WO2014104375A1 - 検査装置 - Google Patents

検査装置 Download PDF

Info

Publication number
WO2014104375A1
WO2014104375A1 PCT/JP2013/085285 JP2013085285W WO2014104375A1 WO 2014104375 A1 WO2014104375 A1 WO 2014104375A1 JP 2013085285 W JP2013085285 W JP 2013085285W WO 2014104375 A1 WO2014104375 A1 WO 2014104375A1
Authority
WO
WIPO (PCT)
Prior art keywords
imaging
difficult
identify
region
light
Prior art date
Application number
PCT/JP2013/085285
Other languages
English (en)
French (fr)
Inventor
健史 新井
有以 三宅
Original Assignee
株式会社Djtech
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2013202854A external-priority patent/JP5890953B2/ja
Priority claimed from JP2013271567A external-priority patent/JP5776949B2/ja
Application filed by 株式会社Djtech filed Critical 株式会社Djtech
Publication of WO2014104375A1 publication Critical patent/WO2014104375A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8806Specially adapted optical and illumination features
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/956Inspecting patterns on the surface of objects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/956Inspecting patterns on the surface of objects
    • G01N2021/95638Inspecting patterns on the surface of objects for PCB's

Definitions

  • the present invention relates to a novel inspection apparatus.
  • An example of the inspection apparatus is a solder printing inspection apparatus.
  • a solder printing inspection apparatus for example, in Patent Document 1, red (hereinafter referred to as “R”), green (hereinafter referred to as “G”), blue (hereinafter referred to as “B”) in order to acquire a two-dimensional image. .) LED light is used, and laser light is used to acquire a three-dimensional image. By preparing and scanning an imaging area for each of the LED light and laser light, the two-dimensional image and the three-dimensional image are simultaneously acquired, and the two-dimensional image and the three-dimensional image are simultaneously inspected.
  • the line illumination device of Patent Document 2 can be used. This line illumination device irradiates the R, G, and B colors for acquiring a two-dimensional image so that the R, G, and B colors do not interfere with the imaging range of the imaging target corresponding to the imaging area of the imaging device. is doing.
  • Patent Document 1 it is necessary to irradiate illumination light to the imaging range of the imaging target. Therefore, the illumination device of Patent Document 2 is used to irradiate illumination light to each of the imaging ranges of the imaging target. These illumination lights are condensed using an optical system so as not to interfere with each other to form line lights.
  • the silver pad and silver solder are used for normal ring illumination, line illumination, and vertical epi-illumination.
  • images with the same brightness and hue may be captured, resulting in regions that are difficult to identify.
  • the presence of the edge of the solder resist notch and the bleeding of the flux are always present due to the characteristics of the product to be inspected, and there is a need to measure the amount of solder on the leveled substrate.
  • the illumination illumination method uses line-shaped illumination light before and after Irradiation from two directions.
  • the irradiation light from the two directions of the line shape there is a problem in that the irradiation is not complete, but the irradiation blind spot is locally generated near the joint of the front and rear illumination.
  • the polarization image is an image captured under the condition that the polarization direction of the illumination polarizer is perpendicular to the polarization direction of the imaging lens analyzer.
  • a non-polarized image is a condition in which the polarization direction of the polarizer of the illumination and the polarization direction of the analyzer of the imaging lens are perpendicular to each other, or a polarizer or an analyzer on one or both of the illumination and the imaging lens. It is the image imaged on the conditions which do not use.
  • This invention is made
  • an inspection apparatus of the present invention receives an illumination device that irradiates light to an imaging target, and reflected light from the imaging target based on the irradiation of the light.
  • an inspection apparatus that has an imaging device that performs imaging, and an imaging device that is present in the imaging device and receives the reflected light, and that acquires one or both of the two-dimensional image and the three-dimensional image of the imaging target
  • a polarizer is installed between the illuminating device and the imaging target
  • an analyzer is installed between the imaging target and the imaging device, and identification in one or both of the two-dimensional image and the three-dimensional image is performed. It is characterized by suppressing the occurrence of difficult areas.
  • the inspection apparatus of the present invention is present in the illumination apparatus that irradiates light to the imaging target, the imaging apparatus that receives reflected light from the imaging target based on the irradiation of the light, and the imaging apparatus, An inspection device that receives reflected light, and obtains one or both of a two-dimensional image and a three-dimensional image of the imaging target, wherein the imaging device is provided with an imaging region, A reflected light is received, and a band pass filter is provided on the imaging region.
  • the present invention has the following effects.
  • the inspection apparatus of the present invention is present in the illumination apparatus that irradiates light to the imaging target, the imaging apparatus that receives reflected light from the imaging target based on the irradiation of the light, and the imaging apparatus, And an imaging device that receives reflected light, and a polarizer is installed between the illumination device and the imaging target in an inspection apparatus that acquires one or both of a two-dimensional image and a three-dimensional image of the imaging target.
  • an analyzer is installed between the imaging target and the imaging device, and the occurrence of a difficult-to-identify region in one or both of the two-dimensional image and the three-dimensional image is suppressed. can do.
  • the inspection apparatus of the present invention is present in the illumination apparatus that irradiates light to the imaging target, the imaging apparatus that receives reflected light from the imaging target based on the irradiation of the light, and the imaging apparatus, An inspection device that receives reflected light, and obtains one or both of a two-dimensional image and a three-dimensional image of the imaging target, wherein the imaging device is provided with an imaging region, Since the reflected light is received and a band-pass filter is provided on the imaging region, a novel inspection device can be provided.
  • FIG. 1 is a perspective view showing an overall configuration of a solder printing inspection apparatus, which is an example of an inspection apparatus according to an embodiment of the present invention. It is a figure which shows the image pick-up element in which the two-dimensional imaging area and the three-dimensional imaging area were set. It is a figure which shows the polarization illumination optical system of LED light in the test
  • FIG. 3 is a diagram in which line-shaped illumination light is irradiated from two directions. It is the figure which coated the band pass filter of multiple wavelengths on the glass window. It is the figure which installed the glass window of FIG. 12 so that a band pass filter might cover each imaging region.
  • the inspection apparatus of the present invention is present in the illumination apparatus that irradiates light to the imaging target, the imaging apparatus that receives reflected light from the imaging target based on the irradiation of the light, and the imaging apparatus, And an imaging device that receives reflected light, and a polarizer is installed between the illumination device and the imaging target in an inspection apparatus that acquires one or both of a two-dimensional image and a three-dimensional image of the imaging target
  • the inspection apparatus is an inspection apparatus in which an analyzer is installed between the imaging target and the imaging apparatus to suppress the occurrence of a difficult-to-identify region in one or both of the two-dimensional image and the three-dimensional image.
  • FIG. 1 is a perspective view showing an overall configuration of a solder printing inspection apparatus, which is an example of an inspection apparatus according to an embodiment of the present invention.
  • the solder printing inspection apparatus 1 has a function of inspecting solder by performing two-dimensional measurement and three-dimensional measurement of cream solder (hereinafter referred to as “solder”) printed on a substrate 100 to be imaged.
  • the solder printing inspection apparatus 1 includes an illumination device 2, an imaging device 3, a control device 4, a table 5, and the like.
  • the illumination device 2 includes two three-dimensional line illumination devices 10a and 10b and six two-dimensional line illumination devices 20a, 20b, 30a, 30b, 40a, and 40b.
  • the imaging device 3 includes a camera 50 and an imaging lens 60 that capture black and white images.
  • the camera 50 includes an image sensor 51 of a CMOS sensor.
  • the control device 4 includes an image processing control unit 70.
  • the image processing control unit 70 includes a three-dimensional imaging region image memory 71a for the three-dimensional line illumination device 10a, a three-dimensional imaging region image memory 71b for the three-dimensional line illumination device 10b, and a two-dimensional line illumination device 20a.
  • the table 5 includes an X-axis table 80, an X-axis motor 81, a Y-axis table 82, and a Y-axis motor 83.
  • the two-dimensional line illumination device irradiates light onto the substrate 100 that is an imaging target.
  • the two-dimensional line illumination devices 20a and 20b are arranged so as to sandwich an optical system composed of the camera 50 and the imaging lens 60, and the two-dimensional line illumination devices 21a and two-dimensional line illumination light 21a of the two-dimensional line illumination device 20a are arranged.
  • the two-dimensional line illumination light 21b of the line illumination device 20b is projected obliquely downward from the upper direction, whereby a two-dimensional line illumination light trace 21 is generated on the substrate 100.
  • the two-dimensional line illumination devices 30 a and 30 b and the two-dimensional line illumination devices 40 a and 40 b are similarly arranged and projected, so that two-dimensional line illumination light traces 31 and 41 are generated on the substrate 100.
  • a polarizer is installed between each of the two-dimensional line illumination devices 20a, 20b, 30a, 30b, 40a, and 40b and the substrate 100 (not shown).
  • a red light source is used for the two-dimensional line illumination devices 20a and 20b
  • a green light source is used for the two-dimensional line illumination devices 30a and 30b.
  • a blue light source is adopted as 40b.
  • the three-dimensional line illumination device irradiates light onto the substrate 100 that is an imaging target.
  • the three-dimensional line illumination devices 10a and 10b are arranged in such a manner as to sandwich an optical system composed of the camera 50 and the imaging lens 60, and each project light from an upper direction to an obliquely downward direction, thereby three-dimensional use.
  • Line illumination lights 11 a and 11 b are generated, and three-dimensional line illumination light traces 12 a and 12 b are generated on the substrate 100.
  • Polarizers are installed between the three-dimensional line illumination devices 10a and 10b and the substrate 100 (not shown).
  • a red light source or a blue / green light source is adopted according to the hue of the substrate 100.
  • the imaging device 3 receives reflected light from the substrate 100 based on irradiation light.
  • the imaging element 51 is present in the imaging device 3 and receives reflected light.
  • the two-dimensional line illumination light traces 21, 31, 41 and the three-dimensional line illumination light traces 12 a, 12 b generated on the substrate 100 are projected onto the imaging element 51 of the camera 50 through the imaging lens 60.
  • An analyzer is installed between the substrate 100 and the imaging device 3 (not shown).
  • the imaging element 51 can arbitrarily set the imaging area, and the two-dimensional imaging areas 53, 54, 55 for imaging the two-dimensional line illumination light traces 21, 31, 41.
  • five areas of three-dimensional imaging areas 52a and 52b for imaging the three-dimensional line illumination light traces 12a and 12b are set.
  • the two-dimensional imaging areas 53, 54, and 55 have an imaging width of one pixel and can be regarded as equivalent to a line sensor camera.
  • the imaging width defines the maximum measurement height, so a relatively large value is set and is usually about 40 to 50 pixels.
  • the X axis table 80 is moved at a constant pitch to capture an image with the camera 50, and the X axis table 80 is moved at a constant pitch to capture an image with the camera 50.
  • a plane image can be obtained by accumulating outputs from the two-dimensional imaging area in the corresponding two-dimensional imaging area image memories 72, 73, 74, respectively.
  • the plane image output from the three-dimensional imaging region is accumulated in the corresponding three-dimensional imaging region image memories 71a and 71b.
  • the uneven state of the measurement target surface can be reproduced from the image memories 71a and 71b for the three-dimensional imaging region in which a large number of surface images are accumulated, so that a three-dimensional solder inspection can be performed.
  • the three-dimensional line illumination light traces 12a and 12b on the solder and the three-dimensional line illumination light traces 12a and 12b on the substrate 100 are imaged so that their positions are shifted by the height of the solder.
  • the attachment angle of the three-dimensional line illumination lights 11a and 11b from the upper surface of the substrate 100 is ⁇
  • the solder height can be measured by multiplying the amount of solder displacement by tan ⁇ .
  • the volume of solder can be measured by similarly obtaining the direction orthogonal to the length direction of the three-dimensional line illumination light traces 12a and 12b.
  • the inspection apparatus is not limited to acquiring both a two-dimensional image and a three-dimensional image to be imaged.
  • the inspection apparatus can also acquire only one of the two-dimensional image and the three-dimensional image to be imaged.
  • a polarizing filter which is a polarizer, is attached to the lighting device side to polarize the illumination light.
  • the light transmitted through the polarizer becomes linearly polarized light that vibrates in the direction of the transmission axis of the polarizer.
  • a polarizing filter as an analyzer is attached to the imaging lens side, and when the polarized light irradiated from the illumination device is reflected by the imaging target and the reflected polarized light reaches the analyzer, the vibration direction of the reflected polarized light is the analyzer. It is attached so as to be perpendicular to the transmission axis of, ie, to cross.
  • FIG. 4 is a diagram in which the laser beam oscillates in a direction perpendicular to the direction of the laser line beam.
  • the transmission axis of the polarizing filter which is the analyzer on the imaging lens side, is attached so as to be perpendicular to the vibration direction of the laser light in FIG.
  • the polarization illumination optical system for laser light is the same as the polarization illumination optical system for LED light. Note that the relationship between the vibration direction of the laser beam and the direction of the laser line beam is fixedly set.
