WO2014103669A1 - 化合物系薄膜太陽電池及びその製造方法 - Google Patents

化合物系薄膜太陽電池及びその製造方法 Download PDF

Info

Publication number
WO2014103669A1
WO2014103669A1 PCT/JP2013/082883 JP2013082883W WO2014103669A1 WO 2014103669 A1 WO2014103669 A1 WO 2014103669A1 JP 2013082883 W JP2013082883 W JP 2013082883W WO 2014103669 A1 WO2014103669 A1 WO 2014103669A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
compound
solar cell
metal substrate
thin film
Prior art date
Application number
PCT/JP2013/082883
Other languages
English (en)
French (fr)
Inventor
浅野 明彦
Original Assignee
昭和シェル石油株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和シェル石油株式会社 filed Critical 昭和シェル石油株式会社
Priority to US14/654,870 priority Critical patent/US20150340535A1/en
Priority to EP13866575.7A priority patent/EP2940736A4/en
Publication of WO2014103669A1 publication Critical patent/WO2014103669A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0749Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type including a AIBIIICVI compound, e.g. CdS/CulnSe2 [CIS] heterojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0326Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising AIBIICIVDVI kesterite compounds, e.g. Cu2ZnSnSe4, Cu2ZnSnS4
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03923Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate including AIBIIICVI compound materials, e.g. CIS, CIGS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03926Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate comprising a flexible substrate
    • H01L31/03928Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate comprising a flexible substrate including AIBIIICVI compound, e.g. CIS, CIGS deposited on metal or polymer foils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a compound-based thin film solar cell and a manufacturing method thereof.
  • an inorganic insulating layer or a compound light absorption layer such as a CIS thin film is laminated on a metal substrate such as a stainless steel substrate.
  • a formed compound thin film solar cell is known.
  • the inorganic insulating layer for example, a thin insulating layer (thin film insulating layer) made of an oxide (SiOx or the like) or a nitride (Si 3 N 4 ) or the like is used. Yes. Further, a stainless steel substrate added with aluminum is used as a metal substrate, and a thin insulating layer made of alumina formed on the surface of the stainless steel substrate by thermal oxidation is used (for example, see Patent Document 1).
  • compound-based thin film solar cells usually have a plurality of cells integrated in series to obtain a high voltage output, and defects such as oil pits and scratches that cause leakage remain on the surface of the metal substrate.
  • peeling at the interface between the upper surface of the underlying metal substrate and the glass insulating layer formed on the metal substrate becomes a problem.
  • peeling occurs, it causes deterioration in device characteristics of the compound thin film solar cell.
  • the peeling is caused by the surface condition of the metal substrate and the stress between the metal substrate and the glass insulating layer, and occurs not only during the manufacturing process of the compound thin film solar cell but also during the subsequent actual operation. There is a fear. Further, the degree of peeling is high on a metal substrate having a small surface roughness.
  • This invention is made
  • the method of manufacturing the compound-based thin film solar cell includes preparing a metal substrate containing iron as a main component and containing aluminum (Al) and chromium (Cr), and forming an alumina layer on at least an element formation surface of the metal substrate by thermal oxidation.
  • the compound-based thin film solar cell includes a metal substrate containing iron as a main component and containing aluminum (Al) and chromium (Cr), an alumina layer formed by thermal oxidation on at least an element formation surface of the metal substrate, and the alumina An insulating layer formed on the insulating layer; a first electrode layer formed on the insulating layer; a compound-based light absorption layer formed on the first electrode layer; and the compound-based light absorption And a second electrode layer formed on the layer.
  • Al aluminum
  • Cr chromium
  • FIG. 5 is a diagram for describing a photographing direction of a sample produced in Example 1.
  • 2 is a photograph (part 1) of a sample produced in Example 1.
  • FIG. 2 is a photograph (No. 2) of a sample produced in Example 1.
  • FIG. 3 is a photograph (No. 3) of a sample produced in Example 1.
  • FIG. 4 is a photograph (No. 4) of a sample manufactured in Example 1.
  • FIG. It is the photograph of the sample produced as a comparative example.
  • the following embodiment etc. demonstrate taking a CIS type compound thin film solar cell as an example, this invention is applicable also to compound type thin film solar cells other than a CIS type.
  • the light absorption layer has copper (Cu), zinc (Zn), tin (Sn), and a chalcogen element (selenium (Se) or sulfur (S And CZTS-based compound thin film solar cells made of a compound containing)).
  • a CdTe-based compound thin-film solar cell in which the light absorption layer is made of a compound containing cadmium (Cd) and tellurium (Te). Etc.
  • FIG. 1 is a cross-sectional view illustrating a CIS-based compound thin-film solar battery according to this embodiment.
  • a compound-based thin film solar cell 10 includes a metal substrate 11 having an alumina layer 12 on the surface, an insulating layer 13, a first electrode layer 14, a compound-based light absorption layer 15, and a second layer.
  • the insulating layer 13, the first electrode layer 14, the compound light absorption layer 15, and the second electrode layer 16 are sequentially laminated on the alumina layer 12 of the metal substrate 11. .
  • each element which comprises the compound type thin film solar cell 10 is demonstrated.
  • the surface by the side of light reception may be called an upper surface
  • the opposite surface may be called a lower surface
  • the surface which connects an upper surface and a lower surface may be called an end surface.
  • the upper surface, the lower surface, and the end surface may be collectively referred to as the entire surface.
  • the upper surface of the metal substrate 11 may be referred to as an element formation surface
  • the lower surface of the metal substrate 11 may be referred to as a back surface.
  • the metal substrate 11 is a portion serving as a base on which the insulating layer 13, the first electrode layer 14, the compound light absorption layer 15, and the second electrode layer 16 are formed.
  • the metal substrate 11 is a substrate mainly containing iron and containing aluminum (Al) and chromium (Cr), and the entire surface is covered with an alumina layer 12 formed by thermal oxidation.
  • the thickness of the metal substrate 11 can be, for example, about 0.2 mm to 0.6 mm.
  • the content of aluminum (Al) in the metal substrate 11 is preferably 0.5 wt% or more and 6.0 wt% or less.
  • the content of aluminum (Al) in the metal substrate 11 is less than 0.5% by weight, the alumina layer 12 is not sufficiently formed, which is not preferable. Further, if the content of aluminum (Al) in the metal substrate 11 exceeds 6.0% by weight, the coefficient of thermal expansion of the metal substrate 11 increases, which is not preferable.
  • the metal substrate 11 is a stainless steel substrate containing aluminum (Al). It is particularly preferable to use a ferritic stainless steel substrate containing aluminum (Al) as the metal substrate 11. This is because the ferrite-type stainless steel substrate has a thermal expansion coefficient close to that of the CIS-based compound light absorption layer, and therefore can prevent the compound-based light absorption layer from peeling off during or after the heat treatment.
  • the stainless steel substrate is a substrate made of stainless steel.
  • Stainless steel refers to alloy steel containing chromium (Cr) or chromium (Cr) and nickel (Ni) and having a chromium (Cr) content of 10.5% or more.
  • the metal substrate 11 is not limited to a stainless steel substrate containing aluminum (Al).
  • a substrate containing iron as a main component and containing aluminum (Al) and less than 10.5% chromium (Cr) is used. May be.
  • nickel (Ni) may be further contained.
  • a substrate containing iron as a main component and containing aluminum (Al) and chromium (Cr) is a variety of stainless steel substrates including a ferritic stainless steel substrate and a substrate containing the same type of metal as the stainless steel substrate. And it is a concept including what has content of chromium (Cr) less than 10.5%.
  • chromium (Cr) is preferably contained at least about 8%.
  • the metal substrate 11 may contain silicon (Si).
  • the alumina layer 12 covers the entire surface of the metal substrate 11.
  • the alumina layer 12 is a layer formed by diffusing aluminum (Al) contained in the metal substrate 11 over the entire surface of the metal substrate 11 under predetermined conditions.
  • the thickness of the alumina layer 12 is preferably 30 nm or more from the viewpoint of improving the adhesion with the insulating layer 13.
  • the two-layer structure in which the alumina layer 12 and the insulating layer 13 are stacked has a gap between the metal substrate 11 and the first electrode layer 14.
  • the thickness of the alumina layer 12 may be about 1 ⁇ m.
  • the alumina layer 12 only needs to be formed on at least the upper surface (element formation surface) of the metal substrate 11. This is because the adhesion between the alumina layer 12 formed on the upper surface of the metal substrate 11 and the insulating layer 13 formed immediately thereon can be improved.
  • the insulating layer 13 is formed on the alumina layer 12 formed on the upper surface of the metal substrate 11.
  • a material of the insulating layer 13 it is preferable to use glass.
  • silica SiO 2
  • CaO silica
  • B 2 O 3 SrO
  • BaO Al 2 O 3
  • ZnO, ZrO 2 , and MgO as a component.
  • the reason why glass is preferable as the material of the insulating layer 13 is that, for example, when an organic resin is used as the material of the insulating layer 13, there is a risk of being damaged by heat treatment when forming the compound light absorption layer 15. This is because such a problem can be avoided by forming a glass layer having high heat resistance.
  • the alkali barrier function is a function of preventing an alkali metal component such as sodium (Na) or potassium (K) from excessively diffusing into the compound light absorption layer 15.
  • the thickness of the layer having an alkali barrier function is preferably about 5 to 100 nm, for example.
  • the thickness of the insulating layer 13 is preferably 10 ⁇ m or more and 50 ⁇ m or less.
