WO2014103940A1 - シリンダとピストンリングの組合せ - Google Patents

シリンダとピストンリングの組合せ Download PDF

Info

Publication number
WO2014103940A1
WO2014103940A1 PCT/JP2013/084279 JP2013084279W WO2014103940A1 WO 2014103940 A1 WO2014103940 A1 WO 2014103940A1 JP 2013084279 W JP2013084279 W JP 2013084279W WO 2014103940 A1 WO2014103940 A1 WO 2014103940A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
hard carbon
piston ring
carbon layer
cylinder
Prior art date
Application number
PCT/JP2013/084279
Other languages
English (en)
French (fr)
Inventor
国元 晃
正樹 諸貫
Original Assignee
株式会社リケン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社リケン filed Critical 株式会社リケン
Priority to US14/650,154 priority Critical patent/US9644738B2/en
Priority to CN201380067823.XA priority patent/CN104903630B/zh
Priority to EP13868434.5A priority patent/EP2940350B1/en
Publication of WO2014103940A1 publication Critical patent/WO2014103940A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J9/00Piston-rings, e.g. non-metallic piston-rings, seats therefor; Ring sealings of similar construction
    • F16J9/26Piston-rings, e.g. non-metallic piston-rings, seats therefor; Ring sealings of similar construction characterised by the use of particular materials
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0272Deposition of sub-layers, e.g. to promote the adhesion of the main coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/021Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material including at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/027Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material including at least one metal matrix material comprising a mixture of at least two metals or metal phases or metal matrix composites, e.g. metal matrix with embedded inorganic hard particles, CERMET, MMC.
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/18Other cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F5/00Piston rings, e.g. associated with piston crown
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2203/00Non-metallic inorganic materials
    • F05C2203/08Ceramics; Oxides
    • F05C2203/0865Oxide ceramics
    • F05C2203/0882Carbon, e.g. graphite
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2251/00Material properties
    • F05C2251/10Hardness

