal plating in the present invention may be any one selected from Cu, Sn, Ag, Au, Ni or alloys thereof, but is not limited thereto.
  • Cu, Ag or Ni can be used.
  • the wiring layer formed by the electroless plating can form a layer thinner than the wiring layer by the conventional electroplating, and thus has the advantage of improving the electrical conductivity of the wiring.
  • a seed metal layer for forming the electroless metal plating layer may be further formed between the patterned conductive paste wiring layer and the electroless metal plating layer.
  • the seed metal layer may improve the reaction rate and selectivity of the electroless plating by allowing the seed metal to be adsorbed on the paste layer and thereby reducing the metal ions forming the electroless chemical plating layer.
  • the metal for forming the seed metal layer may be selected from Au, Ag, Pt, Cu, Ni, Fe, Pd, Co, or an alloy thereof, and seed metal components such as halides, sulfates, acetates, complex salts of seed metal components, and the like. Any component can be used as long as it is a transition metal salt.
  • the seed metal layer may contain other additional transition metal components other than the seed metal component.
  • transition metal components other than the seed metal may be contained using transition metal salts such as metal halides, metal sulfates, and metal acetates, and for this purpose, the same metal components as those of the electroless plating layer formed on the conductive paste layer may be used. It is preferable to use a salt of.
  • the electroless plating layer can be formed more quickly, and the electroless plating layer serves to help the electroless plating layer be formed only on the wiring layer on the conductive paste.
  • the wiring layer formed by the electroless plating of the present invention can form a layer thinner than the wiring layer by the conventional electroplating, there is an advantage that can improve the electrical conductivity of the wiring.
  • the electroless metal plating layer further comprises an electrolytic metal plating layer
  • the electrolytic metal plating layer further formed is any one selected from Ni, Cu, Sn, Au, Ag or alloys thereof, or Ni-P alloy, which is formed on the electroless plating layer, may be electroplated onto a metal wiring layer having a higher electrical conductivity than the conductive paste, thereby conducting a wiring layer (a layer including a conductive paste layer, an electroless plating layer, and an electroplating layer). Can be further improved.
  • the present invention is a wiring shape of the patterned wiring layer so as to support the patterned wiring layer by being partially formed on the insulating layer between the insulating layer and the wiring layer patterned by the printing method of the conductive paste composition. Accordingly, a second insulating layer may be additionally provided.
  • FIG. 4 is a cross-sectional view of a high heat dissipation printed circuit board including the second insulating layer of the present invention. Looking at this, it can be seen that the second insulating layer 15 is provided between the conductive paste wiring layer 10 and the insulating layer 11.
  • the second insulating layer 15 may be formed by a printing method, and more specifically, the liquid thermal conductive insulating material may be formed as a second insulating layer by a printing method.
  • the second insulating layer 15 may be any one selected from polybutylene terephthalate, polyethylene terephthalate, polysulfone, polyether, polyetherimide, heat resistant epoxy, polyarylate and polyimide.
  • One polymer resin may be selected, and the second insulating layer may have a thickness in the range of 5 um to 50 um, preferably 10 um to 20 um, and the width of the insulating layer may be defined by the patterned wiring layer. It may be 1.5 to 10 times the wiring width.
  • the withstand voltage characteristic may be increased in the vicinity of the circuit wiring realized by the conductive paste, and the heat dissipation effect to the external space may be increased in the part away from the circuit wiring.
  • a heat dissipation coating layer may be additionally formed on the top and / or bottom of the finally obtained printed circuit board.
  • the heat dissipation coating layer further enables an improved heat dissipation effect of 3 to 5% than the heat dissipation coating layer is not formed by widening the surface area.
  • the printed circuit board manufactured by the present invention may have heat reduction and improved heat dissipation characteristics, light weight, and ductility due to improved electrical conductivity, and thus may be applied as a heat dissipation flexible module for LEDs.
  • the wiring layer (the layer consisting of the conductive paste layer and the plating layer) is used as a current supply line to form a contact point so that the LED can be positioned on the wiring line formed by the wiring layer, and to solve the heat generated by the LED.
  • a heat dissipation layer containing a heat dissipation material by selectively providing an LED support to support the LED, it is applicable to the heat dissipation flexible module for LEDs.
  • the present invention can provide a method for manufacturing the high heat radiation printed circuit board, which will be described with reference to FIGS. 5 and 6.
  • FIG. 5 is a diagram illustrating a method of manufacturing a high heat radiation printed circuit board according to a method of forming a base substrate by attaching the heat dissipation layer to an insulating layer and then forming a wiring layer on the insulating layer.
  • a carbon fiber fabric by heating a binder having fluidity at a high temperature to convert it into a liquid phase and filling it in the empty space formed by the weft and warp of at least one or more carbon fiber fabrics to be used as a heat dissipating layer.
  • Forming a heat dissipation layer The base substrate is attached by attaching one insulating layer selected from polybutylene terephthalate, polyethylene terephthalate, polysulfone, polyether, polyetherimide, heat resistant epoxy, polyarylate and polyimide to the heat dissipating layer.
  • Forming Forming a patterned wiring layer by printing a conductive paste composition comprising any one or a mixture thereof selected from conductive Ag paste, conductive Cu paste, conductive polymer, and gravure paste on the insulating layer of the base substrate in a predetermined pattern. step; And forming a metal plating layer on the patterned wiring layer by plating.
  • a carbon fiber fabric is included by filling a void formed by the weft and warp of at least one carbon fiber fabric to be used as a heat dissipating layer by heating the binder having fluidity at a high temperature.
  • the step of forming the heat dissipation layer is achieved by impregnating a carbon fiber fabric with a heated epoxy- or silicone-based binder.
  • the binder content may be impregnated with 10 to 50% by weight of the total weight, the heating temperature of the binder may be adjusted according to the viscosity characteristics according to the type and temperature of the binder, vacuum or in a carbon fiber fabric It is preferable to make viscosity low enough so that the part which contains air does not generate
  • the impregnated carbon fiber fabric optionally has a sufficient fluidity by adopting a step of different heating temperature, such as the first heating process (100 to 150 °C) and the second heating process (150 to 230 °C), etc. Can be impregnated with carbon fabrics.
  • an ultrasonic device or the like may be used to increase the impregnation efficiency of the binder.
  • the carbon fiber fabric impregnated with the binder can be cooled to room temperature and used in subsequent processes.
  • the heat dissipating layer may be laminated with a plurality of carbon fiber fabrics, in which case each of the plurality of carbon fiber fabrics is laminated with each after the binder component is impregnated into each carbon fiber fabric as described above.
  • the thermal radiation layer may be formed by impregnating and filling the binder at a time after laminating each carbon fiber fabric.
  • the manufacturing method of the present invention as described above for the binder component, it is possible to form a heat dissipation layer comprising a metal powder having excellent thermal conductivity selected from aluminum, copper, nickel or mixed powder thereof.
  • a polybutylene terephthalate, polyethylene terephthalate, polysulfone, polyether, polyetherimide, heat resistant epoxy, polyarylate and poly Attaching any one insulating layer selected from the mid to form a base substrate may be performed by attaching an insulating layer to the heat dissipating layer and laminating it through a hot press process.
  • the hot press process may be performed through a vacuum hot press process. This is to prevent partial generation of air or vacuum inside the heat dissipating layer including the bonding agent and the bonding interface with the insulating layer, and the hot press process is performed for 10 minutes at a pressure of 10 to 30T, preferably 15 to 25T. To 1 hour.
  • the insulating layer and the heat dissipating layer may be more easily attached to the heat dissipating layer made of the carbon fiber fabric including the bonding agent by using an additional adhesive or an additional adhesive.
  • the thickness of the pressure-sensitive adhesive layer or the adhesive layer by the additional pressure-sensitive adhesive or additional adhesive may be formed in 1 um ⁇ 20 um.
  • an epoxy or silicone type may be used as the pressure-sensitive adhesive.
  • the third step is patterned by printing a conductive paste composition including any one or a mixture thereof selected from conductive Ag paste, conductive Cu paste, conductive polymer, and gravure paste on the insulating layer of the base substrate in a predetermined pattern. Forming a wiring layer.
  • This may form a patterned wiring layer through pad printing, silk screen printing, gravure printing, and the like, as described above, and the particle size of the conductive paste composition may be in the range of 10 nm to 10 um, such as salpin bars.
  • a conductive paste having a particle size of 30 to 1,000 nm or a conductive paste having a micro particle size of 1 to 7 um is preferable.
  • the drying method is not limited to the type corresponding to the degree appropriately selected and applied by those skilled in the art according to the process conditions used, but from 80 to 200 degrees, preferably from 100 to 160 degrees 10 minutes to 3 Hot air drying can be used for hours.
  • the paste may undergo a curing step depending on the conditions of use.
  • the forming of the metal plating layer by plating on the patterned wiring layer is a step of forming a plating layer by electroplating or electroless plating.
  • the present invention may form a metal plating layer on the patterned wiring layer by electroless plating.
  • an electroless plating layer may be formed on the paste by using a transition metal salt, a reducing agent, a complex, or the like. Can be formed.
  • the electroless plating may be performed by reducing metal ions by a reducing agent by reducing and depositing a metal on a substrate or the like using a plating solution in which a compound containing a metal ion and a reducing agent are mixed.
  • the metal ions can be reduced by the reaction scheme described below.
  • non-limiting examples of the metal used for electroless plating may be Ag, Cu, Au, Cr, Al, W, Zn, Ni, Fe, Pt, Pb, Sn, Au, and the like. May be used alone or in combination of two or more thereof.
  • the plating solution used in the electroless plating may include a salt and a reducing agent of a metal to be plated, and non-limiting examples of the reducing agent may include formaldehyde, hydrazine or salts thereof, cobalt sulfate (II), formalin, Glucose, glyoxylic acid, hydroxyalkylsulfonic acid or salts thereof, hypophosphoric acid or salts thereof, boron hydride compounds, dialkylamine boranes, and the like, and various reducing agents may be used depending on the type of metal.
  • the reducing agent may include formaldehyde, hydrazine or salts thereof, cobalt sulfate (II), formalin, Glucose, glyoxylic acid, hydroxyalkylsulfonic acid or salts thereof, hypophosphoric acid or salts thereof, boron hydride compounds, dialkylamine boranes, and the like, and various reducing agents may be used depending on
  • the electroless plating solution may be prepared by forming a metal salt with a metal ion, a metal ion and a ligand to form a ligand and a complexing agent for preventing the metal from being reduced in the liquid phase and unstable solution. It may include a pH adjuster to maintain a suitable pH.
  • the thickness of the electroless metal plating layer is 1 um to 30 um, preferably 1 um to 10 um, the metal used for the electroless metal plating is Ag, Cu, Au, Cr, Al, W, Zn, It may be any one selected from Ni, Fe, Pt, Pb, Sn, Au or alloys thereof.
  • a copper (copper) plating layer 1 to 30 using copper sulfate, formarin, sodium hydroxide, ethylene diamin tera acetyl acetate (EDTA) and an aqueous solution to which 2.2-bipyridyl is added as an accelerator
  • An electroless plating layer can be formed with a thickness of ⁇ m.
  • the electroless copper plating step may use a barrel plating apparatus.
  • the electroless plating of the present invention is composed of 85% D / I Water, 10-15% supplement, 25% -NaOH 2-5%, stabilizer 0.1-1%, 37% formalin 0.5-2% After air stirring for 10 to 15 minutes, the plating process can be performed for 25 to 30 minutes at a temperature of 40 to 500 °C, pH 13 or more.
  • the present invention provides a method for forming an electroless metal plating layer on top of the wiring layer, between forming the wiring layer of the conductive paste and forming a plating layer by electroless plating a transition metal on the patterned wiring layer.
  • the method may further include forming a seed metal layer.
  • the seed metal layer may be selected from Au, Ag, Pt, Cu, Ni, Fe, Pd, Co, or an alloy thereof, and may further contain other transition metal components other than the seed metal component.
  • a palladium salt may be used as the seed metal layer, and additional transition metal components may be contained using transition metal salts such as metal halides, metal sulfates, and metal acetates, and for this purpose, the electroless plating layer formed on the conductive paste layer may be used.
  • the salt of the same metal component as a component can be used.
  • the silver paste as a conductive paste in the aqueous solution may be dipped out of the substrate having the patterned pattern on the surface of the protective layer for 3 to 5 minutes, and then the electroless chemical copper plating may be performed through a drying process.
  • the resistance value of the electroless plating layer is low, the electrical conductivity is increased, and if a lower resistance is required, the resistance of the electroless copper plating may be increased by increasing the content of the metal to be plated.
  • the forming of the metal plating layer by electroplating on the patterned wiring layer may include forming the patterned wiring layer in an aqueous solution of copper plating, for example, copper sulfate (CuSO 4 ), sulfuric acid (H 2 SO 4 ), and a polishing agent.
  • the electroplating layer can be formed by immersing the formed substrate to form an electrolytic copper plating layer with a desired thickness and washing the surface with water.
  • electrolytic copper plating may be carried out in a 10 wt% aqueous solution of sulfuric acid, copper sulfate 90 g / L, copper stabilizer 2 ml / L, copper copper polish 5ml / L, and HCI 0.16 ml / L at a temperature of 40 ° C. to 60 ° C.
  • the present invention can perform an electroless silver plating process after the paste printing process and the electroless copper plating process.
  • the process conditions in this case also follow the general silver plating process, except that the metal salt used is silver salt (AgNo 3 ) rather than copper salt.
  • the plating layer can raise the thickness of 0.3 ⁇ 0.4 um, it can raise the thickness up to 0.1 ⁇ 1um according to the control of time.
  • the present invention may further proceed to form a plating layer by using electroless plating or electroplating as described above.
  • the electrolytic nickel is plated using an aqueous solution of nickel sulfate, nickel chloride, and boric acid on a copper surface plated in the electrolytic copper plating step, and then washed with water. Ultrasonic washing with ionized water is followed by drying through dehydration to produce products that meet the required properties.
  • the electrolytic copper plating may be increased to increase the content of the metal to be plated, thereby having a low resistance.
  • the present invention is the wiring of the patterned wiring layer so as to support the patterned wiring layer by being partially formed on the insulating layer between the step of forming the base substrate and forming the patterned wiring layer.
  • the method may further include forming a second insulating layer along the shape.
  • the second insulating layer may be formed by a printing method, and more specifically, as described above with reference to the liquid thermal conductive insulating material, the second insulating layer may be printed by pad printing, silk screen printing, gravure printing, or the like. It can be formed as an insulating layer of
  • the second insulating layer is any one polymer selected from polybutylene terephthalate, polyethylene terephthalate, polysulfone, polyether, polyetherimide, heat resistant epoxy, polyarylate and polyimide.
  • the resin may be selected, and the second insulating layer may have a thickness in the range of 5 um to 50 um, preferably 10 um to 20 um, and the width of the insulating layer is 1.5 to 10 times the wiring width of the wiring layer. Can be.
  • the present invention is different from the method shown in Figure 5, after the formation of the wiring layer on the insulating layer to form a heat dissipation layer and manufacturing the high heat-dissipation printed circuit board according to the method of attaching it to the insulating layer including the wiring layer A method can be provided which can be seen through FIG. 6.
  • conductive Ag paste conductive on any one insulating layer selected from polybutylene terephthalate, polyethylene terephthalate, polysulfone, polyether, polyetherimide, heat resistant epoxy, polyarylate and polyimide
  • a heat dissipation coating may be additionally performed on the top and / or bottom of the finally obtained printed circuit board. In this case, there is an advantage that additional heat radiation effect of 3 ⁇ 5% can be obtained.
  • the high heat dissipation printed circuit board of the present invention can be used as a heat dissipation flexible module for LEDs because it can have reduced heat generation and improved heat dissipation, light weight, and ductility due to improved electrical conductivity.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

The present invention relates to a high heat-dissipation printed circuit board and a method for manufacturing the same, the circuit board comprising: a heat-dissipation layer comprising carbon fiber fabrics; an insulation layer formed on the heat-dissipation layer; a wiring layer formed on the insulation layer and patterned by a printing method of a conductive paste composite; and a metal plating layer formed on the patterned wiring layer. Since the high heat-dissipation printed circuit board, according to the present invention, can have relatively improved heat-dissipation, light-weightness and flexibility characteristics, the high heat-dissipation printed circuit board can be applied to an LED heat-dissipation flexible module.