  • the vibration direction of the laser light and the transmission axis of the analyzer on the imaging lens side is adjusted, and then the polarizer on the LED illumination device side with respect to the direction of the transmission axis of the analyzer on the imaging lens side Adjust the direction of the transmission axis.
  • the inspection apparatus of the present invention is an inspection apparatus that suppresses the occurrence of difficult-to-identify regions in either or both of a two-dimensional image and a three-dimensional image.
  • the difficult-to-identify region the hard-to-identify region that may occur on the surface of the liquid, the difficult-to-identify region that may occur on the surface where the shape of the solid surface changes, and the solid surface; Either a difficult-to-identify area that may occur between the surface of the powder composition, or a difficult-to-identify area that may occur between areas of a solid surface with different surface roughness.
  • An application example for a difficult-to-identify region that may occur on the surface of the liquid will be described with reference to FIG. Specifically, an application example will be described for a place where the shape of the liquid surface changes, that is, a hard-to-identify region that may occur on the convex surface of the liquid. More specifically, an application example for a difficult-to-identify region caused by a transparent material or a translucent material contained in solder will be described. With the polarized illumination optical system of the inspection apparatus of the present invention, it is possible to erase a difficult-to-identify area caused by a transparent material or a translucent material contained in solder such as flux.
  • the difficult-to-identify area is white, and the area that appears to be the same as the white part on the solder, such as white silk printing or barcode seal, is a noise component as image processing information. .
  • a region C in FIG. 5 is a difficult-to-identify region.
  • As a conventional method for removing the difficult-to-identify region there is a method of changing the exposure time of the imaging camera and acquiring and interpolating an image a plurality of times.
  • the image must be acquired a plurality of times.
  • an image having no difficult-to-identify area can be acquired by one imaging, and therefore, inspection tact time can be shortened and image processing can be simplified.
  • an application example will be described for the surface where the shape of the surface of the solid changes, that is, the region that is difficult to identify that may occur on the surface near the corner of the solid.
  • the place where the thickness of the solder resist provided on the substrate changes abruptly i.e., the region where the shape of the surface of the solder resist provided on the substrate changes may be difficult to identify.
  • An application example will be described. More specifically, an application example for a difficult-to-identify region that may occur on the surface near the corner of the solder resist provided on the substrate will be described.
  • the area D in FIG. 6 is a difficult-to-identify area.
  • This difficult-to-identify area also becomes a noise component as image processing information, as in the above application example.
  • the difficult-to-identify area can be erased. Thereby, it is possible to prevent a noise component from being generated as image processing information.
  • substrate by which the solder leveler process was carried out is a board
  • the reflected light of the glossy silver pad portion coated with the reflowed solder has a reduced intensity, and the solder after printing does not reduce the intensity of the reflected light. Therefore, in the inspection apparatus of the present invention, the silver pad is imaged in black and the solder is imaged in gray. As a result, a sufficient difference in image processing occurs between the brightness of the silver pad and the solder, and identification becomes possible.
  • Both areas A and B in FIG. 7 are solder.
  • the reflected light from the solder and the reflected light from the silver pad are close in brightness and hue, so it is difficult to accurately identify both the monochrome image processing and the color image processing.
  • the solder that oozes out may be completely assimilated with the silver pad.
  • the image obtained from the polarized illumination optical system of the inspection apparatus of the present invention is bright because the reflected light equivalent to the non-polarized illumination optical system is obtained at the solder portion and the reflected light is mostly cut off at the silver pad portion. The image recognition is easy.
  • a transparent material or a translucent material may be applied to the substrate or the electronic component on the substrate.
  • inspection equipment that uses non-polarized illumination optical systems is used to inspect the application of transparent or translucent materials on the substrate, and electronic components are accurate. An inspection to determine whether the correct component is mounted by performing an inspection to measure whether it is mounted at a proper position or by reading a print of an electronic component.
  • a UV excitation image as shown in FIG. 8 is used in order to identify the application region of the coating agent provided on the substrate.
  • the coating agent is a highly viscous liquid made of a transparent material or a translucent material.
  • the UV excitation image is an image for knowing the application area of the coating agent containing an excitation substance that shines with visible light when irradiated with UV light.
  • the brightly imaged part is an area where the coating agent is applied, and the dark part is an area where the coating agent is not applied.
  • the area where sandy hatching is applied is the area where the coating agent is applied, and the area where sanding hatching is not applied is the area where the coating agent is not applied. Therefore, the boundary where the brightness of the UV excitation image switches is the boundary of the coating agent layer.
  • the position of the component or the substrate can be detected.
  • the UV excitation image and the image of the non-polarized illumination optical system it is possible to apply the coating agent to the target component or area on the substrate, or to the target component or area on the substrate that should not be applied.
  • the positional correlation with the area where the coating agent is actually applied can be examined. In other words, for the part to be applied and the area on the substrate, it can be detected that the part to be applied and the area on the substrate are not actually applied.
  • a case where the component or a region on the substrate that is not to be applied is actually applied can be detected.
  • the polarized illumination optical system of the inspection apparatus it is possible to erase difficult-to-identify regions that may occur on the convex or concave surface of the coating layer and on the surface near the ridge of the region where the coating layer exists. Thereby, it is possible to prevent a noise component from being generated as image processing information.
  • the photograph in FIG. 9 shows a substrate on which a chip capacitor is mounted. Although it cannot be confirmed in this photograph, there is an application region where a coating agent is applied so as to cover the chip capacitor as shown in the diagram of FIG.
  • the area where the sand hatching is applied is an area where the coating agent is applied, and the area where the sand hatching is not applied is an area where the coating agent is not applied.
  • a non-polarization illumination optical system when a coating agent is applied to a chip condenser, a region that is difficult to identify is generated on the surface in the vicinity of the buttocks of the region where the coating agent exists (portions e, d, and a in FIG. 9).
  • the surface tension causes the coating agent to swell on the top surface of the chip capacitor, resulting in difficult to identify areas on the convex or concave surface of the coating agent ( C and b portions in FIG. 9). Therefore, along with the inspection of the coating agent application area, whether the chip capacitor is correctly mounted within the frame of the silk printing line, and whether the proper chip capacitor is mounted by reading the constant of the chip capacitor Inspection to examine becomes difficult.
  • the difficult-to-identify region that has occurred in the above-described non-polarized illumination optical system does not occur. Therefore, along with the inspection of the coating agent application area, whether the chip capacitor is correctly mounted within the frame of the silk printing line, and whether the proper chip capacitor is mounted by reading the constant of the chip capacitor The inspection to check becomes easy.
  • An example of application to a difficult-to-identify region that may occur on the surface where the shape of the solid surface changes will be described.
  • an application example for a hard-to-identify region that may occur on a solid convex surface, a concave surface, or a surface near a corner will be described.
  • an application example for a hard-to-identify region that may occur on the surface of a solid tablet in the appearance inspection of the tablet will be described.
  • Some tablets have a concave stamp for identifying the drug type of the tablet.
  • a convex groove surface of the tablet that is, the surface near the corner is formed at the entrance of the groove of the stamp.
  • the concave surface of a tablet is formed in the bottom face of a stamp.
  • An application example for a difficult-to-identify region that may occur between the solid surface and the surface of the powder composition will be described. Specifically, an application example for the difficult-to-identify region that may occur between the surface of the metal and the surface of the metal powder composition will be described. More specifically, an application example for a difficult-to-identify region that may occur between the surface of the metal mask and the surface of the solder will be described.
  • a metal plate is used to print solder on the board.
  • the metal plate is provided with holes, and the positions and shapes of the holes are matched with the positions and shapes of the resist openings of the substrate.
  • a paste-like solder lump is placed on the metal plate, and after aligning the opening of the resist and the hole of the metal plate, the squeegee is pressed against the metal plate and moved. Then, the solder paste passes through the hole in the metal plate. Thereafter, when the metal plate and the substrate are separated from each other, a solder paste is printed in the opening of the resist.
  • This metal plate is called a metal mask.
  • the solder paste is scraped cleanly on the surface other than the hole portion of the metal mask.
  • the solder paste can be printed on the substrate with a uniform thickness. Printing the solder paste with a uniform thickness on the entire board is important for the stability of subsequent component mounting and the stabilization of the amount of solder.
  • the pressure of the squeegee that pushes the metal mask changes depending on the location of the squeegee.
  • a gap is formed between the squeegee and the metal mask, and the solder paste remains on the metal mask in a streak-like or strip-like shape. If there are openings in the resist in the substrate in the streak-like or band-like regions, the thickness of the solder paste in the openings will increase.
  • the solder paste always remains on the surface of the metal mask, the flux contained in the solder paste and the solder component are separated, and the solder paste deteriorates.
  • the producer of the production process needs to visually check whether the solder paste remains in a streak shape or a strip shape, and replace the squeegee as necessary. Therefore, the state of the metal mask must be inspected regularly. Therefore, it is necessary to take an image with an imaging camera while illuminating the metal mask, and to monitor whether or not a streaky or strip-like solder paste is present on the metal mask by image recognition. For this reason, it is desired to develop an automated system that issues a warning when the solder paste remains in a streak or strip shape on the metal mask.
  • the surface of the metal mask has a glossy silver color. For this reason, when a silver solder paste on a metal mask is inspected using an inspection apparatus of a non-polarized illumination optical system, the solder paste and the metal mask are assimilated on the image, making identification difficult.
  • the intensity of reflected light from a silver metal plate such as a metal mask is reduced, but the intensity of reflected light is not reduced for solder remaining on the metal mask. Therefore, when the polarized illumination optical system of the inspection apparatus of the present invention is used, the surface of the metal mask is imaged in black or gray, so that the streaks on the metal mask are caused by squeegee scratches or the like. Alternatively, the strip-shaped solder paste can be detected, and the squeegee replacement timing can be automatically detected. As a result, it is possible to reduce the squeegee replacement confirmation work by the producer.
  • scratches may occur on the metal mask.
  • the scratched part is imaged with the same color and brightness as the surface of the metal mask without scratches. Therefore, the scratched part becomes a difficult-to-identify area.
  • the image is taken with the polarization illumination optical system
  • the surface of the scratch is rougher than the surface of the metal mask, so the image is taken with the same brightness as when taken with the non-polarization illumination optical system. Therefore, the scratched part is imaged in gray.
  • the reflected light is mostly cut and imaged in black.
  • imaging scanning is performed by repeating the operation of moving a table on which an imaging target is placed by a certain pitch and capturing an image with a camera using line illumination.
  • the method for acquiring a two-dimensional image is not limited to this method. That is, the surface image of the imaging target may be captured by the camera using surface illumination that irradiates the imaging target widely two-dimensionally.
  • RGB three wavelengths of RGB are used.
  • the wavelength is not limited to the visible light wavelength range of 380 to 780 nm as long as it is a wavelength that can be imaged by a camera and can be polarized by a polarizing element. That is, a light source having a wavelength close to the visible light wavelength, such as an ultraviolet laser, an ultraviolet LED, a near infrared laser, or a near infrared LED, may be used.
  • the illumination device for acquiring a two-dimensional image is not limited to the LED illumination device described above.
  • Other illumination devices for acquiring two-dimensional images include illumination devices with laser light sources with RGB wavelengths, and white light sources that have been separated into RGB by color filters (visible light wavelengths such as three-wavelength fluorescent lamps and halogen lamps). It is possible to employ an illumination device using a light source having a RGB wavelength component.
  • the illumination device for acquiring a three-dimensional image is not limited to the above-described laser light illumination device.
  • a lighting device for acquiring a three-dimensional image a laser displacement meter, a phase shift lighting device, or the like can be employed.
  • the polarizer is not limited to the polarizing filter described above.
  • a half mirror having a reflective layer and a transmissive layer in stripes can be employed as the polarizer.
  • the analyzer is not limited to the polarizing filter described above.
  • a half mirror having a reflective layer and a transmissive layer in stripes can be employed as the analyzer.