Definitions

  • the present invention relates to a combination of a cylinder of an internal combustion engine and a piston ring that slides on the inner peripheral surface of the cylinder.
  • an improvement in fuel efficiency is strongly demanded for internal combustion engines such as automobile engines. For this reason, a wide range of research and development has been conducted with the aim of reducing the size, weight and friction loss.
  • an aluminum alloy hereinafter referred to as “aluminum alloy”
  • the piston ring is also called a hard carbon coating (“Diamond Like Carbon (DLC)”) with a low friction coefficient. ).
  • Some aluminum alloy cylinders have a cast iron liner cast or plated on the part that slides directly with the piston ring. However, as a result of pursuing both the cooling performance and cost of the cylinder, the cylinder itself is wear resistant.
  • Aluminum alloys having excellent properties, for example, hypereutectic Al-Si alloys with relatively hard primary crystallized Si have been used.
  • US Patent Application Publication US 2012/0205875 A1 is a piston ring coated with a DLC coating, in order to relieve residual stress, the coating is formed from an inner side to an outer side, an adhesion layer, a metal-containing DLC layer, a metal-free DLC layer.
  • a piston ring in which the thickness of the metal-free DLC layer is 0.7 to 1.5 with respect to the thickness of the metal-containing DLC layer and the coating thickness is 5 to 40 ⁇ m is disclosed. That is, the extremely high internal stress of the metal-free DLC layer is offset by the metal-containing DLC layer having the same thickness to improve the adhesion.
  • the hardness of the metal-free DLC layer is preferably 1700 mm HV0.02 to 2900 mm HV0.02, and in experiments using honed gray cast iron cylinder sleeves, excellent friction and wear resistance performance was demonstrated. ing.
  • the present invention is a combination of a cylinder and a piston ring that exhibits excellent wear resistance when combined with a piston ring having a hard carbon coating on the outer peripheral surface to a cylinder made of a hypereutectic Al-Si alloy. It is an issue to provide.
  • the present inventors have further reduced the residual stress of the outermost metal-free DLC layer, that is, the hardness of the metal-free DLC layer.
  • the modulus of elasticity to the same level as the Si particles of the hypereutectic Al-Si alloy, but also by suppressing the increase in plastic deformability, the ratio of the thickness of the metal-free DLC layer to the thickness of the metal-containing DLC layer is reduced. It was conceived that by increasing the height, a combination of a cylinder and a piston ring exhibiting excellent wear resistance can be achieved even for a cylinder made of a hypereutectic Al—Si alloy.
  • the cylinder is made of an aluminum alloy containing 12 to 38% Si by mass%
  • the piston ring has at least a metal layer and a metal layer on the outer peripheral sliding surface in order from the substrate side. It has a multilayer coating consisting of a hard carbon layer and a metal-free hard carbon layer.
  • the multilayer coating has a Martens hardness (indentation hardness) HMs of 5 to 13 mm GPa, an indentation elastic modulus E of 70 to 200 mm GPa, and plastic deformation
  • the deformation ratio Rpe represented by the ratio of energy Wp to elastic deformation energy We (Wp / We) is 0.45 or less, and the thickness Tmf of the metal-free hard carbon layer to the thickness Tm of the metal-containing hard carbon layer
  • the ratio (Tmf / Tm) is 2 to 8.
  • the metal-free hard carbon layer preferably contains 20 to 35% hydrogen in atomic percent. Alternatively, it preferably contains 15-30% hydrogen and 3-12% nitrogen in atomic percent.
  • the metal layer is preferably a metal layer composed of one or more elements selected from the group of Si, Ti, Cr, Mn, Zr, Nb, and W, and the metal-containing hard carbon layer is Si, A hard carbon layer containing one or more elements selected from the group consisting of Ti, Cr, Mn, Zr, Nb, and W is preferable. More preferably, the metal layer is a Cr layer, and the metal-containing hard carbon layer is a W-containing hard carbon layer.
  • the cylinder and piston ring combination of the present invention has the same level of hardness and elastic modulus of the metal-free hard carbon layer on the outermost surface of the multilayer coating coated on the piston ring as the Si particles of the hypereutectic Al-Si alloy, and is plastic. Since the increase in deformability is also suppressed, even if Si particles dropped from the hypereutectic Al-Si alloy cylinder exist on the sliding surface as an abradive, the metal-free hard carbon layer is simply localized without causing cracks. Wears and contributes to the suppression of film peeling due to the generation and propagation of cracks.
  • This also makes it possible to set the metal-containing hard carbon layer to be thicker than the thickness of the metal-containing hard carbon layer, and as a result, it is possible to provide a combination of a cylinder and a piston ring that exhibits a long life with low friction loss. .
  • FIG. 1 shows a state where primary Si particles 1 are dispersed in a eutectic matrix 2 (eutectic Si particles + aluminum matrix) at a high area ratio on a sliding surface of a cylinder according to an embodiment of the present invention.
  • the Si content is 12 to 38% by mass.
  • the Si content is less than 12%, soft primary crystal Al is crystallized and wear proceeds, which is not preferable.
  • the Si content exceeds 38%, hot extrusion as well as casting becomes difficult.
  • the Si content is 18 to 22%.
  • the Si content is 20 to 30%. % Is preferred.
  • the size of the primary crystal Si particles is preferably 3 ⁇ m or more, and further preferably contains Al 2 O 3 and / or SiO 2 .
  • an Al alloy by a hot extrusion method is manufactured into a pipe material, subjected to predetermined processing, and encapsulated in a cylinder block manufactured from another Al alloy having good castability.
  • the piston ring has a laminated film 7 formed of a metal layer 4, a metal-containing hard carbon layer 5, and a metal-free hard carbon layer 6 in order on the base material 3.
  • the multilayer coating 7 preferably has a thickness of 2 to 10 ⁇ m in consideration of wear resistance (life).
  • the hardness and modulus of elasticity of the outermost metal-free hard carbon layer 6 and the hardness and Young's modulus of primary crystal that mainly bears the load on the sliding surface of the cylinder (Martens hardness HMs 9 GPa, Young's modulus E 130 GPa) It is possible to avoid local film peeling of the hard carbon layer 6 caused by Si particles acting as an abradive.
  • the film thickness of the present invention is thin, it is difficult to say that it is a characteristic of only the outermost metal-free hard carbon layer 6. Therefore, the film characteristics include the entire laminated film 7 or the influence of the base material 3.
  • the Martens hardness HMs is 5 to 13 mm GPa
  • the indentation elastic modulus E is 70 to 200 mm GPa
  • the deformation rate Rpe expressed by the ratio of the plastic deformation energy Wp to the elastic deformation energy We (Wp / We) 0.45 or less.
  • the indentation elastic modulus E is less than 70 mm GPa, or the deformation rate Rpe exceeds 0.45, the wear of the laminated coating 7 due to Si abrading increases, while the Martens hardness HMs is 13 mm GPa. If it exceeds or the indentation elastic modulus E exceeds 200 GPa, local film peeling of the laminated film 7 due to Si abrading occurs, and it cannot be used for a long time. The wear of the laminated coating 7 also promotes the wear of the Al alloy cylinder sliding surface by the wear powder.
  • the Martens hardness HMs of the multilayer coating 7 is preferably 6 to 12 GPa, more preferably 7.5 to 11 GPa.
  • the indentation elastic modulus E of the multilayer coating is preferably 90 to 180 GPa, more preferably 100 to 170 GPa.
  • the deformation rate Rpe of the laminated film is preferably 0.1 to 0.4, and more preferably 0.1 to 0.3.
  • the ratio (Tmf / Tm) of the thickness Tmf of the metal-free hard carbon layer 6 on the outermost surface to the thickness Tm of the metal-containing hard carbon layer 5 is 2-8.
  • (Tmf / Tm) is less than 2, the internal stress of the outermost metal-free hard carbon layer 6 is too low and the hardness is lowered, and the wear of the laminated coating 7 due to Si abrading increases.
  • (Tmf / Tm) exceeds 8 the internal stress of the metal-free hard carbon layer 6 on the outermost surface is not sufficiently lowered, causing local film peeling due to the abrading of the Si particles and increasing the friction coefficient. Absent.
  • (Tmf / Tm) is preferably 2.5 to 6, and more preferably 3 to 5.