Description

탄소 섬유 기판을 이용한 LED용 방열 플렉서블 모듈 및 이의 제조 방법 Thermal radiation flexible module for LED using carbon fiber substrate and manufacturing method thereof
본 발명은 탄소 섬유 기판을 이용한 LED용 방열 플렉서블 모듈 및 이의 제조 방법에 관한 것으로, 보다 구체적으로는 탄소 섬유 기판을 방열판으로 이용하며, 도전성 페이스트(Conductive Paste)의 인쇄회로를 포함하는 고방열 인쇄회로 기판 및 이의 제조방법에 관한 것이다. The present invention relates to a heat dissipation flexible module for a LED using a carbon fiber substrate and a method for manufacturing the same, and more particularly, a high heat dissipation printed circuit using a carbon fiber substrate as a heat dissipation plate, and including a printed circuit of a conductive paste. It relates to a substrate and a method of manufacturing the same.
본 발명에 의한 고방열 인쇄회로 기판은 보다 향상된 방열특성과 경량화 및 연성의 특성을 가질 수 있어 LED용 방열 플렉서블 모듈로 적용가능하다. The high heat dissipation printed circuit board according to the present invention may have more improved heat dissipation characteristics, light weight and ductility, and thus may be applied as a heat dissipation flexible module for LEDs.
일반적으로 인쇄회로기판(Printed Circuit Board: PCB)은 집적회로, 저항기 또는 스위치 등의 전기적 부품들이 납땜되는 얇은 판으로서, 대부분의 컴퓨터, 각종 표시장치등에 사용되는 회로는 이 인쇄회로기판에 설치된다.In general, a printed circuit board (PCB) is a thin plate on which electrical components such as integrated circuits, resistors, or switches are soldered. Circuits used in most computers and various display devices are installed on the printed circuit board.
상기 인쇄회로기판(PCB)을 제작하는 일반적인 방법으로 에칭법 및 전도성 페이스트를 이용한 방법 등이 있다. 상기 에칭법은 고분자 수지의 절연성 소재에, 도체인 동박을 캐스팅, 라미네이팅, 스퍼터링 방법을 통하여 적층판을 제조하고, 여기에 포토리소그래피 공법을 적용하여 동박중에 불필요한 부분을 약품으로 용해 제거하여 필요한 도체 패턴만을 남김으로써 인쇄회로기판을 제조하는 방법이다. 이와 같은 에칭법은 양산성이 우수하여 널리 사용되고 있으나, 에칭법은 여러 개의 공정으로 이루어져 있기 때문에 시설설비가 많이 요구되며, 공정수도 많아 생산원가가 높아진다는 문제점이 있다. 또한, 이와 같은 에칭법은 인체에 해로운 에칭용액을 사용하기 때문에 이들 에칭용액을 수거하여 처리해야함으로써, 환경 친화적이지 못한 단점이 있고, 또한 에칭공정에 사용되는 포토레지스트의 가격이 높고, 구리층을 식각하여 제거함으로써 재료의 로스가 많은 문제점이 있다.Common methods for manufacturing the printed circuit board (PCB) include an etching method and a method using a conductive paste. In the etching method, a laminated plate is manufactured by casting, laminating, and sputtering a copper foil, which is a conductor, on an insulating material of a polymer resin, and applying a photolithography method to dissolving and removing unnecessary parts of the copper foil with chemicals, thereby requiring only a conductive pattern. By leaving it is a method of manufacturing a printed circuit board. Such an etching method is widely used because of excellent mass productivity, but the etching method requires a lot of facility facilities because it consists of several processes, and there is a problem in that the production cost increases due to the number of processes. In addition, this etching method uses an etching solution that is harmful to the human body. Therefore, these etching solutions have to be collected and processed, which is not environmentally friendly. Moreover, the cost of the photoresist used in the etching process is high, and the copper layer is used. There are many problems in the loss of material by etching and removing.
상기 에칭법의 문제점을 해결하기 위해 회로 패턴(Circuit Pattern) 소재인 동박(Copper Clad)을 도전성 잉크/페이스트(Conductive Ink/Paste)로 대체하여 저렴한 인쇄회로기판(PCB)을 제작하는 기술이 에칭법을 대체하고 있다. In order to solve the problem of the etching method, a technique of manufacturing an inexpensive printed circuit board (PCB) by replacing copper clad, which is a circuit pattern material, with conductive ink / paste, is an etching method. Is replacing.
상기 도전성 잉크는 통상적으로 수~수십 나노미터 직경의 금속 입자를 용매에 분산시킨 소재로, 도전성 잉크를 기판에 인쇄하고, 소정의 온도에서 열을 가하면, 분산제 등의 유기 첨가물이 휘발되고, 금속 입자 사이의 공극이 수축 및 소결(Sintering)되어 전기 및 기계적으로 서로 연결된 도체가 형성된다. 또한 상기 도전성 페이스트는 통상적으로 수백~수천 나노미터 직경의 금속 입자를 접착성이 있는 수지(Resin)에 분산시킨 소재로, 도전성 페이스트를 기판에 인쇄하고, 소정의 온도에서 열을 가하면, 수지가 경화(Curing)되고, 금속 입자 사이의 전기 및 기계적 접촉이 고정되어 서로 연결된 도체가 형성될 수 있다. The conductive ink is generally a material in which metal particles of several tens to several tens of nanometers in diameter are dispersed in a solvent. When the conductive ink is printed on a substrate and heated at a predetermined temperature, organic additives such as a dispersant are volatilized, and the metal particles are dispersed. The voids between them shrink and sinter to form conductors that are electrically and mechanically connected to each other. In addition, the conductive paste is generally a material in which metal particles of several hundreds to thousands of nanometers in diameter are dispersed in an adhesive resin, and the conductive paste is printed on a substrate, and the resin is cured when heat is applied at a predetermined temperature. And electrical and mechanical contacts between the metal particles are fixed to form conductors connected to each other.
이러한 인쇄회로기판 상에 전자부품을 사용하여 전자회로를 구성할 때 가장 문제가 되는 분야중의 하나가 열이 발생되는 부품의 열에 대한 대책이다. 즉, 전자부품에 정해진 전압이 가해지면 전류가 흐르게 되고, 이것은 필연적으로 저항손실에 의한 열이 발생하게 된다. 이때 열의 발생이 미약해 자연공냉으로 동작에 지장이 없는 전자부품도 있지만, 열이 많이 발생되어 자연 공냉만으로는 한계가 있어 계속적으로 전자부품의 온도가 올라가는 발열부품들의 경우에는 온도상승으로 인한 전자부품의 오동작 및 파손이 문제되는 경우가 있고, 이러한 발열은 전체 전자제품의 신뢰성에 문제를 야기한다. One of the most problematic areas when configuring electronic circuits using electronic components on such printed circuit boards is a countermeasure against heat of components in which heat is generated. That is, when a predetermined voltage is applied to the electronic component, a current flows, which inevitably generates heat due to resistance loss. At this time, there are some electronic parts that do not interfere with operation due to natural air cooling due to the low heat generation.However, in the case of heat generating parts in which the temperature of electronic parts continuously increases due to a lot of heat generated, there is a limit to only natural air cooling. And breakage is sometimes a problem, such heat generation causes a problem in the reliability of the entire electronics.
예를 들어, LCD TV 백라이트뿐만 아니라 점차적으로 조명에도 그 용도가 확대되고 있는 LED는 구동시 일반 램프와 달리 빛과 열을 발산하게 되는데 빛은 약 20~30%, 열은 70~80%를 차지하게 된다. 특히 구동시 발생되는 열을 빠르게 방열시켜야 광효율도 좋아지게 되는데 이러한 발열을 효과적으로 전달시키기 위해서는 일반적으로 금속 회로기판을 사용한다.For example, LEDs, which are expanding their use not only for LCD TV backlights but also for lighting, emit light and heat, unlike ordinary lamps, while driving light, which accounts for about 20-30% and 70-80% of heat. Done. In particular, when heat generated during operation is quickly radiated, the light efficiency is also improved. In order to effectively transmit such heat, a metal circuit board is generally used.
또한, 일반적으로 회로에 의해 발생된 열을 방열 및 냉각시키기 위해 기판하부에 방열판을 구비할 수 있으며, 기존의 기판소재로서 알루미늄, 마그네슘 등의 금속을 주로 이용되고 있다. 그러나 상기 금속의 경우 기판의 무게를 줄일 수 없다는 단점을 가지고 있으며, 손쉬운 가공이 어렵다는 한계를 가지고 있다.In addition, in order to heat and cool the heat generated by the circuit in general, a heat sink may be provided under the substrate, and a metal such as aluminum or magnesium is mainly used as a conventional substrate material. However, the metal has the disadvantage that the weight of the substrate can not be reduced, and has a limitation that easy processing is difficult.
이러한 문제점을 해결함과 동시에 발생된 열을 방열 및 냉각시키기 위한 다양한 구조가 제안되고 있다. 예를 들어, 공개특허공보 제10-2012-0082947호(2012.07.24)에서는 알루미늄 기재층, 상기 알루미늄 기재층상에 접착층, 수지층, 접착층 및 구리층 또는 알루미늄층이 적층된 방열 적층체에 관한 기술이 기재되어 있고, 공개특허공보 제10-2012-0072801호(2012.07.04.)에서는 아노다이징에 의한 제1 절연층을 형성하고, 전착도장하여 제2 절연층을 형성하여 회로를 형성한 전착도장을 이용한 고방열 기판 및 이의 제조방법에 관해 기재되어 있다. In order to solve these problems, various structures for dissipating and cooling the generated heat have been proposed. For example, Japanese Patent Application Laid-Open No. 10-2012-0082947 (2012.07.24) discloses an aluminum substrate layer and a technology related to a heat dissipating laminate in which an adhesive layer, a resin layer, an adhesive layer, and a copper layer or an aluminum layer are laminated on the aluminum substrate layer. Patent Application Publication No. 10-2012-0072801 (2012.07.04.) Discloses an electrodeposition coating in which a first insulating layer by anodizing is formed, electrodeposited, and a second insulating layer is formed to form a circuit. The high heat dissipation substrate used and its manufacturing method are described.
그러나 상기 종래기술을 포함하는, 인쇄회로기판의 소재나 재질을 변경함으로써 방열효율을 높이기 위한 다양한 노력에도 불구하고 방열효율이 우수하고, 높은 강도를 가지며 전자제품의 슬림화에도 부응할 수 있는 새로운 개념의 방열기판에 관한 연구개발의 필요성은 지속적으로 요구되고 있는 실정이다. However, in spite of various efforts to increase heat dissipation efficiency by changing the material or material of the printed circuit board including the conventional technology, a new concept that has excellent heat dissipation efficiency, high strength, and can meet the slimming of electronic products. There is a continuing need for research and development on heat dissipation substrates.
따라서 상기 문제점을 해결하기 위하여 본 발명은 방열효율이 우수하며 높은 강도를 가지는 신규의 고방열 인쇄회로 기판 및 이의 제조방법을 제공하는 것을 목적으로 한다. Accordingly, an object of the present invention is to provide a novel high heat dissipation printed circuit board and a manufacturing method thereof having excellent heat dissipation efficiency and high strength.
또한 본 발명은 경량화된 방열 기판을 포함하며, 도전성 페이스트의 직접 인쇄방식에 의한 패턴형성시 배선층의 두께를 얇게 하면서도 전도성을 향상된 인쇄회로 기판을 제공하는 것을 또 다른 발명의 목적으로 한다.Another object of the present invention is to provide a printed circuit board that includes a light-weight heat-dissipating substrate and improves conductivity while reducing the thickness of a wiring layer when forming a pattern by a direct printing method of a conductive paste.
또한 본 발명은 상기 고방열 인쇄회로 기판을 이용하여 전기전도성이 우수한 특성과 배선층의 균일화 및 두께를 줄임으로써 발열을 줄일 수 있고 제품을 슬림화할 수 있는 LED용 방열 플렉서블 모듈을 제공하는 것을 발명의 또 다른 목적으로 한다. In another aspect, the present invention is to provide a heat-dissipating flexible module for LED that can reduce heat generation and slim the product by using the high heat-dissipation printed circuit board and excellent electrical conductivity and uniformity and thickness of the wiring layer. For other purposes.
본 발명은 탄소섬유 직물을 포함하는 방열층; 상기 방열층 상에 형성된 절연층; 상기 절연층 상에 형성되고 도전성 페이스트 조성물의 프린팅 방법에 의해 패턴화된 배선층; 및 상기 패턴화된 배선층상에 형성된 금속 도금층;을 포함하는 고방열 인쇄회로 기판을 제공한다.The present invention is a heat radiation layer comprising a carbon fiber fabric; An insulation layer formed on the heat dissipation layer; A wiring layer formed on the insulating layer and patterned by a printing method of a conductive paste composition; And a metal plating layer formed on the patterned wiring layer.
또한 본 발명에서 상기 절연층과 도전성 페이스트 조성물의 프린팅 방법에 의해 패턴화된 배선층의 사이에는 상기 절연층 상에 부분적으로 형성됨으로써 상기 패턴화된 배선층을 지지할 수 있도록 상기 패턴화된 배선층의 배선 형상을 따라서 제2의 절연층이 추가적으로 형성될 수 있다. Further, in the present invention, the wiring shape of the patterned wiring layer is formed between the insulating layer and the wiring layer patterned by the printing method of the conductive paste composition so as to partially support the patterned wiring layer by being formed on the insulating layer. Accordingly, a second insulating layer may be additionally formed.
또한, 본 발명은 고온에서 유동성을 가지는 접합제를 가열하여 액상으로 변환시키고 이를 방열층으로 사용될, 적어도 한층 이상의 탄소섬유 직물의 위사와 경사에 의해 이루어지는 빈 공간에 채움으로써, 탄소섬유 직물을 포함하는 방열층을 형성하는 단계; 상기 방열층에 폴리뷰틸렌테레프탈레이트, 폴리에틸렌테레프탈레이트, 폴리술폰, 폴리에테르, 폴리에테르이미드, 내열성 에폭시(Epoxy), 폴리아릴레이트 및 폴리이미드에서 선택되는 어느 하나의 절연층을 부착시켜 베이스 기판을 형성하는 단계; 상기 베이스기판의 절연층상에 전도성 Ag 페이스트, 전도성 Cu 페이스트, 전도성 폴리머, 그라비아용 페이스트 중에서 선택되는 어느 하나 또는 이들의 혼합물을 포함하는 도전성 페이스트 조성물을 미리 정한 패턴으로 인쇄하여 패턴화된 배선층을 형성하는 단계; 및 상기 패턴화된 배선층 상부에 도금에 의해 금속 도금층을 형성하는 단계;를 포함하는 것을 특징으로 하는 인쇄회로기판의 제조 방법을 제공할 수 있다. In addition, the present invention comprises a carbon fiber fabric by heating the binder having fluidity at high temperature to convert it into a liquid phase and filling it in the empty space made by the weft and warp of at least one or more carbon fiber fabrics to be used as a heat dissipation layer, Forming a heat dissipation layer; The base substrate is attached by attaching one insulating layer selected from polybutylene terephthalate, polyethylene terephthalate, polysulfone, polyether, polyetherimide, heat resistant epoxy, polyarylate and polyimide to the heat dissipating layer. Forming; Forming a patterned wiring layer by printing a conductive paste composition comprising any one or a mixture thereof selected from conductive Ag paste, conductive Cu paste, conductive polymer, and gravure paste on the insulating layer of the base substrate in a predetermined pattern. step; And forming a metal plating layer on the patterned wiring layer by plating. The method of manufacturing the printed circuit board may include:
또한, 본 발명은 폴리뷰틸렌테레프탈레이트, 폴리에틸렌테레프탈레이트, 폴리술폰, 폴리에테르, 폴리에테르이미드, 내열성 에폭시(Epoxy), 폴리아릴레이트 및 폴리이미드에서 선택되는 어느 하나의 절연층상에 전도성 Ag 페이스트, 전도성 Cu 페이스트, 전도성 폴리머, 그라비아용 페이스트 중에서 선택되는 어느 하나 또는 이들의 혼합물을 포함하는 도전성 페이스트 조성물을 미리 정한 패턴으로 인쇄하여 패턴화된 배선층을 형성하는 단계; 상기 패턴화된 배선층 상부에 도금에 의해 금속 도금층을 형성하는 단계; 고온에서 유동성을 가지는 접합제를 가열하여 액상으로 변환시키고 이를 방열층으로 사용될, 적어도 한층 이상의 탄소섬유 직물의 위사와 경사에 의해 이루어지는 빈 공간에 채움으로서 탄소섬유 직물을 포함하는 방열층을 형성하는 단계; 및 상기 방열층에 상기 도전성 페이스트에 의한 배선층 및 금속도금층을 포함하는 절연층을 부착시키는 단계;를 포함하는 것을 특징으로 하는 인쇄회로 기판의 제조 방법을 제공할 수 있다. In addition, the present invention is a conductive Ag paste on any one insulating layer selected from polybutylene terephthalate, polyethylene terephthalate, polysulfone, polyether, polyetherimide, heat-resistant epoxy, polyarylate and polyimide, Forming a patterned wiring layer by printing a conductive paste composition including any one or a mixture thereof selected from a conductive Cu paste, a conductive polymer, and a gravure paste in a predetermined pattern; Forming a metal plating layer on the patterned wiring layer by plating; Forming a heat dissipating layer comprising a carbon fiber fabric by heating the binder having fluidity at a high temperature to convert it into a liquid phase and filling it into an empty space formed by the weft and warp of at least one carbon fiber fabric to be used as a heat dissipating layer. ; And attaching an insulating layer including the wiring layer and the metal plating layer by the conductive paste to the heat dissipating layer.