  • the difficult-to-identify area (i) the difficult-to-identify area that may occur on the surface of the liquid, (b) the difficult-to-identify area that may occur on the surface where the shape of the solid surface changes, C) The above-mentioned difficult-to-identify region that may occur between the surface of the solid and the surface of the powder composition, and (d) The region that occurs between regions of the solid that have different surface roughnesses. Includes any of the difficult-to-identify regions.
  • the liquid a transparent substance or a translucent substance contained in the solder, a coating layer, or the like can be raised.
  • size of a viscosity is not ask
  • the liquid may be transparent or translucent.
  • solids examples include solder resist, metal, tablets, capsules, and transparent resin molding LED chips.
  • the tablet includes a sugar-coated tablet that gives a gloss, an exposed tablet interior due to peeling of the sugar coating, and the like.
  • glossy capsules are also included as capsules.
  • the solid may be transparent or translucent.
  • solder or the like can be raised.
  • areas with different surface roughness can include metal mask scratches, metal surfaces whose surface accuracy has been roughened by laser engraving.
  • Applications of the inspection apparatus of the present invention include a solder printing inspection apparatus, a post-mounting board appearance inspection apparatus, a tablet inspection apparatus, a squeegee wear state monitoring apparatus for a solder printer, a metal mask appearance inspection apparatus, and the like.
  • an illumination device that irradiates light to an imaging target, an imaging device that receives reflected light from the imaging target based on the irradiation of the light, and An inspection device that is present in the imaging device and receives the reflected light, and that acquires one or both of the two-dimensional image and the three-dimensional image of the imaging target;
  • a polarizer between the imaging object and installing an analyzer between the imaging object and the imaging device, it is possible to detect a difficult-to-identify region in one or both of the two-dimensional image and the three-dimensional image. Occurrence can be suppressed.
  • the present invention is not limited to the embodiment for carrying out the above-described invention, and various other configurations can be adopted without departing from the gist of the present invention.
  • the inspection apparatus of the present invention is an inspection apparatus in which an imaging region is provided in an imaging device, the imaging region receives reflected light, and a band-pass filter is provided on the imaging region.
  • the inspection apparatus according to the first application example includes an imaging region group for a two-dimensional image having three imaging regions, and three bandpasses respectively corresponding to the three imaging regions on the three imaging regions.
  • a filter is provided, and the three band-pass filters are inspection devices that transmit only red, green, and blue wavelengths, respectively.
  • Patent Document 1 a plurality of imaging regions are provided on a CMOS sensor of an imaging device.
  • an imaging region having a scanning line shape as shown in FIG. 10 is provided on the CMOS sensor.
  • illumination light of different RGB is irradiated onto an imaging target, and reflected light is received in an RGB imaging region.
  • the imaging target is irradiated with laser light, and reflected light is received by the imaging area for laser.
  • illumination illumination is performed by irradiating line-shaped illumination light from two front and rear directions as shown in FIG. Yes.
  • irradiation light from two directions in a line shape there is a problem that irradiation is not performed completely, but local irradiation blind spots occur near the joint of front and rear illumination.
  • a bandpass filter of a plurality of wavelengths, that is, each wavelength on the CMOS sensor is formed on a glass window that is the same as the size of the CMOS sensor or larger than the size of the CMOS sensor.
  • a band pass filter of a different band pass band is coated so as to cover the imaging region of illumination, and a band pass filter is installed as shown in FIG. 13 so as to cover each imaging region.
  • RGB mixed light LEDs having wavelengths of R (622.5 nm), G (525 nm), and B (465 nm) were used.
  • white light an LED having a wavelength in the visible light range was used.
  • Laser light (665 nm or 406 nm) was used as illumination for the three-dimensional image.
  • a band pass filter was installed between the object to be imaged.
  • a short pass filter (650 nm or less) was installed when laser light (665 nm) was used, and a long pass filter (430 nm or more) was installed when laser light (406 nm) was used.
  • the range of wavelengths transmitted by the bandpass filter for two-dimensional images was R (622.5 nm ⁇ 10 nm), G (525 nm ⁇ 10 nm), and B (465 nm ⁇ 10 nm), respectively.
  • the wavelength range transmitted through the band-pass filter for a three-dimensional image was set to 665 nm ⁇ 15 nm or 406 nm ⁇ 15 nm corresponding to the laser beam (665 nm or 406 nm).
  • the irradiation method On condition that transmission and non-transmission can be separated with a band-pass filter, the irradiation method, brightness, It is possible to capture illumination light with different conditions such as color in one scan, and it is possible to acquire image information of individual colors even if the illumination light is mixed.
  • bandpass is performed immediately in front of the CMOS sensor, it is possible to receive only light of a necessary wavelength in each imaging region, and an irradiation method that may interfere with other imaging regions as shown in FIG. 14 is possible.
  • the reason for using a bandpass filter instead of a color filter is that the color filter can be either R in general (G and B are not transmitted), G in general (R and B are not transmitted), B in general (G and R are transmitted)
  • the transmission target wavelength is more than twice as wide as that of the bandpass filter. Therefore, even if each color filter is prepared for RGB, the transmission wavelength band is 50 nm or more, and the transmission regions of the respective colors overlap, so that light of an intermediate wavelength between R and G (or G and B) Will interfere.
  • visible light lasers such as red and bluish purple are used.
  • a bandpass filter having the same wavelength but having a transmission wavelength band of 10 to 20 nm is used. Can only be done.
  • the transmittance of the target transmission wavelength can be made higher than that of the color filter.
  • this inspection apparatus includes illumination apparatuses corresponding to a plurality of imaging region groups, and the individual illumination apparatuses are inspection apparatuses having different brightnesses.
  • an illumination group 1 consisting of R1, G1, and B1 illumination lights and an illumination group 2 consisting of R2, G2, and B2 illumination lights that are slightly shifted in wavelength are prepared.
  • the R1, G1, and B1 illumination devices and the R2, G2, and B2 illumination devices are each provided with a band pass filter between the imaging target.
  • the center wavelengths of the respective bandpass filters are R1 (618 nm), G1 (522 nm), B1 (444 nm), R2 (640 nm), G2 (544 nm), and B2 (466 nm).
  • the range of wavelengths transmitted by each bandpass filter is the center wavelength ⁇ 10 nm.
  • the imaging area of the imaging device is prepared so as to correspond to the illumination group 1 of R1, G1, and B1 and the illumination group 2 of R2, G2, and B2.
  • the range of the center wavelength of the band pass filter installed on each imaging region and the transmitted wavelength range is the same as the range of the center wavelength and the transmitted wavelength of the corresponding band pass filter on the illumination device side.
  • set the brightness of the illumination light of the illumination group 1 to a predetermined value take a reference brightness image, and make the brightness of the illumination light of the illumination group 2 appear brighter or darker than the illumination group 1 Set.
  • image data that interpolates a reference brightness image and a region that is difficult to be identified or a portion that is dark and does not appear in one scan.
  • FIG. 16 shows the illumination device and the experimental results.
  • LEDs of the R1, G1, and B1 groups and LEDs of the R2, G2, and B2 groups are mounted in a ring shape.
  • the R1 and R2, G1 and G2, and B1 and B2 LEDs of the same color are irradiated with a bandpass filter so that the wavelength is shifted by 20 nm or more.
  • R1, G1, and B1 are irradiated with a dark illumination volume in order to prevent generation of a region in which it is difficult to identify an image.
  • R2, G2, and B2 irradiate with brighter illumination volumes in order to capture sharp edges of lines.
  • FIG. 16B shows a filter installed in front of the image sensor for R1 in the R1 imaging area, G1 in the G1 imaging area, B1 in the B1 imaging area, and R2 in the R2 imaging area.
  • images are taken when bandpass filters having the same transmission wavelength band are installed for G2 and for B2 imaging region B2, and R1 and R2 are displayed as representatives.
  • FIG. 16C shows a case where the filter installed in front of the image sensor is a color filter.
  • a bandpass filter is used at a wavelength difference of 20 nm between R1 and R2, and each transmission wavelength band is transmitted and the others are not transmitted. Is carved.
  • both R1 and R2 light are received in both the R1 and R2 image areas, resulting in the same brightness, and a dark image and a bright image can be separated. Absent.
  • this inspection apparatus is an inspection apparatus in which illumination devices corresponding to a plurality of imaging region groups exist, and the light irradiated to the imaging target from each of the illumination devices has different polarization vibration directions.
  • some lighting apparatuses may not install a polarizer between the imaging target.
  • an illumination group 1 consisting of R1, G1, and B1 illumination lights and an illumination group 2 consisting of R2, G2, and B2 illumination lights that are slightly shifted in wavelength are prepared.
  • the R1, G1, and B1 illumination devices and the R2, G2, and B2 illumination devices are each provided with a band pass filter between the imaging target.
  • the center wavelengths of the respective bandpass filters are R1 (618 nm), G1 (522 nm), B1 (444 nm), R2 (640 nm), G2 (544 nm), and B2 (466 nm).
  • the range of wavelengths transmitted by each bandpass filter is the center wavelength ⁇ 10 nm.
  • imaging regions of the imaging device are prepared corresponding to the illumination group 1 of R1, G1, and B1 and the illumination group 2 of R2, G2, and B2.
  • the range of the center wavelength of the band pass filter installed on each imaging region and the transmitted wavelength range is the same as the range of the center wavelength and the transmitted wavelength of the corresponding band pass filter on the illumination device side.
  • polarizers are respectively installed between the R1, G1, and B1 illumination devices and the R2, G2, and B2 illumination devices between the imaging target.
  • An analyzer is installed between the imaging lens and the imaging target. Sets the transmission axis of the polarizer of the illumination device of R1, G1, B1. For example, when the polarized light emitted from the illuminating device of R1, G1, and B1 is reflected by the imaging target and the reflected polarized light reaches the analyzer, the vibration direction of the reflected polarized light is perpendicular to the transmission axis of the analyzer. Set to. Sets the transmission axis of the polarizer of the R2, G2, B2 lighting device.
  • the vibration direction of the reflected polarized light is parallel to the transmission axis of the analyzer.
  • the R2, G2, and B2 illumination devices are not provided with a polarizer.
  • the imaging device can simultaneously acquire polarized image data and unpolarized image data in one scan.
  • a polarized image can be obtained when the polarizer is set so that the vibration direction of the reflected polarized light is perpendicular to the transmission axis of the analyzer.
  • An unpolarized image can be acquired when the polarizer is set so that the vibration direction of the reflected polarized light is parallel to the transmission axis of the analyzer. Further, an unpolarized image can be acquired when a polarizer is not installed in the illumination device.
  • the inspection apparatus of the present invention is not limited to the inspection apparatus of FIG.
  • Two sets of two illuminating devices facing each other may be provided for the imaging lens.
  • the two lighting devices facing each other are R1, G1, and B1 lighting devices, and the remaining two lighting devices are R2, G2, and B2 lighting devices.
  • the illumination device of the inspection apparatus of the present invention is not limited to the spot illumination device as shown in FIG. An all-around lighting device may be adopted.
  • an image of a place that needs to be illuminated to obtain contrast with a peripheral substrate substrate such as a pad surface provided for positioning can be acquired, and positioning can be performed.
  • FIG. 1 An example of the inspection apparatus of the present invention is shown in FIG.
  • the transmission axis direction of the polarizer (not shown) of the laser light illuminating device located on the left and right of the apparatus is perpendicular to the transmission axis direction of the analyzer.
  • the transmission axis direction of the analyzer is perpendicular to the transmission axis direction of the polarizer of the RGB illumination apparatus located below the center of the apparatus.
  • the two-dimensional image optical system and the three-dimensional image optical system are both polarized illumination optical systems.
  • a multi-wavelength bandpass filter is installed in front of the image sensor inside the image pickup apparatus, and light of a specific wavelength is extracted from the mixed wavelength light and picked up.
  • the inspection apparatus of the present invention is not limited to this example. In addition to the light cutting method shown in FIG. 20, the same effect can be obtained in other laser displacement sensors that measure the height using light and the phase shift method.
  • the wavelength range transmitted through the bandpass filter is preferably within the range of the center wavelength ⁇ 10 nm. Further, it is more preferable that the transmitted wavelength range is within the range of the center wavelength ⁇ 5 nm.
  • the range of the wavelength transmitted by the bandpass filter is within the range of the center wavelength ⁇ 10 nm, there is an advantage that it is possible to pick up images by separating light and darkness and non-polarized light by shifting the wavelength even with illumination of the same color. This effect becomes more conspicuous when the transmitted wavelength range is within the range of the center wavelength ⁇ 5 nm.
  • the application of the inspection apparatus of the present invention is not limited to the solder printing inspection apparatus described above.
  • Other uses of the inspection apparatus include a post-mounting board appearance inspection apparatus and a tablet inspection apparatus.
  • an imaging region is provided in an imaging device, the imaging region receives reflected light, and a bandpass filter is provided on the imaging region, thereby providing a novel Can be provided.
  • 1 solder printing inspection device 2 illumination device, 3 imaging device, 4 control device, 5 table, 10a, 10b 3D line illumination device, 20a, 20b, 30a, 30b, 40a, 40b 2D line illumination device, 21a , 21b, 31a, 31b, 41a, 41b Two-dimensional line illumination light, 21, 31, 41 Two-dimensional line illumination light trace, 11a, 11b Three-dimensional line illumination light, 12a, 12b Three-dimensional line illumination light trace , 50 camera, 60 imaging lens, 70 image processing control unit, 71a, 71b, image memory for 3D imaging area, 72, 73, 74, image memory for 2D imaging area, 80 X-axis table, 81 X-axis motor, 82 Y-axis table, 83 Y-axis motor, 100 substrate

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

 新規な検査装置を提供することを目的とする。 本発明の検査装置は、撮像対象に光を照射する照明装置と、前記光の照射に基づく、前記撮像対象からの反射光を、受光する撮像装置と、前記撮像装置の中に存在し、前記反射光を受光する撮像素子とを有している。 また、検査装置は、前記撮像対象の2次元画像、3次元画像のいずれかまたは双方を取得する検査装置である。 前記照明装置と前記撮像対象の間に偏光子を設置し、前記撮像対象と前記撮像装置の間に検光子を設置している。前記2次元画像、前記3次元画像のいずれかまたは双方における、識別困難領域の発生を抑制する。 または、前記撮像素子に撮像領域を設け、前記撮像領域は前記反射光を受光している。また、前記撮像領域の上にバンドパスフィルタを設けている。

Description

検査装置
 本発明は、新規な検査装置に関する。
 検査装置の1例として、はんだ印刷検査装置を挙げることができる。
 はんだ印刷検査装置に関して、例えば特許文献1では、2次元画像を取得するために赤(以下、「R」という。)、緑(以下、「G」という。)、青(以下、「B」という。)のLED光を用い、3次元画像を取得するためにレーザ光を用いている。LED光、レーザ光に対し、それぞれ撮像領域を撮像素子に用意し走査させることにより、2次元画像、3次元画像を同時に取得し2次元画像、3次元画像について同時に検査を行っている。
 特許文献1のはんだ印刷検査装置を実現する手段の一つとして、特許文献2のライン照明装置を用いることができる。このライン照明装置は、2次元画像取得用のR,G,Bの各色を、撮像素子の撮像領域に対応した撮像対象の撮像範囲に対しR,G,Bの色同士が干渉しないように照射している。
 上述したように、特許文献1では、撮像対象の撮像範囲にそれぞれ照明光を照射しなければならない。そのため、特許文献2の照明装置を用い、撮像対象の撮像範囲のそれぞれに照明光を照射している。それらの照明光は、互いに干渉することのないよう、光学系を用いて集光されライン光となっている。
特開2011-089939号公報 特開2011-145229号公報
 しかしながら、上述した従来の検査装置では、はんだ印刷検査装置の照明の指向性から、照射面にて、ソルダーレジストの切欠き部分のエッジにて、明るさによっては、パッドやはんだと識別が困難な領域が発生する場合があり、はんだ量の計測が不安定となる。
 また、LEDライン照明、リング照明の双方において、はんだ撮像時に、はんだからにじみ出てきたフラックスの表面において、はんだであるかはんだでないか識別が困難な領域が発生する場合がある。
 上記の識別が困難な領域が画像処理のノイズ成分となる問題とは別に、レベラー処理された基板の検査について、通常のリング照明や、ライン照明、垂直落射照明では、銀色のパッドと銀色のはんだで同じような明るさと色相に撮像されてしまい、識別が困難な領域が発生する場合がある。この場合、はんだ量の計測が困難になるという問題点がある。
 はんだ印刷検査装置では、ソルダーレジストの切欠き部分のエッジやフラックスのにじみの存在は検査対象の製品特性上必ず存在し、レベラー処理された基板でのはんだ量の計測の必要性もある。
 一方、特許文献1では、照明の照射方式が、撮像対象の撮像範囲にほかの色(波長)の照明光が干渉しない様に、かつ照射死角を少なくするため、ライン形状の照明光を前後の2方向からの照射としている。しかし、ライン形状の2方向からの照射光の場合、完全な全周照射とはならず、前後照明のつなぎ目付近で、局所的だが照射死角が発生してしまうという問題点がある。
 また、カラー画像を撮像する中で、撮像対象の反射率が部分的に異なるために、識別が困難な領域が発生する場合があり、または暗くて映らない部分が発生する場合がある。この対策として、露光時間を変えて2回以上撮像し、暗い部分もしくは識別が困難な領域を補完する手法がある。しかし、この手法では2回以上の走査時間がかかる上に、照明照度、露光時間の切り替え作業が必要となり、撮像タクトがかかってしまうという問題点がある。
 また、従来、偏光画像と無偏光画像の双方を取得しようとする場合、偏光した状態の画像取得と偏光しない状態の画像取得では、光学系の切り替え作業が必要となり、切り替え作業と切り替えた前後での2倍以上の撮像時間、操作時間により撮像タクトがかかってしまうという問題点がある。
 なお、偏光画像とは、照明の偏光子の偏光方向と撮像レンズの検光子の偏光方向が垂直な関係の条件にて撮像した画像である。また、無偏光画像とは、照明の偏光子の偏光方向と撮像レンズの検光子の偏光方向が垂直な関係の条件以外、または、照明と撮像レンズのいずれか片方もしくは両方に偏光子もしくは検光子を使用しない条件で撮像した画像である。
 そのため、このような課題を解決する、新規な検査装置の開発が望まれている。
 本発明は、このような課題に鑑みてなされたものであり、新規な検査装置を提供することを目的とする。
 上記課題を解決し、本発明の目的を達成するため、本発明の検査装置は、撮像対象に光を照射する照明装置と、前記光の照射に基づく、前記撮像対象からの反射光を、受光する撮像装置と、前記撮像装置の中に存在し、前記反射光を受光する撮像素子と、を有し、前記撮像対象の2次元画像、3次元画像のいずれかまたは双方を取得する検査装置において、前記照明装置と前記撮像対象の間に偏光子を設置し、前記撮像対象と前記撮像装置の間に検光子を設置し、前記2次元画像、前記3次元画像のいずれかまたは双方における、識別困難領域の発生を抑制することを特徴とする。
 本発明の検査装置は、撮像対象に光を照射する照明装置と、前記光の照射に基づく、前記撮像対象からの反射光を、受光する撮像装置と、前記撮像装置の中に存在し、前記反射光を受光する撮像素子と、を有し、前記撮像対象の2次元画像、3次元画像のいずれかまたは双方を取得する検査装置において、前記撮像素子に撮像領域を設け、前記撮像領域は前記反射光を受光し、前記撮像領域の上にバンドパスフィルタを設けることを特徴とする。
 本発明は、以下に記載されるような効果を奏する。
 本発明の検査装置は、撮像対象に光を照射する照明装置と、前記光の照射に基づく、前記撮像対象からの反射光を、受光する撮像装置と、前記撮像装置の中に存在し、前記反射光を受光する撮像素子と、を有し、前記撮像対象の2次元画像、3次元画像のいずれかまたは双方を取得する検査装置において、前記照明装置と前記撮像対象の間に偏光子を設置し、前記撮像対象と前記撮像装置の間に検光子を設置し、前記2次元画像、前記3次元画像のいずれかまたは双方における、識別困難領域の発生を抑制するので、新規な検査装置を提供することができる。
 本発明の検査装置は、撮像対象に光を照射する照明装置と、前記光の照射に基づく、前記撮像対象からの反射光を、受光する撮像装置と、前記撮像装置の中に存在し、前記反射光を受光する撮像素子と、を有し、前記撮像対象の2次元画像、3次元画像のいずれかまたは双方を取得する検査装置において、前記撮像素子に撮像領域を設け、前記撮像領域は前記反射光を受光し、前記撮像領域の上にバンドパスフィルタを設けるので、新規な検査装置を提供することができる。
本発明の一実施の形態に係る検査装置の1例である、はんだ印刷検査装置の全体構成を示す斜視図である。 2次元用撮像領域及び3次元用撮像領域が設定されている撮像素子を示す図である。 本発明の検査装置における、LED光の偏光照明光学系を示す図である。 本発明の検査装置における、レーザ光の偏光照明光学系を示す図である。 はんだに含まれる透明物質または半透明物質に起因する識別困難領域に対する適用例を説明する写真と図である。 基板上に設けたソルダーレジストの角部付近の表面に発生する場合がある識別困難領域に対する適用例を説明する写真と図である。 部品を実装するための金属の表面と、はんだの表面との間で発生する場合がある識別困難領域に対する適用例を説明する写真と図である。 基板や基板上の電子部品に塗布された、透明物質または半透明物質の表面の形状が変化する場所に、発生する場合がある識別困難領域に対する適用例を説明する写真と図である。 基板や基板上の電子部品に塗布された、透明物質または半透明物質の表面の形状が変化する場所に、発生する場合がある識別困難領域に対する適用例を説明する写真と図である。 走査用のライン形状をした撮像領域をCMOSセンサ上に設けた図である。 ライン形状の照明光を前後2方向から照射している図である。 ガラスウィンドウ上に、複数波長のバンドパスフィルタをコーティングした図である。 図12のガラスウィンドウを、バンドパスフィルタが各撮像領域を覆うように、設置した図である。 他の撮像領域に干渉しても良い照射方式が可能となり、撮像視野の全面を照射する全周照射方式にすることができる、ことを説明する図である。 R1,G1,B1の照明グループと、R2,G2,B2の照明グループに対応させた撮像領域を有する撮像素子の図である。 照明装置と実験結果を示す図である。 R1,G1,B1の照明グループと、R2,G2,B2の照明グループに対応させた撮像領域を有する撮像素子の図である。 照明装置と撮像対象の間に偏光子を設置し、撮像レンズと撮像対象との間に検光子を設置する装置の図である。 1度の走査で偏光した画像のデータと偏光していない画像のデータを同時に取得できる撮像素子の図である。 本発明の検査装置の1例を示す図である。
 以下、本発明を実施するための形態について説明する。
 まず、検査装置にかかる第1の発明を実施するための形態について説明する。
 本発明の検査装置は、撮像対象に光を照射する照明装置と、前記光の照射に基づく、前記撮像対象からの反射光を、受光する撮像装置と、前記撮像装置の中に存在し、前記反射光を受光する撮像素子と、を有し、前記撮像対象の2次元画像、3次元画像のいずれかまたは双方を取得する検査装置において、前記照明装置と前記撮像対象の間に偏光子を設置し、前記撮像対象と前記撮像装置の間に検光子を設置し、前記2次元画像、前記3次元画像のいずれかまたは双方における、識別困難領域の発生を抑制する検査装置である。
 本発明の実施形態について、図面を参照して説明する。
 図1は、本発明の一実施の形態に係る検査装置の1例である、はんだ印刷検査装置の全体構成を示す斜視図である。このはんだ印刷検査装置1は、撮像対象である基板100に印刷されているクリーム半田(以下、「はんだ」という)の2次元測定及び3次元測定を行って、はんだを検査する機能を備えている。はんだ印刷検査装置1は、照明装置2、撮像装置3、制御装置4、テーブル5等を備えている。
 照明装置2は、2つの3次元用ライン照明装置10a,10b及び6つの2次元用ライン照明装置20a,20b,30a,30b,40a,40bを備えている。撮像装置3は、白黒画像を撮像するカメラ50と撮像レンズ60を備えている。カメラ50は、CMOSセンサの撮像素子51を備えている。制御装置4は、画像処理制御部70を備えている。画像処理制御部70は、3次元用ライン照明装置10a用の3次元撮像領域用画像メモリ71a、3次元用ライン照明装置10b用の3次元撮像領域用画像メモリ71b、2次元用ライン照明装置20a,20b用の2次元撮像領域用画像メモリ72、2次元用ライン照明装置30a,30b用の2次元撮像領域用画像メモリ73、2次元用ライン照明装置40a,40b用の2次元撮像領域用画像メモリ74を備えている。テーブル5は、X軸テーブル80、X軸用モータ81、Y軸テーブル82、Y軸用モータ83を備えている。
 2次元用ライン照明装置は、撮像対象である基板100に光を照射する。2次元用ライン照明装置20a,20bは、カメラ50と撮像レンズ60により構成される光学系を挟むような形で配置され、2次元用ライン照明装置20aの2次元用ライン照明光21aと2次元用ライン照明装置20bの2次元用ライン照明光21bが、それぞれ上方向から斜め下方向に投光することで、基板100上に2次元用ライン照明光跡21が生じる。2次元用ライン照明装置30a,30b及び2次元用ライン照明装置40a,40bも同様に配置され投光することで、基板100上に2次元用ライン照明光跡31,41が生じる。
 2次元用ライン照明装置20a,20b,30a,30b,40a,40bのそれぞれと基板100の間には偏光子が設置されている(図示していない)。
 2次元用ライン照明装置20a,20bには、例えば赤色系の光源を採用し、2次元用ライン照明装置30a,30bには、例えば緑色系の光源を採用し、2次元用ライン照明装置40a,40bには、例えば青色系の光源を採用する。
 3次元用ライン照明装置は、撮像対象である基板100に光を照射する。3次元用ライン照明装置10a,10bは、カメラ50と撮像レンズ60により構成される光学系を挟むような形で配置され、それぞれが上方向から斜め下方向に投光することで、3次元用ライン照明光11a,11bが発生し、基板100上に3次元用ライン照明光跡12a,12bが生じる。
 3次元用ライン照明装置10a,10bのそれぞれと基板100の間には偏光子が設置されている(図示していない)。
 3次元用ライン照明装置10a,10bには、基板100の色相に応じて赤色系の光源、あるいは青色系・緑色系の光源を採用する。
 撮像装置3は、照射光に基づく、基板100からの反射光を受光する。また、撮像素子51は、撮像装置3の中に存在し、反射光を受光する。基板100上に生じた2次元用ライン照明光跡21,31,41及び3次元用ライン照明光跡12a,12bを、撮像レンズ60を通してカメラ50の撮像素子51上に投影する。