  • the hardness and elastic modulus of the outermost metal-free hard carbon layer 6 are generally closely related to the residual compressive stress of the coating, and the higher the residual compressive stress, the higher the hardness and elastic modulus. Residual compressive stress can be assumed to be that the hard carbon layer is causing volume expansion, for example, when hydrogen is incorporated, it breaks the carbon bond and terminates the bond and remains. Stress relaxation occurs and the hardness and elastic modulus can be lowered.
  • the metal-free hard carbon layer 6 is composed of only carbon and hydrogen, excluding inevitable impurities, and in this case, the hydrogen content is preferably 20 to 35 atomic%. Further, it may be composed of carbon, hydrogen and nitrogen, in which case the hydrogen content is preferably 15 to 30 atomic% and the nitrogen content is preferably 3 to 12 atomic%.
  • the metal-containing hard carbon layer 5 preferably also contains hydrogen, and the residual stress is further alleviated by containing hydrogen in addition to the metal.
  • the metal-containing hard carbon layer 5 has one or more selected from the group of metals Si, Ti, Cr, Mn, Zr, Nb, and W, which have low free energy to generate carbides and easily generate carbides by reacting with carbon. It is preferable to make it the hard carbon layer containing these elements.
  • a W-containing hard carbon layer is particularly preferred.
  • the contained metal is preferably 5 to 30% in atomic percent, and more preferably 7 to 25%.
  • the metal-containing hard carbon layer 5 may be a gradient structure that is rich in metal on the metal layer 4 side and rich in carbon on the hard carbon layer 6 side that does not contain metal.
  • the metal layer 4 is selected from the group of metals Si, Ti, Cr, Mn, Zr, Nb, and W, which has a low free energy to generate carbides and easily forms carbides by reacting with carbon, like the metal-containing hard carbon layer 5 It is preferable that the metal layer is composed of one or more elements. A Cr metal layer is particularly preferred.
  • the base material 3 is preferably made of carbon steel, silicon chrome steel, martensitic stainless steel or the like usually used for piston rings.
  • the said laminated film 7 may be formed directly on the base material 3, or may be formed on the nitride layer, Cr plating film, CrN film, etc. which were formed as a base layer on the base material 3. Not too long.
  • the surface roughness of the outermost metal-free hard carbon layer 6 constituting the sliding surface of the piston ring is preferably 0.15 ⁇ m or less in Rzjis (10-point average roughness, JIS B0601 (2001)). More preferably, it is 0.12 ⁇ m or less. After the coating is formed, it is preferable to prepare the sliding surface of the piston ring as necessary so that the surface Rzjis is 0.15 ⁇ m or less.
  • the laminated film coated on the piston ring is formed by a PVD (physical vapor deposition) method such as sputtering or arc ion plating, a plasma CVD (chemical vapor deposition) method, or the like.
  • PVD physical vapor deposition
  • CVD chemical vapor deposition
  • a multi-target sputtering apparatus can be conveniently used for forming a laminated film.
  • a Cr layer is formed by sputtering to the Cr target, then, sputtering to the Cr target is stopped, while sputtering the W target,
  • hydrocarbon gas such as methane and acetylene and Ar gas
  • stop sputtering of the W target to form the outermost metal-free hard carbon layer. It can.
  • the formation of the hard carbon layer is based on a so-called plasma CVD method in which a negative bias voltage is applied to the base material from a power source to cause plasma discharge to decompose hydrocarbon gas and deposit it on the base material.
  • PVD method sputtering a graphite target instead of hydrocarbon gas.
  • Example 1 Piston ring (equivalent to nitriding SUS420J2), nominal diameter (d) 90 mm, thickness (h1) 1.2 mm, width (a1) 3.2 mm) with a degreased rectangular cross section and barrel face shape on the outer peripheral surface
  • d nominal diameter
  • h1 thickness
  • a1 3.2 mm
  • a SKH51 material that had been quenched and mirror-polished with an outer diameter of 25 mm and a thickness of 5 mm was set and installed on a jig that moved in the same manner as the outer peripheral surface of the piston ring.
  • Example 2 to 5 and Comparative Examples 1 to 3 Except for changing the formation time of each layer of the laminated coating, the same procedure as in Example 1 was applied to the piston ring and the sample for composition analysis, Cr layer / W-containing hard carbon layer / metal-free hard carbon layer (hereinafter referred to as “Cr / DLC”). Also referred to as (W) / DLC.) A multilayer coating was formed.
  • Micro hardness test (Martens hardness, indentation elastic modulus, deformation rate measurement) Martens hardness HMs, indentation elastic modulus E, deformation rate Rpe are in accordance with ISO 14577-1 (instrumented indentation hardness test), using an ultra-micro hardness meter (Shimadzu Corporation, DUH-211), Berkovich Indenter, test mode: load-unloading test, test force: 19.6 mN, load unloading speed: 0.4877 mN / sec, load ⁇ unloading holding time: 5 seconds, with Cf-Ap correction.
  • Measurement was performed on the polished portion by subjecting the vicinity of the coating surface to spherical polishing using a 30 mm diameter steel ball coated with a diamond paste having an average particle size of 0.25 ⁇ m.
  • the Martens hardness HMs, the indentation elastic modulus E, and the deformation rate Rpe are calculated from the load-indentation depth curve. As a measurement result, 10 points were measured and an average value was adopted.
  • composition analysis of the hard carbon layer was performed using a sample for composition analysis, the metal content was measured with an electron microanalyzer (EPMA), and the hydrogen content was measured with Rutherford backscattering spectroscopy (RBS). ) / Hydrogen forward scattering spectroscopy (HFS).
  • EPMA electron microanalyzer
  • RBS Rutherford backscattering spectroscopy
  • HFS Hydrogen forward scattering spectroscopy
  • Adhesion test The adhesion of the laminated film was determined by a peel test according to the standard of the German Engineers Association (VDI3198 Coating of cold forging tools). By a method using a Rockwell hardness tester, HF1 to HF4 were determined to be acceptable ( ⁇ ), and HF5 and HF6 were determined to be unacceptable (x).
  • FIG. 3 (a) Abrasion test As shown in Fig. 3 (a), the abrasion test is performed in such a way that the piston ring (attached to a fixing jig not shown) on the aluminum alloy plate 8 corresponding to the cylinder extends in the width (axis) direction. The test was performed by reciprocating sliding.
  • the plate 8 is an Al-20 mass% Si alloy plate prepared by polishing to a surface roughness (Rzjis) of 1.1 ⁇ m
  • the piston ring is a piston ring piece cut to a length of about 30 mm. 9 was used.
  • Test conditions are vertical load (F) 100 N, reciprocating width 50 mm, reciprocating frequency 10 Hz, plate temperature 120 ° C, under lubrication (commercial engine oil (5W-30SM) 10 is dropped 1 cm 3 ), test time 20 minutes.
  • the wear amount of the piston ring was defined as the long axis length L of the elliptical sliding portion 11 generated in the piston ring piece 9 after the test shown in FIG.
  • the amount of wear of the plate 8 was measured in the sliding direction using a stylus type roughness meter so that the non-sliding portions would enter both ends of the measurement length.
  • the maximum value of the difference between the non-sliding portion and the sliding portion at this time was defined as the wear amount.
  • the sliding surface of the plate 8 was visually observed and evaluated for the presence or absence of defects. In addition, the case where the big crack of 10 mm or more in length was recognized was described as "scratch.”
  • the wear amount of the piston ring laminated coating and the wear amount of the Al alloy plate are closely related to Tmf / Tm from FIG. 4, and excellent results are shown when Tmf / Tm is between 2 and 8. . It was also observed that when Tmf / Tm exceeded 8, the adhesion decreased and local film peeling occurred due to the dropped Si particles, resulting in large scratches.
  • Example 6 is similar to Example 1 except that both the first and second target materials are equipped with the same metal and Cr.
  • the piston ring and the sample for composition analysis are Cr / DLC (Cr) / DLC.
  • a laminated film is formed, and Example 7 is equipped with Ti instead of Cr of Example 6, and Example 8 is equipped with W instead of Cr of Example 6, respectively.
  • Ti / DLC (Ti) / DLC laminated film And W / DLC (W) / DLC laminated film was formed.
  • N 2 gas was also introduced in addition to Ar gas and C 2 H 2 gas when Ti and W sputtering was stopped.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Composite Materials (AREA)
  • Pistons, Piston Rings, And Cylinders (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