  • the coefficient of linear expansion of the insulating layer 13 is preferably about 9.0 ⁇ 10 ⁇ 6 to 13.0 ⁇ 10 ⁇ 6 / K.
  • the thickness of the insulating layer 13 becomes less than 10 micrometers by inventors' examination, it turns out that the conversion efficiency of the compound type thin film solar cell 10 falls. This is presumably because the surface roughness of the upper surface of the metal substrate 11 affects the flatness of each layer formed on the insulating layer 13.
  • the thickness of the insulating layer 13 is larger than 50 ⁇ m, the mechanical strength of the insulating layer 13 is lowered or it is easy to peel off from the metal substrate 11, which is not preferable.
  • the first electrode layer 14 is formed on the insulating layer 13.
  • a material of the first electrode layer 14 for example, molybdenum (Mo) can be used.
  • Mo molybdenum
  • another metal having high corrosion resistance against hydrogen selenide (H 2 Se) or hydrogen sulfide (H 2 S), for example, titanium (Ti), tungsten (W), or the like may be used.
  • the thickness of the first electrode layer 14 is preferably about several tens of nm to several ⁇ m, but can be 0.5 ⁇ m, for example.
  • the compound light absorption layer 15 is a layer made of a p-type semiconductor, and is formed on the first electrode layer 14.
  • the compound light absorption layer 15 is a part that photoelectrically converts irradiated sunlight and the like.
  • the photocurrent generated by the photoelectric conversion of the compound light absorption layer 15 is an unillustrated electrode ribbon (copper) attached to either one or both of the first electrode layer 14 and the second electrode layer 16 with copper or the like. Foil ribbon) can be taken out as current.
  • the thickness of the compound light absorption layer 15 is 0. The thickness is preferably about several ⁇ m to several tens of ⁇ m, but may be 1.5 ⁇ m, for example.
  • the compound light absorption layer 15 is a semiconductor thin film and can be formed of a CIS compound thin film made of an IB-IIIB-VIB group element.
  • the material of the CIS-based compound thin film includes at least one type IB element selected from the group consisting of Cu and Ag, at least one type IIIB element selected from the group consisting of Al, Ga, and In, and S and It can be set as at least 1 type of compound semiconductor containing the at least 1 type of VIB group element selected from the group which consists of Se.
  • An example of a specific compound is copper indium diselenide (CuInSe 2 ), copper indium disulfide (CuInS 2 ), copper indium selenium sulfide (CuIn (SSe) 2 ), copper gallium selenide (CuGaSe 2 ), copper gallium disulfide (CuGaS 2 ), copper indium gallium selenide (Cu (InGa) Se 2 ), copper indium gallium sulphide (Cu (InGa) S 2 ), 2 selenium
  • a CZTS compound composed of copper (Cu), zinc (Zn), tin (Sn), or a chalcogen element may be used.
  • An example of a specific compound is tetracopper selenide / zinc (Cu 2 ZnSnSe 4 ), tetracopper tin sulphate / zinc (Cu 2 ZnSnS 4 ), selenide / copper tin sulphate / zinc (Cu 2 ZnSn (SSe) 4 ) and the like.
  • a buffer layer (not shown) may be formed on the compound light absorption layer 15.
  • the buffer layer is a high-resistance layer having a function of preventing leakage of current from the compound light absorption layer 15.
  • a zinc compound Zn (S, O, OH)
  • ZnO zinc oxide
  • ZnS zinc sulfide
  • In 2 O 3 indium oxide
  • InS indium compound
  • In (S, O, OH) cadmium sulfide
  • CdS cadmium sulfide
  • the thickness of the buffer layer can be, for example, about several nm to several tens of nm.
  • an alkali barrier layer may be formed between the insulating layer 13 and the first electrode layer 14.
  • the alkali barrier layer is a layer provided to prevent an alkali metal component such as sodium (Na) or potassium (K) from excessively diffusing into the compound light absorption layer 15.
  • an alkali metal component such as sodium (Na) or potassium (K) from excessively diffusing into the compound light absorption layer 15.
  • silica (SiO 2 ) or the like can be used as a material of the alkali barrier layer.
  • the thickness of the alkali barrier layer can be, for example, about 5 to 100 nm.
  • the second electrode layer 16 is a transparent layer made of an n-type semiconductor, and is formed on the compound light absorption layer 15.
  • the second electrode layer 16 forms a pn junction with the compound light absorption layer 15 made of a p-type semiconductor, and further functions as a low-resistance conductor.
  • a transparent conductive film such as a zinc oxide-based thin film (ZnO), an ITO thin film, or tin oxide (SnO 2 ) can be used.
  • ZnO zinc oxide-based thin film
  • ITO thin film ITO thin film
  • SnO 2 tin oxide
  • the resistance can be reduced by adding boron (B), aluminum (Al), gallium (Ga), or the like as a dopant.
  • the thickness of the second electrode layer 16 can be, for example, about 0.5 ⁇ m to 2.5 ⁇ m.
  • the compound thin film solar cell 10 may have an integrated structure in which a plurality of cells are connected in series.
  • FIGS. 2 to 4 are diagrams illustrating a manufacturing process of the CIS-based compound thin-film solar battery according to the present embodiment.
  • a metal substrate 11 is prepared.
  • the metal substrate 11 is a substrate that contains iron as a main component and contains aluminum (Al) and chromium (Cr). As described above, it is particularly preferable to use a ferritic stainless steel substrate containing aluminum (Al) as the metal substrate 11.
  • the aluminum (Al) content in the metal substrate 11 is preferably 0.5 wt% or more and 6.0 wt% or less.
  • the thickness of the metal substrate 11 can be, for example, about 0.2 mm to 0.6 mm.
  • the metal substrate 11 is fired at a temperature of 700 ° C. or higher and lower than 850 ° C. (this temperature may be referred to as a pretreatment temperature) in the air or in an oxygen-containing atmosphere (heating and heating).
  • Oxidation that is, thermal oxidation
  • aluminum (Al) contained in the metal substrate 11 is diffused over the entire surface of the metal substrate 11 to form an alumina layer 12.
  • the alumina layer 12 may be formed at least on the upper surface (element formation surface) of the metal substrate 11. This is because the adhesion between the alumina layer 12 formed on the upper surface of the metal substrate 11 and the insulating layer 13 formed immediately thereon can be improved.
  • a pretreatment temperature of 700 ° C. or higher and lower than 850 ° C. is suitable. According to the study by the inventors, when the pretreatment temperature is lower than 700 ° C., the alumina layer 12 is not sufficiently formed on the upper surface of the metal substrate 11, so that the adhesion with the insulating layer 13 is lowered. On the other hand, if the pretreatment temperature is 850 ° C. or higher, the amount of thermal deformation of the metal substrate 11 increases, making it unsuitable as a substrate for a compound thin film solar cell requiring flatness. Furthermore, there is a problem that special equipment for heating is necessary and energy consumption for heat treatment is large.
  • the pretreatment temperature is 700 ° C. or higher and lower than 850 ° C.
  • an alumina layer 12 having a sufficient thickness is formed to improve adhesion to the insulating layer 13 formed immediately above the metal, and metal
  • the “swell” of the substrate 11 can be suppressed to a value that is acceptable as a substrate for a compound-based thin film solar cell (1 mm or less).
  • the temperature of 700 degreeC or more and less than 850 degreeC is lower than the general pretreatment temperature (850 degreeC or more and less than about 1100 degreeC) for forming an alumina layer, reduction of baking energy is also attained.
  • the metal substrate 11 is formed into a long substrate having a plurality of regions that become solar cell substrates when separated, and is continuous to at least the element formation surface of the plurality of regions. It is good also as a process of forming an alumina layer.
  • the long substrate may be continuously fired by roll-to-roll to form the alumina layer 12, and then cut into pieces.
  • the element formation surface and the back surface are covered with the alumina layer, but the substrate material is exposed at the end surface (cut surface).
  • the singulation may be performed in the state of a long substrate on which the alumina layer 12 is formed, or may be performed after each layer is formed thereon.
  • the insulating layer 13 is formed on the alumina layer 12 formed on the upper surface of the metal substrate 11.
  • a glass paste having a softening point in the range of 600 ° C. to 800 ° C. is applied onto the alumina layer 12 formed on the upper surface of the metal substrate 11.
  • the glass paste can be applied by, for example, a slit coater. Instead of the slit coater, the glass paste may be applied by a spray coater, screen printing, dip coater, spin coater or the like.
  • the applied glass paste is heated to about 100 ° C. to 200 ° C. in an air atmosphere to dry the glass paste and volatilize the organic solvent in the glass paste.
  • the insulating layer 13 is formed by heating and baking the dried glass paste to a temperature equal to or higher than the softening point.
  • the thickness of the insulating layer 13 after firing is preferably 10 ⁇ m or more and 50 ⁇ m or less, and can be, for example, about 30 ⁇ m.
  • each may be performed by a separate apparatus.
  • the point which may comprise the insulating layer 13 from several layers, and the point which may have a layer which has an alkali barrier function in that case are as above-mentioned.
  • Both the insulating layer 13 and the alumina layer 12 are layers (oxide layers) formed from an oxide. Since the oxides are easily compatible with each other, the adhesion between the insulating layer 13 and the alumina layer 12 is determined when the insulating layer 13 is directly formed on the metal substrate 11 on which the alumina layer 12 is not formed (the insulating layer 13 is oxidized). It is improved as compared with the case of being directly formed on the metal substrate 11 which is not a product.
  • the element formation surface of the metal substrate 11 is covered with an extremely thin chromium oxide.
  • the insulating layer 13 is formed directly on the chromium oxide, it seems that the effect of improving the adhesion between the oxides can be obtained.
  • chromium oxide is extremely thin (for example, about several to 10 nm), the effect of improving the adhesion is hardly obtained.
  • the thickness of the alumina layer 12 covering the element formation surface of the metal substrate 11 is 30 nm or more (in some cases, about 1 ⁇ m), and the thickness of the chromium oxide (for example, several nm to 10 nm) Therefore, the adhesion with the insulating layer 13 can be improved due to the ease of compatibility between the oxides. Thus, the effect of improving the adhesion between the oxides tends to occur as the layer thickness increases.