또한 본 발명은 상기 고방열 인쇄회로 기판을 포함하는 LED용 방열 플렉서블 모듈을 제공할 수 있다.In another aspect, the present invention can provide a heat dissipation flexible module for an LED including the high heat dissipation printed circuit board.
본 발명의 고방열 인쇄회로 기판은 방열효율이 우수하며 높은 강도를 가지며 전자제품의 슬림화에도 부응할 수 있는 장점이 있다. The high heat dissipation printed circuit board of the present invention is excellent in heat dissipation efficiency, has a high strength, and has the advantage of meeting the slimming of electronic products.
또한 본 발명은 경량화된 방열 기판을 포함하며, 도전성 페이스트의 직접 인쇄방식에 의한 배선 형성후에 금속 도금에 의해 배선층의 두께를 얇게 하면서도 전도성이 향상된 인쇄회로 기판을 제공할 수 있다.In addition, the present invention includes a heat-dissipating substrate which is light in weight, and can provide a printed circuit board having improved conductivity while thinning the thickness of the wiring layer by metal plating after forming the wiring by the direct printing method of the conductive paste.
본 발명의 고방열 인쇄회로 기판은 LED용 방열 모듈로 이용되는 경우에 전기전도성이 우수한 특성과 배선층의 균일화 및 두께를 줄임으로써 발열을 줄일 수 있고 또한 경량화 및 연성의 특성과 더불어 제품을 슬림화할 수 있는 장점이 있다.The high heat dissipation printed circuit board of the present invention can reduce heat generation by reducing the uniformity and thickness of the wiring layer and the excellent electrical conductivity when used as a heat dissipation module for LEDs, and also can reduce the product weight with light weight and ductility. There is an advantage.
도 1은 본 발명의 일실시예에 따른 고방열 인쇄회로기판의 단면도이다.1 is a cross-sectional view of a high heat radiation printed circuit board according to an embodiment of the present invention.
도 2는 본 발명에서 사용되는 방열판의 재료인 탄소섬유 직물을 도시한 그림이다. Figure 2 is a view showing a carbon fiber fabric which is a material of the heat sink used in the present invention.
도 3은 본 발명의 일 실시예에 따른 방열층의 제조시 접합제가 탄소섬유 직물의 빈공간에 채워진 고방열 인쇄회로기판의 단면도를 나타낸 그림이다.3 is a cross-sectional view of a high heat radiation printed circuit board in which a binder is filled in a void space of a carbon fiber fabric when the heat dissipation layer is manufactured according to an embodiment of the present invention.
도 4는 본 발명의 또 다른 일실시예에 따른 고방열 인쇄회로기판의 단면도이다. Figure 4 is a cross-sectional view of a high heat radiation printed circuit board according to another embodiment of the present invention.
도 5는 본 발명의 일실시예에 따른 고방열 인쇄회로기판의 제조방법을 도시한 그림이다.5 is a diagram illustrating a manufacturing method of a high heat radiation printed circuit board according to an exemplary embodiment of the present invention.
도 6은 본 발명의 또 다른 일실시예에 따른 고방열 인쇄회로기판의 제조방법을 도시한 그림이다. 6 is a diagram illustrating a manufacturing method of a high heat radiation printed circuit board according to another embodiment of the present invention.
이하, 첨부한 도면을 참조하여 본 발명의 인쇄회로기판 및 이의 제조방법을 상세히 설명한다. Hereinafter, a printed circuit board and a method of manufacturing the same will be described in detail with reference to the accompanying drawings.
도 1은 본 발명의 일 실시예에 따른 고방열 인쇄회로기판의 단면도를 나타낸 그림이다. 상기 도 1에서 볼 수 있듯이, 본 발명에 따른 고방열 인쇄회로기판은 탄소섬유 직물을 포함하는 방열층(12), 상기 방열층 상에 형성된 절연층(11), 상기 절연층 상에 형성되고 도전성 페이스트 조성물의 프린팅 방법에 의해 패턴화된 배선층(10) 및 상기 패턴화된 배선층상에 형성된 금속 도금층(13)을 포함하는 고방열 인쇄회로 기판을 제공한다. 1 is a view showing a cross-sectional view of a high heat radiation printed circuit board according to an embodiment of the present invention. As can be seen in Figure 1, the high heat radiation printed circuit board according to the present invention is a heat radiation layer 12 including a carbon fiber fabric, an insulating layer 11 formed on the heat radiation layer, formed on the insulating layer and conductive Provided is a high heat radiation printed circuit board comprising a wiring layer 10 patterned by a printing method of a paste composition and a metal plating layer 13 formed on the patterned wiring layer.
본 발명에 있어서, 상기 고방열 인쇄회로기판의 방열층은 탄소섬유 직물을 포함한다. In the present invention, the heat dissipation layer of the high heat radiation printed circuit board includes a carbon fiber fabric.
일반적으로 탄소 소재는 높은 강도, 열전도성을 가지고 있고 또한 금속 대비 밀도가 낮아 경량화된 기판을 만들 수 있는 장점이 있어, 방열 향상을 위한 코팅층, 방열 특성이 향상된 접착 수지와 합성하여 사용 하는 방열 절연층 등에 분말 형태로 또는 시트 형태로 사용 되고 있다. In general, carbon materials have high strength and thermal conductivity, and have a low density compared to metals, so that a lightweight substrate can be produced. A coating layer for improving heat dissipation, and a heat dissipating insulating layer used in combination with an adhesive resin having improved heat dissipation characteristics. It is used in powder form or sheet form.
그러나 상기와 같이 시트형태로 기판 소재로서 사용하는 경우에는 충격에 약하며, 휘거나 구부릴 경우 균열이 발생하는 문제가 있다. 따라서 본 발명은 상기 탄소섬유를 직물 형태로 이용하여 내구성을 향상시켜 방열층으로 이용하고자 한다. However, when used as a substrate material in the form of a sheet as described above, it is susceptible to impact, and there is a problem of cracking when bent or bent. Therefore, the present invention is to use the carbon fiber in the form of a fabric to improve the durability to use as a heat radiation layer.
일반적으로 탄소섬유는 폴리아크릴로나이트릴 원사, 비스코스 원사, 피치계 원사 등이 길이 방향으로 연신되면서 탄화 처리되어 구성되며, 높은 강도, 열전도성 등의 전기적, 기계적 특성이 매우 우수한 장점이 있어, 전자재료, 정밀기계 부품 등과 같은 다양한 용도로 연구되고 있다. In general, carbon fiber is carbonized as polyacrylonitrile yarn, viscose yarn, pitch-based yarn, etc. are stretched in the longitudinal direction, and the carbon fiber has advantages of high strength and thermal conductivity such as electrical and mechanical properties. It is researched in various applications such as materials and precision machine parts.
도 2는 본 발명에서 사용되는 방열층의 재료인 탄소섬유 직물을 도시한 그림을 보여주고 있다. 상기 탄소섬유 직물은 탄소섬유를 경사와 위사에 의해 직조한 것으로서, 도 2에 도시한 바와 같이, 그 구조가 평탄한 구조가 아니며 경사와 위사 사이의 반공간을 가지게 된다. 또한 상기 빈 공간에 의해 절연층과의 접합에도 절연층과 직접 닿는 부분이 적어 접착력 및 방열 효과에도 문제가 있을 수 있다. Figure 2 shows a figure showing a carbon fiber fabric as a material of the heat dissipation layer used in the present invention. The carbon fiber fabric is a woven fabric of carbon fibers by warp and weft yarns, and as shown in FIG. 2, the structure is not a flat structure but has a half space between the warp yarns and the weft yarns. In addition, due to the empty space, even in direct contact with the insulating layer, the portion directly contacting the insulating layer may have a problem in adhesive strength and heat dissipation effect.
따라서. 상기 빈 공간을 메워 주기 위해 본 발명에서는 접합제를 사용하여 경사와 위사 사이의 반공간을 채울 수 있다. 이때 사용되는 접합제는 고온에서 유동성을 가져야 하며, 열전도율이 높은 것을 사용해야 한다. therefore. In order to fill the empty space, in the present invention, a binder may be used to fill the half space between the warp yarn and the weft yarn. In this case, the binder used should have fluidity at a high temperature, and a high thermal conductivity should be used.
접합제는 일반적으로 내화학성이 우수한 특성을 가지는 것이면 그 종류에 구애받지 않고 사용 할 수 있으나, 바람직하게는 내화학성이 우수한 에폭시계 또는 실리콘계를 사용 할 수 있다. 여기서, 상기 절연체상에 도전성 페이스트 배선층을 형성후에 금속도금 공정까지 고려하는 경우, 상기 도금공정은 강염기성 또는 강산성 조건하에 이루어지므로 특히 염기성과 반응성을 가지는 아크릴계의 접합제는 사용하지 않는 것이 바람직하다. Generally, the binder may be used regardless of its kind as long as it has excellent chemical resistance, but preferably, epoxy or silicone may be used. Here, when considering the metal plating process after forming the conductive paste wiring layer on the insulator, since the plating process is performed under strong basic or strong acid conditions, it is preferable not to use an acrylic binder having basicity and reactivity.
도 3은 상기 방열층의 제조시 접합제가 탄소섬유 직물의 빈공간에 채워진 고방열 인쇄회로기판의 단면도를 나타낸 그림이다. 이를 살펴보면, 상기 탄소섬유 직물의 빈공간에 표시되는 접합제가 탄소섬유 직물의 빈공간 사이에 충분히 흘러 들어가 빈공간을 채우고 상기 절연층과의 접합면 사이에 공기나 빈 공간이 없게 하는 것을 도식화 한 것이다. 상기 접합제는 가열에 의해 점성을 가진 액상의 상태로 용융되어 탄소직물에 투입되어야 상기 빈 공간이 없이 절연층과의 접합면이 형성되며, 이에 의해서 양호한 열전도도를 가질 수 있다.Figure 3 is a view showing a cross-sectional view of a high heat radiation printed circuit board in which the bonding agent is filled in the empty space of the carbon fiber fabric in the manufacture of the heat dissipation layer. In this regard, the binder shown in the voids of the carbon fiber fabric flows sufficiently between the voids of the carbon fiber fabric to fill the voids, and there is no air or void space between the bonding surface with the insulating layer. . The bonding agent must be melted in a viscous liquid state by heating to be introduced into the carbon fabric to form a bonding surface with the insulating layer without the void space, thereby having good thermal conductivity.
또한 본 발명에서 상기 접합제 성분에는 알루미늄, 구리, 니켈 중에서 선택되는 어느 하나의 열전도가 우수한 금속분말, 고분자재료 분말, 세라믹 분말 또는 이들의 혼합 분말이 포함될 수 있다.In the present invention, the binder component may include a metal powder, a polymer material powder, a ceramic powder, or a mixed powder thereof having excellent thermal conductivity selected from among aluminum, copper, and nickel.
이 경우 상기 접합제 성분에 추가로 포함될 수 있는 금속 분말의 평균입경은 0.1 um 내지 ~ 10 um의 범위일 수 있다.  In this case, the average particle diameter of the metal powder which may be additionally included in the binder component may range from 0.1 um to 10 um.
또한 본 발명에서 상기 방열층은 복수의 탄소섬유 직물이 적층된 것일 수 있다. 상기 탄소섬유 직물이 복수의 층으로 적층되는 경우에 상기 접합제 성분은 각각의 탄소섬유 직물에 접합제 성분이 이미 채워진 것을 적층하거나 또는 각각의 탄소섬유 직물을 적층한 후에 상기 접합제를 한번에 채움으로써 방열층을 형성할 수 있다. In addition, the heat dissipation layer in the present invention may be a plurality of carbon fiber fabric is laminated. In the case where the carbon fiber fabric is laminated in a plurality of layers, the binder component may be obtained by laminating each carbon fiber fabric with the binder component already filled or by filling the binder at once after laminating each carbon fiber fabric. A heat dissipation layer can be formed.
상기 접합제가 포함된 탄소섬유 직물로 이루어진 방열층의 두께는 10um 내지 150um, 바람직하게는 40 um 내지 80 um 일 수 있다.The thickness of the heat dissipation layer of the carbon fiber fabric containing the binder may be 10um to 150um, preferably 40um to 80um.
또한 본 발명에서 상기 접합제가 포함된 탄소섬유 직물로 이루어진 방열층상에 선택적으로, 에폭시계 또는 실리콘계의 추가의 점착제 또는 추가의 접착제를 사용함으로써 상기 절연층과 방열층을 보다 용이하게 부착할 수 있다. In addition, in the present invention, the insulating layer and the heat dissipating layer may be more easily attached to the heat dissipating layer made of the carbon fiber fabric including the bonding agent by using an additional adhesive or an additional adhesive of epoxy or silicon type.
본 발명에 있어서, 상기 절연층은 고분자 재료, 세라믹, 유리, 실리콘 등의 다양한 기판이 사용될 수 있으나, 보다 바람직하게는 폴리뷰틸렌테레프탈레이트, 폴리에틸렌테레프탈레이트, 폴리술폰, 폴리에테르, 폴리에테르이미드, 내열성 에폭시(Epoxy), 폴리아릴레이트 및 폴리이미드에서 선택되는 어느 하나일 수 있다. In the present invention, the insulating layer may be used a variety of substrates such as polymer materials, ceramics, glass, silicon, more preferably polybutylene terephthalate, polyethylene terephthalate, polysulfone, polyether, polyetherimide, It may be any one selected from heat resistant epoxy, polyarylate and polyimide.
또한 상기 절연층의 두께는 방열 특성을 향상 시키기 위해서는 절연층의 두께는 얇아야 하나, 상기 절연층이 얇아지게 되면 내전압 특성(절연 기구물이 파괴되지 않고 견딜 수 있는 최고 전압으로서, 일반적으로 사용되는 MPCB의 경우 5,000V/1분을 견뎌야 함.)은 떨어지게 되어 양 특성의 균형점을 찾아 적절히 조절되어야 한다. In addition, the thickness of the insulating layer should be thin in order to improve heat dissipation characteristics, but when the insulating layer becomes thinner, withstand voltage characteristics (the highest voltage that can withstand without destroying the insulation mechanism, MPCB generally used Must withstand 5,000 V / min.) And fall off to find the balance of both characteristics and adjust accordingly.
일반적으로 사용될 수 있는 절연층의 두께는 10um 내지 100um, 바람직하게는 12um 내지 25um 일 수 있다.In general, the thickness of the insulating layer that can be used may be 10um to 100um, preferably 12um to 25um.
또한 상기 절연층상에 형성되는 도전성 페이스트 배선층은 인쇄방식에 의해 도전성 페이스트 조성물을 프린트함으로써 형성될 수 있다. In addition, the conductive paste wiring layer formed on the insulating layer may be formed by printing the conductive paste composition by a printing method.
또한 본 발명에서 사용되는 도전성 페이스트는 전기 전도성이 있는 물질의 입자를 포함하며, 이는 도전성이 있는 금속, 비금속 또는 이들의 산화물, 탄화물, 붕화물, 질화물, 탄질화물의 분말과 카본블랙과 흑연 등 탄소계 분말을 포함한다. 상기 도전성 페이스트 입자는 예를 들어 금, 알루미늄, 구리, 인듐, 안티몬, 마그네슘, 크롬, 주석, 니켈, 은, 철, 티탄 및 이들의 합금과 이들의 산화물, 탄화물, 붕화물, 질화물, 탄질화물의 입자를 포함할 수 있다. 상기 입자의 형태는 특별히 제한되지 않으며, 예를 들면, 판형, 파이버 형과 나노 크기의 나노입자 나노튜브 등이 사용될 수 있다. 이러한 도전성 입자는 단독 또는 조합하여 사용될 수 있다.In addition, the conductive paste used in the present invention includes particles of electrically conductive materials, which are conductive metals, nonmetals or powders of oxides, carbides, borides, nitrides, carbonitrides, and carbon such as carbon black and graphite. It includes a system powder. The conductive paste particles may be formed of, for example, gold, aluminum, copper, indium, antimony, magnesium, chromium, tin, nickel, silver, iron, titanium, alloys thereof, and oxides, carbides, borides, nitrides, and carbonitrides thereof. It may include particles. The shape of the particles is not particularly limited, and for example, plate-shaped, fiber-type and nano-sized nanoparticle nanotubes may be used. These conductive particles may be used alone or in combination.
또한 상기 도전성 페이스트는 잉크젯 프린팅 등 에서 사용되는 전도성 잉크와는 달리, 기판과의 접착성을 향상시키기 위해 바인더를 추가적으로 포함할 수 있으며, 일반적으로 에폭시 수지, 페놀수지(페놀+포롬알데하이드) 폴리우레탄수지, 폴리아미드수지, 아크릴수지, 우레아/멜라민수지, 실리콘 수지 등의 유기계 바인더를 사용할 수 있다. 상기 바인더의 함량은 일반적으로 총 페이스트 조성물의 함량대비 10 내지 50 wt%의 범위를 가질 수 있고, 바람직하게는 15 내지 40 wt%의 범위를 가질 수 있으나, 이에 국한되지는 않는다. 상기 바인더는 앞서 살펴본 바와 같이 도전성 페이스트를 포함하는 배선층의 전기전도성을 감소시키는 원인으로 작용하고 있다. In addition, unlike the conductive ink used in inkjet printing, the conductive paste may further include a binder to improve adhesion to the substrate, and generally, an epoxy resin, a phenol resin (phenol + formaldehyde), and a polyurethane resin. Organic binders such as polyamide resin, acrylic resin, urea / melamine resin and silicone resin can be used. The content of the binder may generally range from 10 to 50 wt% with respect to the content of the total paste composition, preferably from 15 to 40 wt%, but is not limited thereto. As described above, the binder serves to reduce the electrical conductivity of the wiring layer including the conductive paste.