過共晶のAl-Si合金からなるシリンダに硬質炭素被膜被覆ピストンリングを組み合わせたときに、いずれも優れた耐摩耗性を示すシリンダとピストンリングの組合せを提供するため、ピストンリングの少なくとも外周摺動面に、基材側から順に、金属層、金属含有硬質炭素層、及び金属フリー硬質炭素層からなり、マルテンス硬さ(押込み硬さ)HMsが5~13 GPa、押込み弾性率Eが70~200 GPa、塑性変形エネルギーWpと弾性変形エネルギーWeとの比(Wp/We)で表される変形率Rpeが0.45以下であり、前記金属フリー硬質炭素層の厚さTmfの前記金属含有硬質炭素層の厚さTmに対する比(Tmf/Tm)を2~8とする積層被膜を被覆する。

Description

シリンダとピストンリングの組合せ
 本発明は、内燃機関のシリンダとシリンダの内周面を摺動するピストンリングとの組合せに関する。
 近年、自動車エンジンを中心とする内燃機関は、燃費の向上が強く求められている。そのため、小型化、軽量化、摩擦損失の低減等を目指した研究開発が幅広く行われている。例えば、シリンダにはアルミニウム合金(以下「アルミ合金」という。)を採用し、ピストンリングには低摩擦係数の硬質炭素被膜(「ダイヤモンドライクカーボン(Diamond Like Carbon:DLC)」とも呼ばれている。)を被覆することが試みられている。
 アルミ合金シリンダには、ピストンリングと直接摺動する部分について鋳鉄製ライナを鋳包んだものやメッキを施したものがあるが、シリンダの冷却性能とコストの両方を追求した結果、シリンダ自体耐摩耗性に優れたアルミ合金、例えば、比較的硬い初晶Siの晶出した過共晶Al-Si合金が使用されるようになってきた。
 一方、ピストンリングは、アルミ合金に対する化学的安定性と低摩擦係数から硬質炭素被膜の適用が試みられている。しかし、硬質炭素被膜は、成膜に起因して大きな残留応力が内在することと、炭素結合が化学的に安定であるという二つの本質的な性質により、基材との密着性が低いことが実用化の大きな障害となっている。
 米国特許出願公報 US 2012/0205875 A1は、DLC被膜を被覆したピストンリングにおいて、残留応力を緩和するために、被膜が、内側から外側に向かって、密着層、金属含有DLC層、金属フリーDLC層からなる構成とし、金属フリーDLC層の厚さが金属含有DLC層の厚さに対し0.7~1.5の比を有し、被膜厚さが5~40μmであるピストンリングを開示している。すなわち、金属フリーDLC層の非常に高い内部応力を、同程度の厚さの金属含有DLC層によって相殺して密着性を改善している。ここで、金属フリーDLC層の硬さは、1700 HV0.02~2900 HV0.02が好ましいとされ、ホーニングしたねずみ鋳鉄製シリンダースリーブを相手材とした実験で、優れた摩擦・耐摩耗性能を示している。
 しかし、過共晶のAl-Si合金を相手材とし、特にエンジンの運転初期に、境界潤滑になった場合には、Si粒子が脱落、アブレイジブ(研磨材)として作用し、局部応力の増大による局部的な被膜剥離を起こしやすく、長期間の使用には供せないというのが実情である。
 本発明は、過共晶のAl-Si合金からなるシリンダに対し、外周面に硬質炭素被膜を設けたピストンリングを組み合わせたときに、いずれも優れた耐摩耗性を示すシリンダとピストンリングの組合せを提供することを課題とする。
 本発明者らは、特許文献1のピストンリングに被覆した被膜構成を基礎に、鋭意研究した結果、最表面の金属フリーDLC層の残留応力をさらに下げること、すなわち、金属フリーDLC層の硬さと弾性率を過共晶Al-Si合金のSi粒子と同レベルまで低く抑え、しかし塑性変形能の増加も抑えることにより、また金属フリーDLC層の厚さの金属含有DLC層の厚さに対する比を高くすることによって、過共晶Al-Si合金からなるシリンダに対しても、優れた耐摩耗性を示すシリンダとピストンリングの組合せとすることができることに想到した。
 すなわち、本発明のシリンダとピストンリングの組合せは、シリンダは質量%で12~38%のSiを含有するアルミニウム合金からなり、ピストンリングは少なくとも外周摺動面に基材側から順に金属層、金属含有硬質炭素層、及び金属フリー硬質炭素層からなる積層被膜を有し、前記積層被膜のマルテンス硬さ(押込み硬さ)HMsが5~13 GPa、押込み弾性率Eが70~200 GPa、塑性変形エネルギーWpと弾性変形エネルギーWeとの比(Wp/We)で表される変形率Rpeが0.45以下であり、前記金属フリー硬質炭素層の厚さTmfの前記金属含有硬質炭素層の厚さTmに対する比(Tmf/Tm)が2~8であることを特徴とする。
 前記金属フリー硬質炭素層は原子%で20~35%の水素を含有することが好ましい。あるいは、原子%で15~30%の水素、3~12%の窒素を含有することが好ましい。
 前記金属層は、Si、Ti、Cr、Mn、Zr、Nb、Wの群から選択された1又は2以上の元素からなる金属層であることが好ましく、前記金属含有硬質炭素層は、Si、Ti、Cr、Mn、Zr、Nb、Wの群から選択された1又は2以上の元素を含有する硬質炭素層であることが好ましい。また、前記金属層はCr層であり、前記金属含有硬質炭素層はW含有硬質炭素層であることがさらに好ましい。
 本発明のシリンダとピストンリングの組合せは、ピストンリングに被覆した積層被膜最表面の金属フリー硬質炭素層の硬さと弾性率を、過共晶Al-Si合金のSi粒子と同レベルとし、且つ塑性変形能の増加も抑えているので、過共晶Al-Si合金製シリンダから脱落したSi粒子がアブレイジブとして摺動面に存在しても、金属フリー硬質炭素層は、クラックを生じることなく単に局部的に摩耗し、クラックの生成及び伝播による被膜剥離を抑えることに貢献する。また、これにより金属含有硬質炭素層の厚さに対して厚めに設定することが可能となり、結果的に、低摩擦損失で長寿命を示すシリンダとピストンリングの組合せを提供することが可能となる。
本発明の一実施形態にかかるシリンダの摺動面の組織を模式的に示した図である。 本発明の一実施形態にかかるピストンリングの部分断面を模式的に示した図である。 往復動摺動試験の方法を示す図である。 往復動摺動試験におけるピストンリングの摺動部分を示す図である。 摩耗試験の結果として、Tmf/Tmと摩耗量の関係を示す図である。