  • the alumina layer 12 is not formed by a method such as forming alumina on the upper surface of the metal substrate 11 but is integrally formed by diffusing aluminum (Al) contained in the metal substrate 11. . Therefore, an anchor effect is generated between the metal substrate 11 and the alumina layer 12, and the adhesion between the metal substrate 11 and the alumina layer 12 is formed by a method such as depositing alumina on the upper surface of the metal substrate 11. It improves compared with what you did.
  • the adhesion between the metal substrate 11 and the insulating layer 13 is improved as compared with the conventional case. Therefore, peeling between the metal substrate 11 and the insulating layer 13 that may occur during the manufacturing process or actual operation of the compound-based thin film solar cell (especially when used in an environment where the temperature changes rapidly) has been hitherto. Can be suppressed.
  • the insulating layer 13 is an oxide layer. However, even if the insulating layer 13 is a nitride layer made of silicon nitride or the like, the insulating layer 13 is an oxide layer. Similarly, good adhesion with the alumina layer 12 is obtained.
  • the insulating layer 13 made of silicon nitride can be formed on the alumina layer 12 by, for example, reactive sputtering of silicon and nitrogen or plasma CVD.
  • the first electrode layer 14, the compound-based light absorption layer 15, and the second electrode layer 16 are sequentially stacked on the insulating layer 13, whereby the compound-based thin film solar cell 10 illustrated in FIG. 1. Is completed.
  • the first electrode layer 14 is formed on the insulating layer 13 by, for example, DC magnetron sputtering.
  • the first electrode layer 14 may be formed on the insulating layer 13 using an electron beam evaporation method or the like.
  • the material, thickness, etc. of the first electrode layer 14 are as described above.
  • an alkali barrier layer may be formed by sputtering or the like before the first electrode layer 14 is formed.
  • the material, thickness, etc. of the alkali barrier layer are as described above.
  • selenium disulfide, copper indium sulfide gallium (Cu (InGa) (SSe) 2 ) is formed on the first electrode layer 14 as the compound light absorption layer 15.
  • 2 Selenium / sulfur copper indium / gallium (Cu (InGa) (SSe) 2 ) is a precursor film containing copper (Cu), gallium (Ga), indium (In), etc. by, for example, DC magnetron sputtering or vapor deposition.
  • the compound-based light absorption layer 15 is replaced with the above-described copper indium diselenide (CuInSe 2 ), copper indium sulfide disulfide instead of the two selenium / copper indium sulfide / gallium (Cu (InGa) (SSe) 2 ). (CuInS 2 ) or the like may be formed.
  • the compound light absorption layer 15 may be formed by vapor-depositing copper (Cu), gallium (Ga), indium (In), and selenium (Se).
  • the compound light absorption layer 15 may be formed by vapor-depositing copper (Cu), gallium (Ga), indium (In), and sulfur (S).
  • the compound light absorption layer 15 may be formed by vapor-depositing copper (Cu), gallium (Ga), indium (In), selenium (Se), and sulfur (S).
  • the compound light absorption layer 15 may be formed by sputtering, hybrid sputtering, mechanochemical process, clean printing, proximity sublimation, MOCVD, spraying, or the like.
  • a buffer layer may be formed on the compound light absorption layer 15 as necessary.
  • the buffer layer can be formed on the compound light absorption layer 15 by, for example, a solution growth method (CBD method), a metal organic chemical vapor deposition method (MOCVD method), an atomic layer deposition method (ALD method), or the like.
  • CBD method solution growth method
  • MOCVD method metal organic chemical vapor deposition method
  • ALD method atomic layer deposition method
  • the second electrode layer 16 is formed on the compound light absorption layer 15 by, eg, MOCVD.
  • the second electrode layer 16 may be formed on the compound light absorption layer 15 using a sputtering method, a vapor deposition method, an atomic layer deposition method (ALD method), or the like.
  • the material, thickness, etc. of the second electrode layer 16 are as described above.
  • the alumina layer 12 is formed on at least the element formation surface of the metal substrate 11, and the insulating layer 13 is formed immediately above the alumina layer 12.
  • the anchor effect arises between the metal substrate 11 and the alumina layer 12, and both adhesiveness can be improved.
  • the alumina layer 12 which is an oxide layer and the insulating layer 13 which is an oxide layer or a nitride layer are easily compatible, the adhesion between them can be improved. In other words, through the alumina layer 12, it is possible to improve the adhesion between the metal substrate 11 and the insulating layer 13, and the peeling between the metal substrate 11 and the insulating layer 13 can be suppressed.
  • the compound thin film solar cell 10 can be manufactured.
  • the pretreatment temperature for forming the alumina layer 12 is 700 ° C. or more and less than 850 ° C., which is lower than the general pretreatment temperature (about 850 ° C. or more and less than about 1100 ° C.), the firing energy can be reduced. It becomes.
  • an alumina layer 12 and an insulating layer 13 exist between the element formation surface of the metal substrate 11 and the lower surface of the first electrode layer 14. That is, since the metal substrate 11 and the first electrode layer 14 are separated by an insulator having a two-layer structure in which the alumina layer 12 and the insulating layer 13 are stacked, the metal substrate 11 and the first electrode layer 14 are separated from each other. It is possible to improve the withstand voltage between the two.
  • Example 1 In Example 1, the surface state of the alumina layer 12 and the deformation (warping and waviness) of the metal substrate 11 were confirmed.
  • a ferritic stainless steel substrate containing aluminum (Al) JFE18-3USR: a ferritic stainless steel substrate containing 3.4% aluminum
  • the thickness of the prepared metal substrate 11 is 0.3 mm.
  • the prepared metal substrate 11 was pretreated, and a plurality of samples in which the alumina layer 12 was formed on the entire surface of the metal substrate 11 were prototyped.
  • three types of samples were prepared: Sample 1 with a pretreatment temperature of 700 ° C., Sample 2 with a pretreatment temperature of 750 ° C., and Sample 3 with a pretreatment temperature of 800 ° C.
  • the thickness of the alumina layer 12 was about 30 nm to 100 nm.
  • the insulating layer 13 or the like is not stacked on the alumina layer 12.
  • samples 1 to 3 (indicated by S1 to S3 in FIG. 5) in which the alumina layer 12 is formed on the entire surface of the metal substrate 11 are sequentially placed on the reference plate 100 (flat plate). Then, photographs were taken from the direction of arrow A (above), and the surface condition of each sample was confirmed (FIGS. 6 to 8).
  • FIG. 6 shows a photograph showing the surface condition of Sample 1
  • FIG. 7 shows a photograph showing the surface condition of Sample 2
  • FIG. 8 shows a photograph showing the surface condition of Sample 3.
  • the lower side of the screen is the reference plate 100
  • the upper side of the screen is Samples 1 to 3 in which the alumina layer 12 is formed on the entire surface of the metal substrate 11 (indicated as S1 to S3 in FIGS. 6 to 8).
  • a uniform alumina layer 12 is formed in any sample.
  • the length of the straight line shown in the reference plate 100 corresponds to 30 mm.
  • the prepared metal substrate 11 was pretreated at a pretreatment temperature of 900 ° C., and a sample 9 in which the alumina layer 12 was formed on the entire surface of the metal substrate 11 was produced. Then, the samples 3 and 9 are sequentially placed on the reference plate 100 (flat plate), and a photograph is taken from the direction of the arrow B (obliquely upward) in FIG. 5 to deform (warp and swell) the metal substrate 11 of each sample. This was confirmed (FIGS. 9 and 10).
  • FIG. 9 shows a photograph of the metal substrate 11 of sample 3
  • FIG. 10 shows a photograph of the metal substrate 11 of sample 9.
  • the lower side of the screen is the reference plate 100
  • the upper side of the screen is Samples 3 and 9 (indicated by S ⁇ b> 3 in FIG. 9 and S ⁇ b> 9 in FIG. 10) in which the alumina layer 12 is formed on the entire surface of the metal substrate 11.
  • the length of the straight line shown in the reference plate 100 corresponds to 100 mm.
  • the surface of the metal substrate 11 in contact with the reference plate 100 is warped or undulated. Further, when the amount of thermal deformation U 2 (swell) after the pretreatment of the sample 9 was measured, a swell of about 5 mm exceeding the allowable value (1 mm) of the swell was generated, which is not suitable as a substrate for a solar cell. It was confirmed that it was appropriate.
  • Example 2 In Example 2, the presence or absence of peeling of the interface between the alumina layer 12 and the insulating layer 13 was confirmed. First, the same metal substrate 11 as in Example 1 was prepared.
  • the prepared metal substrate 11 was pretreated, and a plurality of samples in which the alumina layer 12 was formed on the entire surface of the metal substrate 11 were prototyped.
  • two types of samples were prepared: Sample 4 with a pretreatment temperature of 750 ° C. and Sample 5 with a pretreatment temperature of 800 ° C.
  • the thickness of the alumina layer 12 was about 30 nm to 100 nm.
  • the insulating layer 13 was laminated on the alumina layer 12 of each of the samples 4 and 5 with glass. Then, when the interface between the alumina layer 12 and the insulating layer 13 was observed for Samples 4 and 5, no peeling was observed in any case.
  • the alumina layer 12 is formed on at least the element formation surface of the metal substrate 11 at a pretreatment temperature of 700 ° C. or higher and lower than 850 ° C., which is lower than the conventional one. It was confirmed that thermal deformation can be suppressed.
  • the insulating layer 13 is laminated on the formed alumina layer 12, the alumina layer 12 and the insulating layer 13 are sufficiently adhered, and the interface between the alumina layer 12 and the insulating layer 13 does not peel off. confirmed. Considering that the anchor effect is generated between the metal substrate 11 and the alumina layer 12 and the adhesion between the two is improved, the metal substrate 11 and the insulating layer 13 are interposed via the alumina layer 12. It can be said that the adhesion was improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Photovoltaic Devices (AREA)