 基板100と撮像装置3の間には、検光子が設置されている(図示していない)。
 撮像素子51は、図2に示すように、撮像領域を任意に設定することができ、2次元用ライン照明光跡21,31,41を撮像するための2次元用撮像領域53,54,55及び3次元用ライン照明光跡12a,12bを撮像するための3次元用撮像領域52a,52bの5つの領域が設定されている。2次元用撮像領域53,54,55は、その撮像幅が1画素であり、ラインセンサカメラと同等と見なすことができる。3次元用撮像領域52a,52bは、その撮像幅が最大測定高さを規定することになるので比較的大きな値が設定され、通常40~50画素程度ある。
 以上の光学系・照明系構成で、X軸テーブル80を一定ピッチ動かしカメラ50で画像を撮像、さらにX軸テーブル80を一定ピッチ動かしカメラ50で画像を撮像、という動作を繰り返していく。以上の動作の間、2次元用撮像領域からの出力を、それぞれ対応する2次元撮像領域用画像メモリ72,73,74に蓄積していくことで面画像を得ることができる。合わせて、3次元用撮像領域からの面画像出力を、それぞれに対応する3次元撮像領域用画像メモリ71a,71bに蓄積していく。
 また、面画像が多数集積した3次元撮像領域用画像メモリ71a,71bから、測定対象面の凹凸状態を再現することができ、よって3次元はんだ検査を実施することができる。
 すなわち、はんだ上の3次元用ライン照明光跡12a,12bと基板100上の3次元用ライン照明光跡12a,12bは、はんだの高さ分だけ位置がずれたように撮像される。3次元用ライン照明光11a,11bの基板100の上面からの取り付け角度をθとすると、はんだのずれ量にtanθを掛けることではんだの高さを測定することができる。さらに、3次元用ライン照明光跡12a,12bの長さ方向に直交する方向も同様に求めることで、はんだの体積を測定することができる。
 以上のように、カメラ50と撮像レンズ60という光学系に2次元検査用と3次元検査用の区別はなく、またX軸テーブル80を一定ピッチ動かしカメラ50で画像を撮像、という動作を繰り返す撮像走査を1回実施するだけで2次元画像と3次元画像の採取、及び2次元検査と3次元検査の実施が可能となり、はんだ印刷検査装置1の構造面および動作面で2次元検査と3次元検査が完全に融合する。
 なお、検査装置は、撮像対象の2次元画像、3次元画像の双方を取得する場合に限定されない。検査装置は、撮像対象の2次元画像、3次元画像のいずれか一方のみを取得することもできる。
 本発明の検査装置における、LED光の偏光照明光学系を、図3を用いて説明する。照明装置側に、偏光子である偏光フィルタを取り付け、照明光を偏光する。偏光子を透過した光は、偏光子の透過軸方向に振動する直線偏光になる。一方、撮像レンズ側に、検光子である偏光フィルタを取り付け、照明装置から照射された偏光が撮像対象で反射し、反射した偏光が検光子に達する際に、反射した偏光の振動方向が検光子の透過軸と垂直になるように、すなわちクロスするように取り付ける。
 本発明の検査装置における、レーザ光の偏光照明光学系を、図4を用いて説明する。通常のレーザ光は光の振動方向が揃っている。その振動方向は、ライン光の方向に対し任意に設定できる。図4は、レーザライン光の方向に対し、垂直方向にレーザ光が振動している図である。撮像レンズ側の検光子である偏光フィルタの透過軸を、図4のレーザ光の振動方向に対し垂直の関係になるように、すなわちクロスするように取り付ける。このように、レーザ光の偏光照明光学系では、LED光の偏光照明光学系と同様にする。
 なお、レーザ光の振動方向とレーザライン光の方向の関係は、固定して設定してある。そのため、レーザ光の振動方向と、撮像レンズ側の検光子の透過軸との関係を調整し、その後に、その撮像レンズ側の検光子の透過軸の方向に対し、LED照明装置側の偏光子の透過軸の方向を調整する。
 ここで、本発明の検査装置について、適用例を説明する。
 本発明の検査装置は、2次元画像、3次元画像のいずれかまたは双方における、識別困難領域の発生を抑制する検査装置である。
 識別困難領域としては、液体の表面に、発生する場合がある識別困難領域、また、固体の表面の形状が変化する前記表面に、発生する場合がある識別困難領域、また、固体の表面と、粉末組成物の表面との間に、発生する場合がある識別困難領域、また、固体の表面のうち、表面の粗さの異なる領域の間に、発生する場合がある識別困難領域のいずれかを含む。
 以下に、適用例を具体的に説明する。
 図5を用いて、液体の表面に、発生する場合がある識別困難領域に対する、適用例を説明する。具体的には、液体の表面の形状が変化する場所、すなわち液体の凸表面に発生する場合がある識別困難領域に対する、適用例を説明する。さらに具体的には、はんだに含まれる透明物質または半透明物質に起因する識別困難領域に対する、適用例を説明する。
 本発明の検査装置の偏光照明光学系により、フラックス等のはんだに含まれる透明物質または半透明物質に起因する識別困難領域を消去することが出来る。無偏光照明光学系の場合、識別困難領域は白くなり、はんだ上で白色シルク印刷やバーコードシールといった白い部分と画像処理上同じように見える領域となり、画像処理の情報としてノイズ成分となっている。図5におけるCの領域が識別困難領域である。この識別困難領域を除去する従来方法としては、撮像カメラの露光時間を変化させ、複数回画像を取得し補間する方法などがあるが、複数回画像を取得しなければならないという問題点がある。本発明の検査装置では、一度の撮像で識別困難領域のない画像を取得することができるため、検査タクトの短縮や、画像処理の簡易化が可能である。
 図6を用いて、固体の表面の形状が変化する前記表面、すなわち固体の角部付近の表面に発生する場合がある識別困難領域に対する、適用例を説明する。具体的には、基板上に設けたソルダーレジストの厚さが急激に変化する場所、すなわち基板上に設けたソルダーレジストの表面の形状が変化する前記表面に発生する場合がある識別困難領域に対する、適用例を説明する。さらに具体的には、基板上に設けたソルダーレジストの角部付近の表面に発生する場合がある識別困難領域に対する、適用例を説明する。
 ソルダーレジストという透明物質または半透明物質の切欠き部分のエッジ、すなわちソルダーレジストの厚さが急激に変化する場所に識別困難領域が発生する場合がある。図6におけるDの領域が識別困難領域である。この識別困難領域も、上述の適用例と同様に画像処理の情報としてノイズ成分となる。本発明の検査装置の偏光照明光学系においては、識別困難領域を消去できる。これにより、画像処理の情報としてノイズ成分が生じるのを防止できる。
 図7を用いて、固体の表面と、粉末組成物の表面との間に、発生する場合がある識別困難領域に対する、適用例を説明する。具体的には、部品を実装するための金属の表面と、はんだの表面との間で発生する場合がある識別困難領域に対する、適用例を説明する。
 従来の検査装置の無偏光照明光学系では、はんだレベラー処理された基板のはんだ検査において、部品を実装するための金属の表面と、はんだの表面との間で識別困難領域が発生する場合がある。なお、はんだレベラー処理された基板とは、プリント基板上のソルダーレジストがかかっていない銅箔部分の表面に、リフロー済みはんだをコーティングする表面処理を行った基板である。
 本発明の検査装置の偏光照明光学系では、リフロー済みはんだがコーティングされた艶のある銀色パッド部分の反射光は強度が低下し、印刷後のはんだは反射光の強度が低下しない。そのため、本発明の検査装置では、銀色パッドは黒色に撮像され、はんだは灰色に撮像される。これにより、銀色パッドとはんだの明るさに画像処理に十分な差が生じ、識別が可能となる。
 図7のAの領域とBの領域は、ともにはんだである。従来の無偏光照明光学系の場合、はんだからの反射光と銀色パッドからの反射光は明るさと色相が近くなるため、白黒画像処理、カラー画像処理の両方式においても正確な識別が困難であり、また、Bの領域のように、にじんだはんだなどは完全に銀色パッドと見た目上同化してしまう場合もある。
 本発明の検査装置の偏光照明光学系から得られる画像は、はんだ部分では無偏光照明光学系と同等な反射光がえられ、銀色パッド部分では反射光が大部分カットされるために、明るさに差が生じ、画像認識が容易となる。
 図8,9を用いて、液体の表面に発生する場合がある識別困難領域に対する、適用例について説明する。具体的には、液体の表面の形状が変化する場所に発生する場合がある識別困難領域に対する、適用例について説明する。さらに具体的には、基板上に設けたコーティング層の表面の形状が変化する場所に、発生する場合がある識別困難領域に対する、適用例について説明する。
 基板自体や、基板上に実装された電子部品のコーティングを目的とし、基板や基板上の電子部品に、透明物質または半透明物質を塗布する場合がある。
 透明物質または半透明物質が塗布された基板については、無偏光照明光学系を採用する検査装置を用いて、基板上の透明物質または半透明物質の塗布の具合を見る検査、また電子部品が正確な位置に実装されているかを測定する検査、また電子部品の印字を読み取ることにより正しい部品が実装されているかを見る検査を行っていた。
 これらの検査は画像処理を用いて行うが、透明物質または半透明物質の表面の形状が変化する場所、具体的には、透明物質または半透明物質の塗布領域の淵部付近や、透明物質または半透明物質の表面の凹凸部にて識別困難領域が発生する場合があった。この識別困難領域は、画像処理の情報としてノイズ成分となり、電子部品の位置測定の精度を悪化させ、また印字の読み取りを困難にしていた。
 従来の検査装置においては、基板に設けられたコーティング剤の塗布領域を識別するために、図8に示すようなUV励起画像が用いられていた。ここで、コーティング剤は、透明物質または半透明物質からなる、高粘性を有する液体である。UV励起画像は、UV光線を照射すると可視光で光る励起物質が含まれたコーティング剤の塗布領域を知るための画像である。明るく撮像される部分はコーティング剤が塗布されている領域であり、暗い部分はコーティング剤が塗布されていない領域である。図8において、砂地ハッチングが施されている領域はコーティング剤が塗布されている領域であり、砂地ハッチングが施されていない領域はコーティング剤が塗布されていない領域である。したがって、UV励起画像の明暗が切り替わる境界はコーティング剤の層の境界である。
 また、UV励起画像の撮像時と同じ撮像位置にて撮像された、図8に示すような無偏光照明光学系の画像を用いることにより、部品や基板の位置を検出できる。UV励起画像と無偏光照明光学系の画像を用いることにより、コーティング剤を塗布すべき対象となる部品や基板上の領域、または塗布すべきでない対象となる部品や基板上の領域に対して、コーティング剤が実際に塗布されている領域との位置的な相関を検査できる。すなわち、塗布すべき対象となる部品や基板上の領域については、塗布すべき部品や基板上の領域に対して、実際には塗布されていない場合が検出できる。また、塗布すべきでない対象となる部品や基板上の領域については、塗布すべきでない部品や基板上の領域に対して、実際には塗布されている場合が検出できる。
 しかし、図8に示すように、無偏光照明光学系の画像では、コーティング層の表面の形状が変化する表面に、またコーティング層が存在する領域の淵部付近の表面に、多数の識別困難領域が発生している。すなわち、無偏光照明光学系の画像では、このコーティング層の凸表面や凹表面に、またコーティング層が存在する領域の淵部付近の表面に識別困難領域が発生する場合がある。図8において、黒塗り部が識別困難領域を表している。
 この識別困難領域は、部品形状を正確に計測するためにはノイズ成分となるという問題点がある。
 図8からわかるように、従来方式の無偏光照明光学系の画像では多数の識別困難領域が発生しているのに対し、本発明の検査装置の偏光照明光学系の画像では識別困難領域が発生していない。このことにより、UV励起画像にてコーティング剤の塗布領域を識別し、識別困難領域の発生しない偏光照明光学系の画像にて部品や基板上の領域との位置的な相関を正確に検査することが出来る。
 本発明の検査装置の偏光照明光学系においては、このコーティング層の凸表面や凹表面に、またコーティング層が存在する領域の淵部付近の表面に発生する場合がある識別困難領域を消去できる。これにより、画像処理の情報としてノイズ成分が生じるのを防止できる。
 図9の写真は、チップコンデンサーが実装された基板を示すものである。この写真では確認できないが、図9の図で示すようにチップコンデンサーを覆うようにコーティング剤が塗布されている塗布領域が存在する。砂地ハッチングが施されている領域はコーティング剤が塗布されている領域であり、砂地ハッチングが施されていない領域はコーティング剤が塗布されていない領域である。無偏光照明光学系において、チップコンデンサーにコーティング剤を塗布した場合、コーティング剤が存在する領域の淵部付近の表面に識別困難領域が発生する(図9中のe,d,a部分)。また、小さな部品であるチップコンデンサーを全体的にコーティング剤で覆うとき、表面張力によってチップコンデンサーの上面にコーティング剤の盛り上がりが発生し、コーティング剤の凸表面や凹表面に識別困難領域が発生する(図9中のc,b部分)。そのため、コーティング剤の塗布領域の検査と共に、チップコンデンサーがシルク印刷のラインの枠内に正確に実装されているかの検査や、チップコンデンサーの定数を読み取ることにより適正なチップコンデンサーが実装されているかを調べる検査が困難となる。
 本発明の検査装置の偏光照明光学系においては、上述の無偏光照明光学系にて発生していた識別困難領域が発生しない。そのため、コーティング剤の塗布領域の検査と共に、チップコンデンサーがシルク印刷のラインの枠内に正確に実装されているかの検査や、チップコンデンサーの定数を読み取ることにより適正なチップコンデンサーが実装されているかを調べる検査が容易となる。
 固体の表面の形状が変化する前記表面に発生する場合がある識別困難領域に対する、適用例について説明する。具体的には、固体の凸表面、凹表面、角部付近の表面に、発生する場合がある識別困難領域に対する、適用例について説明する。さらに具体的には、錠剤の外観検査において、固体である錠剤の表面に発生する場合がある識別困難領域に対する、適用例について説明する。
 錠剤には、錠剤の薬種の識別のために凹状の刻印がされているものがある。この錠剤の刻印の溝の入り口と底面付近に、形状が変化する表面が存在する。すなわち、刻印の溝の入り口は、錠剤の凸表面、すなわち角部付近の表面が形成されている。また、刻印の底面は、錠剤の凹表面が形成されている。
 無偏光照明光学系で照らした時に刻印の溝の入り口や底面の形状を覆い隠すように識別困難領域が発生する場合がある。そのため、刻印の溝の入り口の欠けや底面の穴などを検査する際に識別困難領域が認識画像のノイズ成分となる。
 本発明の検査装置の偏光照明光学系にて撮像した場合は、この錠剤の表面の形状が変化する前記表面に識別困難領域が発生することがないため、刻印の溝の入り口の欠けや底面の穴の検査を精度よく行うことができる。
 固体の表面と、粉末組成物の表面との間に、発生する場合がある識別困難領域に対する、適用例について説明する。具体的には、金属の表面と、金属粉末組成物の表面との間に、発生する場合がある前記識別困難領域に対する、適用例について説明する。さらに具体的には、メタルマスクの表面と、はんだの表面との間で発生する場合がある識別困難領域に対する、適用例について説明する。
 はんだを基板上に印刷するために、金属板が使用されている。この金属板には、穴が設けたられており、この穴の位置と形状は、基板のレジストの開口部の位置と形状に合わせられている。金属板の上にペースト状のはんだの塊を置き、レジストの開口部と金属板の穴の位置を合わせた後に、スキージをその金属板に押し付け移動させる。そうすると、金属板の穴をはんだペーストが通り抜ける。その後に金属板と基板を離すと、レジストの開口部にはんだペーストが印刷される。この金属板をメタルマスクという。
 スキージがメタルマスクに押し付けられながら通った後、メタルマスクの穴部分以外の表面は、はんだペーストがきれいにそぎ取られていることが正常である。メタルマスクが均一な厚さであり、かつスキージの均一な圧力を作用させることにより、基板にはんだペーストが均一な厚みで印刷させることができる。基板全体にはんだペーストが均一な厚さで印刷されることが、その後の部品実装の安定性や、はんだ量の安定化にとって重要である。
 しかし、連続的にはんだペーストを基板に印刷していく生産工程にて、スキージに傷や減りなどによる摩耗部分が発生すると、メタルマスクを押すスキージの圧力がスキージの場所によって変わってしまう。この結果、傷や摩耗部分の存在により、スキージとメタルマスクとの間に隙間が出来てしまい、はんだペーストが筋状または帯状にメタルマスク上に残ってしまう。この筋状または帯状の領域に、基板のレジストの開口部があると、その開口部のはんだペーストの厚みが厚くなってしまう。また、常時そのメタルマスク表面にはんだペーストが残り、はんだペーストに含まれているフラックスとはんだの成分が分離してしまい、はんだペーストが劣化してしまう問題が発生する。
 これらの問題を解決するために、生産工程の生産者は、はんだペーストが筋状または帯状に残っていないか目視で確認し、必要に応じてスキージを交換する必要がある。そのために、定期的にメタルマスクの状態を検査しなければならない。そこで、メタルマスクを照明で照らしながら撮像カメラで撮像し、画像認識にてメタルマスク上に筋状または帯状のはんだペーストが存在しているか監視する必要がある。このことから、はんだペーストがメタルマスク上で筋状または帯状に残っている場合に、警告を出す自動化システムの開発が望まれている。
 しかし、メタルマスクの表面は、艶がある銀色を呈している。そのため、無偏光照明光学系の検査装置を用いて、メタルマスク上の銀色のはんだペーストを検査すると、はんだペーストとメタルマスクが画像上で同化してしまい識別が困難になる。
 本発明の検査装置の偏光照明光学系を使用した場合、メタルマスクのような銀色の金属板の反射光は強度が低下するが、メタルマスク上に残ったはんだは反射光の強度が低下しない。そのため、本発明の検査装置の偏光照明光学系を用いた場合、メタルマスク表面は黒色に撮像され、またはんだは灰色に撮像されるため、スキージの傷等が起因となるメタルマスク上の筋状または帯状のはんだペーストを検出することができ、スキージの交換タイミングを自動で検出できる。その結果、生産者によるスキージ交換の確認作業を軽減することができる。
 次に、固体の表面のうち、表面の粗さの異なる領域の間に、発生する場合がある識別困難領域に対する、適用例について説明する。具体的には、メタルマスクの傷に起因する識別困難領域に対する、適用例について説明する。
 取扱や生産時に、メタルマスク上に傷が発生する場合がある。無偏光照明光学系を用いて撮像した場合、傷の部分は、メタルマスクの傷のついていない表面と同色、同明るさで撮像される。そのため、傷の部分は識別困難領域となる。
 これに対して、偏光照明光学系で撮像した場合、傷の部分は、面精度がメタルマスクの表面に比べ粗いので、無偏光照明光学系で撮像した時と同等の明るさで撮像される。そのため、傷の部分は、灰色に撮像される。これに対して、メタルマスクの傷のついていない表面は、反射光が大部分カットされ黒色に撮像される。そのため、メタルマスクの傷のついていない表面と、傷の部分とで明るさに画像処理に十分な差が生じ、識別が可能となる。その結果、メタルマスク上の傷を検出することができる。
 なお、メタルマスク上の傷を検出する場合、3次元画像を取得する必要はない。
 上述したように、2次元画像を取得する場合、ライン照明を用いて、撮像対象を乗せたテーブルを一定ピッチ動かしカメラで画像を撮像、という動作を繰り返す撮像走査を実施する。
 2次元画像を取得する方法は、この方法に限定されない。すなわち、撮像対象を2次元的に広く照射する面照射照明を用いて、カメラで撮像対象の面画像を撮像してもよい。
 上述したように、2次元画像を取得する場合、RGBの3波長を用いる。
 2次元画像を取得する場合、このRGBの3波長を用いる方法に限定されない。すなわち、RGBのいずれか1波長のみを用いてもよい。
 また、波長は、カメラで撮像可能な波長であり、かつ偏光素子で偏光可能な波長であれば、可視光の波長範囲380~780nmに限定されない。すなわち、紫外レーザ、紫外LED、近赤外レーザ、近赤外LED等の可視光波長に近い波長の光源を用いてもよい。
 2次元画像取得用の照明装置は、上述したLED光の照明装置に限定されるものではない。このほか2次元画像取得用の照明装置としては、RGBのそれぞれの波長をもつレーザ光源の照明装置や、カラーフィルタでRGBに分光された白色光源(3波長蛍光灯やハロゲンランプなどの可視光波長の内RGBの波長成分を持つ光源)を使用した照明装置などを採用することができる。
 3次元画像取得用の照明装置は、上述したレーザ光の照明装置に限定されるものではない。このほか3次元画像取得用の照明装置としては、レーザ変位計や、位相シフト照明装置などを採用することができる。
 偏光子は、上述した偏光フィルタに限定されるものではない。このほか偏光子としては、反射層と透過層を縞状に持つハーフミラーなどを採用することができる。
 検光子は、上述した偏光フィルタに限定されるものではない。このほか検光子としては、反射層と透過層を縞状に持つハーフミラーなどを採用することができる。
 識別困難領域としては、(イ)液体の表面に、発生する場合がある前記識別困難領域、(ロ)固体の表面の形状が変化する前記表面に、発生する場合がある前記識別困難領域、(ハ)固体の表面と、粉末組成物の表面との間に、発生する場合がある前記識別困難領域、(ニ)固体の表面のうち、表面の粗さの異なる領域の間に、発生する場合がある前記識別困難領域のいずれかを含んでいる。
 ここで、液体としては、はんだに含まれる透明物質または半透明物質、コーティング層等を上げることができる。
 ここで、液体としては、粘度の大きさを問わない。また、液体としては、透明または半透明であるかを問わない。
 固体としては、ソルダーレジスト、金属、錠剤、カプセル剤、LEDチップをモールドしている透明樹脂等を上げることができる。
 ここで、錠剤としては、光沢が出るような糖衣コーティングをされた錠剤、糖衣の剥離による露出した錠剤内部等も含まれる。また、カプセル剤としては、光沢のあるカプセル剤も含まれる。
 また、固体としては、透明または半透明であるかを問わない。
 粉末組成物としては、はんだ等を上げることができる。
 固体の表面のうち、表面の粗さの異なる領域としては、メタルマスクの傷、レーザ刻印により削られて面精度が粗くなった金属面等を上げることができる。
 本発明の検査装置の用途としては、はんだ印刷検査装置、実装後基板外観検査装置、錠剤検査装置、はんだ印刷機のスキージ摩耗状態監視装置、メタルマスクの外観検査装置等を上げることができる。
 以上のことから、本発明を実施するための形態によれば、撮像対象に光を照射する照明装置と、前記光の照射に基づく、前記撮像対象からの反射光を、受光する撮像装置と、前記撮像装置の中に存在し、前記反射光を受光する撮像素子と、を有し、前記撮像対象の2次元画像、3次元画像のいずれかまたは双方を取得する検査装置において、前記照明装置と前記撮像対象の間に偏光子を設置し、前記撮像対象と前記撮像装置の間に検光子を設置することにより、前記2次元画像、前記3次元画像のいずれかまたは双方における、識別困難領域の発生を抑制することができる。
 なお、本発明は上述の発明を実施するための形態に限らず本発明の要旨を逸脱することなくその他種々の構成を採り得ることはもちろんである。
 つぎに、検査装置にかかる第2の発明を実施するための形態について説明する。
 本発明の検査装置は、撮像素子に撮像領域を設け、前記撮像領域は反射光を受光し、前記撮像領域の上にバンドパスフィルタを設ける検査装置である。
 ここで、本発明の検査装置について、適用例を説明する。
 最初の適用例の検査装置は、3つの撮像領域を有する、2次元画像用の撮像領域グループが存在し、前記3つの撮像領域の上に、前記3つの撮像領域にそれぞれ対応する3つのバンドパスフィルタを設け、前記3つのバンドパスフィルタは、それぞれ赤、緑、青の波長のみを透過する検査装置である。
 以下に、適用例を具体的に説明する。
 特許文献1においては、撮像素子のCMOSセンサ上に複数の撮像領域を設けている。同時に複数波長の2次元画像や3次元画像を取得する場合、図10のような走査用のライン形状をした撮像領域をCMOSセンサ上に設けている。2次元画像を取得するためにRGBの異なる照明光を撮像対象に照射し、RGB用の撮像領域で反射光を受光している。3次元画像を取得するためにレーザ光を撮像対象に照射し、レーザ用の撮像領域で反射光を受光している。
 RGBを個別の撮像領域で走査するための照明において、RGB合成時のカラーバランスが崩れないようにするため、または、照射対象の色ごとの反射特性を正確に把握するためには、他の波長の照明光が撮像領域に干渉するのを防がなければならず、照射位置や照射形状の制限があった。
 照明の照射方式は、撮像領域にほかの色(波長)の照明光が干渉しない様に、かつ照射死角を少なくするため、図11のようにライン形状の照明光を前後2方向から照射している。ライン形状の2方向からの照射光の場合、完全な全周照射とはならず、前後照明のつなぎ目付近で、局所的だが照射死角が発生してしまう問題点がある。
 本発明の検査装置においては、図12に示すように、CMOSセンサのサイズと同じか、またはCMOSセンサのサイズより大きいガラスウィンドウ上に、複数波長のバンドパスフィルタ、すなわちCMOSセンサ上の各波長の照明の撮像領域を覆うように、異なるバンドパス帯のバンドパスフィルタをコーティングし、各撮像領域を覆うようにバンドパスフィルタを図13のように設置する。
 2次元画像用の照明としては、RGB混合光または白色光を用いた。RGB混合光では、R(622.5nm),G(525nm),B(465nm)の波長を有するLEDを用いた。白色光では、可視光範囲の波長を有するLEDを用いた。3次元画像用の照明としては、レーザ光(665nm,または406nm)を用いた。
 RGB混合光または白色光の2次元画像用の照明装置には、撮像対象との間にバンドパスフィルタを設置した。バンドパスフィルタとしては、レーザ光(665nm)を用いる場合はショートパスフィルタ(650nm以下)を設置し、レーザ光(406nm)を用いる場合はロングパスフィルタ(430nm以上)を設置した。
 2次元画像用のバンドパスフィルタで透過する波長の範囲は、RGBそれぞれR(622.5nm±10nm),G(525nm±10nm),B(465nm±10nm)とした。3次元画像用のバンドパスフィルタで透過する波長の範囲は、レーザ光(665nm,または406nm)に対応させて、665nm±15nm,または406nm±15nmとした。
 バンドパスフィルタで透過と不透過の切り分けが出来ることを条件として、透過させたい波長のバンドパスフィルタとその波長範囲の照明とCMOSセンサ上の撮像領域を用意することにより照射方法や、明るさ、色などを変えた条件の照明光を1度の走査で撮像することが可能で、互いの照明光が混ざり合っていても個別の色の画像情報を取得することができる。
 1つのCMOSセンサ上に撮像領域ごとに透過するバンドパスフィルタを置くことにより、従来のRGB照明における、照射位置や照射形状の制限の問題点を解消することができる。
 CMOSセンサのすぐ手前でバンドパスを行うため、各撮像領域に必要な波長の光だけを受光させることが出来るため、図14のように他の撮像領域に干渉しても良い照射方式が可能となり、指向性の高い集光したライン光ではなく、撮像視野の全面を照射する全周照射方式にすることができる。その結果、照射死角をなくすことが出来る。
 カラーフィルタではなく、バンドパスフィルタを使用する理由としては、カラーフィルタは、R全般(GやBは透過させない)または、G全般(RやBを透過させない)、B全般(GやRは透過させない)という具合に、透過対象波長がバンドパスフィルタに比べ2倍以上広い。そのため、RGB用にカラーフィルタをそれぞれ用意した場合でも、透過波長帯が50nm以上あり、それぞれの色の透過領域がオーバ-ラップしてしまい、RとG(もしくはGとB)の中間波長の光が干渉してしまう。また、本実施例ではLEDの他に、赤や青紫のような可視光レーザを使用するためそれらを識別するためには、同色でありながら透過波長帯を10~20nmしかもたないバンドパスフィルタにてのみ行える。また、狙い透過波長の透過率をカラーフィルタに対し高く製作することが出来る。
 つぎの適用例の検査装置は、3つの撮像領域を有する、2次元画像用の撮像領域グループが、複数存在し、前記3つの撮像領域の上に、前記3つの撮像領域にそれぞれ対応する3つのバンドパスフィルタを設け、前記3つのバンドパスフィルタは、それぞれ赤、緑、青の波長のみを透過し、複数の前記撮像領域グループに使用する前記バンドパスフィルタの透過波長は、前記撮像領域グループ相互間で異なる検査装置である。
 また、この検査装置は、複数の撮像領域グループに対応する照明装置が存在し、個々の前記照明装置は、明るさが相互に異なる検査装置である。
 以下に、適用例を具体的に説明する。
 カラー画像を撮像する中で物質の反射率が異なるために、識別が困難な領域が発生したり、暗くて映らない部分が発生したりする。これらを解消しようと、たとえば識別が困難な領域の発生を防ごうと撮像感度や照明照度を下げると、暗く映らない場所が、撮像感度や照明照度の変更前に比べて、増加してしまう。その逆もあり、暗い部分を明るく撮像しようと、撮像感度を上げたり照明照度を上げたりすると、識別が困難な領域が増加してしまう。
 この対策として、露光時間を変えて2回以上撮像し、暗い部分もしくは識別が困難な領域を補完する手法がある。しかし、この手法では2回以上の走査時間がかかる上に、照明照度、露光時間の切り替え作業が必要となり、撮像タクトがかかってしまうという問題点がある。
 そこで、本発明の検査装置では、R1,G1,B1の照明光からなる照明グループ1と、少し波長をシフトしたR2,G2,B2の照明光からなる照明グループ2を用意する。R1,G1,B1の照明装置、およびR2,G2,B2の照明装置には、撮像対象との間に、それぞれバンドパスフィルタを設置する。それぞれのバンドパスフィルタの中心波長は、R1(618nm),G1(522nm),B1(444nm),およびR2(640nm),G2(544nm),B2(466nm)である。また、それぞれのバンドパスフィルタで透過する波長の範囲は中心波長±10nmである。
 撮像素子の撮像領域は、図15に示すように、R1,G1,B1の照明グループ1と、R2,G2,B2の照明グループ2に対応させたものを作製する。各撮像領域の上に設置するバンドパスフィルタの中心波長と透過する波長の範囲は、照明装置側の対応するバンドパスフィルタの中心波長と透過する波長の範囲と同じである。
 例えば、照明グループ1の照明光の明るさを所定の値に設定して、基準明るさ画像を撮像し、照明グループ2の照明光の明るさを、照明グループ1より明るく、または暗く映るように設定する。この結果、1度の走査で基準明るさ画像と、識別が困難な領域または暗くて映らない部分を補間する画像のデータが取得できる。
 バンドパスフィルタでなく、カラーフィルタを用いた場合では、例えばR1(618nm)とR2(640nm)の波長の違いが識別できないため、異なる2種類の画像を取得することはできない。
 図16に、照明装置と実験結果を示す。
 図16(A)の照明装置には、R1、G1、B1のグループのLEDとR2、G2、B2のグループのLEDがリング状に実装されている。R1とR2、G1とG2、B1とB2の各同色のLEDどうしは、波長を20nm以上ずれるようにバンドパスフィルタを用い照射させている。R1、G1、B1は、画像の識別が困難な領域の発生を防止するために暗めの照明ボリュームにして照射している。R2、G2、B2は、ラインのエッジをシャープに撮像するために明るめの照明ボリュームにして照射している。
 図16(B)は撮像素子の前に設置するフィルタをR1撮像領域にはR1用に、G1撮像領域にはG1用に、B1撮像領域にはB1用に、R2撮像領域にはR2用に、G2撮像領域にはG2用に、B2撮像領域B2用に、それぞれ透過波長帯を合わせたバンドパスフィルタを設置し撮像した場合の画像であり、代表としてR1とR2を表示した。
 図16(C)は撮像素子の前に設置するフィルタをカラーフィルタにした場合である。(B)の場合、R1とR2の波長の差20nmにおいて、バンドパスフィルタを使用し、それぞれの透過波長帯を透過し、それ以外を不透過にできているため、暗めの画像と明るめの画像を切り分けられている。(C)は、カラーフィルタを使用しているためR1撮像領域、R2撮像領域共にR1とR2の両方の光が受光され同じ明るさとなってしまい、暗めの画像、明るめの画像の切り分けが出来ていない。
 つぎの適用例の検査装置は、3つの撮像領域を有する、2次元画像用の撮像領域グループが、複数存在し、前記3つの撮像領域の上に、前記3つの撮像領域にそれぞれ対応する3つのバンドパスフィルタを設け、前記3つのバンドパスフィルタは、それぞれ赤、緑、青の波長のみを透過し、複数の前記撮像領域グループに使用する前記バンドパスフィルタの透過波長は、前記撮像領域グループ相互間で異なる検査装置である。
 また、この検査装置は、複数の撮像領域グループに対応する照明装置が存在し、個々の前記照明装置から撮像対象に照射される光は、偏光の振動方向が相互に異なる検査装置である。ここで、一部の照明装置は、撮像対象との間に偏光子を設置しない場合がある。
 以下に、適用例を具体的に説明する。
 従来、偏光画像と無偏光画像の双方を取得しようとする場合、偏光した状態の画像取得と偏光しない状態の画像取得では、光学系の切り替え作業が必要となり、切り替え作業と切り替えた前後での2倍以上の撮像時間、操作時間により撮像タクトがかかってしまうという問題点がある。
 そこで、本発明の検査装置では、R1,G1,B1の照明光からなる照明グループ1と、少し波長をシフトしたR2,G2,B2の照明光からなる照明グループ2を用意する。R1,G1,B1の照明装置、およびR2,G2,B2の照明装置には、撮像対象との間に、それぞれバンドパスフィルタを設置する。それぞれのバンドパスフィルタの中心波長は、R1(618nm),G1(522nm),B1(444nm),およびR2(640nm),G2(544nm),B2(466nm)である。また、それぞれのバンドパスフィルタで透過する波長の範囲は中心波長±10nmである。
 撮像素子の撮像領域は、図17に示すように、R1,G1,B1の照明グループ1と、R2,G2,B2の照明グループ2に対応させたものを作製する。各撮像領域の上に設置するバンドパスフィルタの中心波長と透過する波長の範囲は、照明装置側の対応するバンドパスフィルタの中心波長と透過する波長の範囲と同じである。
 図18に示すように、R1,G1,B1の照明装置およびR2,G2,B2の照明装置には、撮像対象との間に、それぞれ偏光子を設置する。また、撮像レンズと撮像対象との間に検光子を設置する。
 R1,G1,B1の照明装置の偏光子の透過軸を設定する。例えば、R1,G1,B1の照明装置から照射された偏光が撮像対象で反射し、反射した偏光が検光子に達する際に、反射した偏光の振動方向が検光子の透過軸と垂直になるように設定する。
 R2,G2,B2の照明装置の偏光子の透過軸を設定する。例えば、R2,G2,B2の照明装置から照射された偏光が撮像対象で反射し、反射した偏光が検光子に達する際に、反射した偏光の振動方向が検光子の透過軸と平行になるように設定する。
 また、R2,G2,B2の照明装置に偏光子を設置しない場合もある。
 本発明の検査装置によれば、図19に示すように、撮像素子は、1度の走査で偏光した画像のデータと偏光していない画像のデータを同時に取得できる。
 偏光した画像は、反射した偏光の振動方向が検光子の透過軸と垂直になるように、偏光子を設定した場合に取得できる。
 偏光していない画像は、反射した偏光の振動方向が検光子の透過軸と平行になるように、偏光子を設定した場合に取得できる。また、偏光していない画像は、照明装置に偏光子を設置しない場合に取得できる。
 なお、本発明の検査装置は、図18の検査装置に限定されない。撮像レンズを対象にして、向かい合う2つの照明装置を2組設けてもよい。向かい合う2つの照明装置をR1,G1,B1の照明装置とし、残る2つの照明装置をR2,G2,B2の照明装置とする。これにより、照射死角の少ない画像データを取得できる。
 本発明の検査装置の照明装置は、図18のようなスポット照明装置に限定されない。全周照明装置を採用してもよい。
 偏光した画像からは、はんだに含まれる透明物質または半透明物質に起因する識別困難領域、基板上に設けたソルダーレジストの厚さが急激に変化する場所に発生する場合がある識別困難領域、部品を実装するための金属の表面とはんだの表面との間で発生する場合がある識別困難領域などの発生が抑制された画像が取得できる。
 偏光していない画像からは、位置決め用に設けられたパッド表面など、周辺の基板基材とのコントラストを出すために光らせる必要がある場所の画像を取得でき、位置決めなどをすることができる。
 本発明の検査装置の1例を図20に示す。装置の左右に位置するレーザ光照明装置の偏光子(図示していない)の透過軸方向と検光子の透過軸方向を垂直の関係にする。その検光子の透過軸方向と装置の中央下方に位置するRGB照明装置の偏光子の透過軸方向を垂直の関係にする。その結果、2次元画像用光学系、3次元画像用光学系は共に偏光照明光学系となる。また、撮像装置の内部の撮像素子の前に、複数波長バンドパスフィルタを設置し、混合波長光から特定の波長の光を取り出し撮像する。なお、本発明の検査装置は、この例に限定されない。
 また、図20の光切断法のほかに、光を利用して高さを計測する他のレーザ式変位センサや位相シフト法においても同様の効果が得られる。
 バンドパスフィルタで透過する波長の範囲は、中心波長±10nmの範囲内にあることが好ましい。また、透過する波長の範囲は、中心波長±5nmの範囲内にあることがさらに好ましい。
 バンドパスフィルタで透過する波長の範囲が中心波長±10nmの範囲内にあると、同色の照明でも波長をずらすことにより、明暗や偏光無偏光などを切り分けて撮像することが出来るという利点がある。透過する波長の範囲が中心波長±5nmの範囲内にあると、この効果がより顕著になる。
 本発明の検査装置の用途としては、上述したはんだ印刷検査装置に限定されるものではない。このほか検査装置の用途としては、実装後基板外観検査装置、錠剤検査装置などがある。
 以上のことから、本発明を実施するための形態によれば、撮像素子に撮像領域を設け、前記撮像領域は反射光を受光し、前記撮像領域の上にバンドパスフィルタを設けることにより、新規な検査装置を提供することができる。
 なお、本発明は上述の発明を実施するための形態に限らず本発明の要旨を逸脱することなくその他種々の構成を採り得ることはもちろんである。
 1 はんだ印刷検査装置、2 照明装置、3 撮像装置、4 制御装置、5 テーブル、10a,10b 3次元用ライン照明装置、20a,20b,30a,30b,40a,40b 2次元用ライン照明装置、21a,21b,31a,31b,41a,41b 2次元用ライン照明光、21,31,41 2次元用ライン照明光跡、11a,11b 3次元用ライン照明光、12a,12b 3次元用ライン照明光跡、50 カメラ、60 撮像レンズ、70 画像処理制御部、71a,71b 3次元撮像領域用画像メモリ、72,73,74 2次元撮像領域用画像メモリ、80 X軸テーブル、81 X軸用モータ、82 Y軸テーブル、83 Y軸用モータ、100 基板

Claims (11)

  1.  撮像対象に光を照射する照明装置と、
     前記光の照射に基づく、前記撮像対象からの反射光を、受光する撮像装置と、
     前記撮像装置の中に存在し、前記反射光を受光する撮像素子と、を有し、
     前記撮像対象の2次元画像、3次元画像のいずれかまたは双方を取得する検査装置において、
     前記照明装置と前記撮像対象の間に偏光子を設置し、
     前記撮像対象と前記撮像装置の間に検光子を設置し、
     前記2次元画像、前記3次元画像のいずれかまたは双方における、識別困難領域の発生を抑制し、
     前記識別困難領域としては、以下の(イ)、(ロ)、(ハ)、(ニ)のいずれかを含む
    (イ)液体の表面に、発生する場合がある前記識別困難領域
    (ロ)固体の表面の形状が変化する前記表面に、発生する場合がある前記識別困難領域
    (ハ)固体の表面と、粉末組成物の表面との間に、発生する場合がある前記識別困難領域
    (ニ)固体の表面のうち、表面の粗さの異なる領域の間に、発生する場合がある前記識別困難領域
     ことを特徴とする検査装置。
  2.  固体の表面の形状が変化する前記表面は、凸表面、凹表面、角部付近の表面、固体が存在する領域の淵部付近の表面のいずれかを含む
     ことを特徴とする請求項1記載の検査装置。
  3.  識別困難領域は、液体の表面の形状が変化する前記表面に、発生する場合がある
     ことを特徴とする請求項1記載の検査装置。
  4.  液体の表面の形状が変化する前記表面は、凸表面、凹表面、角部付近の表面、液体が存在する領域の淵部付近の表面のいずれかを含む
     ことを特徴とする請求項3記載の検査装置。
  5.  撮像対象に光を照射する照明装置と、
     前記光の照射に基づく、前記撮像対象からの反射光を、受光する撮像装置と、
     前記撮像装置の中に存在し、前記反射光を受光する撮像素子と、を有し、
     前記撮像対象の2次元画像、3次元画像のいずれかまたは双方を取得する検査装置において、
     前記照明装置と前記撮像対象の間に偏光子を設置し、
     前記撮像対象と前記撮像装置の間に検光子を設置し、
     前記2次元画像、前記3次元画像のいずれかまたは双方における、識別困難領域の発生を抑制し、
     前記識別困難領域としては、以下の(イ)、(ロ)、(ハ)、(ニ)のいずれかを含む
    (イ)液体の表面の形状が変化する場所に、発生する場合がある前記識別困難領域
    (ロ)固体の表面の形状が変化する場所に、発生する場合がある前記識別困難領域
    (ハ)金属の表面と、金属粉末組成物の表面との間に、発生する場合がある前記識別困難領域
    (ニ)金属の表面のうち、表面の粗さの異なる領域の間に、発生する場合がある前記識別困難領域
     ことを特徴とする検査装置。
  6.  撮像対象に光を照射する照明装置と、
     前記光の照射に基づく、前記撮像対象からの反射光を、受光する撮像装置と、
     前記撮像装置の中に存在し、前記反射光を受光する撮像素子と、を有し、
     前記撮像対象の2次元画像、3次元画像のいずれかまたは双方を取得する検査装置において、
     前記照明装置と前記撮像対象の間に偏光子を設置し、
     前記撮像対象と前記撮像装置の間に検光子を設置し、
     前記2次元画像、前記3次元画像のいずれかまたは双方における、識別困難領域の発生を抑制し、
     識別困難領域としては、以下の(イ)、(ロ)、(ハ)、(ニ)、(ホ)、(ヘ)、(ト)のいずれかを含む
    (イ)はんだに含まれる透明物質または半透明物質に起因する識別困難領域
    (ロ)基板上に設けたソルダーレジストの表面の形状が変化する場所に、発生する場合がある識別困難領域
    (ハ)部品を実装するための金属の表面と、はんだの表面との間で発生する場合がある識別困難領域
    (ニ)基板上に設けたコーティング層の表面の形状が変化する場所に、発生する場合がある識別困難領域
    (ホ)錠剤の表面の形状が変化する場所に、発生する場合がある識別困難領域
    (ヘ)メタルマスクの表面と、はんだの表面との間で発生する場合がある識別困難領域
    (ト)メタルマスクの傷に起因する識別困難領域
     ことを特徴とする検査装置。
  7.  撮像対象に光を照射する照明装置と、
     前記光の照射に基づく、前記撮像対象からの反射光を、受光する撮像装置と、
     前記撮像装置の中に存在し、前記反射光を受光する撮像素子と、を有し、
     前記撮像対象の2次元画像、3次元画像のいずれかまたは双方を取得する検査装置において、
     前記撮像素子に撮像領域を設け、
     前記撮像領域は前記反射光を受光し、
     前記撮像領域の上にバンドパスフィルタを設ける
     ことを特徴とする検査装置。
  8.  3つの撮像領域を有する、2次元画像用の撮像領域グループが、1または複数存在し、
     前記3つの撮像領域の上に、前記3つの撮像領域にそれぞれ対応する3つのバンドパスフィルタを設け、
     前記3つのバンドパスフィルタは、それぞれ赤、緑、青の波長のみを透過し、
     複数の前記撮像領域グループに使用する前記バンドパスフィルタの透過波長は、前記撮像領域グループ相互間で異なる
     ことを特徴とする請求項7記載の検査装置。
  9.  複数の撮像領域グループに対応する照明装置が存在し、
     個々の前記照明装置は、明るさが相互に異なる
     ことを特徴とする請求項8記載の検査装置。
  10.  複数の撮像領域グループに対応する照明装置が存在し、
     個々の前記照明装置と撮像対象の間に偏光子を設置し、
     個々の前記照明装置から前記撮像対象に照射される光は、偏光の振動方向が相互に異なる
     ことを特徴とする請求項8記載の検査装置。
  11.  一部の照明装置は、撮像対象との間に偏光子を設置しない
     ことを特徴とする請求項10記載の検査装置。
PCT/JP2013/085285 2012-12-31 2013-12-29 検査装置 WO2014104375A1 (ja)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2012289279 2012-12-31
JP2012-289279 2012-12-31
JP2013202854A JP5890953B2 (ja) 2013-09-30 2013-09-30 検査装置
JP2013-202854 2013-09-30
JP2013271567A JP5776949B2 (ja) 2012-12-31 2013-12-27 検査方法
JP2013-271567 2013-12-27

Publications (1)

Publication Number Publication Date
WO2014104375A1 true WO2014104375A1 (ja) 2014-07-03

Family

ID=51021435

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/085285 WO2014104375A1 (ja) 2012-12-31 2013-12-29 検査装置

Country Status (1)

Country Link
WO (1) WO2014104375A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106662537A (zh) * 2015-01-29 2017-05-10 株式会社Decsys 光学式外观检查装置以及使用该装置的光学式外观检查系统
CN105842254B (zh) * 2016-06-12 2019-12-24 嘉兴巨上电器科技有限公司 一种扩散板面检治具装置
TWI813290B (zh) * 2021-09-17 2023-08-21 日商Ckd股份有限公司 基板檢查裝置及基板檢查方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06258224A (ja) * 1993-03-10 1994-09-16 Hitachi Ltd セラミック基板の焼結状態監視方法および装置
JPH10227623A (ja) * 1996-08-21 1998-08-25 Komatsu Ltd 半導体パッケージの検査装置
JP2000046748A (ja) * 1998-07-27 2000-02-18 Hitachi Ltd 導体パターンの検査方法およびその装置並びに多層基板の製造方法
JP2000065543A (ja) * 1998-08-21 2000-03-03 Nec Corp バンプ照明方法/装置、バンプ撮像方法/装置、画像処理方法/装置、バンプ検査方法/装置、情報記憶媒体
JP2011089939A (ja) * 2009-10-24 2011-05-06 Djtech Co Ltd 外観検査装置及び印刷半田検査装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06258224A (ja) * 1993-03-10 1994-09-16 Hitachi Ltd セラミック基板の焼結状態監視方法および装置
JPH10227623A (ja) * 1996-08-21 1998-08-25 Komatsu Ltd 半導体パッケージの検査装置
JP2000046748A (ja) * 1998-07-27 2000-02-18 Hitachi Ltd 導体パターンの検査方法およびその装置並びに多層基板の製造方法
JP2000065543A (ja) * 1998-08-21 2000-03-03 Nec Corp バンプ照明方法/装置、バンプ撮像方法/装置、画像処理方法/装置、バンプ検査方法/装置、情報記憶媒体
JP2011089939A (ja) * 2009-10-24 2011-05-06 Djtech Co Ltd 外観検査装置及び印刷半田検査装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106662537A (zh) * 2015-01-29 2017-05-10 株式会社Decsys 光学式外观检查装置以及使用该装置的光学式外观检查系统
CN105842254B (zh) * 2016-06-12 2019-12-24 嘉兴巨上电器科技有限公司 一种扩散板面检治具装置
TWI813290B (zh) * 2021-09-17 2023-08-21 日商Ckd股份有限公司 基板檢查裝置及基板檢查方法

Similar Documents

Publication Publication Date Title
JP5776949B2 (ja) 検査方法
JP3878023B2 (ja) 三次元計測装置
WO2018150607A1 (ja) 外観検査装置、照明装置、撮影照明装置
JP2005127989A (ja) 傷検出装置および傷検出プログラム
JP5890953B2 (ja) 検査装置
JP5124705B1 (ja) はんだ高さ検出方法およびはんだ高さ検出装置
JP5621178B2 (ja) 外観検査装置及び印刷半田検査装置
KR100281881B1 (ko) 인쇄회로기판의크림솔더검사장치및검사방법
CN102331240B (zh) 检查装置以及检查方法
KR101203210B1 (ko) 결함 검사장치
TWI495867B (zh) Application of repeated exposure to multiple exposure image blending detection method
JP4808072B2 (ja) フィルタ格子縞板、三次元計測装置及び照明手段
US10444162B2 (en) Method of testing an object and apparatus for performing the same
JP2004219108A (ja) 着色膜の膜厚ムラ検査方法及び装置
WO2014104375A1 (ja) 検査装置
JP2009036736A (ja) 印刷半田検査方法及び装置
JP2005326227A (ja) 穴領域検出装置および穴領域検出方法
JP2007271507A (ja) 欠陥検出方法、欠陥検出装置、及び欠陥検出プログラム
KR100633798B1 (ko) 반도체 안착상태 및 외관형상 검사장치
JP4743395B2 (ja) ピッチムラ検査方法およびピッチムラ検査装置
CN115398213A (zh) 用于光学检测表面的方法和检测装置
JP5787668B2 (ja) 欠陥検出装置
JP2000258348A (ja) 欠陥検査装置
JP3665495B2 (ja) クリーム半田印刷機用検査装置及び方法及び該検査装置を有する印刷機
CN217820062U (zh) 用于检测物体上的表面缺陷的设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13868876

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13868876

Country of ref document: EP

Kind code of ref document: A1