또한 본 발명에서 사용되는 도전성 페이스트 조성물의 점도는 23 ℃, 50 rpm HAKKE RHeoscope 측정기준 10,000 cps ~ 100,000 cps 범위의 것을 사용할 수 있으나, 이에 국한되는 것은 아니다.In addition, the viscosity of the conductive paste composition used in the present invention may be used in the range of 23 ℃, 50 rpm HAKKE RHeoscope measurement standard 10,000 cps ~ 100,000 cps, but is not limited thereto.
또한 추가적으로 그 밖의 첨가제로서 Ag파우더(안료), 천연 및 합성수지(바인더), 솔벤트, 분산제, 커플링제, 점도조절제 등을 포함할 수 있다.Additionally, other additives may include Ag powder (pigment), natural and synthetic resins (binder), solvents, dispersants, coupling agents, viscosity modifiers and the like.
본 발명에서의 상기 도전성 페이스트 조성물은 바람직하게는 전도성 Ag 페이스트, 전도성 Cu 페이스트, 전도성 폴리머, 그라비아용 페이스트 중에서 선택되는 어느 하나 또는 이들의 혼합물일 수 있다. The conductive paste composition in the present invention may be preferably any one selected from conductive Ag paste, conductive Cu paste, conductive polymer, paste for gravure, or a mixture thereof.
상기 그라비아용 페이스트는 전도성 실버(Ag) 페이스트의 일종으로서 입자크기는 0.1~3um이며, 일 예로서 Ag 파우더 75%, 수지 10%, 솔벤트 13% 첨가제 2%의 구성으로 이루어 질 수 있다. The gravure paste is a kind of conductive silver (Ag) paste and has a particle size of 0.1 to 3 μm. For example, the gravure paste may be composed of 75% Ag powder, 10% resin, and 13% solvent 13% additive.
또한, 상기전도성 페이스트 조성물의 입자크기는 10 nm 내지 10 um의 범위일 수 있으며, 30 내지 1,000 nm 나노입자크기를 갖는 전도성 페이스트 또는 1 내지 7 um의 마이크로 입자 크기를 갖는 전도성 페이스트가 바람직하다. In addition, the particle size of the conductive paste composition may be in the range of 10 nm to 10 um, and a conductive paste having a 30 to 1,000 nm nanoparticle size or a conductive paste having a micro particle size of 1 to 7 um is preferable.
일반적으로 상기 페이스트의 입자가 커질수록 형성되는 배선층의 전기전도도가 낮아지게 되어, 페이스트 입자가 마이크로 사이즈의 범위를 갖는 경우에 본 발명의 도금층을 통한 배선층의 형성에 의한 전도도 향상의 효과가 더 커질 수 있다. In general, the larger the particles of the paste, the lower the electrical conductivity of the wiring layer is formed, the greater the effect of the conductivity improvement by the formation of the wiring layer through the plating layer of the present invention when the paste particles have a micro size range can be greater. have.
본 발명에서 상기 도전성 페이스트는 기판상에 직접 인쇄방식에 의해 사용자가 원하는 형상의 패턴으로 패턴화된 배선층을 형성할 수 있다. 상기 직접 인쇄방식은 기판에 스크린인쇄, 프렉소인쇄, 로터리인쇄, 그라비어인쇄, 옵셋 인쇄, 또는 디스펜서 등의 인쇄 방법을 포함할 수 있다. 각각의 인쇄법에 있어서는 종래 공지의 수단을 사용할 수 있다. 상기 인쇄 방법 중, 스크린 인쇄, 그라비어 인쇄 또는 옵셋 인쇄가 바람직하다. In the present invention, the conductive paste may form a wiring layer patterned in a pattern of a shape desired by a user by a direct printing method on a substrate. The direct printing method may include a printing method such as screen printing, flexographic printing, rotary printing, gravure printing, offset printing, or dispenser on a substrate. In each printing method, a conventionally well-known means can be used. Among the printing methods, screen printing, gravure printing or offset printing is preferable.
한편, 일반적으로 기판상에 도전성 페이스트를 인쇄 방식으로 구현된 회로배선은 저항이 높아 전도도가 양호하지 않아 회로 배선으로 사용하기에는 어려움이 있고, 또한 일반적인 솔더페이스트를 사용하였을 때 접착이 되지 않는 문제점이 있다. 이런 문제를 해결하기 위해 상기 도전성 페이스트 배선상에 금속도금층을 형성할 수 있다.On the other hand, in general, the circuit wiring implemented by printing a conductive paste on the substrate has a high resistance, so the conductivity is not good, so it is difficult to use it as a circuit wiring, and there is a problem in that adhesion is not performed when using general solder paste. . In order to solve this problem, a metal plating layer may be formed on the conductive paste wiring.
본 발명에서 상기 도전성 페이스트 배선층상에 형성되는 금속 도금층은 전해 도금 또는 무전해 도금에 의해 형성될 수 있다.In the present invention, the metal plating layer formed on the conductive paste wiring layer may be formed by electrolytic plating or electroless plating.
상기 패턴화된 배선층상에 형성된 금속 도금층의 두께는 1 um 내지 10 um 이며, 바람직하게는 2 내지 5 um를 형성할 수 있다. The thickness of the metal plating layer formed on the patterned wiring layer is 1 um to 10 um, preferably 2 to 5 um.
바람직하게는, 본 발명에서의 상기 금속 도금층은 무전해 도금에 의해 형성될 수 있다. 이 경우, 금속 도금층이 전해도금에 의해 형성되는 것보다 배선의 균일성이 양호해질 수 있다. 이와 관련되어 이하에서 보다 상세히 설명한다.Preferably, the metal plating layer in the present invention may be formed by electroless plating. In this case, the uniformity of the wiring can be better than that of the metal plating layer formed by electroplating. This will be described in more detail below.
일반적으로 전해도금의 경우에는 전해 도금의 진행시 도전성 페이스트의 저항이 큼으로 인해 도금이 제대로 되지 않거나 저항의 편차에 의해 도금두께도 크게 편차가 발생되어 진다. 예컨대, 전해 도금시 배선의 시작점은 전극에 가깝게 위치하고 있으며, 금속의 환원반응이 잘 일어나게 되어 상기 도전성 페이스트층 상에 도금층이 원활하게 형성될 수 있으나, 페이스트층을 포함하는 배선층이 시작점에서부터 멀어질수록 페이스트의 전기전도도가 금속에 비해 좋지 않으며, 도전성 페이스트의 길이에 따른 저항의 존재로 인해 금속이온의 환원반응의 효율이 떨어지게 된다. 따라서 배선이 전극의 시작점에서 멀어질수록 형성되는 도금층의 두께는 얇아질 수 있고, 심지어는 배선이 불연속적으로 도금이 형성될 수도 있다. In general, in the case of electroplating, plating is not properly performed due to the large resistance of the conductive paste during electroplating, or the plating thickness is greatly varied due to the variation in resistance. For example, the start point of the wiring during the electroplating is located close to the electrode, and the reduction reaction of the metal occurs well so that the plating layer can be smoothly formed on the conductive paste layer, but as the wiring layer including the paste layer moves away from the starting point, The electrical conductivity of the paste is not as good as that of metal, and the efficiency of the reduction of metal ions is reduced due to the presence of a resistance along the length of the conductive paste. Therefore, as the wiring moves away from the starting point of the electrode, the thickness of the plating layer formed may become thin, and even the wiring may be formed discontinuously.
상기와 같은 문제점을 해결하기 위해서 도금층의 두께를 두껍게 하게 되면, 최종적으로 제조되는 회로기판의 두께가 두꺼워지는 단점을 가지며 또한 높은 두께로 인한 인쇄시 불량발생 원인을 제공하기도 한다. In order to solve the above problems, if the thickness of the plating layer is made thick, the thickness of the finally manufactured circuit board may be thickened, and it may also provide a cause of defects during printing due to the high thickness.
또한, 상기 도금층의 두께를 두껍게 하기 위해 전해도금시 도금량을 증가시키게 되는 경우에, 배선층의 상단부분만이 도금되지 않고 배선층의 측면부에도 도금이 될 수 있어, 배선 라인간의 폭(피치폭)을 좁게 형성할 수 없는 단점이 있다. In addition, in the case where the plating amount is increased during electroplating in order to increase the thickness of the plating layer, only the upper end portion of the wiring layer may be plated instead of the upper portion of the wiring layer, thereby forming a narrow width (pitch width) between the wiring lines. There is a disadvantage that can not.
그러나 상기 도전성 페이스트의 패턴화된 배선층상에 무전해 도금을 하는 경우에는 상기 전해도금에 의해 발생될 수 있는 문제점인 배선의 길이에 따른 전해도금층의 두께가 불균일한 것을 해소할 수 있는 장점이 있다. However, in the case of electroless plating on the patterned wiring layer of the conductive paste, there is an advantage in that the thickness of the electroplating layer according to the length of the wiring, which may be caused by the electroplating, may be eliminated.
또한, 상기 무전해도금에 의해 도금층을 형성하는 경우에는 전해 도금을 하는 경우에 있어 배선의 전도도를 향상시키기 위해 도금층을 두껍게 함으로써 발생되는 문제점인 회로기판의 두께가 두꺼워지는 단점을 개선할 수 있고, 전해도금에 의해 금속도금층을 형성하는 것보다 배선라인간의 폭(피치폭)을 좁게 형성할 수 있다. 왜냐하면 전해도금시 배선의 길이에 따른 전해도금층의 두께가 불균일하게 되는 단점을 극복하기 위해서는 앞서 기재한 바와 같이 도금층의 두께를 두껍게 하여야 하며 이를 위해 전해도금시 도금량을 증가시켜야 하나, 이러한 경우에, 배선층의 상단부분만이 도금되지 않고 배선층의 측면부에도 도금이 될 수 있게 된다. 따라서 전해도금에 의해 도전성 페이스트층 상에 금속도금층을 형성하는 경우 전도성이 양호한 배선을 형성하기 위해서는 도금층의 두께를 두껍게 함으로써 배선층의 측면부에도 도금층이 형성되어, 배선 라인간의 폭(피치폭)을 좁게 형성할 수 없는 단점이 있게 되나, 본 발명에서와 같이 무전해 도금에 의해 금속도금층을 도전성 페이스트층에 형성하는 경우에는 앞서 살펴본 바와 같이 배선의 길이에 따른 전해도금층의 두께가 불균일하게 되는 문제점이 해결됨으로써, 전해도금에 의한 도금층을 형성하는 경우보다 배선 라인간의 폭(피치폭)을 좁게 형성할 수 있다. In addition, in the case of forming the plating layer by the electroless plating, in the case of electroplating, the disadvantage of thickening the circuit board, which is a problem caused by thickening the plating layer to improve the conductivity of the wiring, can be improved. It is possible to form a narrower width (pitch width) between the wiring lines than forming the metal plating layer by electroplating. Because in order to overcome the disadvantage that the thickness of the electroplating layer according to the length of the wiring during the electroplating, it is necessary to increase the thickness of the plating layer as described above, for this purpose, the plating amount should be increased during the electroplating, in this case, the wiring layer Only the upper end portion of is not plated, and the side portion of the wiring layer may be plated. Therefore, in the case of forming the metal plating layer on the conductive paste layer by electroplating, in order to form a highly conductive wiring, the plating layer is formed on the side of the wiring layer by making the thickness of the plating layer thick, so that the width (pitch width) between the wiring lines is narrowly formed. However, when the metal plating layer is formed on the conductive paste layer by electroless plating as in the present invention, the thickness of the electroplating layer according to the length of the wiring is not solved. The width (pitch width) between the wiring lines can be formed narrower than that in the case of forming the plating layer by electroplating.
또한 본 발명은 상기 금속 도금층이 무전해 도금에 의해 형성되며, 상기 무전해 도금에 의해 형성되는 도금층 상에 선택적으로, 전해도금에 의한 금속도금층이 추가적으로 형성될 수 있다.In the present invention, the metal plating layer is formed by electroless plating, and optionally, a metal plating layer by electroplating may be additionally formed on the plating layer formed by the electroless plating.
또한 본 발명에서의 상기 무전해 금속 도금에 사용되는 금속은 Cu, Sn, Ag, Au, Ni 또는 이들의 합금에서 선택되는 어느 하나 일 수 있으나 이에 한정되지는 않으나. 바람직하게는 Cu, Ag 또는 Ni을 사용할 수 있다. In addition, the metal used in the electroless metal plating in the present invention may be any one selected from Cu, Sn, Ag, Au, Ni or alloys thereof, but is not limited thereto. Preferably Cu, Ag or Ni can be used.
이 경우에 상기 무전해 도금에 의해 형성되는 배선층은 종래의 전해도금에 의한 배선층보다 더 얇게 층을 형성할 수 있고, 이를 통해 배선의 전기전도성을 향상시킬 수 있는 장점을 가지고 있다.In this case, the wiring layer formed by the electroless plating can form a layer thinner than the wiring layer by the conventional electroplating, and thus has the advantage of improving the electrical conductivity of the wiring.
한편, 본 발명에서 상기 패턴화된 전도성 페이스트 배선층 상부와 무전해 금속도금층의 사이에는 무전해 금속도금층을 형성하기 위한 시드 금속층이 추가로 형성 될 수 있다.Meanwhile, in the present invention, a seed metal layer for forming the electroless metal plating layer may be further formed between the patterned conductive paste wiring layer and the electroless metal plating layer.
상기 시드 금속층은 상기 페이스트층상에 시드금속이 흡착되고 이에 상기 무전해 화학도금층을 형성하는 금속이온이 환원되게 함으로써 무전해 도금의 반응속도와 선택성을 개선시킬 수 있다. The seed metal layer may improve the reaction rate and selectivity of the electroless plating by allowing the seed metal to be adsorbed on the paste layer and thereby reducing the metal ions forming the electroless chemical plating layer.
상기 시드 금속층을 형성하기 위한 금속은 Au, Ag, Pt, Cu, Ni, Fe, Pd, Co 또는 이들의 합금에서 선택될 수 있고, 시드금속 성분의 할라이드, 설페이트, 아세테이트, 착염 등의 시드금속성분의 전이금속염이면 어느 성분이나 가능하다.The metal for forming the seed metal layer may be selected from Au, Ag, Pt, Cu, Ni, Fe, Pd, Co, or an alloy thereof, and seed metal components such as halides, sulfates, acetates, complex salts of seed metal components, and the like. Any component can be used as long as it is a transition metal salt.
또한 본 발명은 상기 시드 금속층을 형성함에 있어서, 상기 시드 금속층에 시드 금속 성분이외의 다른 추가적인 전이금속 성분을 함유할 수 있다. In addition, the present invention in forming the seed metal layer, the seed metal layer may contain other additional transition metal components other than the seed metal component.
상기 시드금속이외의 추가의 전이금속 성분은 금속 할라이드, 금속 설페이트, 금속 아세테이트 등의 전이금속 염을 이용하여 함유시킬 수 있으며, 이를 위해 도전성 페이스트층상에 형성되는 상기 무전해 도금층의 성분과 동일한 금속성분의 염을 사용하는 것이 바람직하다. Additional transition metal components other than the seed metal may be contained using transition metal salts such as metal halides, metal sulfates, and metal acetates, and for this purpose, the same metal components as those of the electroless plating layer formed on the conductive paste layer may be used. It is preferable to use a salt of.
상기 시드금속층을 사용하는 경우에, 무전해 도금층이 보다 신속히 형성될 수 있고, 또한 상기 무전해 도금층이 도전성 페이스트상의 배선층에만 무전해 도금층이 형성될 수 있도록 도와주는 역할을 한다.In the case of using the seed metal layer, the electroless plating layer can be formed more quickly, and the electroless plating layer serves to help the electroless plating layer be formed only on the wiring layer on the conductive paste.
본 발명의 무전해 도금에 의해 형성되는 배선층은 종래의 전해도금에 의한 배선층보다 더 얇게 층을 형성할 수 있고, 이를 통해 배선의 전기전도성을 향상시킬 수 있는 장점이 있다.The wiring layer formed by the electroless plating of the present invention can form a layer thinner than the wiring layer by the conventional electroplating, there is an advantage that can improve the electrical conductivity of the wiring.
한편, 본 발명은 상기 무전해 금속 도금층상에 추가로 전해 금속 도금층을 포함하는 경우, 추가로 형성되는 전해 금속 도금층은 Ni, Cu, Sn, Au, Ag 또는 이들의 합금 중에서 선택되는 어느 하나이거나 또는 Ni-P 합금일 수 있고, 무전해 도금층상에 형성됨으로써, 상기 도전성 페이스트보다 전기전도도가 높은 금속배선층상에 전해도금되어 배선층(도전성 페이스트층, 무전해도금층 및 전해도금층을 포함하는 층)의 전도도가 더욱 향상될 수 있다. On the other hand, in the present invention, when the electroless metal plating layer further comprises an electrolytic metal plating layer, the electrolytic metal plating layer further formed is any one selected from Ni, Cu, Sn, Au, Ag or alloys thereof, or Ni-P alloy, which is formed on the electroless plating layer, may be electroplated onto a metal wiring layer having a higher electrical conductivity than the conductive paste, thereby conducting a wiring layer (a layer including a conductive paste layer, an electroless plating layer, and an electroplating layer). Can be further improved.