 図1は、本発明の一実施形態にかかるシリンダの摺動面で、初晶Si粒子1が高い面積率で共晶マトリックス2(共晶Si粒子+アルミマトリックス)中に分散している様子を示している。Si含有量は質量%で12~38%とする。Si含有量が12%未満であると軟質な初晶Alが晶出して摩耗が進むので好ましくなく、またSi含有量が38%を超えると鋳造はもちろん熱間押出も困難になり好ましくない。ダイキャストを含む鋳造により製造する場合はSi含有量が18~22%であるのが好ましく、急冷凝固粉末を焼結固化後、熱間押出法により製造されたものではSi含有量は20~30%が好ましい。また、初晶Si粒子のサイズは3μm以上であることが好ましく、さらにAl2O3及び/又はSiO2を含むことも好ましい。一般に、熱間押出法によるAl合金は、パイプ材に製造され、所定の加工を施して、別の鋳造性の良いAl合金で製造されたシリンダブロックに鋳包まれる。
 一方、ピストンリングは、図2に示すように、基材3上に順に、金属層4、金属含有硬質炭素層5、及び金属フリー硬質炭素層6からなる積層被膜7が形成されている。積層被膜7は、耐摩耗性(寿命)を考慮すると2~10μmの膜厚が好ましい。最表面の金属フリー硬質炭素層6の硬さと弾性率を、シリンダの摺動面で主に荷重を担う初晶Siの硬さとヤング率(マルテンス硬さHMs 9 GPa、ヤング率E 130 GPa程度)と同等とすることによって、Si粒子がアブレイジブとして作用して生じる硬質炭素層6の局部的な被膜剥離を回避することができる。本発明の被膜特性は、被膜厚さが薄いため、最表面の金属フリー硬質炭素層6のみの特性とは言い難いので、積層被膜7全体の、あるいは基材3の影響も含んだ特性とし、微小硬さ試験におけるマルテンス硬さHMsを 5~13 GPa、押込み弾性率Eを70~200 GPa、塑性変形エネルギーWpと弾性変形エネルギーWeとの比(Wp/We)で表される変形率Rpeを0.45以下とする。マルテンス硬さHMsが5 GPa未満、押込み弾性率Eが70 GPa未満、又は変形率Rpeが0.45を超えると、Siアブレイジブによる積層被膜7の摩耗が増加し、一方、マルテンス硬さHMsが13 GPaを超え、又は押込み弾性率Eが200 GPaを超えるとSiアブレイジブによる積層被膜7の局部的な被膜剥離が生じて長期間の使用に供せなくなる。また、積層被膜7の摩耗は、その摩耗粉によるAl合金製シリンダ摺動面の摩耗も促進する。積層被膜7のマルテンス硬さHMsは、6~12 GPaが好ましく、7.5~11 GPaがより好ましい。また、積層被膜の押込み弾性率Eは、90~180 GPaが好ましく、100~170 GPaがより好ましい。さらに積層被膜の変形率Rpeは、0.1~0.4が好ましく、0.1~0.3がより好ましい。
 最表面の金属フリー硬質炭素層6の厚さTmfの金属含有硬質炭素層5の厚さTmに対する比(Tmf/Tm)は2~8とする。(Tmf/Tm)が2未満であると、最表面の金属フリー硬質炭素層6の内部応力が下がりすぎて硬さも低くなり、Siアブレイジブによる積層被膜7の摩耗が増加する。一方、(Tmf/Tm)が8を超えると、最表面の金属フリー硬質炭素層6の内部応力が十分下がらず、Si粒子のアブレイジブによる局部的な被膜剥離を起こし、摩擦係数が増加するので好ましくない。(Tmf/Tm)は2.5~6が好ましく、3~5がより好ましい。
 最表面の金属フリー硬質炭素層6の硬さと弾性率は、一般に、被膜の残留圧縮応力に密接に関係し、残留圧縮応力が高いほど硬さと弾性率も高くなる。残留圧縮応力は、硬質炭素層が体積膨張を引き起こしているものと仮定することができ、この中に、例えば、水素が取り込まれると、炭素の結合手の切断を引き起こし、結合を終端させて残留応力の緩和が起こり、硬さと弾性率を下げることが可能となる。金属フリー硬質炭素層6は、不可避的不純物を除き、炭素と水素のみによって構成され、その場合、水素含有量は20~35原子%であることが好ましい。また、炭素と水素及び窒素によって構成されてもよく、その場合の水素含有量は15~30原子%、窒素含有量は3~12原子%であることが好ましい。
 金属含有硬質炭素層5も水素を含有することが好ましく、金属に加え、水素を含有することによってさらに残留応力が緩和される。金属含有硬質炭素層5は、炭化物生成自由エネルギーが低く、炭素と反応して炭化物を生成しやすい金属のSi、Ti、Cr、Mn、Zr、Nb、Wの群から選択された1又は2以上の元素を含有する硬質炭素層とすることが好ましい。W含有硬質炭素層が特に好ましい。また、含有する金属は、原子%で5~30%であることが好ましく、7~25%であることがより好ましい。
 さらに、金属含有硬質炭素層5は、金属層4側で金属リッチとし、金属を含有しない硬質炭素層6側で炭素リッチとする傾斜構造とすることもできる。
 金属層4は、金属含有硬質炭素層5と同様、炭化物生成自由エネルギーが低く、炭素と反応して炭化物を生成しやすい金属のSi、Ti、Cr、Mn、Zr、Nb、Wの群から選択された1又は2以上の元素からなる金属層とすることが好ましい。Crの金属層が特に好ましい。
 基材3は、ピストンリングに通常用いられる炭素鋼、シリコンクロム鋼、マルテンサイト系ステンレス鋼等からなることが好ましい。上記積層被膜7は、基材3上に直接形成されても、あるいは基材3上に下地層として形成された窒化層、Crめっき被膜、CrN被膜等の上に形成されてもよいことはいうまでもない。
 また、ピストンリングの摺動面を構成する最表面の金属フリー硬質炭素層6の表面粗さは、Rzjis(十点平均粗さ、JIS B0601 (2001))で0.15μm以下であることが好ましく、より好ましくは0.12μm以下である。被膜形成後に、必要に応じてピストンリング摺動面を研磨し、その表面のRzjisが0.15μm以下になるように調製することが好ましい。
 本発明のシリンダとピストンリングの組合せにおいて、ピストンリングに被覆される積層被膜は、スパッタリングやアークイオンプレーティング等のPVD(物理蒸着)法や、プラズマCVD(化学蒸着)法等により形成される。特に、積層被膜を形成する上で、マルチターゲットのスパッタリング装置が便利に利用できる。例えば、真空容器にCrターゲットとWターゲットを装備したスパッタリング装置を用い、まず、CrターゲットへのスパッタリングによりCr層を形成し、次に、Crターゲットへのスパッタリングを停止、Wターゲットをスパッタリングしながら、メタン、アセチレンなどの炭化水素系ガスとArガスを導入してW含有硬質炭素層を形成し、さらに続いて、Wターゲットのスパッタリングを停止して最表面の金属フリー硬質炭素層を形成することができる。硬質炭素層の形成は、電源から基材に負のバイアス電圧を印加してプラズマ放電させ、炭化水素系ガスを分解、基材に析出させる所謂プラズマCVD法によるものである。もちろん、炭化水素系ガスの代わりにグラファイトターゲットをスパッタリングして、PVD法により、硬質炭素層を形成することも可能である。
 実施例1
 脱脂洗浄した矩形断面で外周面をバレルフェイス形状としたピストンリング(窒化処理したSUS420J2 相当)、呼称径(d)90 mm、厚さ(h1)1.2 mm、幅(a1)3.2 mm)を成膜治具に50本重ねてセットし、第一のターゲット材料としてCr、第二のターゲット材料としてWを装備した成膜装置の自公転回転テーブルに設置した。なお、組成分析用試料として、外径25 mm、厚さ5 mmの焼入処理し、鏡面研磨したSKH51材を、ピストンリングの外周面と同様の動きをする治具にセットして設置した。装置内を所定の真空度まで排気した後、Arガスを導入して成膜治具に負のバイアス電圧を印加し、グロー放電によるクリーニング処理を行い、続いて、Crのスパッタリングにより、所定の時間、ピストンリング外周面にCr層を形成した。Crのスパッタリングを停止後、Wのスパッタリングの開始と同時にArガスに加えてC2H2ガスを導入して、所定の時間、W含有硬質炭素層を形成した。次に、Wのスパッタリングを停止し、所定の時間、W(金属)フリー硬質炭素層を形成した。ここで、成膜治具には、負のバイアス電圧を印加した。なお、W含有硬質炭素層の組成分析用試料については、別途、W含有硬質炭素層の形成まで行い、停止することによって作製した。
 実施例2~5及び比較例1~3
 積層被膜の各層の形成時間を変更する以外は、実施例1と同様にして、ピストンリング及び組成分析用試料にCr層/W含有硬質炭素層/金属フリー硬質炭素層(以下、「Cr/DLC(W)/DLC」ともいう。)積層被膜を形成した。
 実施例1~5及び比較例1~3の得られたCr/DLC(W)/DLC積層被膜を被覆したピストンリング及び組成分析用試料を次の各種測定に供した。
[1] 膜厚測定
 膜厚測定は、球面研磨法による所謂CALOTESTにより、積層被膜の基材面から各層の厚さを測定した。
[2] 微小硬さ試験(マルテンス硬さ、押込み弾性率、変形率の測定)
 マルテンス硬さHMs、押込み弾性率E、変形率Rpeは、ISO 14577-1(計装化押込み硬さ試験)に準拠し、超微小硬度計(島津製作所、DUH-211)を用いて、Berkovich圧子、試験モード:負荷-除荷試験、試験力:19.6 mN、負荷除荷速度:0.4877 mN/sec、負荷→除荷保持時間:5秒、Cf-Ap補正あり、の条件で行った。測定個所は、被膜表面近傍を平均粒径0.25μmのダイヤモンドペーストを塗布した直径30 mmの鋼球を用いて球面研磨し、研磨部分について行った。マルテンス硬さHMs、押込み弾性率E、及び変形率Rpeは、荷重-押込み深さ曲線から計算される。測定結果としては、10点測定し、平均値を採用した。
[3] 硬質炭素層の組成分析
 硬質炭素層中の組成分析は、組成分析用試料を用いて、金属含有量は電子線マイクロアナライザー(EPMA)により、水素含有量はラザフォード後方散乱分光法(RBS)/水素前方散乱分光法(HFS)により求めた。
[4] 表面粗さ測定
 表面粗さの測定は、触針式粗さ測定機を用い、測定場所や触針の移動方向を変えながら5点測定し、平均値を採用した。測定条件はJIS B0638(2001)に準拠した。
[5] 密着性試験
 積層被膜の密着性については、ドイツ技術者協会の規格(VDI3198 Coating of cold forging tools)の剥離判定試験により行った。ロックウェル硬度計を用いた方法で、HF1~HF4までを合格(○)とし、HF5及びHF6を不合格(×)と判定した。
[6] 摩耗試験
 摩耗試験は、図3(a)に示すような、シリンダに相当するアルミ合金製プレート8の上を(図示しない固定治具に取り付けた)ピストンリングが幅(軸)方向に往復摺動する試験により行った。ここで、プレート8は、Al-20質量%Si合金板を研磨加工により表面粗さ(Rzjis)1.1μmに調製したものを使用し、ピストンリングは、長さ約30 mmに切断したピストンリング片9を使用した。試験条件は、垂直荷重(F)100 N、往復幅50 mm、往復周波数10 Hz、プレート温度120℃、潤滑下(市販エンジン油(5W-30SM)10を1 cm3滴下)にて、試験時間20分とした。ピストンリングの摩耗量は、図3(b)に示す試験後のピストンリング片9に生じた楕円形状の摺動部11の長軸長さLを摩耗量とした。一方、プレート8の摩耗量は、触針式粗さ計を用い、測定長さの両端に未摺動部が入るようにして摺動方向に測定した。この時の未摺動部と摺動部の差の最大値を摩耗量とした。また、プレート8の摺動面を目視で観察し、欠陥の有無で評価した。なお、長さ10 mm以上の大きなキズが認められる場合を「キズ」と表記した。
 実施例1~5及び比較例1~3の各種測定結果は、次の表1及び表2に示す。積層被膜とプレートの摩耗量は、比較例1を1とした相対値で示している。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 ピストンリングの積層被膜の摩耗量もAl合金プレートの摩耗量も、図4から、Tmf/Tmと密接な関係を示しており、Tmf/Tmが2~8の間で優れた結果を示している。Tmf/Tmが8を超えると、密着性が低下し、脱落したSi粒子による局部的な被膜剥離が生じ、大きなキズが付いたことも観察された。
 実施例6~8
 実施例6は、第一及び第二のターゲット材料にいずれも同じ金属、Crを装備した以外は、実施例1と同様にして、ピストンリング及び組成分析用試料にCr/DLC(Cr)/DLC積層被膜を形成し、実施例7は実施例6のCrの代わりにTiを、実施例8は実施例6のCrの代わりにWを装備して、それぞれTi/DLC(Ti)/DLC積層被膜及びW/DLC(W)/DLC積層被膜を形成した。また、実施例7及び8ではTi及びWのスパッタリングの停止とともに、ArガスとC2H2ガスに加えてN2ガスも導入した。なお、実施例1に比較してターゲットが2倍となり金属イオンの発生量も増加するため、スパッタリングパワーを落とし、各層の形成時間を調整して、Tmf/Tmが所定の数値範囲に入るよう調整している。各種測定結果を表3及び表4に示す。いずれも、優れた耐摩耗性を示した。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004

Claims (6)

  1. 内燃機関のシリンダとピストンリングの組合せであって、シリンダは質量%で12~38%のSiを含有するアルミニウム合金からなり、ピストンリングは少なくとも外周摺動面に基材側から順に金属層、金属含有硬質炭素層、及び金属フリー硬質炭素層からなる積層被膜を有し、前記積層被膜のマルテンス硬さHMsが5~13 GPa、押込み弾性率Eが70~200 GPa、塑性変形エネルギーWpと弾性変形エネルギーWeとの比(Wp/We)で表される変形率Rpeが0.45以下であり、前記金属フリー硬質炭素層の厚さTmfの前記金属含有硬質炭素層の厚さTmに対する比(Tmf/Tm)が2~8であることを特徴とするシリンダとピストンリングの組合せ。
  2. 請求項1に記載のシリンダとピストンリングの組合せにおいて、前記金属フリー硬質炭素層の水素含有量が20~35原子%であることを特徴とするシリンダとピストンリングの組合せ。
  3. 請求項1に記載のシリンダとピストンリングの組合せにおいて、前記金属フリー硬質炭素層の水素含有量が15~30原子%、窒素含有量が3~12原子%であることを特徴とするシリンダとピストンリングとの組合せ。
  4. 請求項1~3のいずれかに記載のシリンダとピストンリングの組合せにおいて、前記金属層が、Si、Ti、Cr、Mn、Zr、Nb、Wの群から選択された1又は2以上の元素からなる金属層であることを特徴とするシリンダとピストンリングの組合せ。
  5. 請求項1~4のいずれかに記載のシリンダとピストンリングの組合せにおいて、前記金属含有硬質炭素層が、Si、Ti、Cr、Mn、Zr、Nb、Wの群から選択された1又は2以上の元素を含有する硬質炭素層であることを特徴とするシリンダとピストンリングの組合せ。
  6. 請求項5に記載のシリンダとピストンリングの組合せにおいて、前記金属層がCr層であり、前記金属含有硬質炭素層がW含有硬質炭素層であることを特徴とするシリンダとピストンリングの組合せ。
     
PCT/JP2013/084279 2012-12-28 2013-12-20 シリンダとピストンリングの組合せ WO2014103940A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/650,154 US9644738B2 (en) 2012-12-28 2013-12-20 Combination of cylinder and piston ring
CN201380067823.XA CN104903630B (zh) 2012-12-28 2013-12-20 汽缸与活塞环的组件
EP13868434.5A EP2940350B1 (en) 2012-12-28 2013-12-20 Combination of cylinder and piston ring

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012286718A JP5564099B2 (ja) 2012-12-28 2012-12-28 シリンダとピストンリングの組合せ
JP2012-286718 2012-12-28

Publications (1)

Publication Number Publication Date
WO2014103940A1 true WO2014103940A1 (ja) 2014-07-03

Family

ID=51021024

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/084279 WO2014103940A1 (ja) 2012-12-28 2013-12-20 シリンダとピストンリングの組合せ

Country Status (5)

Country Link
US (1) US9644738B2 (ja)
EP (1) EP2940350B1 (ja)
JP (1) JP5564099B2 (ja)
CN (1) CN104903630B (ja)
WO (1) WO2014103940A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11746903B2 (en) 2021-03-30 2023-09-05 Kabushiki Kaisha Riken Piston ring and method for manufacturing same

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014217040A1 (de) 2014-08-27 2016-03-03 Bayerische Motoren Werke Aktiengesellschaft Beschichtung für Metallbauteile, Verfahren zum Beschichten eines Metallbauteils, Kolben für Verbrennungskraftmaschinen und Kfz
JP2016056435A (ja) * 2014-09-12 2016-04-21 株式会社神戸製鋼所 硬質摺動部材の製造方法、および硬質摺動部材
CN110446883B (zh) 2017-03-31 2020-10-09 株式会社理研 滑动构件和活塞环
CN110462198B (zh) * 2017-03-31 2020-07-24 株式会社理研 滑动构件和活塞环
BR102017007599B1 (pt) 2017-04-12 2022-07-26 Mahle Metal Leve S.A. Anel de pistão para motores de combustão interna
JP6533818B2 (ja) * 2017-10-20 2019-06-19 株式会社リケン 摺動部材およびピストンリング
CN110158039A (zh) * 2019-06-05 2019-08-23 上海离原环境科技有限公司 一种类金刚石复合涂层及其制造方法和表面结合类金刚石复合涂层的核电零部件
JP7284700B2 (ja) * 2019-12-17 2023-05-31 株式会社リケン 摺動機構
JP6962998B2 (ja) * 2019-12-17 2021-11-05 株式会社リケン シリンダとピストンリングとの組み合わせ
TWI768966B (zh) * 2021-06-15 2022-06-21 許國誠 石墨複合層疊散熱結構及其製造方法
KR102616390B1 (ko) * 2021-09-30 2023-12-20 티피알 가부시키가이샤 슬라이딩 부재

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007170467A (ja) * 2005-12-20 2007-07-05 Teikoku Piston Ring Co Ltd ピストンリング
WO2011051008A1 (de) * 2009-11-02 2011-05-05 Federal-Mogul Burscheid Gmbh Gleitelement, insbesondere kolbenring, und kombination eines gleitelements mit einem laufpartner
WO2012100847A1 (de) * 2011-01-27 2012-08-02 Federal-Mogul Burscheid Gmbh Gleitelement, insbesondere kolbenring, mit einer beschichtung sowie verfahren zur herstellung eines gleitelements
US20120205875A1 (en) 2009-08-13 2012-08-16 Marcus Kennedy Sliding element, in particular a piston ring, having a coating

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0856592A1 (en) * 1997-02-04 1998-08-05 N.V. Bekaert S.A. A coating comprising layers of diamond like carbon and diamond like nanocomposite compositions
JP4256938B2 (ja) 1997-02-04 2009-04-22 ナムローゼ・フェンノートシャップ・ベーカート・ソシエテ・アノニム ダイヤモンド状カーボン及びダイヤモンド状ナノコンポジット組成物の層を有するコーティング物
DE10018143C5 (de) * 2000-04-12 2012-09-06 Oerlikon Trading Ag, Trübbach DLC-Schichtsystem sowie Verfahren und Vorrichtung zur Herstellung eines derartigen Schichtsystems
EP1479946B1 (en) * 2003-05-23 2012-12-19 Nissan Motor Co., Ltd. Piston for internal combustion engine
WO2005054539A1 (en) * 2003-12-02 2005-06-16 N.V. Bekaert S.A. A layered structure
US8033550B2 (en) 2005-05-26 2011-10-11 Sulzer Metaplas Gmbh Piston ring having hard multi-layer coating
JP5030439B2 (ja) * 2006-02-28 2012-09-19 株式会社リケン 摺動部材
DE102008016864B3 (de) * 2008-04-02 2009-10-22 Federal-Mogul Burscheid Gmbh Kolbenring
JP2010031840A (ja) 2008-06-27 2010-02-12 Yamaha Motor Co Ltd シリンダブロック、内燃機関、輸送機器およびシリンダブロックの製造方法
DE102008037871A1 (de) * 2008-08-15 2010-02-25 Amg Coating Technologies Gmbh Gleitelement mit Mehrfachschicht
JP2010274386A (ja) * 2009-05-29 2010-12-09 Toyota Central R&D Labs Inc Si粒子含有Al−Si系合金摺動材及び摺動面の形成方法
JP2011075065A (ja) * 2009-09-30 2011-04-14 Nippon Piston Ring Co Ltd 内燃機関用オイルリング
DE102010002687C5 (de) * 2010-03-09 2015-09-10 Federal-Mogul Burscheid Gmbh Verfahren zur Beschichtung zumindest der Innenfläche eines Kolbenrings sowie Kolbenring
CN201901696U (zh) 2010-10-14 2011-07-20 营口华润有色金属制造有限公司 高硅稀土铝合金汽车发动机缸体
DE102010062114B4 (de) * 2010-11-29 2014-12-11 Federal-Mogul Burscheid Gmbh Gleitelement, insbesondere Kolbenring, mit einer Beschichtung
DE112012001018T5 (de) * 2011-02-28 2013-12-05 Nippon Piston Ring Co., Ltd. Kolbenring
MY180513A (en) * 2011-03-02 2020-12-01 Oerlikon Surface Solutions Ag Trubbach Sliding component coated with metal-comprising carbon layer for improving wear and friction behavior by tribological applications under lubricated conditions
CN102383961A (zh) 2011-09-20 2012-03-21 重庆大学 一种颗粒增强内燃机铝缸套及其与铝缸体的组合成形方法
DE102011083714A1 (de) * 2011-09-29 2013-04-04 Federal-Mogul Burscheid Gmbh Gleitelement mit DLC-Beschichtung
BR102012003607A2 (pt) * 2012-02-16 2013-10-29 Mahle Metal Leve Sa Componente deslizante para uso em motores de combustão interna
CN102676856B (zh) 2012-05-22 2013-11-20 中北大学 一种亚共晶铸造铝硅合金变质工艺
DE102012214284B4 (de) * 2012-08-10 2014-03-13 Federal-Mogul Burscheid Gmbh Gleitelement, insbesondere Kolbenring, mit einer widerstandsfähigen Beschichtung
DE102012020757A1 (de) * 2012-10-23 2014-05-08 Mahle International Gmbh Bauteil mit einer Beschichtung und Verfahren zu seiner Herstellung
DE102012020756A1 (de) * 2012-10-23 2014-04-24 Mahle International Gmbh Bauteil mit einer Beschichtung und Verfahren zu seiner Herstellung
DE102012219930A1 (de) * 2012-10-31 2014-04-30 Federal-Mogul Burscheid Gmbh Gleitelement, insbesondere Kolbenring, mit einer Beschichtung

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007170467A (ja) * 2005-12-20 2007-07-05 Teikoku Piston Ring Co Ltd ピストンリング
US20120205875A1 (en) 2009-08-13 2012-08-16 Marcus Kennedy Sliding element, in particular a piston ring, having a coating
JP2013501897A (ja) * 2009-08-13 2013-01-17 フェデラル−モグル・ブルシャイト・ゲーエムベーハー コーティングを有する摺動要素、とりわけピストンリング
WO2011051008A1 (de) * 2009-11-02 2011-05-05 Federal-Mogul Burscheid Gmbh Gleitelement, insbesondere kolbenring, und kombination eines gleitelements mit einem laufpartner
WO2012100847A1 (de) * 2011-01-27 2012-08-02 Federal-Mogul Burscheid Gmbh Gleitelement, insbesondere kolbenring, mit einer beschichtung sowie verfahren zur herstellung eines gleitelements

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"ten-point-averaged roughness", JIS B0601, 2001
JIS B 063 8, 2001
See also references of EP2940350A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11746903B2 (en) 2021-03-30 2023-09-05 Kabushiki Kaisha Riken Piston ring and method for manufacturing same

Also Published As

Publication number Publication date
EP2940350A1 (en) 2015-11-04
CN104903630B (zh) 2017-03-15
JP2014129826A (ja) 2014-07-10
CN104903630A (zh) 2015-09-09
EP2940350A4 (en) 2016-08-03
EP2940350B1 (en) 2019-04-10
JP5564099B2 (ja) 2014-07-30
US9644738B2 (en) 2017-05-09
US20150300493A1 (en) 2015-10-22

Similar Documents

Publication Publication Date Title
JP5564099B2 (ja) シリンダとピストンリングの組合せ
JP5575989B2 (ja) シリンダとピストンリングとの組合せ
JP5452734B2 (ja) コーティングを有するスライド要素、特に、ピストンリング、およびスライド要素を製造するプロセス
JP6062357B2 (ja) ピストンリング
US8202615B2 (en) Nitrogen-containing amorphous carbon-type film, amorphous carbon-type lamination film, and sliding member
US11293548B2 (en) Sliding member and coating film
JP6109325B2 (ja) アルミニウム合金製の相手材とピストンリングとの組み合わせ
JP2007232026A (ja) 摺動部材
JP2008241032A (ja) ピストンリング及びその製造方法
JP2008286354A (ja) 摺動部材
WO2015041215A1 (ja) シリンダボアとピストンリングの組合せ
JP2006214313A (ja) バルブリフター
US10385971B2 (en) Piston ring
JP7298083B2 (ja) ピストンリング及びその製造方法
JP2003113941A (ja) ピストンリング及びピストンリングとピストンのリング溝との組み合わせ構造
JP2006057674A (ja) 摺動部材及びピストンリング
JP4374153B2 (ja) ピストンリング
JP4374154B2 (ja) ピストンリング
JP6339812B2 (ja) ピストンリング
JP2003042294A (ja) ピストンリング
JP4374160B2 (ja) ピストンリング
JP2006207691A (ja) 硬質皮膜被覆摺動部材
EP4080033A1 (en) Piston ring, and method for manufacturing same
WO2022131057A1 (ja) 皮膜及びピストンリング
JP2006206960A (ja) 硬質皮膜被覆摺動部材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13868434

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013868434

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14650154

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE