WO2014103804A1 - 光無線アクセスシステム - Google Patents

光無線アクセスシステム Download PDF

Info

Publication number
WO2014103804A1
WO2014103804A1 PCT/JP2013/083779 JP2013083779W WO2014103804A1 WO 2014103804 A1 WO2014103804 A1 WO 2014103804A1 JP 2013083779 W JP2013083779 W JP 2013083779W WO 2014103804 A1 WO2014103804 A1 WO 2014103804A1
Authority
WO
WIPO (PCT)
Prior art keywords
onu
optical
olt
access system
sleep
Prior art date
Application number
PCT/JP2013/083779
Other languages
English (en)
French (fr)
Inventor
法子 飯山
淳一 可児
直剛 柴田
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to JP2014554343A priority Critical patent/JP5878991B2/ja
Priority to CN201380067829.7A priority patent/CN104956627B/zh
Priority to EP13869652.1A priority patent/EP2953297B1/en
Priority to US14/654,783 priority patent/US9788270B2/en
Priority to EP17167843.6A priority patent/EP3223465B1/en
Publication of WO2014103804A1 publication Critical patent/WO2014103804A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0203Power saving arrangements in the radio access network or backbone network of wireless communication networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2575Radio-over-fibre, e.g. radio frequency signal modulated onto an optical carrier
    • H04B10/25752Optical arrangements for wireless networks
    • H04B10/25753Distribution optical network, e.g. between a base station and a plurality of remote units
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/27Arrangements for networking
    • H04B10/272Star-type networks or tree-type networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q11/0067Provisions for optical access or distribution networks, e.g. Gigabit Ethernet Passive Optical Network (GE-PON), ATM-based Passive Optical Network (A-PON), PON-Ring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0064Arbitration, scheduling or medium access control aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0086Network resource allocation, dimensioning or optimisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/085Access point devices with remote components
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to transmission of information for dynamic resource allocation and sleep (pause) control in a system connected to a cellular system and an optical access system.
  • the terminal performs wireless communication with the base station. Since one base station normally communicates with a plurality of terminals, the base station performs scheduling to dynamically allocate a finite communication capacity (resource) to each terminal so that signals between terminals do not interfere with each other. For example, taking LTE (registered trademark) uplink communication as an example, the sequence from when a terminal (UE: User Equipment) generates an uplink signal to transmitting data to the base station (eNB) is as shown in FIG. .
  • LTE Long Term Evolution
  • eNB base station
  • the eNB obtains information (buffer amount, channel state, etc.) necessary for uplink data scheduling. Notice. When information necessary for uplink data scheduling is transmitted to the eNB using resources to which the UE is allocated, the eNB performs scheduling, and allocates resources for transmitting uplink data to the UE by a scheduling grant. Through these exchanges, the UE can send uplink data to the eNB for the first time.
  • information necessary for uplink data scheduling is transmitted to the eNB using resources to which the UE is allocated, the eNB performs scheduling, and allocates resources for transmitting uplink data to the UE by a scheduling grant. Through these exchanges, the UE can send uplink data to the eNB for the first time.
  • downlink communication since there is one base station that emits a signal, there is usually no communication between the terminal and the base station before communication to avoid interference.
  • the connection form between the base station and the higher-level device can take a one-to-many form using a PON (Passive Optical Network) system.
  • PON Passive Optical Network
  • the host device and the eNB are connected by an optical fiber and an optical splitter.
  • TDM, WDM, FDM, or the like can be adopted as a PON signal multiplexing method.
  • FIG. 3 shows a sequence in which an ONU in a normal PON transmits an upstream signal.
  • the ONU first transmits data amount information (REPORT information) stored in the transmission buffer to the OLT at a timing specified by the transmission permission signal sent from the OLT.
  • REPORT information data amount information
  • IEEE 802.3 standard Ethernet (registered trademark) PON a REPORT message is used for transmission.
  • ITU-T G-PON (G.984 series) and XG-PON (G.987 series) transmission is performed using a field defined in the header of an upstream signal frame.
  • the OLT performs scheduling based on the REPORT information, allocates a resource for transmitting uplink data to the ONU, and notifies the ONU of it.
  • IEEE 802.3 standard Ethernet (registered trademark) PON a GATE message is used for notification.
  • ITU-T G-PON and XG-PON notification is performed using a field defined in the header of a downstream signal frame.
  • the cellular system, the PON, and the schedulers of the two systems are connected in series in one system.
  • the sequence of uplink communication from the UE is shown in FIGS. It becomes like 4.
  • the PON upstream communication sequence starts from the point in time when the upstream data arrives at the ONU through the entire LTE (registered trademark) upstream communication sequence.
  • a system such as a cellular system or a PON may have a function of suspending a part of a plurality of devices during a non-communication time for the purpose of power saving of the device.
  • the normal transmission side enters a sleep state when there is no transmission data, and returns from the sleep state when transmission data occurs.
  • the receiving side there is a case where there is data to be received while being paused, so it is often set to return from the pause state at regular intervals and confirm whether there is data to be received.
  • FIG. 5 and FIG. 6 respectively show the period from the normal reception state until the intermittent reception is started and when the intermittent reception is terminated.
  • the UE starts intermittent reception when there is no traffic for a certain time T1 from the last traffic (FIG. 5).
  • the condition for the UE to end the discontinuous reception state is when it is detected that uplink traffic occurs or that downlink communication resources are allocated within the time T3 is restored.
  • the intermittent reception ends when uplink traffic occurs, and the normal uplink communication shown in FIG. 1 is started.
  • the terminal side should be autonomously operated. Can do.
  • control messages and state transition diagrams for realizing ONU sleep in PON are described in ITU-T G. 987.3 (Non-Patent Document 1). Sleep Allow (ON), Sleep Allow (OFF) for allowing / disallowing sleep to each ONU, Sleep Request (Sleep), Sleep Request (Awake), etc. that ONU requests sleep / wake-up from the OLT A message is specified.
  • G. PON sleep based on 987.3 differs from the intermittent reception of LTE (registered trademark) in that the OLT manages the sleep state of the ONU.
  • FIGS. 7 and 8 show examples of procedures until the sleep is started and the transition from the sleep state to the active state, respectively.
  • the OLT does not detect the upstream / downstream frame of the corresponding ONU for a certain time T4, it sends a Sleep Allow (ON) from the OLT to the ONU, and if it determines that the ONU can transition to the sleep state, the Sleep Request is sent to the OLT. (Sleep) is sent before entering the sleep state (FIG. 7).
  • the sleep is periodic like the intermittent reception of LTE (registered trademark), and repeats the operation of returning to the time T6 after maintaining the sleep state for the time T5.
  • the condition for the ONU to transition from the sleep state to the active state is when uplink traffic occurs or when Sleep Allow (OFF) is received from the OLT within the time T6.
  • the ONU ends the sleep state, and normal uplink communication shown in FIG. 3 is started.
  • the ONU receives Sleep Allow (OFF) within the return period of T6, returns a Sleep Request (Awake), and receives the frame addressed to itself after transitioning to the active state.
  • FIG. 9 and FIG. 10 show the sequence up to the start of PON sleep in the system as shown in FIG. 9 and FIG. 10 respectively show the case where the last traffic before the transition to the intermittent reception and sleep state is downlink data and uplink data.
  • LTE registered trademark
  • the UE transitions to intermittent reception when T1 elapses from the last traffic
  • PON the OLT changes to Sleep Allow (ON) when T4 elapses from the last traffic. Since the ONU has transmitted a Sleep Request (Sleep), it has transitioned to the sleep state.
  • the normal LTE (registered trademark) eNB holds the value of T1-T3 and grasps the start time and cycle of intermittent reception of the UE.
  • the PON OLT manages the sleep state of the ONU and grasps the sleep state and cycle. Therefore, when downlink traffic occurs in each single system, the eNB and the OLT buffer the downlink signal as shown in FIGS. 11 and 12, and are timingd at the intermittent reception of the UE and the return period from the sleep of the ONU, respectively. By performing downlink communication together, it is possible to avoid frame loss. This buffer time is called a return cycle waiting time.
  • the first example is an example during normal uplink data communication.
  • the sequence of the uplink data communication is as shown in FIG. 4, but when the eNB and the higher-level device are connected by the one-to-one optical fiber communication instead of the PON, the sequence of the uplink data communication is as shown in FIG. Become.
  • the number of signal exchanges from when the uplink data is generated in the UE to the host device is increased by the amount of the PON scheduler, and as a result, the communication delay time is expected to increase. Is done. This may adversely affect the use of protocols and applications that require low latency.
  • the second example is an example of upstream communication when the PON ONU is in the sleep state.
  • FIG. 14 shows a sequence from when uplink data is generated in the UE until it reaches the host device of the eNB.
  • the UE transmits uplink data to the eNB through a normal uplink communication sequence of LTE (registered trademark), and the eNB passes the uplink data to the ONU.
  • LTE registered trademark
  • the time until the transition to the active state is short, and in any case, the upstream data has a long waiting time only until the ONU transitions to the active state. Will be.
  • the upstream communication sequence is as shown in FIG. Compared to FIG. 4, in FIG. 14, it is expected that the communication delay time is increased by the waiting time until the transition from the sleep state to the active state. As in the first example, there is a possibility of adverse effects when using protocols and applications that require low latency.
  • the third example is an example of downlink communication when the LTE (registered trademark) UE is in the intermittent reception state and the ONU of the PON is in the sleep state.
  • FIG. 15 shows a sequence from when the downlink data is transmitted from the host device until it is received by the UE.
  • the downlink data is buffered in the OLT for waiting for the ONU sleep recovery cycle, and then buffered again in the eNB for waiting for the UE intermittent reception recovery cycle in the LTE (registered trademark) system.
  • the capacity of the memory to be provided in the entire system increases, leading to higher costs and increased power consumption.
  • An object of the present invention is to prevent an increase in communication delay time, power consumption and cost due to dynamic scheduling and suspension control of both in an optical wireless access system in which a cellular and a PON are connected in series.
  • the optical wireless access system of the present invention is An optical wireless access system in which one or more base stations that communicate with a wireless terminal are connected to a host device via an optical access system,
  • the optical access system connects one or more optical network units (ONUs) disposed on the base station side, an optical subscriber termination device (OLT) disposed on the host device side, and the ONU and the OLT.
  • OLT optical subscriber termination device
  • the ONU acquires information related to dynamic scheduling control or intermittent reception control of the optical wireless access system from the base station.
  • the base station of the present invention The base station provided in the optical wireless access system in which one or more base stations that communicate with the wireless terminal are connected to the host device via the optical access system,
  • the optical access system connects one or more optical network units (ONUs) disposed on the base station side, an optical subscriber termination device (OLT) disposed on the host device side, and the ONU and the OLT.
  • ONUs optical network units
  • OLT optical subscriber termination device
  • the ONU acquires information related to dynamic scheduling control or intermittent reception control of the optical wireless access system from the base station.
  • the operation method of the optical wireless access system of the present invention is as follows: An operation method of an optical wireless access system in which one or more base stations that communicate with a wireless terminal are connected to a host device via an optical access system, The optical access system connects one or more optical network units (ONUs) disposed on the base station side, an optical subscriber termination device (OLT) disposed on the host device side, and the ONU and the OLT. With an optical transmission line The ONU acquires information related to dynamic scheduling control or intermittent reception control of the optical wireless access system from the base station.
  • ONUs optical network units
  • OLT optical subscriber termination device
  • the OLT of the present invention is One or more optical network units (one or more optical network units (one or more optical network access units) arranged on the base station side are one or more base stations that communicate with a wireless terminal via an optical access system.
  • ONU an OLT in an optical wireless access system comprising an optical subscriber termination device (OLT) disposed on the host device side and an optical transmission line connecting the ONU and the OLT,
  • OLT optical subscriber termination device
  • Information on dynamic scheduling control or intermittent reception control of the optical wireless access system is acquired from the ONU.
  • the ONU may receive information about the intermittent reception of the wireless terminal received from the wireless terminal from the ONU.
  • the information regarding the intermittent reception of the wireless terminal is used to determine whether to make the ONU sleep, and to minimize the waiting time of the downlink data of the wireless terminal at the base station
  • the sleep start timing and cycle of the ONU may be calculated.
  • the host device of the present invention has an OLT according to the present invention or a function as the OLT, and is an integrated device with the function as the OLT or the OLT.
  • the ONU of the present invention is One or more optical network units (one or more optical network units (one or more optical network access units) arranged on the base station side are one or more base stations that communicate with a wireless terminal via an optical access system.
  • ONU an ONU in an optical wireless access system including an optical subscriber termination device (OLT) disposed on the host device side and an optical transmission path connecting the ONU and the OLT,
  • OLT optical subscriber termination device
  • the ONU may acquire information related to dynamic scheduling control or intermittent reception control of the optical wireless access system using a line physically different from a line for transmitting normal uplink data.
  • the ONU may acquire information on dynamic scheduling control or intermittent reception control of the optical wireless access system using a layer 2 or higher control protocol.
  • a sequence for receiving grant information from the base station to the wireless terminal and transmitting uplink data to the OLT may be started when the grant information is received.
  • a buffer state prediction unit that predicts a frame amount in the buffer of uplink data to the OLT;
  • a REPORT generation unit that generates a REPORT message based on the buffer amount notified from the buffer state prediction unit; May be provided.
  • the base station determines the grant information
  • the grant information from the base station to the wireless terminal is received, and the transition from the sleep state to the active state is triggered when the grant information is received. May start.
  • the ONU includes a sleep / startup determination unit that receives grant information from the base station to the wireless terminal and starts an operation of transitioning the ONU to an active state when the grant information is received. May be.
  • intermittent reception information received from the base station may be transferred to the OLT.
  • the base station of the present invention has an ONU according to the present invention or a function as the ONU, and is an apparatus integrated with the ONU or the function as the ONU.
  • the optical wireless access system of the present invention includes a host device integrated with the OLT according to the present invention and a base station integrated with the ONU according to the present invention.
  • an increase in communication delay time, power consumption and cost due to both dynamic scheduling and suspension control can be prevented.
  • An example of the upstream communication sequence in LTE (trademark) is shown.
  • 1 shows an example of an optical wireless access system in which a cellular system and a PON are connected in series.
  • An example of the upstream communication sequence in PON is shown.
  • An example of the upstream communication sequence of an optical wireless access system is shown.
  • An example of the start sequence of intermittent reception in LTE (registered trademark) is shown.
  • An example of the end sequence of intermittent reception in LTE (registered trademark) is shown.
  • An example of the sleep start sequence in PON is shown.
  • An example of a sleep end sequence in the PON is shown.
  • 2 shows a first example of a sleep start sequence in a related optical wireless access system.
  • 6 shows a second example of a sleep start sequence in the related optical wireless access system.
  • a case where downlink data occurs during intermittent reception in LTE (registered trademark) is shown.
  • a case where downlink data occurs during sleep in the PON is shown.
  • An example of the uplink communication sequence in case the eNB and the higher-level apparatus are connected on a one-to-one basis in the related optical wireless access system is shown.
  • An example of an upstream communication sequence when the ONU of the PON is in the sleep state in the related optical wireless access system is shown.
  • An example of a downlink communication sequence when IE is in the intermittent reception state and the ONU is in the sleep state in the related optical wireless access system is shown.
  • 4 shows an example of an uplink communication sequence in the optical wireless access system according to the first embodiment.
  • An example of ONU relevant to this invention in Embodiment 1 is shown.
  • An example of ONU which concerns on Embodiment 1 is shown.
  • 6 shows an example of an uplink communication sequence in the optical wireless access system according to the second embodiment.
  • An example of ONU relevant to this invention in Embodiment 2 is shown.
  • An example of ONU which concerns on Embodiment 2 is shown.
  • An example of the intermittent reception and sleep start sequence at the time of downlink communication in the optical wireless access system according to the third embodiment is shown.
  • 10 shows an example of intermittent reception and sleep start sequences during uplink communication in the optical wireless access system according to the third embodiment.
  • An example of the downlink communication sequence in case the UE is in the intermittent reception state and the ONU is in the sleep state in the optical wireless access system according to the third embodiment.
  • An example of ONU relevant to this invention in Embodiment 3 is shown.
  • FIG. 10 shows a first example of an ONU according to a fourth embodiment.
  • 10 shows a second example of an ONU according to the fourth embodiment.
  • 10 shows a third example of an ONU according to the fourth embodiment.
  • the optical access system includes one or more optical network units (ONUs) arranged on the base station side, an optical subscriber termination device (OLT) arranged on the host device side, and optical transmission for connecting the ONU and the OLT.
  • the optical transmission line includes optical components such as an optical fiber and a coupler.
  • the ONU acquires information on dynamic scheduling control of the optical wireless access system and / or information on intermittent reception control of the optical wireless access system from the base station. The information is transferred to the ONU or OLT and used as a PON scheduling or sleep control parameter.
  • FIG. 16 shows an upstream data communication sequence in a system to which the development technology is applied so as to solve the first example of the problem. 4 differs from FIG. 4 where the developed technology is not applied.
  • the upstream communication sequence of the PON starts after the upstream data arrives at the ONU, whereas in FIG.
  • the eNB determines the grant information
  • the information is delivered not only to the UE but also to the ONU
  • the PON uplink communication sequence is started when the ONU receives the grant information.
  • the ONU predicts the buffer amount based on the grant information, generates a REPORT signal, and transmits it to the OLT.
  • the delay time until the upstream data arrives at the host device is reduced by the earlier start time of the PON upstream communication sequence.
  • FIG. 17 shows an example of a functional block diagram of the ONU for realizing the PON uplink communication dynamic scheduling function. Portions not related to uplink communication dynamic scheduling are omitted.
  • Uplink data from the PON subordinate apparatus (eNB 103) is sent to the ether frame buffer unit 11, and the buffer state observation unit 21 reads the frame amount in the ether frame buffer unit 11 and notifies the REPORT generation unit 23 of the frame amount.
  • the REPORT generation unit 23 generates a REPORT message based on the notified buffer frame amount.
  • the frame in the ether frame buffer unit 11 is read by the frame reading control unit 12, converted into a PON frame by the PON frame processing unit, and transmitted from the PHY 14.
  • These REPORT messages and frames are transmitted with the timing adjusted by the transmission permission / GATE reading unit 22 based on the transmission permission / GATE message received from the OLT.
  • FIG. 18 shows functional blocks related to the scheduling operation when the development technology is applied to the ONU 150 of FIG. 17 that realizes the above uplink communication dynamic scheduling operation.
  • the ONU 150 according to the present embodiment includes a buffer state prediction unit 24.
  • An important point in realizing the method of FIG. 16 is that information on the amount of frames in the buffer predicted based on LTE (registered trademark) grant information received from the eNB 103 is used for generating REPORT. However, the actual buffer state may be observed, and the information may also be used for prediction of the frame amount in the buffer and other purposes. Details will be described below.
  • LTE registered trademark
  • the ONU 150 can start the uplink communication sequence when the grant information is determined without waiting for the frame from the eNB 103, and the uplink data is transmitted to the host device. It is possible to reduce the communication delay time until arriving at.
  • LTE registered trademark
  • the uplink scheduling of the PON can be started early in the uplink communication, and as a result, the communication delay time from the UE to the host device is reduced.
  • FIG. 19 shows an upstream data communication sequence when the ONU of the PON is in the sleep state in the system to which the development technology is applied so as to solve the second example of the problem.
  • the difference from FIG. 14 in which the developed technology is not applied is that in FIG. 14, the upstream data arrives at the ONU and then the ONU starts a transition from the sleep state to the active state.
  • the eNB determines the grant information
  • the information is delivered not only to the UE but also to the ONU, and the transition from the sleep state to the active state is started from the time when the ONU receives the grant information.
  • the standby time for the upstream data should be shorter than that in FIG. In either case, compared with FIG. 14, in FIG. 19, the delay time until the upstream data arrives at the host device is reduced by the earlier start time of the transition from the sleep state of the PON to the active state.
  • FIG. 20 shows an example of a functional block diagram of the ONU for realizing the PON sleep control function.
  • the ONU 150 includes a buffer state observation unit 31, a sleep / activation determination unit 32, a sleep control command reading unit 33, a sleep control command generation unit 34, a transmission permission / GATE reading unit 35, a sleep parameter storage memory 36, The timer 37 and the pause unit 38 are provided. Parts not related to sleep control are omitted.
  • the condition for the ONU in the active state to transition to the sleep state is to receive a Sleep Allow (ON) from the OLT.
  • the Sleep Allow (ON) message sends an instruction to the sleep / startup determination unit 32 via the sleep control command reading unit 33.
  • the sleep / wakeup determination unit 32 receives Sleep Allow (ON)
  • the sleep / startup determination unit 32 determines whether or not to transit to the sleep state using the ether frame amount in the ether frame buffer unit 11 notified from the buffer state observation unit 31 as a parameter. . If it is determined to transition to the sleep state, the sleep / startup determination unit 32 sends an instruction to the sleep control command generation unit 34 to generate a Sleep Request (Sleep), and the Sleep Request (Sleep) sends a transmission permission / GATE reading unit.
  • the sleep / activation determination unit 32 causes the pause unit 38 to transition to the sleep state. Note that the pause unit 38 in the figure is described independently of the other functional units in the figure for convenience, but in practice, the other functional units that do not cause any problems (for example, in the figure). PHY14).
  • Parameters such as the sleep time and the return cycle are stored in the sleep parameter storage memory 36, and the sleep activation / determination unit 32 refers to the parameters from the leap parameter storage memory 36 and sleeps for T5 time by the timer 37. After maintaining the state, the operation of returning for T6 time is repeated. The sleep parameter in the memory 36 is rewritten through a message from the OLT as necessary.
  • the ONU 150 in the sleep state transitions to the active state There are two cases where the ONU 150 in the sleep state transitions to the active state.
  • the first is a case where Sleep Allow (OFF) is received from the OLT during the return period from the sleep state. Sleep Allow (OFF) is sent to the sleep / activation determination unit 32 through the sleep control command reading unit 33.
  • the sleep / startup determination unit 32 Upon receipt of Sleep Allow (OFF), the sleep / startup determination unit 32 sends an instruction to the sleep control command generation unit 34 to generate a Sleep Request (Awake), and the Sleep Request (Awake) is transmitted by the transmission permission / GATE reading unit 35.
  • the timing is adjusted and transmitted to the OLT.
  • the sleep / activation determination unit 32 shifts the pause 38 unit to the active state, and normal downlink communication is started.
  • the second case is when an ether frame arrives at the ether frame buffer unit 11.
  • the buffer state observation unit 31 notifies the sleep / activation determination unit 32 of the arrival of the frame.
  • the sleep / startup determination unit 32 sends an instruction to the sleep control command generation unit 34 to generate a Sleep Request (Awake), and the Sleep Request (Awake) is adjusted in timing by the transmission permission / GATE reading unit 35 and transmitted to the OLT.
  • the Rukoto Thereafter, the sleep / startup determination unit 32 causes the suspension unit 38 to transition to the active state, and a normal uplink communication scheduling operation is started.
  • FIG. 21 shows functional blocks related to sleep control when the developed technology is applied to the ONU of FIG. 20 that realizes the sleep control as described above.
  • An important point in realizing the method of FIG. 19 is that when the ONU 150 in the sleep state transitions to the active state, the sleep / wakeup determination unit 32 receives from the eNB 103 instead of the frame arrival notification from the buffer state observation unit 31. The point is that the operation of shifting the ONU 150 to the active state is started based on LTE (registered trademark) grant information (or a predetermined signal generated based on the grant information). Details will be described below.
  • LTE registered trademark
  • the sleep / startup determination unit 32 receives this information, sends an instruction to the sleep control command generation unit 34 to generate a sleep request (Awake), and the timing of the sleep request (Awake) is adjusted by the transmission permission / GATE reading unit 35. , Will be transmitted to the OLT.
  • the sleep / startup determination unit 32 causes the pause unit 38 to transition to the active state and starts normal uplink communication scheduling.
  • the sleep request (Awake) transmission and the transition timing to the active state are as early as possible if the subsequent PON GATE comes after the uplink data of LTE (registered trademark), and LTE (registered) If the upstream data of (trademark) comes later, the timing may be slightly delayed so that the PON GATE is in time.
  • the ONU 150 does not wait for an uplink frame from the eNB 103, and transitions to the active state from the time when receiving the LTE (registered trademark) grant information (or a predetermined signal generated based on the grant information). The delay time until the upstream data arrives at the host device is reduced.
  • LTE registered trademark
  • the transition from the sleep state of the ONU to the active state can be started quickly, and as a result, the communication delay time from the UE to the host device is reduced.
  • FIG. 22 and FIG. 23 show a sequence until the ONU of the PON shifts to the sleep state in the system to which the development technology is applied.
  • FIGS. 22 and 23 show a case where the last traffic before the transition to the intermittent reception and sleep state is downlink data and a case where it is uplink data, respectively.
  • the sequences when the development technology is not applied correspond to FIGS. 9 and 10, respectively.
  • the OLT uses the PON sleep control timer (T4 in FIG. 7) instead of (or T4) to determine the transition to the sleep state.
  • UE intermittent reception information is also used.
  • the eNB makes a prediction as to whether or not each UE is in an intermittent reception state by a timer from the time when the last traffic for each UE has occurred.
  • Information such as the start time and period parameters T2, T3, etc. is passed to the ONU.
  • the ONU transfers the information on the intermittent reception of the passed UE to the OLT, and the OLT determines whether the ONU transitions to the sleep state based on the passed information and the timer information, and the eNB for the downlink signal to the UE.
  • the ONU sleep start timing and period (T5, T6) are calculated so as to minimize the return waiting time.
  • the sleep parameter is rewritten, and Sleep Allow (ON) is transmitted to the ONU so that the calculated sleep start timing is reached.
  • one UE is associated with one eNB, but there are usually a plurality of UEs connected to one eNB.
  • the eNB passes all the information to the ONU, and the OLT to which the information is transferred enters the sleep state based on all the information.
  • the ONU sleep start timing and period may be determined including whether to make a transition, or the eNB may overlap the return period when viewing the intermittent reception start times and period parameters of multiple UEs from the OLT
  • the setting may be set to be adjusted, and the information may be passed to the OLT. In the latter case, the ONU sleep time can be increased.
  • the downlink communication sequence when the UE is in the intermittent reception state and the ONU is in the sleep state is as shown in FIG.
  • the ONU sleep is synchronized with the intermittent reception of the UE, and the OLT can transmit the downlink data aiming at the return period of the ONU and the UE.
  • the buffer time for waiting for the return cycle is shortened.
  • the total buffer time from the host device to the UE may not be shorter than that in FIG. 15, but the buffer time in the eNB is reduced and increased to the OLT side by that amount.
  • the memory to be used can be concentrated on the upper side of the network, and power saving and cost reduction can be expected.
  • the OLT 140 includes an Ethernet frame buffer unit 41, a frame readout control unit 42, a PON frame processing unit 43, a PHY 44, a buffer state observation unit 51, a sleep / wakeup control unit 52, a sleep control command generation unit 53, A sleep control command reading unit 54, a timer 55, and a sleep parameter storage memory 56 are provided. Parts not related to sleep control are omitted.
  • the Ethernet frame of the downstream signal sent from the host device is subjected to PON frame processing in the PON frame processing unit 43 in the order read from the buffer unit 41, and converted into an optical signal by the PHY 44. And transmitted by optical fiber.
  • the sleep / startup control unit 52 that determines the sleep state of the ONU. Based on the buffer amount of the Ethernet frame and the timer value, the ONU active state and sleep state transition are determined. decide.
  • the buffer state observing unit 51 observes the buffer unit 41 of the Ethernet frame, and for the ONU having no frame in the buffer unit 41, the timer 55 is shifted to the sleep state when T4 elapses from the last upstream / downstream traffic.
  • the sleep control command generation unit 53 generates Sleep Allow (ON).
  • the sleep control command reading unit 54 receiving a Sleep Request (Sleep) from the ONU.
  • the sleep / activation control unit 52 causes the sleep control command generation unit 53 to generate Sleep Allow (OFF) so as to shift the ONU to the active state.
  • the sleep / startup control unit 52 can adjust the sleep command generation timing so that Sleep Allow (OFF) arrives at the time T6 when the ONU returns from the sleep state.
  • the sleep control command reading unit 54 receiving a sleep request (Awake) from the ONU.
  • the sleep / wakeup control unit 52 instructs the frame read control unit 42 to read the frame addressed to the ONU from the buffer unit 41, and transmits the frame.
  • FIG. 26 shows functional blocks related to sleep control when the developed technology is applied to the OLT 140 of FIG. 25 that realizes the sleep operation as described above. 22 and FIG. 23, the important point is that the sleep / wakeup control unit 52 of the OLT determines not only the information of the timer 55 but also the eNB transferred from the ONU to determine the transition of the ONU to the sleep state. The information regarding the intermittent reception of UE from is also used. Details will be described below.
  • Fig. 27 shows the flow of the intermittent reception information of the UE of the system to which the developed technology is applied.
  • the eNB makes a prediction as to whether or not each UE is in an intermittent reception state by a timer 55 from the time when the last traffic for each UE occurs, and intermittent reception information (one or a plurality of UEs) (Intermittent reception start time, periodic parameters T2, T3, etc.) are passed to the ONU.
  • the ONU transfers the received intermittent reception information of the UE to the OLT.
  • a PON control frame may be used, or a data frame to which a specific VLAN-ID is assigned may be used.
  • the intermittent reception information of the UE transferred to the OLT is received by the sleep / startup control unit 52 through the sleep control command reading unit 54.
  • the sleep / startup control unit 52 determines whether to transition the ONU to the sleep state, and the ONU that can minimize the return waiting time at the eNB for the downlink signal to each UE.
  • the sleep start timing and period are calculated. Depending on the calculation result, it may be determined that the sleep state is not changed. However, if the calculation results in the transition to the sleep state, the sleep parameter storage memory 56 is rewritten based on the calculated periodic parameter and the calculation result is changed.
  • the timing for issuing a command generation instruction to the sleep control command generation unit 53 is adjusted so that the sleep start time is reached, and the ONU is shifted to the sleep state.
  • the OLT transmits a downlink signal aiming at the recovery time of the UE
  • the ONU recovery time should also be targeted, so the downlink signal is transmitted by the OLT in advance after waiting for the recovery period by the buffer unit 41. It becomes. Thereby, there is a possibility that the return waiting time in the OLT becomes larger than the case where the development technology is not applied.
  • the buffer memory can be concentrated on the upper side of the network as a whole system, and power saving and cost reduction can be expected.
  • Embodiment 3 in the downlink communication when the UE is in the intermittent reception state and the ONU is in the sleep state, the return cycle waiting time of the UE in the eNB can be shortened, and as a result, the buffer memory amount in the eNB is reduced. There is a possibility that power saving and cost reduction can be achieved by reducing and consolidating to the upper OLT.
  • FIG. 18 of Embodiment 1 when transmitting grant information and UE intermittent reception information from the eNB to the ONU, a line for transmitting normal uplink data Is configured to use physically different lines, but may be configured to share physical lines and identify grant information, UE intermittent reception information, and normal uplink data using a layer 2 or higher control protocol.
  • FIG. 28, FIG. 29 and FIG. 30 show examples using VLAN, respectively.
  • the ONU 150 includes a VLAN identification / distribution unit 25, which identifies grant information, UE intermittent reception information, and normal uplink data by a VLAN tag of a signal from the eNB, and each of the buffer status prediction unit 24 and the sleep / wakeup The data is distributed to the determination unit 32 and the Ethernet frame buffer unit 11.
  • the eNB and the ONU are separate devices, and are configured to be connected by a physical line, but are an integrated device having an eNB function and an ONU function.
  • the OLT and LTE (registered trademark) host devices are separate devices and are connected by physical lines, whereas the OLT function and the LTE (registered trademark) host device are connected. It is set as the structure made into an integrated apparatus provided with the function as an apparatus.
  • the present invention can be applied to the information and communication industry.
  • Ether frame buffer unit 12 Frame reading control unit 13: PON frame processing unit 14: PHY 21: Buffer state observation unit 22: Transmission permission / GATE reading unit 23: REPORT generation unit 24: Buffer state prediction unit 25: VLAN identification / distribution unit 31: Buffer state observation unit 32: Sleep / activation determination unit 33: Sleep control 34 : Sleep control command generation unit 35: Transmission permission / GATE reading unit 36: Sleep parameter storage memory 37: Timer 38: Pause unit 39: VLAN identification / sorting unit 101: UE 103: eNB 110: Host device 130: PON 140: OLT 150: ONU

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computing Systems (AREA)
  • Small-Scale Networks (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

 本発明は、セルラーとPONが直列に接続されている光無線アクセスシステムにおいて、双方の動的スケジューリングおよび休止制御による、通信遅延時間、消費電力及びコストの増加を防ぐことを目的とする。 本発明の光無線アクセスシステム及びその動作方法では、ONUは、基地局から、光無線アクセスシステムの動的スケジューリング制御に関する情報又は光無線アクセスシステムの間欠受信制御に関する情報或いはこれら両方の情報を取得し、それらの情報をONUで、あるいはOLTに転送し、PONのスケジューリングやスリープ制御のパラメータとして用いる。

Description

光無線アクセスシステム
 本発明は、セルラーシステムと光アクセスシステム接続されたシステムにおける、動的リソース割当およびスリープ(休止)制御のための情報の伝達に関する。
 LTE(Long Term Evolution)(登録商標)やWiMAX(Worldwide Interoperability for Microwave Access)等のセルラーシステムにおいて、端末は基地局と無線通信を行う。通常1つの基地局は複数の端末と通信を行っているので、端末同士の信号が混信しないよう、基地局は有限の通信容量(リソース)を各端末に動的に割り当てるスケジューリングを行う。例えばLTE(登録商標)の上り通信を例にとると、端末(UE:User Equipment)が上り信号を生成してから基地局(eNB)にデータを送信するまでのシーケンスは図1のようになる。まずUEがeNBに対して帯域要求を行うと、eNBが上りデータのスケジューリングに必要な情報(バッファ量やチャネル状態など)を得るため、UEにこれらの情報を送るためのリソースを割り当て、レスポンスにより通知する。UEが割り当てられたリソースで上りデータのスケジューリングに必要な情報をeNBに送ると、eNBはスケジューリングを行い、上りデータを送るためのリソースをスケジューリンググラントによりUEに割り当てる。これらのやりとりを経て、UEは初めて上りデータをeNBに送ることができる。下り通信に関しては、信号を発する基地局が1つなので、端末-基地局間で混信を避けるためのやりとりを通信前にすることは通常ない。
 このようなセルラーシステムにおいて、基地局と、その上位の装置間の接続形態としては、PON(Passive Optical Network)システムを利用した1対多の形態をとることもできる。この場合図2に示すように、上位装置-eNB間を光ファイバと光スプリッタで接続する。この構成により、複数の基地局をひとつの上位装置で収容できるため、基地局の数に対する上位装置の数や、光ファイバの数を減らすことができ、経済性が向上する。PONの信号多重方法としては、TDM、WDM、FDM等が採用できる。
 PONにおいても、1つのOLT(Optical Line Terminal)は複数のONU(Optical Network Unit)と通信を行うため、OLTは容量を各ONUに動的に割り当てるスケジューリングを行っている。通常のPONにおけるONUが上り信号を送信するシーケンスを図3に示す。ONUは最初に、送信バッファに蓄積されているデータ量の情報(REPORT情報)をOLTから送られてくる送信許可信号が指定したタイミングでOLTに送信する。IEEE 802.3標準のEthernet(登録商標) PONでは、REPORTメッセージを用いて送信する。ITU-TのG-PON(G.984シリーズ)、XG-PON(G.987シリーズ)では、上り信号フレームのヘッダ内に定められたフィールドを用いて送信する。OLTは、REPORT情報をもとにスケジューリングを行い、上りデータを送信するためのリソースをONUに割り当て、それをONUに通知する。IEEE 802.3標準のEthernet(登録商標) PONでは、GATEメッセージを用いて通知する。ITU-TのG-PON、XG-PONでは、下り信号フレームのヘッダ内に定められたフィールドを用いて通知する。これらのやりとりを経て、ONUははじめて上りデータをOLTに送信することができる。下り通信に関しては、特にOLT-ONU間で通信前のやりとりはない。
 図2のようなシステムにおいては、1つのシステム内でセルラーとPON、2つのシステムのスケジューラが直列に接続されている状態となり、例えばUEからの上り通信のシーケンスは図1及び図3より、図4のようになる。この場合、LTE(登録商標)の上り通信のシーケンスを一通り経てONUに上りデータが到着した時点から、PONの上り通信のシーケンスが開始することとなる。
 一方でセルラーシステムやPON等のシステムにおいては、装置の省電力化を目的として、通信を行っていない時間、複数存在する側の装置の一部を休止させる機能が備わっていることがある。いずれのシステムにおいても通常送信側に関しては、送信データがないときに休止状態に入り、送信データが生じたときに休止状態から復帰させる。受信側に関しては休止しながらも受信すべきデータが存在する場合があるので、一定時間ごとに休止状態から復帰し、受信すべきデータが存在するかを確認するという設定をとることが多い。例としてLTE(登録商標)の間欠受信に関して、通常の受信状態から間欠受信を開始するまでと、間欠受信を終了するときについて、それぞれ図5及び図6に示す。UEは最後のトラフィックからある一定時間T1以上トラフィックがない場合に間欠受信を開始する(図5)。間欠受信状態にあるときには、受信に関する装置の一部をT2の時間だけ休止し、T3の時間で休止状態から復帰するという動作を繰り返す。UEが間欠受信状態を終了する条件は、上りトラフィックが発生するか、T3の復帰している時間内に下り通信のリソースが割り当てられていることを検知した場合である。前者の場合には、上りトラフィックが発生した時点で間欠受信が終了し、図1に示す通常の上り通信が開始されることとなり、後者の場合は図6のように、T3の復帰周期で下りデータを受信する。T1-T3という間欠受信の周期パラメータはeNBから接続の際に指定されるが、間欠受信状態に入るタイミングをUEがeNBに通知する規定などは特になく、端末側の自律的な動作とすることができる。
 一方、PONにおいてONUのスリープを実現するための制御メッセージや状態遷移図は、ITU-T G.987.3(非特許文献1)で規定されている。OLTが各ONUにスリープを許可/禁止するためのSleep Allow(ON)、Sleep Allow(OFF)、ONUがOLTに対してスリープ/起床を要求するSleep Request(Sleep)、Sleep Request(Awake)等のメッセージが規定されている。G.987.3に基づくPONスリープは、OLTがONUのスリープ状態を管理するという点でLTE(登録商標)の間欠受信と異なる。スリープを開始するまでと、スリープ状態からアクティブ状態に遷移するまでの手順の例について、それぞれ図7及び図8に示す。一定時間T4の間だけOLTが該当ONUの上り/下りフレームを検知しなかった場合、OLTからONUにSleep Allow(ON)を送り、ONUはスリープ状態に遷移できると判断すれば、OLTにSleep Request(Sleep)を送ってからスリープ状態に入る(図7)。スリープはLTE(登録商標)の間欠受信と同様に周期的なものであり、T5時間の間だけスリープ状態を維持した後にT6時間だけ復帰するという動作を繰り返す。ONUがスリープ状態からアクティブ状態に遷移する条件は、上りトラフィックが発生するか、T6の時間内にOLTからSleep Allow(OFF)を受け取った場合である。前者の場合にはONUはスリープ状態を終了し、図3に示す通常の上り通信が開始されることとなる。後者の場合には、図8に示すように、ONUはT6の復帰周期内にSleep Allow(OFF)を受け取り、Sleep Request(Awake)を返し、アクティブ状態に遷移した後に自分宛てのフレームを受け取る。
 上記のようにLTE(登録商標)、PONそれぞれに間欠受信やスリープという機能が備わっている場合に、図2のようにそれらを組み合わせたシステムにおいても、それぞれのシステムが装置の一部を休止させることができる。図2のようなシステムにおいて、PONのスリープ開始までのシーケンスを図9及び図10に示す。図9及び図10は、間欠受信およびスリープ状態に遷移する前の最後のトラフィックが下りデータであった場合と上りデータであった場合をそれぞれ表している。どちらの場合に関しても、LTE(登録商標)ではUEが最後のトラフィックからT1が経過した時点で間欠受信に遷移し、PONでは最後のトラフィックからT4が経過した時点でOLTがSleep Allow(ON)をONUに送信し、ONUがSleep Request(Sleep)を送信してから、スリープ状態に遷移している。
 通常LTE(登録商標)のeNBは、T1-T3の値を保持し、UEの間欠受信の開始時間や周期を把握する。同様にPONのOLTはONUのスリープ状態を管理し、スリープ状態や周期を把握する。よってそれぞれ単独のシステムにおいて下りトラフィックが発生した際には、eNBおよびOLTは、図11及び図12のように、下り信号をバッファし、それぞれUEの間欠受信とONUのスリープからの復帰周期にタイミングを合わせて下り通信を行うことで、フレームロスを回避することが可能である。このバッファ時間を復帰周期待ち時間と呼ぶこととする。
 動的スケジューラを用いる1対多システムを直列に接続した図2のようなシステムにおいて生じる問題を以下に3例示す。
 1例目は、通常の上りデータ通信時における例である。上りデータ通信のシーケンスは図4に示した通りであるが、eNBと上位装置間をPONではなく1対1の光ファイバ通信で接続する場合には、上りデータ通信のシーケンスは図13のようになる。図13に比べて図4においては、PONのスケジューラの分だけ上りデータがUEにおいて発生してから上位装置に到達するまでの信号のやりとりの数が多く、結果的に通信遅延時間の増大が予想される。これは、低遅延性が要求されるプロトコルやアプリケーションの使用時に悪影響を及ぼす可能性がある。
 2例目は、PONのONUがスリープ状態にある場合における、上り通信の例である。UEで上りデータが発生してからeNBの上位装置に到達するまでのシーケンスを図14に示す。UEはLTE(登録商標)の通常の上り通信のシーケンスを経てeNBに上りデータを送信し、eNBはONUに上りデータを受け渡す。このとき、スリープ状態にあるONUはeNBから上りデータを受け取ると、次の復帰周期でアクティブ状態に遷移するか、もしくは即座にアクティブ状態に遷移する準備を開始する。いずれの動作となるかは実装法によるが、後者のほうがアクティブ状態に遷移するまでの時間は短く、またいずれにしても上りデータはONUがアクティブ状態に遷移するまでの間だけ、待ち時間が長くなることとなる。ONUがスリープ状態にない場合には、上り通信のシーケンスは図4のようになる。図4に比べて図14においては、スリープ状態からアクティブ状態に遷移するまでの待ち時間の分、通信遅延時間が増大することが予想される。1例目と同じく、低遅延性が要求されるプロトコルやアプリケーションの使用時に悪影響を及ぼす可能性がある。
 3例目は、LTE(登録商標)のUEが間欠受信状態に、PONのONUがスリープ状態にそれぞれある場合の下り通信の例である。上位装置から下りデータが送信されてからUEで受信されるまでのシーケンスを図15に示す。下りデータはPONシステムにおいて、ONUのスリープ復帰周期待ちのためOLTでバッファされた後、LTE(登録商標)システムにおいてUEの間欠受信復帰周期待ちのためeNBで再度バッファされている。これにより、システム全体で備えておくべきメモリの容量が増加し、高コスト化や消費電力の増大につながる。
 このように、セルラーとPONが直列に接続されている図2のようなシステムにおいて、双方の動的スケジューリングおよび休止制御が独立で動作すると、システム全体として通信遅延時間の増大や、消費電力、コストの増加を招く。
 本発明は、セルラーとPONが直列に接続されている光無線アクセスシステムにおいて、双方の動的スケジューリングおよび休止制御による、通信遅延時間、消費電力及びコストの増加を防ぐことを目的とする。
 本発明の光無線アクセスシステムは、
 無線端末と通信を行う1つ以上の基地局が上位装置と光アクセスシステムを介して接続される光無線アクセスシステムであって、
 前記光アクセスシステムは、前記基地局側に配置される1つ以上の光ネットワークユニット(ONU)、前記上位装置側に配置される光加入者終端装置(OLT)及び前記ONUと前記OLTとを接続する光伝送路を備え、
 前記ONUは、前記基地局から、前記光無線アクセスシステムの動的スケジューリング制御又は間欠受信制御に関する情報を取得する。
 本発明の基地局は、
 無線端末と通信を行う1つ以上の基地局が上位装置と光アクセスシステムを介して接続される光無線アクセスシステムに備わる前記基地局であって、
 前記光アクセスシステムは、前記基地局側に配置される1つ以上の光ネットワークユニット(ONU)、前記上位装置側に配置される光加入者終端装置(OLT)及び前記ONUと前記OLTとを接続する光伝送路を備え、
 前記ONUは、前記基地局から、前記光無線アクセスシステムの動的スケジューリング制御又は間欠受信制御に関する情報を取得する。
 本発明の光無線アクセスシステムの動作方法は、
 無線端末と通信を行う1つ以上の基地局が上位装置と光アクセスシステムを介して接続される光無線アクセスシステムの動作方法であって、
 前記光アクセスシステムは、前記基地局側に配置される1つ以上の光ネットワークユニット(ONU)、前記上位装置側に配置される光加入者終端装置(OLT)及び前記ONUと前記OLTとを接続する光伝送路を備え、
 前記ONUは、前記基地局から、前記光無線アクセスシステムの動的スケジューリング制御又は間欠受信制御に関する情報を取得する。
 本発明のOLTは、
 無線端末と通信を行う1つ以上の基地局が上位装置と光アクセスシステムを介して接続された光無線アクセスシステムであり、かつ、前記基地局側に配置される1つ以上の光ネットワークユニット(ONU)、前記上位装置側に配置される光加入者終端装置(OLT)及び前記ONUと前記OLTとを接続する光伝送路を備える光無線アクセスシステムにおける前記OLTであって、
 前記光無線アクセスシステムの動的スケジューリング制御又は間欠受信制御に関する情報を、前記ONUから取得する。
 本発明のOLTでは、前記ONUが前記無線端末から受け取った前記無線端末の間欠受信に関する情報を、前記ONUから受信してもよい。
 本発明のOLTでは、前記無線端末の間欠受信に関する情報を用いて、前記ONUをスリープさせるか否かの判定を行うとともに、前記無線端末の下りデータの前記基地局における待ち時間を最小にするような前記ONUのスリープ開始タイミングおよび周期の計算を行ってもよい。
 本発明の上位装置は、本発明に係るOLT又は当該OLTとしての機能を備え、前記OLT又は当該OLTとしての機能と一体型の装置となっている。
 本発明のONUは、
 無線端末と通信を行う1つ以上の基地局が上位装置と光アクセスシステムを介して接続された光無線アクセスシステムであり、かつ、前記基地局側に配置される1つ以上の光ネットワークユニット(ONU)、前記上位装置側に配置される光加入者終端装置(OLT)及び前記ONUと前記OLTとを接続する光伝送路を備える光無線アクセスシステムにおける前記ONUであって、
 前記基地局から、前記光無線アクセスシステムの動的スケジューリング制御又は間欠受信制御に関する情報を取得する。
 本発明では、前記ONUは、通常の上りデータを送信する線とは物理的に異なる回線を用いて、前記光無線アクセスシステムの動的スケジューリング制御又は間欠受信制御に関する情報を取得してもよい。
 本発明では、前記ONUは、レイヤ2以上の制御プロトコルを用いて、前記光無線アクセスシステムの動的スケジューリング制御又は間欠受信制御に関する情報を取得してもよい。
 本発明のONUでは、前記基地局から前記無線端末へのグラント情報を受け取り、当該グラント情報を受け取ったことを契機に、前記OLTへの上りデータを送信するシーケンスを開始してもよい。
 本発明のONUでは、
前記基地局から前記無線端末へのグラント情報を元に、前記OLTへの上りデータのバッファ内フレーム量を予測するバッファ状態予測部と、
 前記バッファ状態予測部から通知されるバッファ量に基づきREPORTメッセージを生成するREPORT生成部と、
 を備えてもよい。
 本発明のONUでは、前記基地局がグラント情報を決定した時点で前記基地局から前記無線端末へのグラント情報を受け取り、当該グラント情報を受け取ったことを契機に、スリープ状態からアクティブ状態への遷移を開始してもよい。
 本発明のONUでは、前記基地局から前記無線端末へのグラント情報を受け取り、当該グラント情報を受け取ったことを契機に、当該ONUをアクティブ状態に遷移させる動作を開始するスリープ/起動判定部を備えてもよい。
 本発明のONUでは、前記基地局から受け取った間欠受信情報を前記OLTに転送してもよい。
 本発明の基地局は、本発明に係るONU又は当該ONUとしての機能を備え、前記ONU又は当該ONUとしての機能と一体型の装置となっている。
 本発明の光無線アクセスシステムは、本発明に係るOLTと一体の上位装置と、本発明に係るONUと一体の基地局と、を備える。
 なお、上記各発明は、可能な限り組み合わせることができる。
 本発明によれば、セルラーとPONが直列に接続されている光無線アクセスシステムにおいて、双方の動的スケジューリングおよび休止制御による、通信遅延時間、消費電力及びコストの増加を防ぐことができる。
LTE(登録商標)における上り通信シーケンスの一例を示す。 セルラーシステムとPONが直列に接続されている光無線アクセスシステムの一例を示す。 PONにおける上り通信シーケンスの一例を示す。 光無線アクセスシステムの上り通信シーケンスの一例を示す。 LTE(登録商標)における間欠受信の開始シーケンスの一例を示す。 LTE(登録商標)における間欠受信の終了シーケンスの一例を示す。 PONにおけるスリープの開始シーケンスの一例を示す。 PONにおけるスリープの終了シーケンスの一例を示す。 関連する光無線アクセスシステムにおけるスリープの開始シーケンスの第1例を示す。 関連する光無線アクセスシステムにおけるスリープの開始シーケンスの第2例を示す。 LTE(登録商標)における間欠受信時に下りデータが発生した場合を示す。 PONにおけるスリープ時に下りデータが発生した場合を示す。 関連する光無線アクセスシステムにおいてeNBと上位装置間が1対1で接続されている場合の上り通信シーケンスの一例を示す。 関連する光無線アクセスシステムにおいてPONのONUがスリープ状態にある場合の上り通信シーケンスの一例を示す。 関連する光無線アクセスシステムにおいてIEが間欠受信状態にありかつONUがスリープ状態にある場合の下り通信シーケンスの一例を示す。 実施形態1に係る光無線アクセスシステムにおける上り通信シーケンスの一例を示す。 実施形態1における本発明に関連するONUの一例を示す。 実施形態1に係るONUの一例を示す。 実施形態2に係る光無線アクセスシステムにおける上り通信シーケンスの一例を示す。 実施形態2における本発明に関連するONUの一例を示す。 実施形態2に係るONUの一例を示す。 実施形態3に係る光無線アクセスシステムにおける下り通信時の間欠受信及びスリープ開始シーケンスの一例を示す。 実施形態3に係る光無線アクセスシステムにおける上り通信時の間欠受信及びスリープ開始シーケンスの一例を示す。 実施形態3に係る光無線アクセスシステムにおいてUEが間欠受信状態でありかつONUがスリープ状態である場合の下り通信シーケンスの一例を示す。 実施形態3における本発明に関連するONUの一例を示す。 実施形態3に係るONUの一例を示す。 実施形態3に係る間欠受信情報の流れの一例を示す。 実施形態4に係るONUの第1例を示す。 実施形態4に係るONUの第2例を示す。 実施形態4に係るONUの第3例を示す。
 添付の図面を参照して本発明の実施形態を説明する。以下に説明する実施形態は本発明の実施の例であり、本発明は、以下の実施形態に制限されるものではない。これらの実施の例は例示に過ぎず、本発明は当業者の知識に基づいて種々の変更、改良を施した形態で実施することができる。なお、本明細書及び図面において符号が同じ構成要素は、相互に同一のものを示すものとする。
 本発明の光無線アクセスシステムは、1つ以上の基地局が上位装置と光アクセスシステムを介して接続される。光アクセスシステムは、基地局側に配置される1つ以上の光ネットワークユニット(ONU)と、上位装置側に配置される光加入者終端装置(OLT)と、ONUとOLTとを接続する光伝送路を備える。光伝送路は、光ファイバやカプラなどの光部品を備える。本発明の光無線アクセスシステム及びその動作方法では、ONUは、基地局から、光無線アクセスシステムの動的スケジューリング制御に関する情報又は光無線アクセスシステムの間欠受信制御に関する情報或いはこれら両方の情報を取得し、それらの情報をONUで、あるいはOLTに転送し、PONのスケジューリングやスリープ制御のパラメータとして用いる。
(実施形態1)
 課題の1例目を解決するよう、開発技術を適用したシステムにおける、上りデータ通信のシーケンスを図16に示す。開発技術を適用していない場合である図4と異なる点は、まず図4においてはONUに上りデータが到着してからPONの上り通信のシーケンスを開始しているのに対し、図16においては、eNBがグラント情報を決定した時点で、UEだけでなくONUにもその情報を受け渡しており、ONUがグラント情報を受け取った時点からPONの上り通信のシーケンスを開始している点である。ONUはグラント情報を元にバッファ量を予測してREPORT信号を生成し、OLTに送信する。図4に比べ、図16においてはPONの上り通信のシーケンスの開始時間が早い分、上位装置に上りデータが到着するまでの遅延時間が減少する。
 PONの上り通信動的スケジューリング機能を実現するための、ONUの機能ブロック図の一例を図17に示す。上り通信動的スケジューリングに関係のない部分は省略している。PONの下位装置(eNB103)からの上りデータはイーサフレームバッファ部11に送られ、このイーサフレームバッファ部11内のフレーム量をバッファ状態観測部21が読み込み、REPORT生成部23に通知している。REPORT生成部23は通知されたバッファ内フレーム量を元にREPORTメッセージを生成する。イーサフレームバッファ部11内のフレームはフレーム読み出し制御部12により読み出され、PONフレーム処理部においてPONフレーム化されてPHY14から送信される。これらのREPORTメッセージおよびフレームは、OLTから受け取った送信許可/GATEメッセージを元に、送信許可/GATE読み込み部22によりタイミングを調整され、送信されている。
 上記のような上り通信動的スケジューリング動作を実現する図17のONU150に対し、開発技術を適用した場合のスケジューリング動作に関する機能ブロックを図18に示す。本実施形態に係るONU150は、バッファ状態予測部24を備える。図16の方式を実現する上で重要な点は、REPORTの生成に、eNB103から受け取るLTE(登録商標)グラント情報を元に予測したバッファ内フレーム量の情報を用いるという点である。ただし、実際のバッファ状態を観測し、さらにその情報もバッファ内フレーム量の予測や他の用途に用いてもよい。以降に詳細を説明する。
 まずeNB103からは、ONUに向けて上りデータだけではく、LTE(登録商標)のグラント情報も送信されている。バッファ状態予測部24はこの情報を受け取り、ある時間後のバッファ内フレーム量を予測する。REPORT生成部23は、バッファ状態予測部24から通知されるバッファ量に基づき、REPORTメッセージを生成する。このREPORTを用いて通常の上り通信のスケジューリングを行うことにより、ONU150はeNB103からのフレームを待つことなく、グラント情報が決定した時点で上り通信のシーケンスを開始することができ、上りデータが上位装置に到着するまでの通信遅延時間を減少させることができる。
 以上説明したように、実施形態1に係る発明では、上り通信において、PONの上りスケジューリングを早く開始することができ、結果としてUEから上位装置までの通信遅延時間が減少する。
(実施形態2)
 課題の2例目を解決するよう、開発技術を適用したシステムにおける、PONのONUがスリープ状態にあるときの上りデータ通信のシーケンスを図19に示す。開発技術を適用していない図14と異なる点は、まず図14においてはONUに上りデータが到着してからONUがスリープ状態からアクティブ状態への遷移を開始するのに対し、図19においては、eNBがグラント情報を決定した時点で、UEだけでなくONUにもその情報を受け渡しており、ONUがグラント情報を受け取った時点からスリープ状態からアクティブ状態への遷移を開始している点である。実際に上りデータがONUに到着する時点では、ONUは既にアクティブ状態になっているか、あるいはアクティブ状態に遷移していないとしても、図14に比べて上りデータの待機時間は短くなるはずである。どちらの場合においても、図14に比べ、図19においてはPONのスリープ状態からアクティブ状態への遷移の開始時間が早い分、上位装置に上りデータが到着するまでの遅延時間が減少する。
 PONのスリープ制御機能を実現するための、ONUの機能ブロック図の一例を図20に示す。ONU150は、バッファ状態観測部31と、スリープ/起動判定部32と、スリープ制御コマンド読み込み部33と、スリープ制御コマンド生成部34と、送信許可/GATE読み込み部35と、スリープパラメータ格納用メモリ36と、タイマ37と、休止部38と、を備える。スリープ制御に関係のない部分は省略している。
 アクティブ状態にあるONUがスリープ状態に遷移する条件は、OLTからのSleep Allow(ON)を受信することである。Sleep Allow(ON)メッセージは、スリープ制御コマンド読み込み部33を経て、スリープ/起動判定部32に指示を送る。スリープ/起動判定部32はSleep Allow(ON)を受け取ると、バッファ状態観測部31から通知されるイーサフレームバッファ部11内のイーサフレーム量をパラメータとして、スリープ状態に遷移するかどうかの判断を行う。スリープ状態に遷移すると判断した場合には、スリープ/起動判定部32はSleep Request(Sleep)を生成するようスリープ制御コマンド生成部34に指示を送り、Sleep Request(Sleep)が送信許可/GATE読み込み部35によりタイミングを調整され、OLTに送信されることとなる。その後、スリープ/起動判定部32は休止部38をスリープ状態に遷移させる。なお、図中の休止部38は、便宜上、図中の他の機能部と独立して記載しているが、実際には、他の機能部のうち休止させて問題ない部分(例えば図中のPHY14)を含む。
 スリープ時間や復帰周期等のパラメータはスリープパラメータ格納用メモリ36に格納されており、スリープ起動/判定部32はこのリープパラメータ格納用メモリ36からパラメータを参照し、タイマ37によりT5時間の間だけスリープ状態を維持した後にT6時間だけ復帰するという動作を繰り返す。メモリ36内のスリープパラメータは、必要に応じてOLTからのメッセージを通じて書き換えられる。
 スリープ状態にあるONU150がアクティブ状態に遷移する条件としては、2つの場合がある。
 1つめは、スリープ状態からの復帰周期に、OLTからSleep Allow(OFF)を受信した場合である。Sleep Allow(OFF)はスリープ制御コマンド読み込み部33を通じてスリープ/起動判定部32に送られる。スリープ/起動判定部32はSleep Allow(OFF)を受け取ると、Sleep Request(Awake)を生成するようスリープ制御コマンド生成部34に指示を送り、Sleep Request(Awake)が送信許可/GATE読み込み部35によりタイミングを調整され、OLTに送信されることとなる。その後、スリープ/起動判定部32は休止38部をアクティブ状態に遷移させ、通常の下り通信が開始される。
 2つめは、イーサフレームバッファ部11にイーサフレームが到着した場合である。スリープ状態にあるときにeNB103からイーサフレームバッファ部11にフレームが到着すると、バッファ状態観測部31がスリープ/起動判定部32にフレームの到着を通知する。スリープ/起動判定部32はSleep Request(Awake)を生成するようスリープ制御コマンド生成部34に指示を送り、Sleep Request(Awake)が送信許可/GATE読み込み部35によりタイミングを調整され、OLTに送信されることとなる。その後、スリープ/起動判定部32は休止部38をアクティブ状態に遷移させ、通常の上り通信スケジューリング動作が開始される。
 上記のようなスリープ制御を実現する図20のONUに対し、開発技術を適用した場合のスリープ制御に関する機能ブロックを図21に示す。図19の方式を実現する上で重要な点は、スリープ状態にあるONU150がアクティブ状態に遷移する際、スリープ/起動判定部32はバッファ状態観測部31からのフレーム到着通知ではなく、eNB103から受け取るLTE(登録商標)グラント情報(またはグラント情報をもとに生成された所定の信号)を元にONU150をアクティブ状態に遷移させる動作を開始するという点である。以降に詳細を説明する。
 まずeNB103からは、ONU150に向けて上りデータだけではく、LTE(登録商標)のグラント情報も送信されている。スリープ/起動判定部32はこの情報を受け取り、Sleep Request(Awake)を生成するようスリープ制御コマンド生成部34に指示を送り、Sleep Request(Awake)が送信許可/GATE読み込み部35によりタイミングを調整され、OLTに送信されることとなる。このとき、スリープ/起動判定部32は休止部38をアクティブ状態に遷移させ、通常の上り通信スケジューリングを開始することとなる。
 Sleep Request(Awake)の送信とアクティブ状態への遷移のタイミングは、その後のPONのGATEがLTE(登録商標)の上りデータよりも後に来るようであればできる限り早いタイミングとなるし、LTE(登録商標)の上りデータのほうが後に来るようであれば、そのタイミングにPONのGATEが間に合うよう少し遅れたタイミングとしてもよい。
 これらの動作により、ONU150はeNB103からの上りフレームを待つことなく、LTE(登録商標)のグラント情報(またはグラント情報をもとに生成された所定の信号)を受け取った時点からアクティブ状態への遷移を開始することができ、上位装置に上りデータが到着するまでの遅延時間が減少する。
 実施形態2では、ONUがスリープ状態にある場合の上り通信において、ONUのスリープ状態からアクティブ状態への遷移を早く開始することができ、結果としてUEから上位装置までの通信遅延時間が減少する。
(実施形態3)
 課題の3例目を解決するよう、開発技術を適用したシステムにおける、PONのONUがスリープ状態に遷移するまでのシーケンスを図22及び図23に示す。図22及び図23は、間欠受信およびスリープ状態に遷移する前の最後のトラフィックが下りデータであった場合と上りデータであった場合をそれぞれ表している。開発技術を適用していない場合のシーケンスはそれぞれ図9及び図10にあたる。
 図22及び図23に示すシーケンスにおいては、図9及び図10と異なり、OLTは、スリープ状態への遷移の判断に、PONのスリープ制御用のタイマ(図7におけるT4)の代わりに(またはT4に加えて)UE間欠受信情報も使用する。図22及び図23どちらの場合においても、eNBはUEごとの最後のトラフィックが発生した時間からのタイマにより各UEが間欠受信の状態にあるかどうかという予測を行っており、各UEの間欠受信開始時間および周期パラメータT2、T3等の情報をONUに渡す。
 ONUは渡されたUEの間欠受信の情報をOLTに転送し、OLTは渡された情報とタイマの情報を元に、ONUのスリープ状態への遷移の判断や、UEへの下り信号に対するeNBでの復帰待ち時間を最小にできるような、ONUのスリープ開始タイミングおよび周期(T5、T6)の計算を行う。スリープ状態へ遷移することとなれば、スリープパラメータを書き換え、計算したスリープ開始タイミングとなるようにSleep Allow(ON)をONUに送信する。
 ここで、ここまでの図では簡単のため、ひとつのeNBに対しひとつのUEを対応させているが、通常ひとつのeNBに対して接続するUEが複数存在する。その場合、複数のUEがそれぞれ固有の間欠受信開始時間と周期パラメータをもち、eNBがそれらの情報を全てONUに渡し、その情報を転送されたOLTはそれらすべての情報を元に、スリープ状態に遷移するかという決定を含め、ONUのスリープ開始タイミングおよび周期を決定しても良いし、eNBが複数のUEの間欠受信開始時間と周期パラメータを、OLTから見たときに復帰周期が重なるように調整する設定としておき、その情報をOLTに渡してもよい。後者の場合のほうが、ONUのスリープ時間が長くとれる。
 図22及び図23に示すようにスリープを開始した場合、UEが間欠受信状態に、ONUがスリープ状態にそれぞれある場合の下り通信のシーケンスは図24のようになる。開発技術を適用していない図15と比較すると、ONUのスリープがUEの間欠受信と同期しており、OLTはONUとUEの復帰周期を狙って下りデータを送信できるため、eNBにおける下りデータの復帰周期待ちのためのバッファ時間が短くなる。
 上位装置からUEまでのトータルのバッファ時間としては図15と比較して短くはならない場合もあり得るが、eNBでのバッファ時間を減らし、その分OLT側に増やすことにより、システム全体としてはバッファに用いるメモリをネットワークの上位側に集約することができ、省電力化および低コスト化が期待できる。
 PONのスリープ制御機能を実現するための、ONUの機能ブロック図の一例は図20に示した通りであるが、それに対応するOLTの機能ブロック図を図25に示す。OLT140は、イーサフレームバッファ部41と、フレーム読み出し制御部42と、PONフレーム処理部43と、PHY44と、バッファ状態観測部51と、スリープ/起動制御部52と、スリープ制御コマンド生成部53と、スリープ制御コマンド読み込み部54と、タイマ55と、スリープパラメータ格納用メモリ56と、を備える。スリープ制御に関係のない部分は省略している。
 通常スリープ機能がない場合、上位装置から送られてくる下り信号のイーサフレームはバッファ部41から読み出された順にPONフレーム処理部43にてPONフレーム処理を施され、PHY44で光信号に変換されて光ファイバで伝送される。スリープ機能の核となるのはONUのスリープ状態を決定するスリープ/起動制御部52であり、イーサフレームのバッファ量とタイマの値を基に、各ONUのアクティブ状態とスリープ状態の遷移の判断を決定する。
 バッファ状態観測部51がイーサフレームのバッファ部41を観測し、バッファ部41にフレームがないONUに対しては、最後の上り/下りトラフィックからタイマ55がT4経過した時点でスリープ状態に遷移させるよう、スリープ制御コマンド生成部53によりSleep Allow(ON)を生成させる。
 ONUがスリープ状態にあるかどうかは、スリープ制御コマンド読み込み部54がSleep Request(Sleep)をONUから受け取ることにより把握する。スリープ状態にあるONU宛のフレームをバッファ状態観測部51が検知すると、スリープ/起動制御部52はONUをアクティブ状態に遷移させるよう、スリープ制御コマンド生成部53によりSleep Allow(OFF)を生成させる。この際、スリープ/起動制御部52はONUがスリープ状態から復帰しているT6の時間を狙ってSleep Allow(OFF)が届くよう、スリープコマンド生成のタイミングを調整することができる。
 ONUがアクティブ状態に遷移したかどうかは、スリープ制御コマンド読み込み部54がSleep Request(Awake)をONUから受け取ることにより把握する。ONUがアクティブ状態にあることを確認すると、スリープ/起動制御部52はバッファ部41からONU宛てのフレームを読み出すようフレーム読み出し制御部42に指示し、フレームを送信させる。
 上記のようなスリープ動作を実現する図25のOLT140に対し、開発技術を適用した場合のスリープ制御に関する機能ブロックを図26に示す。図22及び図23の方式を実現する上で重要な点は、OLTのスリープ/起動制御部52はONUのスリープ状態への遷移の判断にタイマ55の情報だけでなく、ONUから転送されたeNBからのUEの間欠受信に関する情報も用いるという点である。以降に詳細を説明する。
 開発技術を適用したシステムのUEの間欠受信情報の流れを図27に示す。図27において、eNBはUEごとの最後のトラフィックが発生した時間からのタイマ55により各UEが間欠受信の状態にあるかどうかという予測を行っており、1つあるいは複数のUEに関する間欠受信情報(間欠受信開始時間、周期パラメータT2、T3など)をONUに渡す。ONUは渡されたUEの間欠受信情報をOLTに転送する。転送には、PONの制御フレームを用いてもよいし、特定のVLAN-IDを割り当てたデータフレームを用いてもよい。
 図26において、OLTに転送されたUEの間欠受信情報はスリープ制御コマンド読み込み部54を通してスリープ/起動制御部52が受け取る。スリープ/起動制御部52は、その情報とタイマの情報を元に、ONUをスリープ状態へ遷移させるかという判断と、各UEへの下り信号に対するeNBでの復帰待ち時間を最小にできるようなONUのスリープ開始タイミングおよび周期の計算を行う。計算結果によってはスリープ状態に遷移しないという判断もあり得るが、計算の結果スリープ状態に遷移することになれば、計算した結果である周期パラメータを元にスリープパラメータ格納メモリ56を書き換え、計算通りのスリープ開始時間となるよう、スリープ制御コマンド生成部53にコマンド生成指示を出すタイミングを調整し、ONUをスリープ状態に遷移させる。
 このとき、OLTはUEの復帰時間を狙って下り信号を送信した場合に、ONUの復帰時間も狙っているはずなので、下り信号はOLTであらかじめバッファ部41により復帰周期を待って送信されることとなる。それにより、OLTでの復帰待ち時間は開発技術を適用しない場合よりも大きくなる可能性もある。しかしeNBでのUEの間欠受信復帰待ち時間は減少するはずであるので、システム全体としてはバッファ用のメモリをネットワークの上位側に集約することができ、省電力化および低コスト化が期待できる。
 実施形態3では、UEが間欠受信状態に、ONUがスリープ状態にある場合の下り通信において、eNBでのUEの復帰周期待ち時間を短縮することができ、結果としてeNBでのバッファ用メモリ量を削減し、上位のOLTに集約することで、省電力化および低コスト化ができる可能性がある。
(実施形態4)
 実施形態1の図18、実施形態2の図21、実施形態3の図27においては、eNBからONUへグラント情報およびUEの間欠受信情報を送信する際に、通常の上りデータを送信する線とは物理的に異なる回線を用いる構成としたが、物理的回線を共有し、レイヤ2以上の制御プロトコルによりグラント情報、UEの間欠受信情報、通常の上りデータを識別する構成としてもよい。図28、図29及び図30にそれぞれVLANを用いた例を示す。
 eNBとONU間の物理的回線は一本のみであり、eNB103は異なる特定のVLANでグラント情報、UEの間欠受信情報、通常の上りデータを送信している。ONU150はVLAN識別/振り分け部25を備えており、ここでeNBからの信号のVLANタグによりグラント情報、UEの間欠受信情報、通常の上りデータを識別し、それぞれバッファ状態予測部24やスリープ/起動判定部32やイーサフレームバッファ部11に振り分ける。
(実施形態5)
 実施形態1~4では、eNBとONUが別々の装置となっており、物理的回線で接続されている構成としているのに対して、eNB機能とONU機能を備える一体型の装置とする。
(実施形態6)
 実施形態3では、OLTとLTE(登録商標)の上位装置が別々の装置となっており、物理的回線で接続されている構成としているのに対して、OLT機能とLTE(登録商標)の上位装置としての機能を備える一体型の装置とする構成とする。
(実施形態7)
 間欠受信に関して、上記においては間欠受信周期のパラメータは1種類であるとしているが、一定期間T7の間欠受信の後、T2よりもさらに長いT8という周期で間欠受信を行うというように、間欠受信の周期を複数段階設ける場合がある。例えば、LTE(登録商標)では、短周期と長周期の2種類の間欠受信周期に対してパラメータを設定可能である。その場合には、T7、T8をはじめパラメータの種類が増えることとなるが、それらの情報も、eNBからONUへ渡すUEの間欠受信情報に含むこととする。
(実施形態8)
 実施形態1~3の開発技術はそれぞれの課題を解決する別個の手段としているが、それらを組み合わせて用いる。
 本発明は情報通信産業に適用することができる。
11:イーサフレームバッファ部
12:フレーム読み出し制御部
13:PONフレーム処理部
14:PHY
21:バッファ状態観測部
22:送信許可/GATE読み込み部
23:REPORT生成部
24:バッファ状態予測部
25:VLAN識別/振り分け部
31:バッファ状態観測部
32:スリープ/起動判定部
33:スリープ制御
34:スリープ制御コマンド生成部
35:送信許可/GATE読み込み部
36:スリープパラメータ格納用メモリ
37:タイマ
38:休止部
39:VLAN識別/振り分け部
101:UE
103:eNB
110:上位装置
130:PON
140:OLT
150:ONU

Claims (17)

  1.  無線端末と通信を行う1つ以上の基地局が上位装置と光アクセスシステムを介して接続される光無線アクセスシステムであって、
     前記光アクセスシステムは、前記基地局側に配置される1つ以上の光ネットワークユニット(ONU)、前記上位装置側に配置される光加入者終端装置(OLT)及び前記ONUと前記OLTとを接続する光伝送路を備え、
     前記ONUは、前記基地局から、前記光無線アクセスシステムの動的スケジューリング制御又は間欠受信制御に関する情報を取得する光無線アクセスシステム。
  2.  無線端末と通信を行う1つ以上の基地局が上位装置と光アクセスシステムを介して接続される光無線アクセスシステムに備わる前記基地局であって、
     前記光アクセスシステムは、前記基地局側に配置される1つ以上の光ネットワークユニット(ONU)、前記上位装置側に配置される光加入者終端装置(OLT)及び前記ONUと前記OLTとを接続する光伝送路を備え、
     前記ONUは、前記基地局から、前記光無線アクセスシステムの動的スケジューリング制御又は間欠受信制御に関する情報を取得する基地局。
  3.  無線端末と通信を行う1つ以上の基地局が上位装置と光アクセスシステムを介して接続される光無線アクセスシステムの動作方法であって、
     前記光アクセスシステムは、前記基地局側に配置される1つ以上の光ネットワークユニット(ONU)、前記上位装置側に配置される光加入者終端装置(OLT)及び前記ONUと前記OLTとを接続する光伝送路を備え、
     前記ONUは、前記基地局から、前記光無線アクセスシステムの動的スケジューリング制御又は間欠受信制御に関する情報を取得する光無線アクセスシステムの動作方法。
  4.  無線端末と通信を行う1つ以上の基地局が上位装置と光アクセスシステムを介して接続された光無線アクセスシステムであり、かつ、前記基地局側に配置される1つ以上の光ネットワークユニット(ONU)、前記上位装置側に配置される光加入者終端装置(OLT)及び前記ONUと前記OLTとを接続する光伝送路を備える光無線アクセスシステムにおける前記OLTであって、
     前記光無線アクセスシステムの動的スケジューリング制御又は間欠受信制御に関する情報を、前記ONUから取得することを特徴とするOLT。
  5.  前記OLTは、前記ONUが前記無線端末から受け取った前記無線端末の間欠受信に関する情報を、前記ONUから受信することを特徴とする請求項4に記載のOLT。
  6.  前記OLTは、前記無線端末の間欠受信に関する情報を用いて、前記ONUをスリープさせるか否かの判定を行うとともに、前記無線端末の下りデータの前記基地局における待ち時間を最小にするような前記ONUのスリープ開始タイミングおよび周期の計算を行うことを特徴とする請求項4又は5に記載のOLT。
  7.  請求項4から6のいずれかに記載のOLT又は当該OLTとしての機能を備え、前記OLT又は当該OLTとしての機能と一体型の装置となっている上位装置。
  8.  無線端末と通信を行う1つ以上の基地局が上位装置と光アクセスシステムを介して接続された光無線アクセスシステムであり、かつ、前記基地局側に配置される1つ以上の光ネットワークユニット(ONU)、前記上位装置側に配置される光加入者終端装置(OLT)及び前記ONUと前記OLTとを接続する光伝送路を備える光無線アクセスシステムにおける前記ONUであって、
     前記基地局から、前記光無線アクセスシステムの動的スケジューリング制御又は間欠受信制御に関する情報を取得することを特徴とするONU。
  9.  前記ONUは、通常の上りデータを送信する線とは物理的に異なる回線を用いて、前記光無線アクセスシステムの動的スケジューリング制御又は間欠受信制御に関する情報を取得することを特徴とする請求項8に記載のONU。
  10.  前記ONUは、レイヤ2以上の制御プロトコルを用いて、前記光無線アクセスシステムの動的スケジューリング制御又は間欠受信制御に関する情報を取得することを特徴とする請求項8に記載のONU。
  11.  前記ONUは、前記基地局から前記無線端末へのグラント情報を受け取り、当該グラント情報を受け取ったことを契機に、前記OLTへの上りデータを送信するシーケンスを開始することを特徴とする請求項8から10のいずれかに記載のONU。
  12.  前記ONUは、
     前記基地局から前記無線端末へのグラント情報を元に、前記OLTへの上りデータのバッファ内フレーム量を予測するバッファ状態予測部と、
     前記バッファ状態予測部から通知されるバッファ量に基づきREPORTメッセージを生成するREPORT生成部と、
     を備えることを特徴とする請求項8から11のいずれかに記載のONU。
  13.  前記ONUは、前記基地局がグラント情報を決定した時点で前記基地局から前記無線端末へのグラント情報を受け取り、当該グラント情報を受け取ったことを契機に、スリープ状態からアクティブ状態への遷移を開始することを特徴とする請求項8から12のいずれかに記載のONU。
  14.  前記ONUは、前記基地局から前記無線端末へのグラント情報を受け取り、当該グラント情報を受け取ったことを契機に、当該ONUをアクティブ状態に遷移させる動作を開始するスリープ/起動判定部を備えることを特徴とする請求項8から13のいずれかに記載のONU。
  15.  前記ONUは、前記基地局から受け取った間欠受信情報を前記OLTに転送することを特徴とする請求項8から14のいずれかに記載のONU。
  16.  請求項8から15のいずれかに記載のONU又は当該ONUとしての機能を備え、前記ONU又は当該ONUとしての機能と一体型の装置となっている基地局。
  17.  請求項4から6のいずれかに記載のOLTと一体の上位装置と、
     請求項8から15のいずれかに記載のONUと一体の基地局と、
     を備える光無線アクセスシステム。
PCT/JP2013/083779 2012-12-25 2013-12-17 光無線アクセスシステム WO2014103804A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2014554343A JP5878991B2 (ja) 2012-12-25 2013-12-17 光無線アクセスシステム
CN201380067829.7A CN104956627B (zh) 2012-12-25 2013-12-17 基站、olt、onu、光无线接入系统及其动作方法
EP13869652.1A EP2953297B1 (en) 2012-12-25 2013-12-17 Optical-wireless access system
US14/654,783 US9788270B2 (en) 2012-12-25 2013-12-17 Optical-wireless access system
EP17167843.6A EP3223465B1 (en) 2012-12-25 2013-12-17 Optical-wireless access system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-280865 2012-12-25
JP2012280865 2012-12-25

Publications (1)

Publication Number Publication Date
WO2014103804A1 true WO2014103804A1 (ja) 2014-07-03

Family

ID=51020891

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/083779 WO2014103804A1 (ja) 2012-12-25 2013-12-17 光無線アクセスシステム

Country Status (5)

Country Link
US (1) US9788270B2 (ja)
EP (2) EP3223465B1 (ja)
JP (1) JP5878991B2 (ja)
CN (1) CN104956627B (ja)
WO (1) WO2014103804A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016115959A (ja) * 2014-12-11 2016-06-23 日本電信電話株式会社 光無線通信システムおよび光無線通信システムにおけるトラフィック制御方法
WO2016158846A1 (ja) * 2015-03-30 2016-10-06 日本電信電話株式会社 端局装置及び帯域割当方法
JP2016225901A (ja) * 2015-06-02 2016-12-28 日本電信電話株式会社 通信システム及び帯域割当方法
JP2017017620A (ja) * 2015-07-03 2017-01-19 日本電信電話株式会社 通信システム及び帯域割当方法
JP2017050775A (ja) * 2015-09-03 2017-03-09 Kddi株式会社 Ponシステムおよび通信方法
US9847837B2 (en) 2015-12-25 2017-12-19 Fujitsu Limited Optical line termination, communication system, and communication control method
US10567082B2 (en) 2017-06-09 2020-02-18 Fujitsu Limited Optical terminal device, optical terminating device, and communication control method
WO2023062697A1 (ja) * 2021-10-11 2023-04-20 日本電信電話株式会社 伝送システム、電力制御装置、電力制御方法及びプログラム

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102032363B1 (ko) * 2015-03-17 2019-10-16 한국전자통신연구원 Tdm-pon에서의 저지연 패킷 전송을 위한 onu, 그의 동작 방법 및 onu 제어 장치
US10979789B1 (en) 2020-06-15 2021-04-13 Corning Research & Development Corporation Wavelength-based uplink random access in an optical communications network for a wireless communications system (WCS)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011176555A (ja) * 2010-02-24 2011-09-08 Fujitsu Telecom Networks Ltd 伝送システムの省電力制御装置
JP2012074866A (ja) * 2010-09-28 2012-04-12 Hitachi Ltd 無線通信システム、および無線通信装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1135749C (zh) 2001-04-09 2004-01-21 武汉邮电科学研究院 基于异步转移模式无源光网络的带宽分配方法
US20060045524A1 (en) 2004-08-28 2006-03-02 Samsung Electronics Co.; Ltd Optical access network of wavelength division method and passive optical network using the same
US20060045525A1 (en) * 2004-08-28 2006-03-02 Samsung Electronics Co.; Ltd Optical access network of wavelength division method and passive optical network using the same
KR100744372B1 (ko) * 2005-02-17 2007-07-30 삼성전자주식회사 파장 잠김된 광원을 이용한 유무선 통합 파장분할다중방식수동형 광 가입자망 장치

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011176555A (ja) * 2010-02-24 2011-09-08 Fujitsu Telecom Networks Ltd 伝送システムの省電力制御装置
JP2012074866A (ja) * 2010-09-28 2012-04-12 Hitachi Ltd 無線通信システム、および無線通信装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GANGXIANG SHEN ET AL.: "Topics in Optical Communications ] Fixed Mobile Convergence Architectures for Broadband Access: Integration of EPON and WiMAX", COMMUNICATIONS MAGAZINE, vol. 45, no. ISSUE:, August 2007 (2007-08-01), pages 44 - 50, XP011190288 *
See also references of EP2953297A4 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016115959A (ja) * 2014-12-11 2016-06-23 日本電信電話株式会社 光無線通信システムおよび光無線通信システムにおけるトラフィック制御方法
WO2016158846A1 (ja) * 2015-03-30 2016-10-06 日本電信電話株式会社 端局装置及び帯域割当方法
JPWO2016158846A1 (ja) * 2015-03-30 2017-10-05 日本電信電話株式会社 端局装置及び帯域割当方法
US10805905B2 (en) 2015-03-30 2020-10-13 Nippon Telegraph And Telephone Corporation Terminal station device and bandwidth allocation method
JP2016225901A (ja) * 2015-06-02 2016-12-28 日本電信電話株式会社 通信システム及び帯域割当方法
JP2017017620A (ja) * 2015-07-03 2017-01-19 日本電信電話株式会社 通信システム及び帯域割当方法
JP2017050775A (ja) * 2015-09-03 2017-03-09 Kddi株式会社 Ponシステムおよび通信方法
US9847837B2 (en) 2015-12-25 2017-12-19 Fujitsu Limited Optical line termination, communication system, and communication control method
US10567082B2 (en) 2017-06-09 2020-02-18 Fujitsu Limited Optical terminal device, optical terminating device, and communication control method
WO2023062697A1 (ja) * 2021-10-11 2023-04-20 日本電信電話株式会社 伝送システム、電力制御装置、電力制御方法及びプログラム

Also Published As

Publication number Publication date
JPWO2014103804A1 (ja) 2017-01-12
EP3223465B1 (en) 2019-02-06
EP2953297A1 (en) 2015-12-09
US20150373640A1 (en) 2015-12-24
JP5878991B2 (ja) 2016-03-08
US9788270B2 (en) 2017-10-10
CN104956627A (zh) 2015-09-30
EP2953297B1 (en) 2018-02-07
EP2953297A4 (en) 2016-12-28
CN104956627B (zh) 2018-07-06
EP3223465A1 (en) 2017-09-27

Similar Documents

Publication Publication Date Title
JP5878991B2 (ja) 光無線アクセスシステム
JP5876584B2 (ja) 光無線アクセスシステム
US9350480B2 (en) Relay device, relay method, and optical communication system which uses relay device
US20120148246A1 (en) Pon system, subscriber-side terminal apparatus, station-side terminal apparatus, and power saving method
US9680575B2 (en) Relay device, station side device, and communication system and communication method using relay device
TW201136345A (en) Communication device, optical network communication device, point to multi-point communication system and band control method
Van et al. Experimental evaluation of a sleep-aware dynamic bandwidth allocation in a multi-ONU 10G-EPON testbed
JP2009260668A (ja) 局側装置
WO2011083564A1 (ja) Ponシステム、加入者側装置、局側装置および通信方法
WO2018016469A1 (ja) リンク制御回路
JP5847002B2 (ja) 通信システム、加入者側装置、局側装置および省電力制御方法
JP2012151660A (ja) 局内装置及び通信システム
JP5484308B2 (ja) 局側通信装置
JP2014165697A (ja) 光通信システム及び帯域割当方法
JP2014127803A (ja) ユーザ側光回線終端装置およびユーザ側光回線終端装置の消費電力制御方法
JP6066316B2 (ja) 通信装置および通信装置を用いた省電力化方法
JP2014120883A (ja) 子局装置、親局装置、光通信システムおよび帯域制御方法
US20170006364A1 (en) Optical network element and method of operating an optical network element
JP5994689B2 (ja) 電力制御装置、電力制御プログラム及び通信装置
JP2004289469A (ja) Ponシステムにおける帯域割り当て方法及び親局
JP2013123103A (ja) 通信システム、宅側装置および通信制御方法
JP2013030954A (ja) 通信制御方法、通信システム、局側装置および宅側装置
Ansari et al. Green Passive Optical Networks
JP2015088823A (ja) 通信装置の省電力制御方法及び通信装置
JP2013106204A (ja) 局側装置および通信制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13869652

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014554343

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14654783

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013869652

Country of ref document: EP