Abstract

 本化合物系薄膜太陽電池の製造方法は、鉄を主成分としアルミニウム(Al)及びクロム(Cr)を含有した金属基板を用意し、前記金属基板の少なくとも素子形成面に熱酸化によってアルミナ層を形成する工程と、前記アルミナ層上に絶縁層を形成する工程と、前記絶縁層上に、第1の電極層を製膜する工程と、前記第1の電極層上に、化合物系光吸収層を製膜する工程と、前記化合物系光吸収層上に、第2の電極層を製膜する工程と、を有する。

Description

化合物系薄膜太陽電池及びその製造方法
 本発明は、化合物系薄膜太陽電池及びその製造方法に関する。
 近年、燃料が不要であり温室効果ガスを排出しない太陽光発電が注目されており、例えば、ステンレス基板等の金属基板上に無機系の絶縁層やCIS系薄膜等の化合物系光吸収層を積層形成した化合物系薄膜太陽電池が知られている。
 このような化合物系薄膜太陽電池において、無機系の絶縁層としては、例えば、酸化物(SiOx等)や窒化物(Si)等からなる薄い絶縁層(薄膜絶縁層)が用いられている。又、金属基板としてアルミニウムを添加したステンレス基板を用い、このステンレス基板を熱酸化して表面に形成したアルミナからなる薄い絶縁層等が用いられている(例えば、特許文献1参照)。
特開昭63-155681号公報
 しかしながら、化合物系薄膜太陽電池は複数のセルを直列に集積化して高電圧出力とするのが通常であること、及び、金属基板の表面にリークの原因となるオイルピットやスクラッチ等の欠陥が残存すること等を考慮すると、上記の薄い絶縁層では絶縁耐圧が確保できないため、その上に直接電極層等を形成することは困難である。
 そこで、金属基板を使用する場合には、金属基板上にガラスフリット等を用いた厚膜のガラス絶縁層を製膜することが好ましい。特に、その膜厚の大きさにより、オイルピットやスクラッチの影響が除去できるのが大きなメリットである。
 しかし、ガラス絶縁層を用いる場合、下地である金属基板の上面と金属基板上に製膜されたガラス絶縁層との界面での剥離が問題となる。剥離が生じると、化合物系薄膜太陽電池の素子特性を劣化させる原因となる。剥離は、金属基板の表面状態と、金属基板とガラス絶縁層との間の応力に起因するものであり、化合物系薄膜太陽電池の製造工程中だけでなく、その後の実稼働中にも発生するおそれがある。又、剥離は、表面粗さの小さい金属基板で発生する度合いが高い。
 本発明は、上記の点に鑑みてなされたものであり、金属基板と絶縁層との間の剥離を抑制可能な化合物系薄膜太陽電池及びその製造方法を提供することを課題とする。
 本化合物系薄膜太陽電池の製造方法は、鉄を主成分としアルミニウム(Al)及びクロム(Cr)を含有した金属基板を用意し、前記金属基板の少なくとも素子形成面に熱酸化によってアルミナ層を形成する工程と、前記アルミナ層上に絶縁層を形成する工程と、前記絶縁層上に、第1の電極層を製膜する工程と、前記第1の電極層上に、化合物系光吸収層を製膜する工程と、前記化合物系光吸収層上に、第2の電極層を製膜する工程と、を有することを要件とする。
 本化合物系薄膜太陽電池は、鉄を主成分としアルミニウム(Al)及びクロム(Cr)を含有した金属基板と、前記金属基板の少なくとも素子形成面に熱酸化によって形成されたアルミナ層と、前記アルミナ層上に形成された絶縁層と、前記絶縁層上に製膜された第1の電極層と、前記第1の電極層上に製膜された化合物系光吸収層と、前記化合物系光吸収層上に製膜された第2の電極層と、を有することを要件とする。
 開示の技術によれば、金属基板と絶縁層との間の剥離を抑制可能な化合物系薄膜太陽電池及びその製造方法を提供できる。
本実施の形態に係るCIS系の化合物系薄膜太陽電池を例示する断面図である。 本実施の形態に係るCIS系の化合物系薄膜太陽電池の製造工程を例示する図(その1)である。 本実施の形態に係るCIS系の化合物系薄膜太陽電池の製造工程を例示する図(その2)である。 本実施の形態に係るCIS系の化合物系薄膜太陽電池の製造工程を例示する図(その3)である。 実施例1で作製したサンプルの撮影方向について説明する図である。 実施例1で作製したサンプルの写真(その1)である。 実施例1で作製したサンプルの写真(その2)である。 実施例1で作製したサンプルの写真(その3)である。 実施例1で作製したサンプルの写真(その4)である。 比較例として作製したサンプルの写真である。
 以下、図面を参照して発明を実施するための形態について説明する。各図面において、同一構成部分には同一符号を付し、重複した説明を省略する場合がある。
 なお、以下の実施の形態等は、CIS系の化合物系薄膜太陽電池を例にとって説明するが、本発明は、CIS系以外の化合物系薄膜太陽電池にも適用可能である。本発明を適用可能なCIS系以外の化合物系薄膜太陽電池の一例として、光吸収層が銅(Cu)、亜鉛(Zn)、錫(Sn)、及びカルコゲン元素(セレン(Se)又は硫黄(S))を含有する化合物からなるCZTS系の化合物系薄膜太陽電池を挙げることができる。又、本発明を適用可能なCIS系以外の化合物系薄膜太陽電池の他の例として、光吸収層がカドミウム(Cd)及びテルル(Te)を含有する化合物からなるCdTe系の化合物系薄膜太陽電池等を挙げることができる。
 [本実施の形態に係るCIS系の化合物系薄膜太陽電池の構造]
 図1は、本実施の形態に係るCIS系の化合物系薄膜太陽電池を例示する断面図である。図1を参照するに、化合物系薄膜太陽電池10は、表面にアルミナ層12を有する金属基板11と、絶縁層13と、第1の電極層14と、化合物系光吸収層15と、第2の電極層16とを有し、金属基板11のアルミナ層12上に、絶縁層13、第1の電極層14、化合物系光吸収層15、及び第2の電極層16が順次積層されている。以下、化合物系薄膜太陽電池10を構成する各要素について説明する。
 なお、本願では、化合物系薄膜太陽電池10を構成する基板及び各層において、受光側の面を上面、その反対面を下面、上面と下面を接続する面を端面と称する場合がある。又、上面、下面、及び端面を合わせて全表面と称する場合がある。又、金属基板11の上面を特に素子形成面と称し、金属基板11の下面を特に裏面と称する場合がある。
 金属基板11は、絶縁層13、第1の電極層14、化合物系光吸収層15、及び第2の電極層16を形成する基体となる部分である。金属基板11は、鉄を主成分としアルミニウム(Al)及びクロム(Cr)を含有する基板であり、全表面が熱酸化によって形成されたアルミナ層12に被覆されている。金属基板11の厚さは、例えば、0.2mm~0.6mm程度とすることができる。
 金属基板11におけるアルミニウム(Al)の含有量は、0.5重量%以上かつ6.0重量%以下とすると好適である。金属基板11におけるアルミニウム(Al)の含有量が0.5重量%未満であると、アルミナ層12が十分に形成されないため好ましくない。又、金属基板11におけるアルミニウム(Al)の含有量が6.0重量%を超えると、金属基板11の熱膨張率が大きくなるため好ましくない。
 金属基板11の一例としては、アルミニウム(Al)を含有したステンレス基板を挙げることができる。金属基板11として、アルミニウム(Al)を含有したフェライト系ステンレス基板を用いると特に好適である。フェライト系ステンレス基板は、熱膨張率がCIS系の化合物系光吸収層に近いため、熱処理時又は熱処理後に化合物系光吸収層が剥離することを防止できるからである。
 なお、ステンレス基板とは、ステンレス鋼から作製された基板である。ステンレス鋼とは、クロム(Cr)又はクロム(Cr)とニッケル(Ni)を含有させた合金鋼であって、クロム(Cr)の含有量が10.5%以上であるものをいう。
 但し、金属基板11は、アルミニウム(Al)を含有したステンレス基板には限定されず、例えば、鉄を主成分としアルミニウム(Al)及び10.5%未満のクロム(Cr)を含有する基板を用いてもよい。この場合、更にニッケル(Ni)を含有させてもよい。