또한 본 발명은 상기 절연층과 도전성 페이스트 조성물의 프린팅 방법에 의해 패턴화된 배선층의 사이에는 상기 절연층 상에 부분적으로 형성됨으로써 상기 패턴화된 배선층을 지지할 수 있도록 상기 패턴화된 배선층의 배선 형상을 따라서 제2의 절연층이 추가적으로 구비될 수 있다. In addition, the present invention is a wiring shape of the patterned wiring layer so as to support the patterned wiring layer by being partially formed on the insulating layer between the insulating layer and the wiring layer patterned by the printing method of the conductive paste composition. Accordingly, a second insulating layer may be additionally provided.
도 4는 본 발명의 상기 제2의 절연층을 포함하는 고방열 인쇄회로기판의 단면도를 나타내고 있다. 이를 살펴보면, 상기 제2의 절연층(15)이 도전성 페이스트 배선층(10)과 절연층(11) 사이에 구비되어 있는 것을 볼 수 있다. 4 is a cross-sectional view of a high heat dissipation printed circuit board including the second insulating layer of the present invention. Looking at this, it can be seen that the second insulating layer 15 is provided between the conductive paste wiring layer 10 and the insulating layer 11.
이 경우에, 상기 제2의 절연층(15)은 인쇄방식에 의해 형성될 수 있고, 보다 구체적으로 액상 열전도성 절연재료를 인쇄방식에 의해 제2의 절연층으로 형성할 수 있다 In this case, the second insulating layer 15 may be formed by a printing method, and more specifically, the liquid thermal conductive insulating material may be formed as a second insulating layer by a printing method.
상기 제2의 절연층(15)도 앞서 살펴본 바와 같이 폴리뷰틸렌테레프탈레이트, 폴리에틸렌테레프탈레이트, 폴리술폰, 폴리에테르, 폴리에테르이미드, 내열성 에폭시(Epoxy), 폴리아릴레이트 및 폴리이미드로부터 선택되는 어느 하나의 고분자 수지가 선택될 수 있고, 상기 제2의 절연층은 두께가 5 um 내지 50 um, 바람직하게는 10 um 내지 20 um의 범위를 가질 수 있으며, 절연층의 폭은 패턴화된 배선층의 배선폭의 1.5배 내지 10배 일 수 있다. As described above, the second insulating layer 15 may be any one selected from polybutylene terephthalate, polyethylene terephthalate, polysulfone, polyether, polyetherimide, heat resistant epoxy, polyarylate and polyimide. One polymer resin may be selected, and the second insulating layer may have a thickness in the range of 5 um to 50 um, preferably 10 um to 20 um, and the width of the insulating layer may be defined by the patterned wiring layer. It may be 1.5 to 10 times the wiring width.
상기 제2의 절연층을 구비하게 되면 상기 전도성 페이스트에 의해 구현되는 회로배선 부근에서는 내전압특성이 높아질 수 있고 상기 회로배선으로부터 멀어지는 부분에서는 외부공간으로의 방열효과가 높아질 수 있는 효과를 가질 수 있다. When the second insulating layer is provided, the withstand voltage characteristic may be increased in the vicinity of the circuit wiring realized by the conductive paste, and the heat dissipation effect to the external space may be increased in the part away from the circuit wiring.
또한 본 발명은 최종적으로 얻어진 인쇄회로 기판의 상단 및/또는 하단에 추가적으로 방열 코팅층이 형성될 수 있다. 이 경우 상기 방열코팅층은 표면적을 넓게 함으로써 방열코팅층이 형성되지 않은 것보다 3 내지 5%의 개선된 방열효과를 추가로 가능하게 한다. In addition, in the present invention, a heat dissipation coating layer may be additionally formed on the top and / or bottom of the finally obtained printed circuit board. In this case, the heat dissipation coating layer further enables an improved heat dissipation effect of 3 to 5% than the heat dissipation coating layer is not formed by widening the surface area.
본 발명에 의해 제조되는 인쇄회로 기판은 전기전도성의 향상으로 인한 발열 감소와 향상된 방열특성, 경량화 및 연성의 특성을 가질 수 있어 LED용 방열 플렉서블 모듈로 적용가능한 장점이 있다. 보다 상세하게는 상기 배선층(도전성 페이스트층 및 도금층으로 이루어지는 층)을 전류 공급 라인으로 하여 배선층에 의해 이루어지는 배선라인상에 LED가 위치할 수 있도록 접점을 형성하고, LED에 의한 발열을 해결하기 위해 상기 방열재료를 포함하는 방열층을 이용하며, 선택적으로 LED지지부를 구비하여 LED를 지지할 수 있도록 함으로써 LED용 방열 플렉서블 모듈로 적용가능한 것이다.The printed circuit board manufactured by the present invention may have heat reduction and improved heat dissipation characteristics, light weight, and ductility due to improved electrical conductivity, and thus may be applied as a heat dissipation flexible module for LEDs. More specifically, the wiring layer (the layer consisting of the conductive paste layer and the plating layer) is used as a current supply line to form a contact point so that the LED can be positioned on the wiring line formed by the wiring layer, and to solve the heat generated by the LED. By using a heat dissipation layer containing a heat dissipation material, by selectively providing an LED support to support the LED, it is applicable to the heat dissipation flexible module for LEDs.
또한, 본 발명은 상기 고방열 인쇄회로기판의 제조방법을 제공할 수 있는데, 이를 도 5 및 도 6를 통해 살펴본다. In addition, the present invention can provide a method for manufacturing the high heat radiation printed circuit board, which will be described with reference to FIGS. 5 and 6.
도 5는 방열층을 형성한 후에 이를 절연층에 부착하여 베이스기판을 형성하고, 이후에 상기 절연층상에 배선층을 형성하는 방법에 따른 고방열 인쇄회로기판의 제조방법을 도시한 그림이다.5 is a diagram illustrating a method of manufacturing a high heat radiation printed circuit board according to a method of forming a base substrate by attaching the heat dissipation layer to an insulating layer and then forming a wiring layer on the insulating layer.
이는 보다 구체적으로, 고온에서 유동성을 가지는 접합제를 가열하여 액상으로 변환시키고 이를 방열층으로 사용될, 적어도 한층 이상의 탄소섬유 직물의 위사와 경사에 의해 이루어지는 빈 공간에 채움으로써, 탄소섬유 직물을 포함하는 방열층을 형성하는 단계; 상기 방열층에 폴리뷰틸렌테레프탈레이트, 폴리에틸렌테레프탈레이트, 폴리술폰, 폴리에테르, 폴리에테르이미드, 내열성 에폭시(Epoxy), 폴리아릴레이트 및 폴리이미드에서 선택되는 어느 하나의 절연층을 부착시켜 베이스 기판을 형성하는 단계; 상기 베이스기판의 절연층상에 전도성 Ag 페이스트, 전도성 Cu 페이스트, 전도성 폴리머, 그라비아용 페이스트 중에서 선택되는 어느 하나 또는 이들의 혼합물을 포함하는 도전성 페이스트 조성물을 미리 정한 패턴으로 인쇄하여 패턴화된 배선층을 형성하는 단계; 및 상기 패턴화된 배선층 상부에 도금에 의해 금속 도금층을 형성하는 단계;로 나누어 질 수 있다. More specifically, it comprises a carbon fiber fabric by heating a binder having fluidity at a high temperature to convert it into a liquid phase and filling it in the empty space formed by the weft and warp of at least one or more carbon fiber fabrics to be used as a heat dissipating layer. Forming a heat dissipation layer; The base substrate is attached by attaching one insulating layer selected from polybutylene terephthalate, polyethylene terephthalate, polysulfone, polyether, polyetherimide, heat resistant epoxy, polyarylate and polyimide to the heat dissipating layer. Forming; Forming a patterned wiring layer by printing a conductive paste composition comprising any one or a mixture thereof selected from conductive Ag paste, conductive Cu paste, conductive polymer, and gravure paste on the insulating layer of the base substrate in a predetermined pattern. step; And forming a metal plating layer on the patterned wiring layer by plating.
이를 각 단계별 공정에 따라 구체적으로 설명하면 다음과 같다. This will be described in detail according to each step process as follows.
우선 첫 번째 단계로서, 고온에서 유동성을 가지는 접합제를 가열하여 액상으로 변환시키고 이를 방열층으로 사용될, 적어도 한층 이상의 탄소섬유 직물의 위사와 경사에 의해 이루어지는 빈 공간에 채움으로서 탄소섬유 직물을 포함하는 방열층을 형성하는 단계는 탄소섬유 직물에 가열된 에폭시계 또는 실리콘계의 접합제를 함침시킴으로써 이루어진다. First, as a first step, a carbon fiber fabric is included by filling a void formed by the weft and warp of at least one carbon fiber fabric to be used as a heat dissipating layer by heating the binder having fluidity at a high temperature. The step of forming the heat dissipation layer is achieved by impregnating a carbon fiber fabric with a heated epoxy- or silicone-based binder.
상기 접합제의 함량은 전체 무게의 10 내지 50중량%로 함침할 수 있고, 상기 접합제의 가열온도는 접합제의 종류와 온도에 따른 점도특성에 따라 조절될 수 있으며, 탄소섬유 직물내 진공 또는 공기가 포함되는 부분이 발생하지 않도록 점도가 충분히 낮게 하는 것이 바람직하다. 상기 함침된 탄소섬유 직물은 선택적으로, 제1가열공정(100 내지 150 ℃) 및 제2가열공정(150 내지 230 ℃) 등 과 같이 가열온도를 차이를 두는 공정을 채택함으로써, 충분한 유동성을 가지면서 탄소직물에 함침되도록 할 수 있다. 또한 상기 접합제의 함침효율을 증가시키기 위해 초음파 장치 등을 이용할 수 있다. The binder content may be impregnated with 10 to 50% by weight of the total weight, the heating temperature of the binder may be adjusted according to the viscosity characteristics according to the type and temperature of the binder, vacuum or in a carbon fiber fabric It is preferable to make viscosity low enough so that the part which contains air does not generate | occur | produce. The impregnated carbon fiber fabric optionally has a sufficient fluidity by adopting a step of different heating temperature, such as the first heating process (100 to 150 ℃) and the second heating process (150 to 230 ℃), etc. Can be impregnated with carbon fabrics. In addition, an ultrasonic device or the like may be used to increase the impregnation efficiency of the binder.
이후에 과다하게 공급되어진 접합제는 제거되고, 접합제가 함침된 탄소섬유 직물은 상온으로 냉각되어 이후 공정에 사용될 수 있다. After the excessively fed binder is removed, the carbon fiber fabric impregnated with the binder can be cooled to room temperature and used in subsequent processes.
본 발명에서 상기 방열층은 복수의 탄소섬유 직물이 적층될 수 있고, 이 경우에 상기 복수의 탄소섬유 직물은 각각 앞서 기재된 바와 같이 상기 접합제 성분이 각각의 탄소섬유 직물에 함침된 후에 각각을 적층하거나 또는 각각의 탄소섬유 직물을 적층한 후에 상기 접합제를 한번에 함침시켜 채움으로써 방열층을 형성할 수 있다. In the present invention, the heat dissipating layer may be laminated with a plurality of carbon fiber fabrics, in which case each of the plurality of carbon fiber fabrics is laminated with each after the binder component is impregnated into each carbon fiber fabric as described above. Alternatively, the thermal radiation layer may be formed by impregnating and filling the binder at a time after laminating each carbon fiber fabric.
또한 본 발명의 제조방법은 상기 접합제 성분에 앞서 기재한 바와 마찬가지로, 알루미늄, 구리, 니켈 중에서 선택되는 어느 하나의 열전도가 우수한 금속분말 또는 이들의 혼합 분말을 포함하여 방열층을 형성되게 할 수 있다In addition, the manufacturing method of the present invention, as described above for the binder component, it is possible to form a heat dissipation layer comprising a metal powder having excellent thermal conductivity selected from aluminum, copper, nickel or mixed powder thereof.
본 발명의 고방열 기판을 제조하기 위한 두 번째 단계로서, 상기 방열층에 폴리뷰틸렌테레프탈레이트, 폴리에틸렌테레프탈레이트, 폴리술폰, 폴리에테르, 폴리에테르이미드, 내열성 에폭시(Epoxy), 폴리아릴레이트 및 폴리이미드에서 선택되는 어느 하나의 절연층을 부착시켜 베이스 기판을 형성하는 단계는 상기 방열층에 절연층을 부착시키고 이를 핫프레스 공정을 통해 라미네이팅함으로써 이루어질 수 있다. As a second step for producing a high heat dissipation substrate of the present invention, a polybutylene terephthalate, polyethylene terephthalate, polysulfone, polyether, polyetherimide, heat resistant epoxy, polyarylate and poly Attaching any one insulating layer selected from the mid to form a base substrate may be performed by attaching an insulating layer to the heat dissipating layer and laminating it through a hot press process.
보다 상세하게는 상기 핫프레스 공정은 진공 핫프레스 공정을 통해 진행될 수 있다. 이는 상기 접합제가 포함된 방열층 내부 및 절연층과의 접합 계면에 공기 또는 진공이 부분적으로 발생하는 것을 막기 위한 것이며, 상기 핫프레스 공정은 10 내지 30T, 바람직하게는 15 내지 25T의 압력으로 10분 내지 1시간 진행할 수 있다. More specifically, the hot press process may be performed through a vacuum hot press process. This is to prevent partial generation of air or vacuum inside the heat dissipating layer including the bonding agent and the bonding interface with the insulating layer, and the hot press process is performed for 10 minutes at a pressure of 10 to 30T, preferably 15 to 25T. To 1 hour.
또한 본 발명에서 상기 접합제가 포함된 탄소섬유 직물로 이루어진 방열층상에 선택적으로, 추가의 점착제 또는 추가의 접착제를 사용함으로써 상기 절연층과 방열층을 보다 용이하게 부착할 수 있다. 상기 추가의 점착제 또는 추가의 접착제에 의한 점착층 또는 접착층의 두께는 1 um ~ 20 um 로 형성할 수 있다. 본 발명에서는 점착제로서 에폭시계 또는 실리콘계를 사용할 수 있다.Also, in the present invention, the insulating layer and the heat dissipating layer may be more easily attached to the heat dissipating layer made of the carbon fiber fabric including the bonding agent by using an additional adhesive or an additional adhesive. The thickness of the pressure-sensitive adhesive layer or the adhesive layer by the additional pressure-sensitive adhesive or additional adhesive may be formed in 1 um ~ 20 um. In the present invention, an epoxy or silicone type may be used as the pressure-sensitive adhesive.
세 번째 단계는 상기 베이스기판의 절연층상에 전도성 Ag 페이스트, 전도성 Cu 페이스트, 전도성 폴리머, 그라비아용 페이스트 중에서 선택되는 어느 하나 또는 이들의 혼합물을 포함하는 도전성 페이스트 조성물을 미리 정한 패턴으로 인쇄하여 패턴화된 배선층을 형성하는 단계이다.The third step is patterned by printing a conductive paste composition including any one or a mixture thereof selected from conductive Ag paste, conductive Cu paste, conductive polymer, and gravure paste on the insulating layer of the base substrate in a predetermined pattern. Forming a wiring layer.
이는 앞서 살펴본 바와 같이 패드인쇄, 실크 스크린인쇄, 그라비아인쇄 등을 통하여 패턴화된 배선층을 형성할 수 있고, 상기 전도성 페이스트 조성물의 입자크기는 앞서 살핀바와 같이, 10 nm 내지 10 um의 범위일 수 있으며, 바람직하게는 30 내지 1,000 nm 나노입자크기를 갖는 전도성 페이스트 또는 1 내지 7 um의 마이크로 입자 크기를 갖는 전도성 페이스트가 바람직하다. This may form a patterned wiring layer through pad printing, silk screen printing, gravure printing, and the like, as described above, and the particle size of the conductive paste composition may be in the range of 10 nm to 10 um, such as salpin bars. Preferably, a conductive paste having a particle size of 30 to 1,000 nm or a conductive paste having a micro particle size of 1 to 7 um is preferable.
이후에, 공정조건에 따라 상기 페이스트의 건조단계를 추가로 구비할 수 있다. 이 경우에 상기 건조방법은 사용되는 공정조건에 따라 당업자가 적절히 선택하여 적용할 정도에 해당하여 그 종류에 구애받지 않으나, 80도 내지 200도, 바람직하게는 100도 내지 160도에서 10 분내지 3시간 동안 열풍건조를 이용할 수 있다. Thereafter, according to the process conditions it may be further provided with a drying step of the paste. In this case, the drying method is not limited to the type corresponding to the degree appropriately selected and applied by those skilled in the art according to the process conditions used, but from 80 to 200 degrees, preferably from 100 to 160 degrees 10 minutes to 3 Hot air drying can be used for hours.
또한 상기 페이스트는 사용조건에 따라 경화단계를 거칠 수 있다. In addition, the paste may undergo a curing step depending on the conditions of use.
마지막 단계로서, 상기 패턴화된 배선층 상부에 도금에 의해 금속 도금층을 형성하는 단계는 전해도금 또는 무전해 도금에 의한 도금층을 형성하는 단계이다.As a final step, the forming of the metal plating layer by plating on the patterned wiring layer is a step of forming a plating layer by electroplating or electroless plating.
바람직하게는 본 발명은 상기 패턴화된 배선층 상부에 무전해 도금에 의해 금속도금층을 형성할 수 있으며, 상기 무전해 도금의 경우 전이금속염, 환원제, 착제 등을 이용하여 상기 페이스트상에 무전해 도금층을 형성할 수 있다. Preferably, the present invention may form a metal plating layer on the patterned wiring layer by electroless plating. In the case of the electroless plating, an electroless plating layer may be formed on the paste by using a transition metal salt, a reducing agent, a complex, or the like. Can be formed.
상기 무전해 도금은 금속이온이 포함된 화합물과 환원제가 혼합된 도금액을 사용하여 기판 등에 금속을 환원 석출시키는 것으로 금속이온을 환원제에 의해 환원시킴으로써 진행될 수 있다. The electroless plating may be performed by reducing metal ions by a reducing agent by reducing and depositing a metal on a substrate or the like using a plating solution in which a compound containing a metal ion and a reducing agent are mixed.
주반응으로서 하기에 기재된 반응식에 의해 금속이온이 환원될 수 있다.As the main reaction, the metal ions can be reduced by the reaction scheme described below.
Metal ion + 2HCHO + 4OH- => Metal(0) + 2HCOO- + H2 + 2H2O Metal ion + 2HCHO + 4OH - = > Metal (0) + 2HCOO - + H 2 + 2H 2 O
이 때, 무전해 도금에 사용되는 상기 금속의 비제한적인 예는 Ag, Cu, Au, Cr, Al, W, Zn, Ni, Fe, Pt, Pb, Sn, Au 등이 될 수 있고, 이들 원소는 단독으로 사용되거나 또는 2종 이상이 혼합되어 사용될 수 있다. At this time, non-limiting examples of the metal used for electroless plating may be Ag, Cu, Au, Cr, Al, W, Zn, Ni, Fe, Pt, Pb, Sn, Au, and the like. May be used alone or in combination of two or more thereof.
상기 무전해 도금에 사용되는 도금액은 도금하고자 하는 금속의 염 및 환원제 등을 포함하는 것일 수 있으며, 이 때 환원제의 비제한적인 예는 포름알데히드, 히드라진 또는 그 염, 황산코발트(Ⅱ), 포르말린, 글루코오즈, 글리옥실산, 히드록시알킬술폰산 또는 그 염, 하이포 포스포러스산 또는 그 염, 수소화붕소화합물, 디알킬아민보란 등이 있으며, 이 이외에도 금속의 종류에 따라 다양한 환원제가 사용될 수 있다.The plating solution used in the electroless plating may include a salt and a reducing agent of a metal to be plated, and non-limiting examples of the reducing agent may include formaldehyde, hydrazine or salts thereof, cobalt sulfate (II), formalin, Glucose, glyoxylic acid, hydroxyalkylsulfonic acid or salts thereof, hypophosphoric acid or salts thereof, boron hydride compounds, dialkylamine boranes, and the like, and various reducing agents may be used depending on the type of metal.
나아가, 상기의 무전해 도금액은 금속이온을 생성하는 금속 염, 금속이온과 리간드를 형성함으로써 금속이 액상에서 환원되어 용액이 불안정하게 되는 것을 방지하기 위한 착화제 및 상기 환원제가 산화되도록 무전해 도금액을 적당한 pH로 유지시키는 pH 조절제를 포함할 수 있다. Further, the electroless plating solution may be prepared by forming a metal salt with a metal ion, a metal ion and a ligand to form a ligand and a complexing agent for preventing the metal from being reduced in the liquid phase and unstable solution. It may include a pH adjuster to maintain a suitable pH.
상기 무전해 금속 도금층의 두께는 1 um 내지 30 um 이며, 바람직하게는 1um 내지 10 um 일 수 있고, 상기 무전해 금속 도금에 사용되는 금속은 Ag, Cu, Au, Cr, Al, W, Zn, Ni, Fe, Pt, Pb, Sn, Au 또는 이들의 합금에서 선택되는 어느 하나일 수 있다.The thickness of the electroless metal plating layer is 1 um to 30 um, preferably 1 um to 10 um, the metal used for the electroless metal plating is Ag, Cu, Au, Cr, Al, W, Zn, It may be any one selected from Ni, Fe, Pt, Pb, Sn, Au or alloys thereof.
예를 들어, 동(구리) 도금층을 형성하고자 하는 경우에는, 황산구리, 포르마린, 수산화나트륨, EDTA(Ethylene Diamin Tera Acetic Acid) 및 촉진제로서 2.2-비피래딜을 첨가한 수용액을 이용하여 1 ∼ 30 ㎛의 두께로 무전해 도금층을 형성할 수 있다. For example, when forming a copper (copper) plating layer, 1 to 30 using copper sulfate, formarin, sodium hydroxide, ethylene diamin tera acetyl acetate (EDTA) and an aqueous solution to which 2.2-bipyridyl is added as an accelerator An electroless plating layer can be formed with a thickness of μm.
상기 무전해 동도금 단계는 바렐도금장치를 이용할 수 있다. The electroless copper plating step may use a barrel plating apparatus.
일 실시예로서, 본 발명의 무전해 도금은 D/I Water 85%, 보충제 10~15%, 25%-NaOH 2~5%, 안정제 0.1~1%, 37%포르말린 0.5~2%의 성분으로 10~15분간 Air교반한 후 온도 40~500 ℃, pH 13 이상에서 25~30분간 도금공정을 진행할 수 있다. In one embodiment, the electroless plating of the present invention is composed of 85% D / I Water, 10-15% supplement, 25% -NaOH 2-5%, stabilizer 0.1-1%, 37% formalin 0.5-2% After air stirring for 10 to 15 minutes, the plating process can be performed for 25 to 30 minutes at a temperature of 40 to 500 ℃, pH 13 or more.
한편, 본 발명은 상기 전도성 페이스트의 배선층을 형성하는 단계와 상기 패턴화된 배선층 상부에 전이금속을 무전해 도금하여 도금층을 형성하는 단계 사이에, 상기 배선층의 상부에 무전해 금속 도금층을 형성하기 위한 시드 금속층을 형성시키는 단계를 추가로 포함할 수 있다. Meanwhile, the present invention provides a method for forming an electroless metal plating layer on top of the wiring layer, between forming the wiring layer of the conductive paste and forming a plating layer by electroless plating a transition metal on the patterned wiring layer. The method may further include forming a seed metal layer.
상기 시드 금속층에는 Au, Ag, Pt, Cu, Ni, Fe, Pd, Co 또는 이들의 합금에서 선택될 수 있으며, 상기 시드 금속 성분이외의 다른 전이금속성분을 추가로 함유할 수 있고, 바람직하게는 시드금속층으로 팔라듐 염을 사용할 수 있고, 추가의 전이금속 성분은 금속 할라이드, 금속 설페이트, 금속 아세테이트 등의 전이금속 염을 이용하여 함유시킬 수 있으며, 이를 위해 도전성 페이스트층상에 형성되는 상기 무전해 도금층의 성분과 동일한 금속성분의 염을 사용할 수 있다.The seed metal layer may be selected from Au, Ag, Pt, Cu, Ni, Fe, Pd, Co, or an alloy thereof, and may further contain other transition metal components other than the seed metal component. A palladium salt may be used as the seed metal layer, and additional transition metal components may be contained using transition metal salts such as metal halides, metal sulfates, and metal acetates, and for this purpose, the electroless plating layer formed on the conductive paste layer may be used. The salt of the same metal component as a component can be used.
예컨대, 상기 시드층 형성을 위하여 팔라듐성분이 500 ppm, 황산구리 0.1%, 안정제 1%의 성분으로 된 수용액을 사용하여 상기 수용액내에 도전성 페이스트로서 은 페이스트가 보호층 표면에 패턴화된 기판을 3분 내지 5분 담그어 꺼낸 후 건조과정을 거쳐 상기 무전해 화학동 도금을 진행할 수 있다. For example, to form the seed layer, palladium is 500 ppm, copper sulfate 0.1%, stabilizer 1% Using an aqueous solution, the silver paste as a conductive paste in the aqueous solution may be dipped out of the substrate having the patterned pattern on the surface of the protective layer for 3 to 5 minutes, and then the electroless chemical copper plating may be performed through a drying process.
본 발명에서는 상기 무전해 도금층의 저항값이 낮으면 전기전도성이 높아지며, 더 낮은 저항을 필요로 한다면 무전해 동도금의 시간을 늘려 도금되는 금속의 함량을 높여 주면 낮은 저항을 가질 수 있다. In the present invention, if the resistance value of the electroless plating layer is low, the electrical conductivity is increased, and if a lower resistance is required, the resistance of the electroless copper plating may be increased by increasing the content of the metal to be plated.
또한 상기 패턴화된 배선층 상부에 전해 도금에 의해 금속 도금층을 형성하는 단계는 동도금의 예를 들면, 황산구리(CuSO4), 황산(H2SO4) 및 광택제를 혼합한 수용액에 상기 패턴화된 배선층이 형성된 기판을 침지하여 원하는 두께로 전해동 도금층을 형성하고 표면을 수세함으로써, 전해 도금층이 형성될 수 있다. 예컨대, 황산 10 wt% 수용액에 황산구리 90g/L, 전기동 안정제 2ml/L, 전기동 광택제 5ml/L, HCI 0.16ml/L 를 온도 40~60 ℃ 조건의 단계에 의한 전해 동도금을 진행할 수 있다. In addition, the forming of the metal plating layer by electroplating on the patterned wiring layer may include forming the patterned wiring layer in an aqueous solution of copper plating, for example, copper sulfate (CuSO 4 ), sulfuric acid (H 2 SO 4 ), and a polishing agent. The electroplating layer can be formed by immersing the formed substrate to form an electrolytic copper plating layer with a desired thickness and washing the surface with water. For example, electrolytic copper plating may be carried out in a 10 wt% aqueous solution of sulfuric acid, copper sulfate 90 g / L, copper stabilizer 2 ml / L, copper copper polish 5ml / L, and HCI 0.16 ml / L at a temperature of 40 ° C. to 60 ° C.
또한 본 발명은 상기 페이스트 인쇄 공정과 무전해 동도금 공정이후에 무전해 은도금 공정을 수행할 수 있다. 이 경우의 공정조건 또한 사용되는 금속염이 구리염이 아닌 은염(AgNo3)을 사용하는 점만이 차이가 있을 뿐 일반적인 은 도금 공정을 따른다.In addition, the present invention can perform an electroless silver plating process after the paste printing process and the electroless copper plating process. The process conditions in this case also follow the general silver plating process, except that the metal salt used is silver salt (AgNo 3 ) rather than copper salt.
일 실시예로서, Ag 도금전에 도금조의 오염방지를 위해서 predip 공정으로 질산을 포함하는 용액에서 세정한 후, Ag도금공정에서 DI 85.5%, silver B 10%(이미다졸 10% 수용액), 진한질산 2% (70% 시약등급), silver A 2.5%(질산 은 4.5%, 질산 3.5%의 수용액)에 50 ℃의 온도에 8분간 담그어(dipping)하여 은 도금을 진행을 함으로써 0.1 ~ 0.2 um 두께의 은 도금층을 형성할 수 있다. In one embodiment, after Ag plating to clean the plating bath in order to prevent contamination of the plating bath, in a solution containing nitric acid in a predip process, DI 85.5%, silver B 10% (10% aqueous solution of imidazole), concentrated nitric acid 2 in the Ag plating process 0.1-0.2 um thick silver by dipping silver (2.5% reagent grade), silver A 2.5% (4.5% silver nitrate, 3.5% nitric acid solution) at 50 ℃ for 8 minutes The plating layer can be formed.
일반적으로는 상기 도금층은 0.3 ~ 0.4 um의 두께를 올릴 수 있으며, 시간의 조절에 따라 0.1~1um까지 두께를 올릴 수 있다. In general, the plating layer can raise the thickness of 0.3 ~ 0.4 um, it can raise the thickness up to 0.1 ~ 1um according to the control of time.
또한 본 발명은 이후에 앞서 살핀 바와 같은 무전해 도금 또는 전해도금을 이용하여 추가적으로 도금층의 형성을 진행할 수 있다. In addition, the present invention may further proceed to form a plating layer by using electroless plating or electroplating as described above.
예를 들어, 상기 구리도금층상에 새로이 니켈층을 도금하고자 하는 경우에, 상기 전해 동도금 단계에서 도금한 구리 표면에 황산니켈, 염화니켈, 붕산을 혼합한 수용액을 이용하여 전해니켈을 도금한 후 수세하고, 이온 처리한 물로 초음파 세척를 한 후, 탈수과정을 거쳐 건조하여 요구하는 특성에 맞는 제품을 제조하게 된다.For example, when a new nickel layer is to be plated on the copper plating layer, the electrolytic nickel is plated using an aqueous solution of nickel sulfate, nickel chloride, and boric acid on a copper surface plated in the electrolytic copper plating step, and then washed with water. Ultrasonic washing with ionized water is followed by drying through dehydration to produce products that meet the required properties.
본 발명에서는 상기 전해 도금층의 저항값이 낮으면 전기전도성이 높아지며, 더 낮은 저항을 필요로 한다면 전해 동도금의 시간을 늘려 도금되는 금속의 함량을 높여 주면 낮은 저항을 가질 수 있다. In the present invention, if the resistance value of the electrolytic plating layer is low, the electrical conductivity is increased, and if a lower resistance is required, the electrolytic copper plating may be increased to increase the content of the metal to be plated, thereby having a low resistance.
또한 본 발명은 상기 베이스 기판을 형성하는 단계와 패턴화된 배선층을 형성하는 단계의 사이에, 상기 절연층 상에 부분적으로 형성됨으로써 상기 패턴화된 배선층을 지지할 수 있도록 상기 패턴화된 배선층의 배선 형상을 따라서 제2의 절연층을 형성하는 단계를 추가로 포함할 수 있다. In addition, the present invention is the wiring of the patterned wiring layer so as to support the patterned wiring layer by being partially formed on the insulating layer between the step of forming the base substrate and forming the patterned wiring layer. The method may further include forming a second insulating layer along the shape.
이 경우에, 상기 제2의 절연층은 인쇄방식에 의해 형성될 수 있고, 보다 구체적으로 액상 열전도성 절연재료를 앞서 살펴본 바와 같이 패드인쇄, 실크 스크린인쇄, 그라비아인쇄 등의 인쇄방식에 의해 제2의 절연층으로 형성할 수 있다 In this case, the second insulating layer may be formed by a printing method, and more specifically, as described above with reference to the liquid thermal conductive insulating material, the second insulating layer may be printed by pad printing, silk screen printing, gravure printing, or the like. It can be formed as an insulating layer of
상기 제2의 절연층도 앞서 살펴본 바와 같이 폴리뷰틸렌테레프탈레이트, 폴리에틸렌테레프탈레이트, 폴리술폰, 폴리에테르, 폴리에테르이미드, 내열성 에폭시(Epoxy), 폴리아릴레이트 및 폴리이미드로부터 선택되는 어느 하나의 고분자 수지가 선택될 수 있고, 상기 제2의 절연층은 두께가 5 um 내지 50um, 바람직하게는 10um 내지 20um 의 범위를 가질 수 있으며, 절연층의 폭은 배선층의 배선폭의 1.5배 내지 10배 일 수 있다. As described above, the second insulating layer is any one polymer selected from polybutylene terephthalate, polyethylene terephthalate, polysulfone, polyether, polyetherimide, heat resistant epoxy, polyarylate and polyimide. The resin may be selected, and the second insulating layer may have a thickness in the range of 5 um to 50 um, preferably 10 um to 20 um, and the width of the insulating layer is 1.5 to 10 times the wiring width of the wiring layer. Can be.
또한 본 발명은 도 5에 게재된 방법과 순서를 달리하여, 절연층상에 배선층을 형성한 후에 방열층을 형성하고 이를 상기 배선층을 포함하는 절연층에 부착하는 방법에 따른 고방열 인쇄회로기판의 제조방법을 제공할 수 있고 이는 도 6을 통해 살펴볼 수 있다. In addition, the present invention is different from the method shown in Figure 5, after the formation of the wiring layer on the insulating layer to form a heat dissipation layer and manufacturing the high heat-dissipation printed circuit board according to the method of attaching it to the insulating layer including the wiring layer A method can be provided which can be seen through FIG. 6.
보다 구체적으로, 폴리뷰틸렌테레프탈레이트, 폴리에틸렌테레프탈레이트, 폴리술폰, 폴리에테르, 폴리에테르이미드, 내열성 에폭시(Epoxy), 폴리아릴레이트 및 폴리이미드에서 선택되는 어느 하나의 절연층상에 전도성 Ag 페이스트, 전도성 Cu 페이스트, 전도성 폴리머, 그라비아용 페이스트 중에서 선택되는 어느 하나 또는 이들의 혼합물을 포함하는 도전성 페이스트 조성물을 미리 정한 패턴으로 인쇄하여 패턴화된 배선층을 형성하는 단계; 상기 패턴화된 배선층 상부에 도금에 의해 금속 도금층을 형성하는 단계; 고온에서 유동성을 가지는 접합제를 가열하여 액상으로 변환시키고 이를 방열층으로 사용될, 적어도 한층 이상의 탄소섬유 직물의 위사와 경사에 의해 이루어지는 빈 공간에 채움으로서 탄소섬유 직물을 포함하는 방열층을 형성하는 단계; 및 상기 방열층에 상기 도전성 페이스트에 의한 배선층 및 금속도금층을 포함하는 절연층을 부착시키는 단계;로 나누어질 수 있다. More specifically, conductive Ag paste, conductive on any one insulating layer selected from polybutylene terephthalate, polyethylene terephthalate, polysulfone, polyether, polyetherimide, heat resistant epoxy, polyarylate and polyimide Forming a patterned wiring layer by printing a conductive paste composition including a Cu paste, a conductive polymer, and a paste for gravure or a mixture thereof in a predetermined pattern; Forming a metal plating layer on the patterned wiring layer by plating; Forming a heat dissipating layer comprising a carbon fiber fabric by heating the binder having fluidity at a high temperature to convert it into a liquid phase and filling it into an empty space formed by the weft and warp of at least one carbon fiber fabric to be used as a heat dissipating layer. ; And attaching an insulating layer including the wiring layer and the metal plating layer by the conductive paste to the heat dissipating layer.
이는 앞서 도 5에 게재된 고방열 인쇄회로기판의 제조방법과 순서가 차이가 있을 뿐 각 단계는 동일한 공정에 의해 이루어 질 수 있다. This is different from the manufacturing method and the manufacturing method of the high heat radiation printed circuit board shown in FIG. 5 can be performed by the same process.
또한 본 발명은 최종적으로 얻어진 인쇄회로 기판의 상단 및/또는 하단에 추가적으로 방열 코팅이 진행될 수 있다. 이 경우에 추가적으로 3 ~ 5%의 방열효과를 얻을 수 있는 장점이 있다.In addition, in the present invention, a heat dissipation coating may be additionally performed on the top and / or bottom of the finally obtained printed circuit board. In this case, there is an advantage that additional heat radiation effect of 3 ~ 5% can be obtained.
본 발명의 고방열 인쇄회로 기판은 전기전도성의 향상으로 인한 발열 감소와 향상된 방열특성, 경량화 및 연성의 특성을 가질 수 있어 LED용 방열 플렉서블 모듈로 이용가능하다. The high heat dissipation printed circuit board of the present invention can be used as a heat dissipation flexible module for LEDs because it can have reduced heat generation and improved heat dissipation, light weight, and ductility due to improved electrical conductivity.

Claims (19)

  1. 탄소섬유 직물을 포함하는 방열층; A heat dissipation layer comprising a carbon fiber fabric;
    상기 방열층 상에 형성된 절연층; An insulation layer formed on the heat dissipation layer;
    상기 절연층 상에 형성되고 도전성 페이스트 조성물의 프린팅 방법에 의해 패턴화된 배선층; 및 A wiring layer formed on the insulating layer and patterned by a printing method of a conductive paste composition; And
    상기 패턴화된 배선층상에 형성된 금속 도금층;을 포함하는 고방열 인쇄회로 기판 A high heat radiation printed circuit board comprising a; metal plating layer formed on the patterned wiring layer
  2. 제1항에 있어서,The method of claim 1,
    상기 방열층은 복수의 탄소섬유 직물이 적층된 것을 특징으로 하는 고방열 인쇄회로 기판 The heat dissipation layer is a high heat radiation printed circuit board, characterized in that a plurality of carbon fiber fabric is laminated
  3. 제1항에 있어서, The method of claim 1,
    상기 탄소섬유 직물의 경사와 위사 사이의 반공간은 접합제에 의해 채워지는 것을 특징으로 하는 고방열 인쇄회로 기판 High heat radiation printed circuit board, characterized in that the half space between the warp and weft of the carbon fiber fabric is filled by a binder.
  4. 제3항에 있어서,  The method of claim 3,
    상기 접합제는 에폭시계 또는 실리콘계가 사용되는 것을 특징으로 하는 고방열 인쇄회로 기판 The bonding agent is a high heat radiation printed circuit board, characterized in that epoxy or silicon based
  5. 제3항에 있어서,  The method of claim 3,
    상기 접합제 성분에 알루미늄, 구리, 니켈 중에서 선택되는 어느 하나의 열전도가 우수한 금속분말, 고분자재료 분말, 세라믹 분말 또는 이들의 혼합 분말이 포함되는 것을 특징으로 하는 고방열 인쇄회로 기판 A high heat radiation printed circuit board, characterized in that the binder component includes a metal powder, a polymer material powder, a ceramic powder, or a mixed powder thereof having excellent thermal conductivity selected from among aluminum, copper, and nickel.
  6. 제1항에 있어서, The method of claim 1,
    상기 절연층은 폴리뷰틸렌테레프탈레이트, 폴리에틸렌테레프탈레이트, 폴리술폰, 폴리에테르, 폴리에테르이미드, 내열성 에폭시(Epoxy), 폴리아릴레이트 및 폴리이미드로부터 선택되는 어느 하나이고, 절연층의 두께는 10 um 내지 100 um 인 것을 특징으로 하는 고방열 인쇄회로 기판 The insulating layer is any one selected from polybutylene terephthalate, polyethylene terephthalate, polysulfone, polyether, polyetherimide, heat resistant epoxy, polyarylate and polyimide, and the thickness of the insulating layer is 10 um. High heat radiation printed circuit board, characterized in that from to 100 um
  7. 제1항에 있어서, The method of claim 1,
    상기 도전성 페이스트 조성물은 전도성 Ag 페이스트, 전도성 Cu 페이스트, 전도성 폴리머, 그라비아용 페이스트 중에서 선택되는 어느 하나 또는 이들의 혼합물인 것을 특징으로 하는 고방열 인쇄회로 기판 The conductive paste composition may be any one or a mixture thereof selected from a conductive Ag paste, a conductive Cu paste, a conductive polymer, and a gravure paste.
  8. 제1항에 있어서, The method of claim 1,
    상기 금속 도금층은 전해 도금 또는 무전해 도금에 의해 형성되는 것을 특징으로 하는 고방열 인쇄회로 기판 The metal plating layer is a high heat radiation printed circuit board, characterized in that formed by electrolytic plating or electroless plating
  9. 제8항에 있어서,   The method of claim 8,
    상기 금속 도금층은 무전해 도금에 의해 형성되며, 상기 무전해 도금에 의해 형성되는 도금층 상에 전해도금에 의한 금속도금층이 추가적으로 형성되는 것을 특징으로 하는 고방열 인쇄회로 기판 The metal plating layer is formed by electroless plating, and a high heat dissipation printed circuit board, wherein a metal plating layer by electroplating is additionally formed on the plating layer formed by the electroless plating.
  10. 제9항에 있어서,   The method of claim 9,
    상기 패턴화된 전도성 페이스트 배선층 상부와 무전해 금속도금층의 사이에는 무전해 금속도금층을 형성하기 위한 시드 금속층이 추가로 형성된 것을 특징으로 하는 고방열 인쇄회로 기판 A high heat dissipation printed circuit board, wherein a seed metal layer for forming an electroless metal plating layer is further formed between the patterned conductive paste wiring layer and the electroless metal plating layer.
  11. 제1항에 있어서,  The method of claim 1,
    상기 절연층과 도전성 페이스트 조성물의 프린팅 방법에 의해 패턴화된 배선층의 사이에는, 상기 패턴화된 배선층을 지지할 수 있도록 상기 패턴화된 배선층의 배선 형상을 따라서 제2의 절연층이 추가적으로 형성되는 것을 특징으로 하는 고방열 인쇄회로 기판 Between the insulating layer and the wiring layer patterned by the printing method of the conductive paste composition, a second insulating layer is additionally formed along the wiring shape of the patterned wiring layer so as to support the patterned wiring layer. High heat radiation printed circuit board
  12. 제11항에 있어서,  The method of claim 11,
    상기 제2의 절연층은 폴리뷰틸렌테레프탈레이트, 폴리에틸렌테레프탈레이트, 폴리술폰, 폴리에테르, 폴리에테르이미드, 내열성 에폭시(Epoxy), 폴리아릴레이트 및 폴리이미드로부터 선택되는 어느 하나이고, 상기 제2의 절연층의 폭은 패턴화된 배선층의 배선폭의 1.5배 내지 10배인 것을 특징으로 하는 고방열 인쇄회로 기판 The second insulating layer is any one selected from polybutylene terephthalate, polyethylene terephthalate, polysulfone, polyether, polyetherimide, heat resistant epoxy, polyarylate and polyimide. High heat radiation printed circuit board, characterized in that the width of the insulating layer is 1.5 to 10 times the wiring width of the patterned wiring layer.
  13. 고온에서 유동성을 가지는 접합제를 가열하여 액상으로 변환시키고 이를 방열층으로 사용될, 적어도 한층 이상의 탄소섬유 직물의 위사와 경사에 의해 이루어지는 빈 공간에 채움으로써, 탄소섬유 직물을 포함하는 방열층을 형성하는 단계;Forming a heat dissipating layer comprising a carbon fiber fabric by heating the binder having fluidity at a high temperature to convert it into a liquid phase and filling it into an empty space formed by the weft and warp of at least one carbon fiber fabric to be used as the heat dissipating layer. step;
    상기 방열층에 폴리뷰틸렌테레프탈레이트, 폴리에틸렌테레프탈레이트, 폴리술폰, 폴리에테르, 폴리에테르이미드, 내열성 에폭시(Epoxy), 폴리아릴레이트 및 폴리이미드에서 선택되는 어느 하나의 절연층을 부착시켜 베이스 기판을 형성하는 단계;The base substrate is attached by attaching one insulating layer selected from polybutylene terephthalate, polyethylene terephthalate, polysulfone, polyether, polyetherimide, heat resistant epoxy, polyarylate and polyimide to the heat dissipating layer. Forming;
    상기 베이스기판의 절연층상에 전도성 Ag 페이스트, 전도성 Cu 페이스트, 전도성 폴리머, 그라비아용 페이스트 중에서 선택되는 어느 하나 또는 이들의 혼합물을 포함하는 도전성 페이스트 조성물을 미리 정한 패턴으로 인쇄하여 패턴화된 배선층을 형성하는 단계; 및 Forming a patterned wiring layer by printing a conductive paste composition comprising any one or a mixture thereof selected from conductive Ag paste, conductive Cu paste, conductive polymer, and gravure paste on the insulating layer of the base substrate in a predetermined pattern. step; And
    상기 패턴화된 배선층 상부에 도금에 의해 금속 도금층을 형성하는 단계;를 포함하는 것을 특징으로 하는 고방열 인쇄회로기판의 제조 방법.Forming a metal plating layer on the patterned wiring layer by plating; and manufacturing a high heat dissipation printed circuit board.
  14. 폴리뷰틸렌테레프탈레이트, 폴리에틸렌테레프탈레이트, 폴리술폰, 폴리에테르, 폴리에테르이미드, 내열성 에폭시(Epoxy), 폴리아릴레이트 및 폴리이미드에서 선택되는 어느 하나의 절연층상에 전도성 Ag 페이스트, 전도성 Cu 페이스트, 전도성 폴리머, 그라비아용 페이스트 중에서 선택되는 어느 하나 또는 이들의 혼합물을 포함하는 도전성 페이스트 조성물을 미리 정한 패턴으로 인쇄하여 패턴화된 배선층을 형성하는 단계; Conductive Ag paste, Conductive Cu paste, Conductive on any insulating layer selected from polybutylene terephthalate, polyethylene terephthalate, polysulfone, polyether, polyetherimide, heat resistant epoxy, polyarylate and polyimide Forming a patterned wiring layer by printing a conductive paste composition including any one selected from a polymer and a gravure paste or a mixture thereof in a predetermined pattern;
    상기 패턴화된 배선층 상부에 도금에 의해 금속 도금층을 형성하는 단계;Forming a metal plating layer on the patterned wiring layer by plating;
    고온에서 유동성을 가지는 접합제를 가열하여 액상으로 변환시키고 이를 방열층으로 사용될, 적어도 한층 이상의 탄소섬유 직물의 위사와 경사에 의해 이루어지는 빈 공간에 채움으로서 탄소섬유 직물을 포함하는 방열층을 형성하는 단계; 및Forming a heat dissipating layer comprising a carbon fiber fabric by heating the binder having fluidity at a high temperature to convert it into a liquid phase and filling it into an empty space formed by the weft and warp of at least one carbon fiber fabric to be used as a heat dissipating layer. ; And
    상기 방열층에 상기 도전성 페이스트에 의한 배선층 및 금속도금층을 포함하는 절연층을 부착시키는 단계;를 포함하는 것을 특징으로 하는 고방열 인쇄회로 기판의 제조 방법.Attaching an insulating layer including a wiring layer and a metal plating layer by the conductive paste to the heat dissipating layer.
  15. 제13항 또는 제14항에 있어서, The method according to claim 13 or 14,
    상기 절연층과 도전성 페이스트 조성물의 프린팅 방법에 의해 패턴화된 배선층의 사이에는, 상기 패턴화된 배선층을 지지할 수 있도록 상기 패턴화된 배선층의 배선 형상을 따라서 제2의 절연층을 추가적으로 형성하는 것을 특징으로 하는 고방열 인쇄회로 기판의 제조 방법. Between the insulating layer and the wiring layer patterned by the printing method of the conductive paste composition, further forming a second insulating layer along the wiring shape of the patterned wiring layer so as to support the patterned wiring layer. A method of manufacturing a high heat dissipation printed circuit board.
  16. 제15항에 있어서,The method of claim 15,
    상기 제2의 절연층은 열전도성 액상 절연층을 인쇄방식에 의해 형성되며, 제2의 절연층의 폭은 배선층의 배선폭의 1.5배 내지 10배가 되도록 하는 것을 특징으로 하는 고방열 인쇄회로 기판의 제조 방법. The second insulating layer is formed of a thermally conductive liquid insulating layer by a printing method, and the width of the second insulating layer is 1.5 to 10 times the width of the wiring layer of the wiring layer. Manufacturing method.
  17. 제13항 또는 제14항에 있어서,  The method according to claim 13 or 14,
    상기 방열층을 형성하는 단계에서 사용되는 상기 접합제 성분에 알루미늄, 구리, 니켈 중에서 선택되는 어느 하나의 열전도가 우수한 금속분말, 고분자재료 분말, 세라믹 분말 또는 이들의 혼합 분말을 포함하여 방열층이 형성되는 것을 특징으로 하는 고방열 인쇄회로 기판의 제조 방법. A heat dissipation layer is formed on the binder component used in the forming of the heat dissipation layer, including a metal powder having excellent thermal conductivity selected from aluminum, copper, and nickel, a polymer material powder, a ceramic powder, or a mixed powder thereof. Method for producing a high heat radiation printed circuit board, characterized in that the.
  18. 제13항 또는 제14항에 있어서, The method according to claim 13 or 14,
    최종적으로 얻어진 인쇄회로 기판의 상단 및/또는 하단에 추가적으로 방열 코팅이 진행되는 것을 특징으로 하는 고방열 인쇄회로 기판의 제조 방법.A method of manufacturing a high heat radiation printed circuit board, characterized in that heat dissipation coating is further performed on the top and / or bottom of the finally obtained printed circuit board.
  19. 제1항 내지 제12항 중 어느 한 항에 기재된 고방열 인쇄회로 기판을 포함하는 LED용 방열 플렉서블 모듈. A heat radiation flexible module for an LED comprising the high heat dissipation printed circuit board according to any one of claims 1 to 12.
PCT/KR2013/009815 2012-12-28 2013-11-01 Led heat-dissipation flexible module using carbon fiber substrate and method for manufacturing same WO2014104559A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2012-0156549 2012-12-28
KR1020120156549A KR101399980B1 (en) 2012-12-28 2012-12-28 Heat-dissipating flexible module for led using carbon fiber substrate and method for manufacturing the same

Publications (1)

Publication Number Publication Date
WO2014104559A1 true WO2014104559A1 (en) 2014-07-03

Family

ID=50895404

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/009815 WO2014104559A1 (en) 2012-12-28 2013-11-01 Led heat-dissipation flexible module using carbon fiber substrate and method for manufacturing same

Country Status (2)

Country Link
KR (1) KR101399980B1 (en)
WO (1) WO2014104559A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104754862A (en) * 2015-04-10 2015-07-01 松扬电子材料(昆山)有限公司 Aluminum foil copper plating substrate for flexible circuit board and manufacturing method of aluminum foil copper plating substrate
WO2016137155A1 (en) * 2015-02-24 2016-09-01 송인실 Flexible lighting panel
KR20180005777A (en) * 2016-07-06 2018-01-17 이영순 Silicone gaskets for surface mounting of electronic components manufacturing methods and the resulting silicon gasket over him

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102071264B1 (en) * 2017-07-24 2020-01-30 한국기계연구원 A heat-dissipating substrate and fabricating method of the same
CN107613588B (en) * 2017-08-14 2023-12-05 深圳市维特欣达科技有限公司 Preparation method of quick heating type heating plate and quick heating type heating plate

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08181261A (en) * 1994-12-27 1996-07-12 Nippon Steel Corp Heat spreader for semiconductor device, and its manufacture, and semiconductor device
JP2001044332A (en) * 1999-08-03 2001-02-16 Shinko Electric Ind Co Ltd Semiconductor device
JP2006165299A (en) * 2004-12-08 2006-06-22 U-Ai Electronics Corp Method of manufacturing printed circuit board
KR20060100142A (en) * 2005-03-16 2006-09-20 삼성에스디아이 주식회사 Fabric heat-radiating sheet for plasma display apparatus and plasma display apparatus comprising the same
JP2011061157A (en) * 2009-09-14 2011-03-24 Starlite Co Ltd Heatsink for led and led lamp for vehicle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08181261A (en) * 1994-12-27 1996-07-12 Nippon Steel Corp Heat spreader for semiconductor device, and its manufacture, and semiconductor device
JP2001044332A (en) * 1999-08-03 2001-02-16 Shinko Electric Ind Co Ltd Semiconductor device
JP2006165299A (en) * 2004-12-08 2006-06-22 U-Ai Electronics Corp Method of manufacturing printed circuit board
KR20060100142A (en) * 2005-03-16 2006-09-20 삼성에스디아이 주식회사 Fabric heat-radiating sheet for plasma display apparatus and plasma display apparatus comprising the same
JP2011061157A (en) * 2009-09-14 2011-03-24 Starlite Co Ltd Heatsink for led and led lamp for vehicle

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016137155A1 (en) * 2015-02-24 2016-09-01 송인실 Flexible lighting panel
CN104754862A (en) * 2015-04-10 2015-07-01 松扬电子材料(昆山)有限公司 Aluminum foil copper plating substrate for flexible circuit board and manufacturing method of aluminum foil copper plating substrate
KR20180005777A (en) * 2016-07-06 2018-01-17 이영순 Silicone gaskets for surface mounting of electronic components manufacturing methods and the resulting silicon gasket over him
KR101883391B1 (en) * 2016-07-06 2018-08-01 이영순 Silicone gaskets for surface mounting of electronic components manufacturing methods and the resulting silicon gasket over him

Also Published As

Publication number Publication date
KR101399980B1 (en) 2014-05-29

Similar Documents

Publication Publication Date Title
WO2014104559A1 (en) Led heat-dissipation flexible module using carbon fiber substrate and method for manufacturing same
JP5080295B2 (en) Heat dissipating mounting board and manufacturing method thereof
WO2010011009A1 (en) Metal substrate for an electronic component module, module comprising same, and method for manufacturing a metal substrate for an electronic component module
WO2010101418A2 (en) Composition for conductive paste containing nanometer-thick metal microplates
KR100765363B1 (en) Method for fabricating conductive particle
KR101489159B1 (en) Method for manufacturing metal printed circuit board
CN107995781B (en) Aluminum nitride ceramic circuit board and preparation method thereof
KR20100013033A (en) Conductive ink/paste printed circuit board having plating layer and method for manufacturing the same
US20150382445A1 (en) Double-sided flexible printed circuit board including plating layer and method of manufacturing the same
KR101489206B1 (en) Double side flexible printed circuit board having plating layer and method for manufacturing the same
KR20150069858A (en) Method for forming the metal electrode pattern with high conductivity using metal nanoparticle based-ink on a flexible substrate
WO2022227517A1 (en) Enhanced conductive paste and electronic device
KR102372638B1 (en) Laminate, printed wiring board, flexible printed wiring board and molded article using the same
CN100344445C (en) Bonding layer for bonding resin on copper surface
KR101391187B1 (en) Flexible module with enhanced radiating ability and method for manufacturing the same
WO2010143829A2 (en) A led array board
KR101416579B1 (en) Conductive paste printed circuit board having plating layer and method for manufacturing the same
WO2014061949A1 (en) Conductive paste printed circuit board having plating layer and method for manufacturing same
US7240431B2 (en) Method for producing multilayer printed wiring board, multilayer printed wiring board, and electronic device
WO2013151315A1 (en) Printed circuit board and a method for fabricating the same
KR101399979B1 (en) Heat-dissipating flexible module for led using printed electronics technology and method for manufacturing the same
WO2013089416A1 (en) Printed circuit board and method of manufacturing the same
KR101520412B1 (en) Flexible printed circuit board by laser processing and printing process, and method for manufacturing the same
CN114190003A (en) Thick film re-electroplated ceramic substrate and preparation method thereof
WO2013036026A2 (en) Printed circuit board, display device including the same, and method of fabricating the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13867181

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13867181

Country of ref document: EP

Kind code of ref document: A1