 換言すれば、鉄を主成分としアルミニウム(Al)及びクロム(Cr)を含有する基板とは、フェライト系ステンレス基板を含む各種のステンレス基板、及び、ステンレス基板と同一種類の金属を含有する基板であって、クロム(Cr)の含有量が10.5%未満であるものを含む概念である。
 但し、クロム(Cr)の含有量が少なすぎると、金属基板11の熱膨張係数が大きくなったり、表面粗さが粗くなったりするおそれがあり、太陽電池用基板としては使いにくくなるため、クロム(Cr)は最低でも8%程度含有されていることが好ましい。
 又、更に緻密なアルミナ層12の形成のために、金属基板11にシリコン(Si)を含有させてもよい。
 アルミナ層12は、金属基板11の全表面を被覆している。アルミナ層12は、金属基板11に含有されたアルミニウム(Al)が、所定条件で金属基板11の全表面に拡散して形成された層である。アルミナ層12の厚さは、絶縁層13との密着性向上の観点からは30nm以上とすることが好ましい。なお、アルミナ層12が厚くても絶縁層13との密着性は悪くならないため、アルミナ層12と絶縁層13とが積層された二層構造により金属基板11と第1の電極層14との間の絶縁耐圧を向上させたいような場合には、アルミナ層12の厚さを1μm程度としても構わない。
 但し、アルミナ層12は、少なくとも金属基板11の上面(素子形成面)に形成されていればよい。金属基板11の上面に形成されたアルミナ層12と、その直上に形成される絶縁層13との密着性を向上できるからである。
 絶縁層13は、金属基板11の上面に形成されたアルミナ層12上に形成されている。絶縁層13の材料としては、ガラスを用いることが好ましい。ガラスの一例としては、シリカ(SiO)、CaO、B、SrO、BaO、Al、ZnO、ZrO、MgOのうちの少なくとも一つを成分とするガラスや低融点ガラスを挙げることができる。絶縁層13の材料としてガラスが好ましい理由は、例えば絶縁層13の材料として有機樹脂を用いると、化合物系光吸収層15を製膜する際の熱処理によりダメージを受けるおそれがあるが、絶縁層13を耐熱性の高いガラス層とすることにより、このような問題を回避できるからである。
 なお、絶縁層13を上記材料を組み合わせた複数の層から構成してもよく、その場合には、アルカリバリア機能を有する層を有してもよい。アルカリバリア機能とは、ナトリウム(Na)やカリウム(K)等のアルカリ金属成分が化合物系光吸収層15に過剰に拡散することを防止する機能である。アルカリバリア機能を有する層の厚さは、例えば、5~100nm程度とすることが好ましい。
 絶縁層13の厚さは、10μm以上かつ50μm以下とすることが好ましい。又、絶縁層13の線膨張係数は、9.0×10-6~13.0×10-6/K程度とすることが好ましい。なお、発明者らの検討により、絶縁層13の厚さが10μm未満となると、化合物系薄膜太陽電池10の変換効率が低下することがわかっている。これは、金属基板11の上面の表面粗さが、絶縁層13上に形成する各層の平坦性に影響を及ぼすためであると考えられる。又、絶縁層13の厚さが50μmよりも大きくなると、絶縁層13の機械的強度が低下したり、金属基板11から剥離しやすくなるため好ましくない。
 第1の電極層14は、絶縁層13上に形成されている。第1の電極層14の材料としては、例えば、モリブデン(Mo)を用いることができる。第1の電極層14の材料としてセレン化水素(HSe)や硫化水素(HS)に対する耐食性が高い他の金属、例えば、チタン(Ti)やタングステン(W)等を用いてもよい。第1の電極層14の厚さは、数10nm~数μm程度とすると好適であるが、例えば、0.5μmとすることができる。
 化合物系光吸収層15は、p型半導体からなる層であり、第1の電極層14上に形成されている。化合物系光吸収層15は、照射された太陽光等を光電変換する部分である。化合物系光吸収層15が光電変換することにより生じた光電流は、第1の電極層14と第2の電極層16の何れか一方又は双方にはんだ等で取り付けられた図示しない電極リボン(銅箔リボン)から外部に電流として取り出すことができる。化合物系光吸収層15の厚さは、0.数μm~数10μm程度とすると好適であるが、例えば、1.5μmとすることができる。
 化合物系光吸収層15は半導体薄膜であり、IB-IIIB-VIB族元素からなるCIS系化合物薄膜で形成することができる。CIS系化合物薄膜の材料は、Cu及びAgからなる群より選択された少なくとも1種類のIB族元素と、Al、Ga及びInからなる群より選択された少なくとも1種類のIIIB族元素と、S及びSeからなる群から選択された少なくとも1種類のVIB族元素とを含む、少なくとも1種類の化合物半導体とすることができる。
 具体的な化合物の一例を挙げれば、2セレン化銅インジウム(CuInSe)、2イオウ化銅インジウム(CuInS)、2セレン・イオウ化銅インジウム(CuIn(SSe))、2セレン化銅ガリウム(CuGaSe)、2イオウ化銅ガリウム(CuGaS)、2セレン化銅インジウム・ガリウム(Cu(InGa)Se)、2イオウ化銅インジウム・ガリウム(Cu(InGa)S)、2セレン・イオウ化銅インジウム・ガリウム(Cu(InGa)(SSe))等である。
 なお、化合物系光吸収層15として、例えば、銅(Cu),亜鉛(Zn),錫(Sn),カルコゲン元素からなるCZTS系の化合物を用いてもよい。具体的な化合物の一例を挙げれば、4セレン化2銅スズ・亜鉛(CuZnSnSe)、4イオウ化2銅スズ・亜鉛(CuZnSnS)、4セレン・イオウ化2銅スズ・亜鉛(CuZnSn(SSe))等である。
 化合物系光吸収層15上にバッファ層(図示せず)を形成してもよい。バッファ層は、化合物系光吸収層15からの電流の漏出を防止する機能を有する高抵抗の層である。バッファ層の材料としては、例えば、亜鉛化合物(Zn(S,O,OH))等を用いることができる。バッファ層の材料として、酸化亜鉛(ZnO)、硫化亜鉛(ZnS)、酸化インジウム(In)、硫化インジウム(InS)、インジウム化合物(In(S,O,OH))、硫化カドミウム(CdS)等を用いてもよい。バッファ層の厚さは、例えば、数nm~数10nm程度とすることができる。
 なお、絶縁層13と第1の電極層14との間にアルカリバリア層を形成してもよい。アルカリバリア層は、ナトリウム(Na)やカリウム(K)等のアルカリ金属成分が化合物系光吸収層15に過剰に拡散することを防止するために設ける層である。アルカリバリア層の材料としては、例えば、シリカ(SiO)等を用いることができる。アルカリバリア層の厚さは、例えば、5~100nm程度とすることができる。
 第2の電極層16は、n型半導体からなる透明な層であり、化合物系光吸収層15上に形成されている。第2の電極層16は、p型半導体からなる化合物系光吸収層15との間でpn接合を形成し、更に低抵抗の導体としても機能する。第2の電極層16としては、例えば、酸化亜鉛系薄膜(ZnO)やITO薄膜、酸化錫(SnO)等の透明導電膜を用いることができる。酸化亜鉛系薄膜(ZnO)を用いる場合には、硼素(B)やアルミニウム(Al)やガリウム(Ga)等をドーパントとして添加することにより、低抵抗化でき好適である。第2の電極層16の厚さは、例えば、0.5μm~2.5μm程度とすることができる。
 なお、化合物系薄膜太陽電池10を複数のセルが直列に接続された集積構造としてもよい。
 [本実施の形態に係るCIS系の化合物系薄膜太陽電池の製造方法]
 次に、本実施の形態に係るCIS系の化合物系薄膜太陽電池の製造方法について説明する。図2から図4は、本実施の形態に係るCIS系の化合物系薄膜太陽電池の製造工程を例示する図である。
 まず、図2に示す工程では、金属基板11を準備する。金属基板11は、鉄を主成分としアルミニウム(Al)及びクロム(Cr)を含有する基板である。前述のように、金属基板11として、アルミニウム(Al)を含有したフェライト系ステンレス基板を用いると特に好適である。又、金属基板11におけるアルミニウム(Al)の含有量は、0.5重量%以上かつ6.0重量%以下とすると好適である。金属基板11の厚さは、例えば、0.2mm~0.6mm程度とすることができる。
 次に、図3に示す工程では、大気中もしくは酸素含有雰囲気中において、金属基板11を700℃以上かつ850℃未満の温度(この温度を前処理温度と称する場合がある)で焼成(加熱及び酸化、即ち熱酸化)し、金属基板11に含有されたアルミニウム(Al)を金属基板11の全表面に拡散させ、アルミナ層12を形成する。但し、アルミナ層12は、少なくとも金属基板11の上面(素子形成面)に形成されていればよい。金属基板11の上面に形成されたアルミナ層12と、その直上に形成される絶縁層13との密着性を向上できるからである。
 なお、700℃以上かつ850℃未満の前処理温度が好適である点は、発明者らが実験的に見出したものである。発明者らの検討によれば、前処理温度が700℃より低いと、金属基板11の上面にアルミナ層12が十分に形成されないため、絶縁層13との密着性が低下する。又、前処理温度が850℃以上であると、金属基板11の熱変形量が大きくなり、平面度を要求される化合物系薄膜太陽電池用の基板としては不適となる。更に、加熱のための特殊な設備が必要であり、熱処理のためのエネルギー消費も大きいという問題もある。
 具体的には、850℃以上の前処理温度でアルミナ層12を形成すると、金属基板11を平面上に置いた時の凹凸の高低差である『うねり』が、化合物系薄膜太陽電池用の基板としての許容値(1mm以下)を大幅に超える。そのため、850℃以上の前処理温度でアルミナ層12を形成した金属基板11を化合物系薄膜太陽電池用の基板として使用することは困難である。
 一方、前処理温度が700℃以上かつ850℃未満であると、その直上に形成される絶縁層13との密着性を向上するために十分な厚さのアルミナ層12が形成されると共に、金属基板11の『うねり』を化合物系薄膜太陽電池用の基板として許容される値以下(1mm以下)に抑えることができる。なお、700℃以上かつ850℃未満の温度は、アルミナ層を形成するための一般的な前処理温度(850℃以上かつ1100℃未満程度)より低いため、焼成エネルギーの低減も可能となる。
 なお、図3に示す工程は、金属基板11を、個片化されると太陽電池用基板となる複数の領域を備えた長尺状の基板とし、複数の領域の少なくとも素子形成面に連続的にアルミナ層を形成する工程としてもよい。換言すれば、長尺状の基板をロールツーロールで連続して焼成してアルミナ層12を形成し、その後切断して個片化する工程としてもよい。この場合には、個片化後の各基板において、素子形成面及び裏面はアルミナ層で覆われるが、端面(切断面)には基板の材料が露出する。なお、個片化はアルミナ層12を形成した長尺状の基板の状態で行ってもよいし、その上に各層を形成後に行ってもよい。
 次に、図4に示す工程では、金属基板11の上面に形成されたアルミナ層12上に絶縁層13を形成する。具体的には、例えば、軟化点が600℃~800℃の範囲にあるガラスペーストを、金属基板11の上面に形成されたアルミナ層12上に塗布する。ガラスペーストは、例えば、スリットコーターにより塗布できる。スリットコーターに代えて、スプレーコーター、スクリーン印刷、ディップコーター、スピンコーター等によりガラスペーストを塗布してもよい。
 次に、塗布したガラスペーストを大気雰囲気中で100℃~200℃程度に加熱し、ガラスペーストを乾燥させてガラスペースト中の有機溶剤を揮発させる。更に、乾燥させたガラスペーストを上記軟化点以上の温度に加熱・焼成することにより絶縁層13が形成される。焼成後の絶縁層13の厚さは、10μm以上かつ50μm以下とすることが好ましく、例えば、30μm程度とすることができる。なお、ガラスペーストを乾燥させる工程と加熱・焼成する工程とは温度が大きく異なるため、各々を別々の装置で行ってもよい。
 絶縁層13の材料として用いることができるガラスの例は、前述の通りである。又、絶縁層13を複数の層から構成してもよい点や、その場合に、アルカリバリア機能を有する層を有してもよい点は、前述の通りである。
 絶縁層13とアルミナ層12は、共に酸化物から形成された層(酸化物層)である。酸化物同士はなじみやすいため、絶縁層13とアルミナ層12との密着性は、絶縁層13がアルミナ層12が形成されていない金属基板11上に直接形成される場合(絶縁層13が、酸化物でない金属基板11上に直接形成される場合)に比べて向上する。
 なお、従来のアルミナ層12が形成されていない金属基板11において、金属基板11の素子形成面は極薄のクロム酸化物に覆われている。その場合、クロム酸化物の直上に絶縁層13が形成されると、酸化物同士による密着性の向上効果が得られるようにも思われる。しかしながら、クロム酸化物は極薄(例えば、数nm~10nm程度)であるため、密着性の向上効果はほとんど得られない。
 一方、本実施の形態では、金属基板11の素子形成面を覆うアルミナ層12の厚さは30nm以上(場合によっては、1μm程度)であり、クロム酸化物の厚さ(例えば、数nm~10nm程度)に比べて大幅に厚いため、酸化物同士のなじみやすさにより、絶縁層13との間に密着性の向上効果が得られる。このように、酸化物同士による密着性の向上効果は、層厚が厚いほど生じやすい。
 又、アルミナ層12は、金属基板11の上面にアルミナを製膜する等の方法で形成したものではなく、金属基板11に含まれるアルミニウム(Al)を拡散させて一体的に形成したものである。そのため、金属基板11とアルミナ層12との間にはアンカー効果が生じ、金属基板11とアルミナ層12との間の密着性は、金属基板11の上面にアルミナを製膜する等の方法で形成したものに比べて向上する。
 つまり、アルミナ層12を介すことにより、金属基板11と絶縁層13との密着性が従来に比べて向上する。そのため、従来は化合物系薄膜太陽電池の製造工程中や実稼働中(特に、温度変化の激しい環境で使用された場合)に発生するおそれがあった金属基板11と絶縁層13との間の剥離を抑制することが可能となる。
 なお、上記説明では絶縁層13が酸化物層である場合を例にしたが、絶縁層13がシリコン窒化物等からなる窒化物層であっても、絶縁層13が酸化物層である場合と同様に、アルミナ層12との間で良好な密着性が得られる。シリコン窒化物からなる絶縁層13は、例えば、シリコンと窒素の反応性スパッタやプラズマCVD法等により、アルミナ層12上に形成できる。
 図4の工程後、絶縁層13上に、第1の電極層14、化合物系光吸収層15、及び第2の電極層16を順次積層することにより、図1に示す化合物系薄膜太陽電池10が完成する。
 具体的には、絶縁層13上に、例えばDCマグネトロンスパッタ法等により、第1の電極層14を製膜する。或いは、第1の電極層14を、電子ビーム蒸着法等を用いて絶縁層13上に製膜してもよい。第1の電極層14の材料や厚さ等は、前述の通りである。なお、第1の電極層14を製膜する前に、スパッタ法等により、アルカリバリア層を形成してもよい。アルカリバリア層の材料や厚さ等は、前述の通りである。
 次に、第1の電極層14上に化合物系光吸収層15として、例えば、2セレン・イオウ化銅インジウム・ガリウム(Cu(InGa)(SSe))を製膜する。2セレン・イオウ化銅インジウム・ガリウム(Cu(InGa)(SSe))は、例えばDCマグネトロンスパッタ法や蒸着法等により銅(Cu),ガリウム(Ga),インジウム(In)等を含むプリカーサ膜を形成し、その後、例えば400~600℃程度の温度中でセレン化水素(HSe)によるセレン化及び硫化水素(HS)による硫化を行うことにより製膜できる(セレン化/硫化過程)。
 なお、化合物系光吸収層15として、2セレン・イオウ化銅インジウム・ガリウム(Cu(InGa)(SSe))に代えて、前述の2セレン化銅インジウム(CuInSe)、2イオウ化銅インジウム(CuInS)等を製膜してもよい。
 又、化合物系光吸収層15は、銅(Cu),ガリウム(Ga),インジウム(In),及びセレン(Se)を蒸着することにより製膜してもよい。又、化合物系光吸収層15は、銅(Cu),ガリウム(Ga),インジウム(In),及び硫黄(S)を蒸着することにより製膜してもよい。又、化合物系光吸収層15は、銅(Cu),ガリウム(Ga),インジウム(In),及びセレン(Se)と硫黄(S)を蒸着することにより製膜してもよい。又、化合物系光吸収層15は、スパッタ法、ハイブリッドスパッタ法、メカノケミカルプロセス法、クリーン印刷法、近接昇華法、MOCVD法、スプレー法等を用いて製膜してもよい。
 金属基板11の全表面がアルミナ層12により被覆されているため、セレン化水素(HSe)や硫化水素(HS)等による金属基板11の全表面の腐食が抑制される。
 なお、化合物系光吸収層15を製膜後、必要に応じ、化合物系光吸収層15上にバッファ層を製膜してもよい。バッファ層は、例えば、溶液成長法(CBD法)や有機金属気相成長法(MOCVD法)、アトミックレイヤーデポジション法(ALD法)等により、化合物系光吸収層15上に製膜できる。バッファ層の材料や厚さ等は、前述の通りである。
 次に、化合物系光吸収層15上に、例えばMOCVD法等により、第2の電極層16を製膜する。或いは、第2の電極層16を、スパッタ法や蒸着法、アトミックレイヤーデポジション法(ALD法)等を用いて化合物系光吸収層15上に製膜してもよい。第2の電極層16の材料や厚さ等は、前述の通りである。以上の工程により、図1に示すCIS系の化合物系薄膜太陽電池10が完成する。
 なお、第1の電極層14、化合物系光吸収層15、及び第2の電極層16に分離溝を形成し、分離溝によってストリップ状に分離・形成されたセルが直列に接続された集積構造としてもよい。
 このように、本実施の形態では、金属基板11の少なくとも素子形成面にアルミナ層12を形成し、アルミナ層12の直上に絶縁層13を形成する。これにより、金属基板11とアルミナ層12との間にはアンカー効果が生じて両者の密着性を向上できる。又、酸化物層であるアルミナ層12と酸化物層や窒化物層である絶縁層13とはなじみやすいため、両者の密着性も向上できる。つまり、アルミナ層12を介すことにより、金属基板11と絶縁層13との密着性を向上することが可能となり、金属基板11と絶縁層13との剥離を抑制できるため、良好な特性を有する化合物系薄膜太陽電池10を製造できる。
 又、アルミナ層12を形成する際の前処理温度を、一般的な前処理温度(850℃以上かつ1100℃未満程度)より低い700℃以上かつ850℃未満とするため、焼成エネルギーの低減が可能となる。
 更に、金属基板11の素子形成面と第1の電極層14の下面との間に、アルミナ層12と絶縁層13が存在する。つまり、金属基板11と第1の電極層14とは、アルミナ層12と絶縁層13とが積層された二層構造の絶縁体により分離されるため、金属基板11と第1の電極層14との間の絶縁耐圧を向上することが可能となる。
 [実施例1]
 実施例1では、アルミナ層12の表面状態や金属基板11の変形(反りやうねり)を確認した。まず、金属基板11として、アルミニウム(Al)を含有したフェライト系ステンレス基板(JFE18-3USR:3.4%のアルミニウムを含有したフェライト系ステンレス基板)を用意した。用意した金属基板11の厚さは0.3mmである。
 そして、用意した金属基板11に対し前処理を施し、金属基板11の全表面にアルミナ層12を形成した複数のサンプルを試作した。具体的には、前処理温度を700℃としたサンプル1、前処理温度を750℃としたサンプル2、及び前処理温度を800℃としたサンプル3の3種類のサンプルを作製した。サンプル1~サンプル3において、アルミナ層12の厚さは、30nm~100nm程度であった。なお、実施例1ではアルミナ層12上に絶縁層13等の積層は行っていない。
 次に、図5に示すように、金属基板11の全表面にアルミナ層12を形成したサンプル1~3(図5ではS1~S3で示す)を順次基準板100(平坦な板)上に置いて矢印A方向(上方)から写真撮影を行い、各サンプルの表面状態を確認した(図6~図8)。
 図6にサンプル1の表面状態を示す写真、図7にサンプル2の表面状態を示す写真、図8にサンプル3の表面状態を示す写真を示す。図6~図8において、画面下側が基準板100、画面上側が金属基板11の全表面にアルミナ層12を形成したサンプル1~3(図6~図8ではS1~S3で示す)である。図6~図8に示すように、何れのサンプルにおいても、均一なアルミナ層12が形成されている。なお、基準板100中に示された直線の長さが30mmに相当する。
 次に、比較例として、用意した金属基板11に対し900℃の前処理温度で前処理を施し、金属基板11の全表面にアルミナ層12を形成したサンプル9を作製した。そして、サンプル3及び9を順次基準板100(平坦な板)上に置いて図5の矢印B方向(斜め上方)から写真撮影を行い、各サンプルの金属基板11の変形(反りやうねり)を確認した(図9及び図10)。
 図9にサンプル3の金属基板11の写真、図10にサンプル9の金属基板11の写真を示す。図9及び図10において、画面下側が基準板100、画面上側が金属基板11の全表面にアルミナ層12を形成したサンプル3及び9(図9ではS3、図10ではS9で示す)である。なお、基準板100中に示された直線の長さが100mmに相当する。
 図9に示すように、前処理温度を800℃としたサンプル3では、金属基板11の基準板100と接する面に反りやうねりが生じていないことが確認できる。又、サンプル3の前処理後の熱変形量U(うねり)を測定したところ、前述のうねりの許容値以下(1mm以下)に収まっていることが確認できた。
 一方、図10に示すように、前処理温度を900℃としたサンプル9では、金属基板11の基準板100と接する面に反りやうねりが生じている。又、サンプル9の前処理後の熱変形量U(うねり)を測定したところ、前述のうねりの許容値(1mm)を超える約5mmのうねりが発生しており、太陽電池用基板としては不適切であることが確認できた。
 [実施例2]
 実施例2では、アルミナ層12と絶縁層13との界面の剥がれの有無を確認した。まず、実施例1と同様の金属基板11を用意した。
 そして、用意した金属基板11に対し前処理を施し、金属基板11の全表面にアルミナ層12を形成した複数のサンプルを試作した。具体的には、前処理温度を750℃としたサンプル4、前処理温度を800℃としたサンプル5の2種類のサンプルを作製した。サンプル4及び5において、アルミナ層12の厚さは、30nm~100nm程度であった。
 次に、サンプル4及び5の各々のアルミナ層12上にガラスにより絶縁層13を積層した。その後、サンプル4及び5について、アルミナ層12と絶縁層13との界面を観察したところ、何れの場合も剥離は認められなかった。
 このように、実施例1及び2により、金属基板11の少なくとも素子形成面に、従来よりも低い700℃以上かつ850℃未満の前処理温度でアルミナ層12を形成することにより、金属基板11の熱変形が抑制できることが確認された。又、形成されたアルミナ層12上に絶縁層13を積層した場合に、アルミナ層12と絶縁層13とが十分に密着し、アルミナ層12と絶縁層13との界面に剥がれが生じないことが確認された。金属基板11とアルミナ層12との間にアンカー効果が生じて両者の密着性が向上していることと合わせて考えると、アルミナ層12を介すことにより、金属基板11と絶縁層13との密着性を向上できたといえる。
 以上、好ましい実施の形態及び実施例について詳説したが、上述した実施の形態及び実施例に制限されることはなく、特許請求の範囲に記載された範囲を逸脱することなく、上述した実施の形態及び実施例に種々の変形及び置換を加えることができる。
 本国際出願は2012年12月27日に出願した日本国特許出願2012-286186号に基づく優先権を主張するものであり、日本国特許出願2012-286186号の全内容を本国際出願に援用する。
 10 化合物系薄膜太陽電池
 11 金属基板
 12 アルミナ層
 13 絶縁層
 14 第1の電極層
 15 化合物系光吸収層
 16 第2の電極層

Claims (21)

  1.  鉄を主成分としアルミニウム(Al)及びクロム(Cr)を含有した金属基板を用意し、前記金属基板の少なくとも素子形成面に熱酸化によってアルミナ層を形成する工程と、
     前記アルミナ層上に絶縁層を形成する工程と、
     前記絶縁層上に、第1の電極層を製膜する工程と、
     前記第1の電極層上に、化合物系光吸収層を製膜する工程と、
     前記化合物系光吸収層上に、第2の電極層を製膜する工程と、を有する化合物系薄膜太陽電池の製造方法。
  2.  前記絶縁層が酸化物層である請求項1記載の化合物系薄膜太陽電池の製造方法。
  3.  前記絶縁層がガラス層である請求項1記載の化合物系薄膜太陽電池の製造方法。
  4.  前記ガラス層が加熱及び焼成により形成される請求項3項記載の化合物系薄膜太陽電池の製造方法。
  5.  前記ガラス層の厚さが10μm以上かつ50μm以下である請求項3記載の化合物系薄膜太陽電池の製造方法。
  6.  前記金属基板におけるアルミニウム(Al)含有量は0.5重量%以上かつ6.0重量%以下である請求項1記載の化合物系薄膜太陽電池の製造方法。
  7.  前記金属基板は、アルミニウム(Al)を含有したステンレス基板である請求項1記載の化合物系薄膜太陽電池の製造方法。
  8.  前記金属基板は、アルミニウム(Al)を含有したフェライト系ステンレス基板である請求項7記載の化合物系薄膜太陽電池の製造方法。
  9.  前記アルミナ層を形成する工程では、700℃以上かつ850℃未満の温度で前記アルミナ層を形成する請求項1記載の化合物系薄膜太陽電池の製造方法。
  10.  前記金属基板は、個片化されると太陽電池用基板となる複数の領域を備えた長尺状の基板であり、
     前記アルミナ層を形成する工程では、前記複数の領域の少なくとも素子形成面に連続的に前記アルミナ層を形成する請求項1記載の化合物系薄膜太陽電池の製造方法。
  11.  前記アルミナ層を形成する工程では、前記金属基板の少なくとも素子形成面及び裏面に前記アルミナ層を形成する請求項1記載の化合物系薄膜太陽電池の製造方法。
  12.  前記化合物系光吸収層は、CIS系化合物薄膜である請求項1記載の化合物系薄膜太陽電池の製造方法。
  13.  鉄を主成分としアルミニウム(Al)及びクロム(Cr)を含有した金属基板と、
     前記金属基板の少なくとも素子形成面に熱酸化によって形成されたアルミナ層と、
     前記アルミナ層上に形成された絶縁層と、
     前記絶縁層上に製膜された第1の電極層と、
     前記第1の電極層上に製膜された化合物系光吸収層と、
     前記化合物系光吸収層上に製膜された第2の電極層と、を有する化合物系薄膜太陽電池。
  14.  前記絶縁層が酸化物層である請求項13記載の化合物系薄膜太陽電池。
  15.  前記絶縁層がガラス層である請求項13記載の化合物系薄膜太陽電池。
  16.  前記ガラス層の厚さが10μm以上かつ50μm以下である請求項15記載の化合物系薄膜太陽電池。
  17.  前記金属基板におけるアルミニウム(Al)含有量は0.5重量%以上かつ6.0重量%以下である請求項13記載の化合物系薄膜太陽電池。
  18.  前記金属基板は、アルミニウム(Al)を含有したステンレス基板である請求項13記載の化合物系薄膜太陽電池。
  19.  前記金属基板は、アルミニウム(Al)を含有したフェライト系ステンレス基板である請求項18記載の化合物系薄膜太陽電池。
  20.  前記アルミナ層は、前記金属基板の少なくとも素子形成面及び裏面に形成されている請求項13記載の化合物系薄膜太陽電池。
  21.  前記化合物系光吸収層は、CIS系化合物薄膜である請求項13記載の化合物系薄膜太陽電池。
PCT/JP2013/082883 2012-12-27 2013-12-06 化合物系薄膜太陽電池及びその製造方法 WO2014103669A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/654,870 US20150340535A1 (en) 2012-12-27 2013-12-06 Compound thin-film photovoltaic cell and method of manufacturing thereof
EP13866575.7A EP2940736A4 (en) 2012-12-27 2013-12-06 COMPOUND-BASED THIN FILM SOLAR CELL, AND METHOD FOR MANUFACTURING THE SAME

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012286186A JP2014127711A (ja) 2012-12-27 2012-12-27 化合物系薄膜太陽電池及びその製造方法
JP2012-286186 2012-12-27

Publications (1)

Publication Number Publication Date
WO2014103669A1 true WO2014103669A1 (ja) 2014-07-03

Family

ID=51020761

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/082883 WO2014103669A1 (ja) 2012-12-27 2013-12-06 化合物系薄膜太陽電池及びその製造方法

Country Status (4)

Country Link
US (1) US20150340535A1 (ja)
EP (1) EP2940736A4 (ja)
JP (1) JP2014127711A (ja)
WO (1) WO2014103669A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5997044B2 (ja) * 2012-12-27 2016-09-21 ソーラーフロンティア株式会社 化合物系薄膜太陽電池の製造方法
CN114759106B (zh) * 2021-01-12 2024-03-08 宝山钢铁股份有限公司 一种适用于内联式薄膜光伏组件的涂镀钢板及其制造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63155681A (ja) 1986-12-18 1988-06-28 Kawasaki Steel Corp 太陽電池基板用母板の製造方法
JP2004158511A (ja) * 2002-11-01 2004-06-03 Matsushita Electric Ind Co Ltd 太陽電池用基板およびその製造方法ならびにそれを用いた太陽電池
JP2004327850A (ja) * 2003-04-25 2004-11-18 Matsushita Electric Ind Co Ltd 集積型太陽電池
JP2010263037A (ja) * 2009-05-01 2010-11-18 Fujifilm Corp 金属複合基板およびその製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010212336A (ja) * 2009-03-09 2010-09-24 Fujifilm Corp 光電変換素子とその製造方法、及び太陽電池
JP2011176288A (ja) * 2010-02-01 2011-09-08 Fujifilm Corp 光電変換素子、薄膜太陽電池および光電変換素子の製造方法
US20120006395A1 (en) * 2010-07-08 2012-01-12 E. I. Du Pont De Nemours And Company Coated stainless steel substrate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63155681A (ja) 1986-12-18 1988-06-28 Kawasaki Steel Corp 太陽電池基板用母板の製造方法
JP2004158511A (ja) * 2002-11-01 2004-06-03 Matsushita Electric Ind Co Ltd 太陽電池用基板およびその製造方法ならびにそれを用いた太陽電池
JP2004327850A (ja) * 2003-04-25 2004-11-18 Matsushita Electric Ind Co Ltd 集積型太陽電池
JP2010263037A (ja) * 2009-05-01 2010-11-18 Fujifilm Corp 金属複合基板およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2940736A4 *

Also Published As

Publication number Publication date
JP2014127711A (ja) 2014-07-07
US20150340535A1 (en) 2015-11-26
EP2940736A4 (en) 2015-12-23
EP2940736A1 (en) 2015-11-04

Similar Documents

Publication Publication Date Title
US7741560B2 (en) Chalcopyrite solar cell
Kessler et al. Technological aspects of flexible CIGS solar cells and modules
JP5229901B2 (ja) 光電変換素子、及び太陽電池
JP4629151B2 (ja) 光電変換素子及び太陽電池、光電変換素子の製造方法
US9812593B2 (en) Solar cell and preparing method of the same
US9166077B2 (en) Thin film solar cell
KR101172132B1 (ko) 태양전지 및 이의 제조방법
US20100300514A1 (en) Solar cell and method for manufacturing solar cell
US8993370B2 (en) Reverse stack structures for thin-film photovoltaic cells
JP2004047860A (ja) 薄膜太陽電池およびその製造方法
WO2014162899A1 (ja) 薄膜太陽電池
WO2014103669A1 (ja) 化合物系薄膜太陽電池及びその製造方法
JP6104576B2 (ja) 化合物系薄膜太陽電池
KR20110043358A (ko) 태양전지 및 이의 제조방법
JP2011009287A (ja) Cis系薄膜太陽電池
KR101034146B1 (ko) 태양전지 및 이의 제조방법
JP5997044B2 (ja) 化合物系薄膜太陽電池の製造方法
JP4646724B2 (ja) カルコパイライト型太陽電池
JP6104579B2 (ja) 薄膜太陽電池の製造方法
KR101103897B1 (ko) 태양전지 및 이의 제조방법
JP2014090009A (ja) 光電変換装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13866575

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14654870

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2013866575

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE