WO2014103585A1 - 内燃機関 - Google Patents

内燃機関 Download PDF

Info

Publication number
WO2014103585A1
WO2014103585A1 PCT/JP2013/081507 JP2013081507W WO2014103585A1 WO 2014103585 A1 WO2014103585 A1 WO 2014103585A1 JP 2013081507 W JP2013081507 W JP 2013081507W WO 2014103585 A1 WO2014103585 A1 WO 2014103585A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust
exhaust port
internal combustion
combustion engine
cylinder
Prior art date
Application number
PCT/JP2013/081507
Other languages
English (en)
French (fr)
Inventor
濱本 高行
高生 伊藤
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Publication of WO2014103585A1 publication Critical patent/WO2014103585A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/02Arrangements for cooling cylinders or cylinder heads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • F02F1/42Shape or arrangement of intake or exhaust channels in cylinder heads
    • F02F1/4264Shape or arrangement of intake or exhaust channels in cylinder heads of exhaust channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/14Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the exhaust system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/02Arrangements for cooling cylinders or cylinder heads
    • F01P2003/024Cooling cylinder heads

Definitions

  • the present invention relates to an internal combustion engine.
  • the intake and exhaust valve operation timings are all controlled to the retarded angle side, and a high expansion ratio cycle is realized by the slow closing of the intake valve and the slow opening of the exhaust valve.
  • a swirl component is added to the flow of exhaust gas (internal EGR) sucked back into the cylinder by the slow opening and the slow closing of the exhaust valve, and fuel is supplied into the cylinder during the period of generating the exhaust swirl flow.
  • the problem to be solved by the present invention is to provide an internal combustion engine that can introduce an appropriate amount of internal EGR gas into the combustion chamber and has excellent combustion stability.
  • the present invention sets the curvature of the curved shape of at least one of the plurality of exhaust ports to be larger than the curvature of the other exhaust ports, and also provides cooling capacity by the water jacket for the exhaust ports having a large curvature.
  • the above problem is solved by setting the cooling capacity higher than that of the exhaust port.
  • the present invention when performing the internal EGR, a strong swirl flow is generated due to the large curvature of the exhaust port, and the homogeneity of fresh air and exhaust is improved, so that the combustibility is stabilized. At the same time, the exhaust gas is cooled, so that more internal EGR gas can be sucked back into the cylinder, and combustion stability can be improved.
  • FIG. 1 is a block diagram showing an internal combustion engine according to an embodiment of the present invention.
  • 1 is a perspective view showing a cylinder head of an internal combustion engine according to an embodiment of the present invention.
  • FIG. 3 is a bottom view of the cylinder head of FIG.
  • FIG. 4 is a front view of the cylinder head of FIGS. 2 and 3 and a perspective view showing an exhaust branch pipe attached thereto.
  • It is a figure which shows an example of the pressure distribution in the planar view of the exhaust port of the internal combustion engine which concerns on one embodiment of this invention.
  • It is a figure which shows the pressure distribution in the cross section which follows the VI-VI line of FIG.
  • FIG. 8 is a bottom view of a cylinder head showing an application example of the exhaust valves A and B of FIG. 7.
  • FIG. 2 is a perspective view (A) and a cross-sectional view (B) showing a swirl flow of EGR gas generated in a combustion chamber of an internal combustion engine according to an embodiment of the present invention.
  • FIG. 1 is a block diagram showing an internal combustion engine EG according to an embodiment of the present invention, and schematically showing a configuration of one cylinder.
  • one or more cylinders are provided in the body of the internal combustion engine including the cylinder block and the cylinder head, and one cylinder has one or more intake passages and one or more cylinders.
  • An exhaust passage is provided.
  • the intake passage 111 of the internal combustion engine EG of this example is provided with an air filter 112, an air flow meter 113 for detecting the intake air flow rate, a throttle valve 114 for controlling the intake air flow rate, and a collector 115.
  • the throttle valve 114 is provided with an actuator 116 such as a DC motor for adjusting the opening of the throttle valve 114.
  • the throttle valve actuator 116 electronically controls the opening degree of the throttle valve 114 based on the drive signal from the control unit 11 so as to achieve the required torque calculated based on the driver's accelerator pedal operation amount and the like. Further, a throttle sensor 117 for detecting the opening degree of the throttle valve 114 is provided, and the detection signal is output to the control unit 11.
  • a fuel injection valve 118 is provided facing the intake passage 111a branched from the collector 115 to each cylinder (not shown in FIG. 1).
  • the fuel injection valve 118 is driven to open by a drive pulse signal set in the control unit 11, and feeds fuel that has been pumped from a fuel pump (not shown) and controlled to a predetermined pressure by a pressure regulator (hereinafter referred to as fuel injection port). (Also called) 111a.
  • a direct injection internal combustion engine that directly injects fuel into the combustion chamber 123 with the fuel injection valve 118 facing the combustion chamber 123 may be used.
  • a space surrounded by the cylinder 119, the crown surface of the piston 120 that reciprocates in the cylinder, and the cylinder head 134 provided with the intake valve 121 and the exhaust valve 122 constitutes a combustion chamber 123.
  • the spark plug 124 is mounted facing the combustion chamber 123 of each cylinder, and ignites the intake air-fuel mixture based on the ignition signal from the control unit 11.
  • the exhaust passage 125 is provided with an air-fuel ratio sensor 126 that detects the air-fuel ratio of the exhaust gas and the intake air-fuel mixture by detecting a specific component in the exhaust gas, for example, oxygen concentration, and the detection signal is sent to the control unit 11. Is output.
  • the air-fuel ratio sensor 126 may be an oxygen sensor that performs rich / lean output, or a wide-area air-fuel ratio sensor that linearly detects the air-fuel ratio over a wide area.
  • the exhaust passage 125 is provided with an exhaust purification catalyst 127 for purifying exhaust.
  • an oxygen sensor 128 that detects a specific component in the exhaust, for example, oxygen concentration, and performs rich / lean output, and the detection signal is output to the control unit 11.
  • reference numeral 129 denotes a muffler.
  • a crank angle sensor 131 is provided on the crankshaft 130 of the internal combustion engine EG, and the control unit 11 counts a crank unit angle signal output from the crank angle sensor 131 in synchronization with the engine rotation for a predetermined time, or By measuring the cycle of the crank reference angle signal, the engine speed Ne can be detected.
  • a water temperature sensor 133 is provided on the water jacket 132 of the internal combustion engine EG so as to face the water jacket, detects the cooling water temperature Tw in the water jacket 132, and outputs it to the control unit 11.
  • FIG. 2 is a perspective view showing a cylinder head 134 of an in-line four-cylinder internal combustion engine (a 16-valve internal combustion engine having two intake valves and two exhaust valves in each cylinder) according to an embodiment of the present invention.
  • FIG. 3 is a bottom view of the cylinder head 134 of FIG.
  • the four cylinders of the internal combustion engine EG that is, the first cylinder 21, the second cylinder 22, the third cylinder 23, and the fourth cylinder 24 are arranged in a row from the left side to the right side in FIG. Then, ignition is performed in the order of the first cylinder 21 ⁇ the third cylinder 23 ⁇ the fourth cylinder 24 ⁇ the second cylinder 22.
  • the internal combustion engine of the present invention is not limited to the internal combustion engine EG including the in-line four cylinders shown in the figure, and may be other internal combustion engines.
  • two intake ports 25 are formed at positions corresponding to the cylinders 21 to 24 on the back surface of the cylinder head 134 (joint surface with the cylinder block).
  • two exhaust ports are formed at positions corresponding to the cylinders 21 to 24, respectively. That is, two exhaust ports 26 a and 26 b are formed at positions corresponding to the first cylinder 21, and two exhaust ports 27 a and 27 b are formed at positions corresponding to the second cylinder 22, corresponding to the third cylinder 23.
  • Two exhaust ports 28a and 28b are formed at the positions where the two exhaust ports are formed, and two exhaust ports 29a and 29b are formed at positions corresponding to the fourth cylinder 24.
  • the two exhaust ports 26 a and 26 b formed corresponding to the first cylinder 21 are gathered at the exhaust gathering portion 31 in the cylinder head 134 and gathered into one exhaust port, and one end thereof is the cylinder head 134. It opens as an outlet end 41 established on the side surface (see also FIG. 4).
  • the two exhaust ports 29a and 29b formed corresponding to the fourth cylinder 24 are gathered at the exhaust gathering portion 34 in the cylinder head 134 and gathered into one exhaust port, one end of which is the cylinder head. It opens as an outlet end 43 provided on the side surface of 134 (see also FIG. 4).
  • the exhaust ports 27a and 27b and the exhaust ports 28a and 28b corresponding to the second cylinder 22 and the third cylinder 23 in the central portion where the exhaust strokes are not continuous are configured as follows. .
  • the two exhaust ports 27 a and 27 b formed corresponding to the second cylinder 22 are gathered at the exhaust collecting portion 32 in the cylinder head 134 and concentrated into one exhaust port, and correspond to the third cylinder 23.
  • the two exhaust ports 28a and 28b formed in this manner are gathered together at the exhaust collecting portion 33 in the cylinder head 134 and gathered into one exhaust port, and these two exhaust ports are connected to the second cylinder 22 and the second exhaust port.
  • One exhaust port is collected at the exhaust collecting portion 35 at the center of the three cylinders 23, and one end thereof is opened as an outlet end portion 42 formed on the side surface of the cylinder head 134 (see also FIG. 4).
  • one end of the exhaust ports 26 a and 26 b communicating with the first cylinder 21 is opened as the outlet end 41 on the side surface of the cylinder head 1, and the exhaust ports 27 a and 27 b and the third ports similarly communicating with the second cylinder 22.
  • One end of the exhaust ports 28 a and 28 b communicating with the cylinder 23 opens as an outlet end portion 42 on the side surface of the cylinder head 134, and one end of the exhaust ports 29 a and 29 b communicating with the fourth cylinder 24 is formed on the side surface of the cylinder head 134.
  • the outlet end 43 is opened. Then, as shown in FIG.
  • the exhaust branch pipe 52 is connected to the outlet end portion 41 of the exhaust ports 26a and 26b via the flange 51, and is connected to the outlet end portion 42 of the exhaust ports 27a, 27b, 28a and 28b.
  • the exhaust branch pipe 53 is connected, and the exhaust branch pipe 54 is connected to the outlet end portions 43 of the exhaust ports 29a and 29b.
  • the exhaust branch pipe 52 connected to the outlet end portion 41 of the exhaust ports 26a and 26b and the exhaust branch pipe 54 connected to the outlet end portion 43 of the exhaust ports 29a and 29b are set immediately after the outlet of the cylinder head 134.
  • the two exhaust branch pipes 55 gather together.
  • the exhaust branch pipe 52 and the exhaust branch pipe 54 form a part of the exhaust branch pipe 55.
  • An exhaust purification catalyst 127a is provided in the exhaust branch pipe 52 and the exhaust branch pipe 55 immediately after the exhaust branch pipe 54 is assembled.
  • An exhaust purification catalyst 127 b is also provided immediately after the outlet of the cylinder head 134 of the exhaust branch pipe 53.
  • the exhaust branch pipe 55 and the exhaust branch pipe 53 gather together in one exhaust pipe (not shown) on the downstream side of the exhaust purification catalysts 127a, 127b, and another exhaust purification catalyst is provided there, or the muffler 129 To.
  • exhaust ports 30 are collectively referred to as “exhaust ports 30”, and when only specifying whether the curvature is large or small with respect to the two exhaust ports provided in each of the cylinders 21 to 24,
  • exhaust port 30A an exhaust port having a large curvature
  • exhaust port 30B an exhaust port having a small curvature
  • an exhaust port of a specific cylinder is specified, for example, This is called the exhaust port 26a.
  • one exhaust port 26a is curved in the exhaust passage from the exhaust opening 26c facing the combustion chamber 123 to the exhaust collecting portion 31, and the curvature of the exhaust port 26b is that of the other exhaust port 26b. It is set larger than the curvature.
  • one exhaust port 27a is curved in the exhaust passage from the exhaust opening 27c facing the combustion chamber 123 to the exhaust collecting portion 32, and the curvature thereof is the other exhaust port 27b. It is set larger than the curvature of.
  • one exhaust port 28a has a curved shape in the exhaust passage extending from the exhaust opening 28c facing the combustion chamber 123 to the exhaust collecting portion 33, and its curvature is that of the other exhaust port 28b. It is set larger than the curvature.
  • one exhaust port 29a is curved in the exhaust passage from the exhaust opening 29c facing the combustion chamber 123 to the exhaust collecting portion 34, and the curvature of the exhaust port 29a is that of the other exhaust port 29b. It is set larger than the curvature.
  • the water jacket 132 shown in FIG. 1 extends to the cylinder head 134 so that the cooling water circulates along each exhaust port 30.
  • the area of the region adjacent to one exhaust port 30A having a large curvature among the two exhaust ports 30 provided in each of the cylinders 21 to 24 described above is the other exhaust having a small curvature. It is provided so as to be larger than the area of the region adjacent to the port 30B. That is, for the first cylinder 21, a water jacket 132a is provided adjacent to the exhaust port 26a having a large curvature, and is adjacent to a water jacket (not shown) provided adjacent to the exhaust port 26b having a small curvature. It is formed so that the area of the region becomes wide.
  • a water jacket 132b is provided adjacent to the exhaust port 27a having a large curvature, as compared to a water jacket (not shown) provided adjacent to the exhaust port 27b having a small curvature.
  • the adjacent area is formed to have a large area.
  • a water jacket 132c is provided adjacent to the exhaust port 28a having a large curvature, and is adjacent to a water jacket (not shown) provided adjacent to the exhaust port 28b having a small curvature. It is formed so that the area of the region becomes wide.
  • a water jacket 132d is provided adjacent to the exhaust port 29a having a large curvature, and is adjacent to a water jacket (not shown) provided adjacent to the exhaust port 29b having a small curvature. It is formed so that the area of the region becomes wide.
  • a partition wall between one exhaust port 30A having a large curvature and a water jacket 132a to 132d provided adjacent thereto is a water jacket (not shown) provided adjacent to the other exhaust port 30B having a small curvature.
  • the partition wall between the exhaust port 26a having a large curvature and the water jacket 132a is formed thinner than the partition wall having the exhaust port 26b having a small curvature and a water jacket (not shown).
  • the partition wall between the exhaust port 27a having a large curvature and the water jacket 132b is formed thinner than the partition wall between the exhaust port 27b having a small curvature and a water jacket (not shown).
  • the partition wall between the exhaust port 28a and the water jacket 132c having a large curvature is formed thinner than the partition wall between the exhaust port 28b and the water jacket (not shown) having a small curvature.
  • the partition wall between the exhaust port 29a having a large curvature and the water jacket 132d is formed thinner than the partition wall between the exhaust port 29b having a small curvature and a water jacket (not shown).
  • the above-described water jackets 132a to 132d are provided adjacent to the exhaust port 30, but are desirably formed in a region where the pressure distribution of the exhaust gas is high.
  • the partition wall between the water jackets 132a to 132d and the exhaust port 30A is formed thin, it is desirable to set the partition wall thin only in the region where the exhaust gas pressure distribution is high in order to ensure the strength of the exhaust port 30A.
  • FIG. 5 is an example in which the pressure distribution is examined by analyzing the flow of exhaust gas from the third cylinder 23 in the exhaust stroke
  • FIG. 6 is a pressure distribution diagram in a cross section along the VI-VI line. From this result, the area X1 has the highest pressure in the plan view of FIG.
  • the water jacket 132c formed adjacent to the exhaust port 28a of the third cylinder 23 is set so as to surround the region X1 in a plan view and the region X2 in a cross-sectional view.
  • the cylinder head 134 shown in FIG. 2 is fixed to a cylinder block (not shown) using a cylinder head bolt.
  • the through holes 61 and 62 of the cylinder head bolt are exhaust ports having a large curvature. It is desirable to provide between the water jackets 132b and 132c provided adjacent to 30A and the exhaust port 30B having a small curvature. That is, as shown in FIG. 3, the through holes 61 and 61 of the cylinder head bolt are formed between a water jacket 132b provided adjacent to the exhaust port 27a having a large curvature and the exhaust port 26b having a small curvature.
  • the through holes 62 and 62 of the cylinder head bolt are preferably formed between a water jacket 132c provided adjacent to the exhaust port 28a having a large curvature and the exhaust port 29b having a small curvature.
  • the operating angles of the exhaust valves corresponding to the two exhaust ports 30 provided in one cylinder 21 to 24 are set to be different. Specifically, the operating angle of the exhaust valve 122 corresponding to the exhaust port 30A having a large curvature is set so as to be delayed and closed compared to the exhaust valve 122 corresponding to the exhaust port 30B having a small curvature. In addition to or instead of this, the lift amount of the exhaust valve 122 corresponding to the exhaust port 30A having a large curvature is set to be larger than the lift amount of the exhaust valve 122 corresponding to the exhaust port 30B having a small curvature. .
  • FIG. 7 is a timing chart showing the relationship between the lift amount of the exhaust valve and the combustion stroke.
  • an exhaust valve V1 corresponding to the exhaust port 26a of the first cylinder 21, an exhaust valve V3 corresponding to the exhaust port 27a of the second cylinder 22, and an exhaust valve corresponding to the exhaust port 28a of the third cylinder 23.
  • the exhaust valve V7 corresponding to V5 and the exhaust port 29a of the fourth cylinder 24 is an exhaust valve (shown by A in FIG.
  • the valve V8 is an exhaust valve (indicated by B in FIG. 7) having a relatively small operating angle and lift amount.
  • the closing timing of the exhaust valves V1, V3, V5, V7 corresponding to the exhaust port 30A having a large curvature is delayed, and the intake valve 121 is used.
  • the internal EGR is realized by overlapping with the opening timing.
  • the exhaust valves V2, V4, V6, and V8 corresponding to the exhaust port 30B having a small curvature are closed or almost closed, so that the exhaust port having a large curvature is mainly used.
  • the exhaust gas is sucked back from 30A.
  • FIGS. 9A and 9B a swirl flow is generated in the internal EGR gas sucked back into the combustion chamber 123.
  • At least one exhaust port 30A among the plurality of exhaust ports 30 has a curved shape in the exhaust passage from the exhaust opening facing the combustion chamber 123 to the exhaust collecting portion,
  • the curvature is set larger than the curvature of the other exhaust port 30B, and the cooling capacity of the water jacket 132a to 132d for the exhaust port 30A having a large curvature is higher than the cooling capacity of the water jacket for the other exhaust port 30B.
  • the operating angle of the exhaust valve 121 (V1, V3, V5, V7) corresponding to the exhaust port 30A having a large curvature and the exhaust valve 121 (V2, V4) corresponding to the other exhaust port 30B.
  • V6, V8) is set to a different angle
  • the operating angle of the exhaust valve 121 (V1, V3, V5, V7) corresponding to the exhaust port 30A having a large curvature corresponds to the other exhaust port 30B.
  • the exhaust valve 121 (V1, V3, V5) corresponding to the exhaust port 30A having a larger curvature may be set to be delayed and closed compared to the exhaust valve 121 (V2, V4, V6, V8).
  • V7 is set larger than the lift amount of the exhaust valves 121 (V2, V4, V6, V8) corresponding to the other exhaust ports 30B.
  • the EGR amount from the exhaust port 30A having a large curvature is larger than the EGR amount from the other exhaust port 30B, and a stronger swirl flow is generated and the ratio of the cooled EGR gas is increased. Is possible.
  • the lift amount and / or the operating angle of the exhaust valve 121 (V1, V3, V5, V7) corresponding to the exhaust port 30A having a large curvature is increased. Since it is set, problems such as an increase in exhaust resistance and a decrease in output can be solved as compared with the case where the exhaust port 30A is simply curved.
  • the exhaust port 30A is simply curved, the exhaust resistance increases and the output decreases, but the lift amount of the exhaust valve 121 (V1, V3, V5, V7) corresponding to the exhaust port 30A having a large curvature and / or Alternatively, by setting the operating angle large, the bending pressure loss can be solved, and the exhaust port 30A can be curved without reducing the output.
  • the water jackets 132a to 132d are provided so that the area of the region adjacent to the exhaust port 30A having a large curvature is larger than the area of the region adjacent to the other exhaust port 30B; / Or the partition wall between the water jacket 132a to 132d and the exhaust port 30A having a large curvature is made thinner than the partition wall between the water jacket and the other exhaust port 30B and / or the exhaust port having a large curvature.
  • Water jackets 132a to 132d provided adjacent to 30A are provided in a region of the exhaust port where the pressure distribution of the exhaust gas is high. As a result, the cooling effect of the EGR gas sucked back into the combustion chamber 123 can be further enhanced. Further, by setting the partition wall thin only in the region where the exhaust gas pressure distribution is high, the cooling effect can be enhanced while ensuring the mechanical strength of the exhaust port 30.
  • the water jackets 132b and 132c provided in the cylinder head bolt through holes 61 and 62 for fixing the cylinder head 134 and the cylinder block adjacent to the exhaust port 30A having a large curvature, Since it is provided between the exhaust port 30B having a small curvature, thermal deformation of the cylinder 119 and thermal deformation of the cylinder head 134 can be suppressed, and the sealing performance of the combustion chamber 123 is improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Abstract

 1つの燃焼室(123)に対して複数の排気ポート(30)を有する少なくとも1つの気筒(21~24)と、ウォータジャケット(132)が形成されたシリンダヘッド(134)とを備え、前記複数の排気ポートが前記シリンダヘッド内の排気集合部(31~35)にて集合する内燃機関(EG)において、前記複数の排気ポートのうちの少なくとも1つの排気ポート(30A)は、前記燃焼室に臨む排気開口部から前記排気集合部に至る排気通路において湾曲形状とされ、その曲率が他の排気ポート(30B)の曲率に比べて大きく設定され、前記曲率の大きい排気ポート(30A)に対する前記ウォータジャケット(132a~132d)による冷却能力が、他の排気ポート(30B)に対する前記ウォータジャケットの冷却能力に比べて高く設定されている。

Description

内燃機関
 本発明は、内燃機関に関するものである。
 部分負荷領域の少なくとも低負荷側において、吸排気弁の作動時期をいずれも遅角側に制御し、吸気弁の遅閉じと排気弁の遅開きによって高膨張比サイクルを実現しながら、吸気弁の遅開きと排気弁の遅閉じによって気筒内に吸い戻す排気ガス(内部EGR)の流れにスワール成分を付与し、且つこうして排気スワール流を生成する期間において気筒内に燃料を供給するようにしたものが知られている(特許文献1)。
特開2006-161666号公報
 しかしながら、上記従来技術では、膨張ガスをそのままの排気温度で燃焼室に吸い戻すので、吸い戻すEGRガス量に一定の限界がある。
 本発明が解決しようとする課題は、適当量の内部EGRガスを燃焼室へ導入することができ、燃焼安定性に優れた内燃機関を提供することである。
 本発明は、複数の排気ポートのうちの少なくとも1つの排気ポートの湾曲形状の曲率を他の排気ポートの曲率に比べて大きく設定するとともに、曲率の大きい排気ポートに対するウォータジャケットによる冷却能力を、他の排気ポートに対する冷却能力に比べて高く設定することによって、上記課題を解決する。
 本発明によれば、内部EGRを実行する際に、排気ポートの大きい曲率により強いスワール流が発生し、新気と排気の均質度が向上するので燃焼性が安定する。これと同時に排気ガスが冷却されるので、より多くの内部EGRガスを気筒内に吸い戻すことでき、燃焼安定性を向上させることができる。
本発明の一実施の形態に係る内燃機関を示すブロック図である。 本発明の一実施の形態に係る内燃機関のシリンダヘッドを示す斜視図である。 図2のシリンダヘッドの底面図(図2のIII矢視図)である。 図2及び図3のシリンダヘッドの正面図及びここに装着される排気ブランチ管を示す斜視図である。 本発明の一実施の形態に係る内燃機関の排気ポートの平面視における圧力分布の一例を示す図である。 図5のVI-VI線に沿う断面における圧力分布を示す図である。 本発明の一実施の形態に係る内燃機関の排気バルブのリフト量と燃焼行程の関係を示すタイミングチャートである。 図7の排気バルブA,Bの適用例を示すシリンダヘッドの底面図である。 本発明の一実施の形態に係る内燃機関の燃焼室に生じるEGRガスのスワール流を示す斜視図(A)及び横断面図(B)である。
 図1は、本発明の一実施の形態に係る内燃機関EGを示すブロック図であり、一つの気筒についての構成を模式的に示す図である。実際には、図2及び図3に示すように、シリンダブロック及びシリンダヘッドを含む内燃機関の本体に一又は複数の気筒が設けられ、一つの気筒には一又は複数の吸気通路と一又は複数の排気通路が設けられる。本例の内燃機関EGの吸気通路111には、エアーフィルタ112、吸入空気流量を検出するエアフローメータ113、吸入空気流量を制御するスロットルバルブ114およびコレクタ115が設けられている。
 スロットルバルブ114には、当該スロットルバルブ114の開度を調整するDCモータ等のアクチュエータ116が設けられている。このスロットルバルブアクチュエータ116は、運転者のアクセルペダル操作量等に基づき演算される要求トルクを達成するように、コントロールユニット11からの駆動信号に基づき、スロットルバルブ114の開度を電子制御する。また、スロットルバルブ114の開度を検出するスロットルセンサ117が設けられて、その検出信号をコントロールユニット11へ出力する。
 また、コレクタ115から各気筒(図1では省略する)に分岐した吸気通路111aに臨ませて、燃料噴射バルブ118が設けられている。燃料噴射バルブ118は、コントロールユニット11において設定される駆動パルス信号によって開弁駆動され、図外の燃料ポンプから圧送されてプレッシャレギュレータにより所定圧力に制御された燃料を吸気通路(以下、燃料噴射ポートともいう)111a内に噴射する。なお、燃料噴射バルブ118を燃焼室123に臨ませて、燃料を直接燃焼室123内へ噴射する直噴型の内燃機関であってもよい。
 一つの気筒において、シリンダ119と、当該シリンダ内を往復移動するピストン120の冠面と、吸気バルブ121及び排気バルブ122が設けられたシリンダヘッド134とで囲まれる空間が燃焼室123を構成する。点火プラグ124は、各気筒の燃焼室123に臨んで装着され、コントロールユニット11からの点火信号に基づいて吸入混合気に対して点火を行う。
 一方、排気通路125には、排気中の特定成分、たとえば酸素濃度を検出することにより排気、ひいては吸入混合気の空燃比を検出する空燃比センサ126が設けられ、その検出信号はコントロールユニット11へ出力される。この空燃比センサ126は、リッチ・リーン出力する酸素センサであってもよいし、空燃比をリニアに広域に亘って検出する広域空燃比センサであってもよい。
 また、排気通路125には、排気を浄化するための排気浄化触媒127が設けられている。この排気浄化触媒127としては、ストイキ(理論空燃比,λ=1、空気重量/燃料重量=14.7)近傍において排気中の一酸化炭素COと炭化水素HCを酸化するとともに、窒素酸化物NOxの還元を行って排気を浄化することができる三元触媒、或いは排気中の一酸化炭素COと炭化水素HCの酸化を行う酸化触媒を用いることができる。
 排気通路125の排気浄化触媒127の下流側には、排気中の特定成分、たとえば酸素濃度を検出し、リッチ・リーン出力する酸素センサ128が設けられ、その検出信号はコントロールユニット11へ出力される。なお、図1において129はマフラである。
 内燃機関EGのクランク軸130にはクランク角センサ131が設けられ、コントロールユニット11は、クランク角センサ131から機関回転と同期して出力されるクランク単位角信号を一定時間カウントすることで、又は、クランク基準角信号の周期を計測することで、機関回転速度Neを検出することができる。
 内燃機関EGのウォータジャケット132には、水温センサ133が当該ウォータジャケットに臨んで設けられ、ウォータジャケット132内の冷却水温度Twを検出し、これをコントロールユニット11へ出力する。
 図2は、本発明の一実施の形態に係る直列4気筒内燃機関(各気筒に2つの吸気バルブと2つの排気バルブを有する16バルブ式内燃機関)のシリンダヘッド134を示す斜視図、図3は、図2のシリンダヘッド134を裏返して見た底面図である。
 図3に点線で示すように、内燃機関EGの4つの気筒、すなわち図3の左側から右側に向かって第1気筒21,第2気筒22,第3気筒23及び第4気筒24が一列に配置され、第1気筒21⇒第3気筒23⇒第4気筒24⇒第2気筒22の順序で点火する。なお、本発明の内燃機関は図示する直列4気筒を含む内燃機関EGにのみ限定されず、その他の内燃機関であってもよい。
 図3に示すようにシリンダヘッド134の裏面(シリンダブロックとの接合面)には、各気筒21~24に対応する位置にそれぞれ2つの吸気ポート25が形成されている。また同じく、各気筒21~24に対応する位置にそれぞれ2つの排気ポートが形成されている。すなわち、第1気筒21に対応する位置には2つの排気ポート26a,26bが形成され、第2気筒22に対応する位置には2つの排気ポート27a,27bが形成され、第3気筒23に対応する位置には2つの排気ポート28a,28bが形成され、第4気筒24に対応する位置には2つの排気ポート29a,29bが形成されている。
 そして、第1気筒21に対応して形成された2つの排気ポート26a,26bは、シリンダヘッド134内の排気集合部31にて集合して一つの排気ポートに集約され、その一端はシリンダヘッド134の側面に開設された出口端部41として開口する(図4も参照)。同様に、第4気筒24に対応して形成された2つの排気ポート29a,29bは、シリンダヘッド134内の排気集合部34にて集合して一つの排気ポートに集約され、その一端はシリンダヘッド134の側面に開設された出口端部43として開口する(図4も参照)。
 これに対して、排気行程が互いに連続しない中央部の第2気筒22と第3気筒23のそれぞれに対応する排気ポート27a,27bと排気ポート28a,28bについては、以下のように構成されている。すなわち、第2気筒22に対応して形成された2つの排気ポート27a,27bは、シリンダヘッド134内の排気集合部32にて集合して一つの排気ポートに集約され、第3気筒23に対応して形成された2つの排気ポート28a,28bは、シリンダヘッド134内の排気集合部33にて集合して一つの排気ポートに集約され、さらにこれら二つの排気ポートは、第2気筒22と第3気筒23の中心部の排気集合部35にて一つの排気ポートに集約され、その一端はシリンダヘッド134の側面に開設された出口端部42として開口する(図4も参照)。
 上述したとおり、第1気筒21に連通する排気ポート26a,26bの一端は、シリンダヘッド1の側面に出口端部41として開口し、同じく第2気筒22に連通する排気ポート27a,27b及び第3気筒23に連通する排気ポート28a,28bの一端は、シリンダヘッド134の側面に出口端部42として開口し、第4気筒24に連通する排気ポート29a,29bの一端は、シリンダヘッド134の側面に出口端部43として開口する。そして、図4に示すように、フランジ51を介して、排気ポート26a,26bの出口端部41には排気ブランチ管52が接続され、排気ポート27a,27b,28a,28bの出口端部42には排気ブランチ管53が接続され、排気ポート29a,29bの出口端部43には排気ブランチ管54が接続されている。
 また、排気ポート26a,26bの出口端部41に接続された排気ブランチ管52と、排気ポート29a,29bの出口端部43に接続された排気ブランチ管54は、シリンダヘッド134の出口直後において一つの排気ブランチ管55に集合する。排気ブランチ管52と、排気ブランチ管54は、排気ブランチ管55の一部を成している。排気ブランチ管52と、排気ブランチ管54が集合した直後の排気ブランチ管55には、排気浄化触媒127aが設けられている。また、排気ブランチ管53のシリンダヘッド134の出口直後にも排気浄化触媒127bが設けられている。そして、排気ブランチ管55と排気ブランチ管53は、排気浄化触媒127a,127bの下流側において一つの排気管(不図示)に集合し、ここに別の排気浄化触媒が設けられたりしてマフラ129に至る。
 本例の内燃機関EGでは、一つの気筒に2つの排気ポートが設けられているが、一方の排気ポートは、燃焼室123に臨む排気開口部(排気バルブ122が当接する開口部)から排気集合部に至る排気通路において湾曲形状とされ、その曲率が他方の排気ポートの曲率に比べて大きく設定されている。以下、排気ポートを総称する場合は「排気ポート30」と称し、一つの気筒21~24にそれぞれ設けられた2つの排気ポートに対して、曲率が大きいか小さいかだけを特定する場合には、曲率の大きい排気ポートを「排気ポート30A」と称し、曲率の小さい排気ポートを「排気ポート30B」と称し(図9(A)も参照)、特定の気筒の排気ポートを特定する場合は、たとえば排気ポート26aと称する。
 すなわち、第1気筒21についていえば、一方の排気ポート26aは、燃焼室123に臨む排気開口部26cから排気集合部31に至る排気通路において湾曲形状とされ、その曲率が他方の排気ポート26bの曲率に比べて大きく設定されている。同様に、第2気筒22についていえば、一方の排気ポート27aは、燃焼室123に臨む排気開口部27cから排気集合部32に至る排気通路において湾曲形状とされ、その曲率が他方の排気ポート27bの曲率に比べて大きく設定されている。また、第3気筒23についていえば、一方の排気ポート28aは、燃焼室123に臨む排気開口部28cから排気集合部33に至る排気通路において湾曲形状とされ、その曲率が他方の排気ポート28bの曲率に比べて大きく設定されている。また、第4気筒24についていえば、一方の排気ポート29aは、燃焼室123に臨む排気開口部29cから排気集合部34に至る排気通路において湾曲形状とされ、その曲率が他方の排気ポート29bの曲率に比べて大きく設定されている。
 また本例の内燃機関EGでは、図1に示すウォータジャケット132がシリンダヘッド134にまで延在し、各排気ポート30に沿って冷却水が循環するように形成されている。そして、図3に示すように、上述した各気筒21~24にそれぞれ設けられた2つの排気ポート30のうち曲率の大きい一方の排気ポート30Aに隣接する領域の面積が、曲率の小さい他方の排気ポート30Bに隣接する領域の面積に比べて広くなるように設けられている。すなわち、第1気筒21についていえば、曲率の大きい排気ポート26aに隣接してウォータジャケット132aが設けられ、曲率の小さい排気ポート26bに隣接して設けられたウォータジャケット(不図示)に比べて隣接領域の面積が広くなるように形成されている。
 同様に、第2気筒22についていえば、曲率の大きい排気ポート27aに隣接してウォータジャケット132bが設けられ、曲率の小さい排気ポート27bに隣接して設けられたウォータジャケット(不図示)に比べて隣接領域の面積が広くなるように形成されている。また、第3気筒23についていえば、曲率の大きい排気ポート28aに隣接してウォータジャケット132cが設けられ、曲率の小さい排気ポート28bに隣接して設けられたウォータジャケット(不図示)に比べて隣接領域の面積が広くなるように形成されている。また、第4気筒24についていえば、曲率の大きい排気ポート29aに隣接してウォータジャケット132dが設けられ、曲率の小さい排気ポート29bに隣接して設けられたウォータジャケット(不図示)に比べて隣接領域の面積が広くなるように形成されている。
 さらに本例の内燃機関EGでは、上述したウォータジャケット132a~132dの隣接領域の面積の設定に加えて、またはこれに代えて、各気筒21~24にそれぞれ設けられた2つの排気ポート30のうち曲率の大きい一方の排気ポート30Aとこれに隣接して設けられたウォータジャケット132a~132dとの隔壁が、曲率の小さい他方の排気ポート30Bとこれに隣接して設けられたウォータジャケット(不図示)との隔壁に比べて薄く設定されている。すなわち、第1気筒21についていえば、曲率の大きい排気ポート26aとウォータジャケット132aとの隔壁は、曲率の小さい排気ポート26bとウォータジャケット(不図示)との隔壁より薄く形成されている。同様に、第2気筒22についていえば、曲率の大きい排気ポート27aとウォータジャケット132bとの隔壁は、曲率の小さい排気ポート27bとウォータジャケット(不図示)との隔壁より薄く形成されている。また、第3気筒23についていえば、曲率の大きい排気ポート28aとウォータジャケット132cとの隔壁は、曲率の小さい排気ポート28bとウォータジャケット(不図示)との隔壁より薄く形成されている。また、第4気筒24についていえば、曲率の大きい排気ポート29aとウォータジャケット132dとの隔壁は、曲率の小さい排気ポート29bとウォータジャケット(不図示)との隔壁より薄く形成されている。
 上述したウォータジャケット132a~132dは、排気ポート30に隣接して設けられるが、排気ガスの圧力分布の高い領域に形成することが望ましい。特にウォータジャケット132a~132dと排気ポート30Aとの隔壁を薄く形成する場合には、排気ポート30Aの強度を確保するために、排気ガスの圧力分布の高い領域のみ隔壁を薄く設定することが望ましい。図5は、排気行程にある第3気筒23からの排気ガスの流れ解析して圧力分布を調べた一例であり、図6はVI-VI線に沿う断面における圧力分布図である。この結果から、図5の平面視においてX1の領域が最も圧力が高く、図6の断面視においてX2の領域が最も圧力が高い。このため、第3気筒23の排気ポート28aに隣接して形成するウォータジャケット132cは、平面視においてX1の領域、断面視においてX2の領域を取り囲むように設定することが望ましい。
 なお、図2に示すシリンダヘッド134は、図示しないシリンダブロックにシリンダヘッドボルトを用いて固定されるが、図3に示すように、シリンダヘッドボルトの貫通孔61,62は、曲率の大きい排気ポート30Aに隣接して設けられたウォータジャケット132b,132cと、曲率の小さい排気ポート30Bとの間に設けることが望ましい。すなわち、図3に示すように、シリンダヘッドボルトの貫通孔61,61は、曲率の大きい排気ポート27aに隣接して設けられたウォータジャケット132bと、曲率の小さい排気ポート26bとの間に形成し、シリンダヘッドボルトの貫通孔62,62は、曲率の大きい排気ポート28aに隣接して設けられたウォータジャケット132cと、曲率の小さい排気ポート29bとの間に形成することが望ましい。
 また本例の内燃機関EGでは、一つの気筒21~24に設けられた二つの排気ポート30に対応する排気バルブの作動角を異なるように設定する。具体的には、曲率の大きい排気ポート30Aに対応する排気バルブ122の作動角を、曲率の小さい排気ポート30Bに対応する排気バルブ122に比べて遅角して閉塞するように設定する。また、これに加えて又はこれに代えて、曲率の大きい排気ポート30Aに対応する排気バルブ122のリフト量を、曲率の小さい排気ポート30Bに対応する排気バルブ122のリフト量に比べて大きく設定する。
 図7は、排気バルブのリフト量と燃焼行程の関係を示すタイミングチャートである。図8に示すように、第1気筒21の排気ポート26aに対応する排気バルブV1、第2気筒22の排気ポート27aに対応する排気バルブV3、第3気筒23の排気ポート28aに対応する排気バルブV5、および第4気筒24の排気ポート29aに対応する排気バルブV7については、作動角及びリフト量が相対的に大きい排気バルブ(図7にAで示す)とし、第1気筒21の排気ポート26bに対応する排気バルブV2、第2気筒22の排気ポート27bに対応する排気バルブV4、第3気筒23の排気ポート28bに対応する排気バルブV6、および第4気筒24の排気ポート29bに対応する排気バルブV8については、作動角及びリフト量が相対的に小さい排気バルブ(図7にBで示す)とする。
 そして、図7に示すように、排気行程の終盤から吸気行程へ移行する際に、曲率の大きい排気ポート30Aに対応する排気バルブV1,V3,V5,V7の閉塞タイミングを遅らせるとともに、吸気バルブ121の開放タイミングとオーバーラップさせることで内部EGRを実現する。この排気ガスの一部を燃焼室123へ吸い戻す際に、曲率の小さい排気ポート30Bに対応する排気バルブV2,V4,V6,V8は閉塞又はほぼ閉塞されているので、主として曲率の大きい排気ポート30Aから排気ガスが吸い戻される。その結果、図9(A)(B)に示すように燃焼室123内へ吸い戻される内部EGRガスにスワール流が生じることになる。
 以上のように、本例の内燃機関EGでは、複数の排気ポート30のうちの少なくとも1つの排気ポート30Aを、燃焼室123に臨む排気開口部から排気集合部に至る排気通路において湾曲形状とし、その曲率を他の排気ポート30Bの曲率に比べて大きく設定するとともに、曲率の大きい排気ポート30Aに対するウォータジャケット132a~132dによる冷却能力を、他の排気ポート30Bに対するウォータジャケットの冷却能力に比べて高く設定する。その結果、排気ガスの一部を燃焼室123に吸い戻す内部EGRを実行する際に、排気ポート30Aの大きい曲率によって強いスワール流が発生することになるため、吸気通路111からの新気とEGRガスとの均質度が向上し、燃焼安定性が向上することになる。また同時に、排気ポート30Aに隣接して設けられたウォータジャケット132a~132dによってEGRガスがより冷却され、EGRガスの密度が大きくなるため、より多くのEGRガスを燃焼室123へ投入することができる。
 また本例の内燃機関EGは、曲率の大きい排気ポート30Aに対応する排気バルブ121(V1,V3,V5,V7)の作動角と、他の排気ポート30Bに対応する排気バルブ121(V2,V4,V6,V8)の作動角とを異なる角度に設定するとともに、曲率の大きい排気ポート30Aに対応する排気バルブ121(V1,V3,V5,V7)の作動角を、他の排気ポート30Bに対応する排気バルブ121(V2,V4,V6,V8)に比べて遅角して閉塞するように設定するか、及び/又は、曲率の大きい排気ポート30Aに対応する排気バルブ121(V1,V3,V5,V7)のリフト量を、他の排気ポート30Bに対応する排気バルブ121(V2,V4,V6,V8)のリフト量に比べて大きく設定する。その結果、他の排気ポート30BからのEGR量に対して、曲率の大きな排気ポート30AからのEGR量が大きくなり、より強いスワール流が発生するとともに、冷却されたEGRガスの比率を高くすることが可能となる。
 特に本例の内燃機関EGは、排気ポート30Aの湾曲化に加えて、曲率の大きい排気ポート30Aに対応する排気バルブ121(V1,V3,V5,V7)のリフト量及び/又は作動角を大きく設定するので、単に排気ポート30Aを湾曲化した場合に比べて、排気抵抗の増加や出力低下といった問題を解消することができる。すなわち、単純に排気ポート30Aを湾曲化すると、排気抵抗が増加して出力が低下するが、曲率の大きい排気ポート30Aに対応する排気バルブ121(V1,V3,V5,V7)のリフト量及び/又は作動角を大きく設定することで、曲げ圧損分を解決することができ、出力が目減りすることなく排気ポート30Aを湾曲化することができる。
 さらに、一つの気筒21~24に対する一方の排気バルブ121(V1,V3,V5,V7)のみ作動角を大きくするので、高回転側の排気損失が軽減され、出力を向上させることができる。また、バルブリセスについては、一方が深くなるが、他方が浅くなることでトータルでのS/V比はほぼ同等となり、燃費の点でも問題はない。
 さらにまた、燃焼室123に吸い戻された高温のEGRガスは、強いスワール流によってシリンダ119の円周壁面上を通過するので、ピストン120の円周部のクエンチ層に溜まった未燃燃料を酸化することでHCを低減することができる。
 また本例の内燃機関EGでは、ウォータジャケット132a~132dを、曲率の大きい排気ポート30Aに隣接する領域の面積が他の排気ポート30Bに隣接する領域の面積に比べて広くなるように設け、及び/又は、ウォータジャケット132a~132dと曲率の大きい排気ポート30Aとの間の隔壁を、ウォータジャケットと他の排気ポート30Bとの間の隔壁に比べて薄くし、及び/又は、曲率の大きい排気ポート30Aに隣接して設けられたウォータジャケット132a~132dを、排気ポートのうち排気ガスの圧力分布の高い領域に設ける。その結果、燃焼室123へ吸い戻されるEGRガスの冷却効果をより一層高めることができる。また、排気ガスの圧力分布の高い領域のみについて隔壁を薄く設定することで、排気ポート30の機械的強度を確保しつつ冷却効果を高めることができる。
 また本例の内燃機関EGでは、シリンダヘッド134とシリンダブロックとを固定するシリンダヘッドボルトの貫通孔61,62を、曲率の大きい排気ポート30Aに隣接して設けられたウォータジャケット132b,132cと、曲率の小さい排気ポート30Bとの間に設けたため、シリンダ119の熱変形やシリンダヘッド134の熱変形を抑制することができ、燃焼室123のシール性が向上する。
EG…内燃機関
11…コントロールユニット
111,111a…吸気通路
112…エアーフィルタ
113…エアフローメータ
114…スロットルバルブ
115…コレクタ
116…スロットルバルブアクチュエータ
117…スロットルセンサ
118…燃料噴射バルブ
119…シリンダ
120…ピストン
121…吸気バルブ
122…排気バルブ
123…燃焼室
124…点火プラグ
125…排気通路
126…空燃比センサ
127,127a,127b…排気浄化触媒
128…酸素センサ
129…マフラ
130…クランク軸
131…クランク角センサ
132…ウォータジャケット
133…水温センサ
134…シリンダヘッド
21…第1気筒
22…第2気筒
23…第3気筒
24…第4気筒
25…吸気ポート
26a,26b,27a,27b,28a,28b,29a,29b,30…排気ポート
26c,26d,27c,27d,28c,28d,29c,29d…排気開口部
30A…曲率の大きい排気ポート
30B…曲率の小さい排気ポート
31,32,33,34,35…排気集合部
41,42,43…排気ポートの出口端部
51…フランジ
52,53,54,55…排気ブランチ管
61,62…シリンダヘッドボルトの貫通孔

Claims (9)

  1.  1つの燃焼室に対して複数の排気ポートを有する少なくとも1つの気筒と、ウォータジャケットが形成されたシリンダヘッドとを備え、前記複数の排気ポートが前記シリンダヘッド内の排気集合部にて集合する内燃機関において、
     前記複数の排気ポートのうちの少なくとも1つの排気ポートは、前記燃焼室に臨む排気開口部から前記排気集合部に至る排気通路において湾曲形状とされ、その曲率が他の排気ポートの曲率に比べて大きく設定され、
     前記曲率の大きい排気ポートに対する前記ウォータジャケットによる冷却能力が、他の排気ポートに対する前記ウォータジャケットの冷却能力に比べて高く設定されている内燃機関。
  2.  前記曲率の大きい排気ポートに対応する排気バルブの作動角と、他の排気ポートに対応する排気バルブの作動角は、異なる角度に設定されている請求項1に記載の内燃機関。
  3.  前記曲率の大きい排気ポートに対応する排気バルブの作動角は、他の排気ポートに対応する排気バルブに比べて遅角して閉塞するように設定されている請求項2に記載の内燃機関。
  4.  前記曲率の大きい排気ポートに対応する排気バルブのリフト量は、他の排気ポートに対応する排気バルブのリフト量に比べて大きく設定されている請求項1~3のいずれか一項に記載の内燃機関。
  5.  前記ウォータジャケットは、前記曲率の大きい排気ポートに隣接する領域の面積が他の排気ポートに隣接する領域の面積に比べて広くなるように設けられている請求項1~4のいずれか一項に記載の内燃機関。
  6.  前記ウォータジャケットと前記曲率の大きい排気ポートとの間の隔壁が、前記ウォータジャケットと前記他の排気ポートとの間の隔壁に比べて薄く設定されている請求項1~5のいずれか一項に記載の内燃機関。
  7.  前記曲率の大きい排気ポートに隣接して設けられたウォータジャケットは、前記排気通路のうち少なくとも排気ガスの圧力分布の高い領域に設けられている請求項1~6のいずれか一項に記載の内燃機関。
  8.  前記シリンダヘッドとシリンダブロックとを固定するシリンダヘッドボルトの貫通孔が、前記曲率の大きい排気ポートに隣接して設けられたウォータジャケットと、前記曲率の大きい排気ポート以外の排気ポートとの間に設けられている請求項1~7のいずれか一項に記載の内燃機関。
  9.  少なくとも2つの前記曲率の大きい排気ポートを備え、
     前記2つの曲率の大きい排気ポートは、一つの排気ポートに集約されている請求項1~8のいずれか一項に記載の内燃機関。
PCT/JP2013/081507 2012-12-25 2013-11-22 内燃機関 WO2014103585A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-280944 2012-12-25
JP2012280944 2012-12-25

Publications (1)

Publication Number Publication Date
WO2014103585A1 true WO2014103585A1 (ja) 2014-07-03

Family

ID=51020679

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/081507 WO2014103585A1 (ja) 2012-12-25 2013-11-22 内燃機関

Country Status (1)

Country Link
WO (1) WO2014103585A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016056101A1 (ja) * 2014-10-09 2017-04-27 日産自動車株式会社 4気筒内燃機関の排気装置
JP2017180252A (ja) * 2016-03-30 2017-10-05 マツダ株式会社 エンジンの排気装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01182560A (ja) * 1988-01-11 1989-07-20 Yamaha Motor Co Ltd 過給機付エンジンのシリンダヘッド構造
JPH03271550A (ja) * 1990-03-20 1991-12-03 Honda Motor Co Ltd 液冷エンジンのシリンダヘッド
JPH11264319A (ja) * 1998-03-19 1999-09-28 Nissan Motor Co Ltd 内燃機関の排気制御装置
JP2006161666A (ja) * 2004-12-07 2006-06-22 Mazda Motor Corp エンジンの吸排気制御装置
JP2007032402A (ja) * 2005-07-26 2007-02-08 Yanmar Co Ltd 内燃機関の排気ガス環流装置
JP2007138904A (ja) * 2005-11-22 2007-06-07 Mitsubishi Heavy Ind Ltd 内部egrシステム付き4サイクルエンジン
JP2009079552A (ja) * 2007-09-26 2009-04-16 Toyota Motor Corp 内燃機関

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01182560A (ja) * 1988-01-11 1989-07-20 Yamaha Motor Co Ltd 過給機付エンジンのシリンダヘッド構造
JPH03271550A (ja) * 1990-03-20 1991-12-03 Honda Motor Co Ltd 液冷エンジンのシリンダヘッド
JPH11264319A (ja) * 1998-03-19 1999-09-28 Nissan Motor Co Ltd 内燃機関の排気制御装置
JP2006161666A (ja) * 2004-12-07 2006-06-22 Mazda Motor Corp エンジンの吸排気制御装置
JP2007032402A (ja) * 2005-07-26 2007-02-08 Yanmar Co Ltd 内燃機関の排気ガス環流装置
JP2007138904A (ja) * 2005-11-22 2007-06-07 Mitsubishi Heavy Ind Ltd 内部egrシステム付き4サイクルエンジン
JP2009079552A (ja) * 2007-09-26 2009-04-16 Toyota Motor Corp 内燃機関

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016056101A1 (ja) * 2014-10-09 2017-04-27 日産自動車株式会社 4気筒内燃機関の排気装置
EP3205854A4 (en) * 2014-10-09 2017-10-04 Nissan Motor Co., Ltd Exhaust device for four-cylinder internal combustion engine
JP2017180252A (ja) * 2016-03-30 2017-10-05 マツダ株式会社 エンジンの排気装置

Similar Documents

Publication Publication Date Title
JP3894089B2 (ja) 火花点火式エンジンの制御装置
JP4862592B2 (ja) 火花点火式ガソリンエンジン
EP1701027B1 (en) A method for using partial homogeneous charge compression ignition in a diesel internal combustion engine for NOx trap regeneration
US6941905B2 (en) Control unit for spark ignition-type engine
JPWO2006043502A1 (ja) エンジン
JP3711942B2 (ja) 過給機付エンジンの制御装置
WO2014103585A1 (ja) 内燃機関
US10995681B2 (en) Combustion control device for engine
JP4479774B2 (ja) 内燃機関の制御装置
JP5589763B2 (ja) 内燃機関
JP4466164B2 (ja) ターボ式過給機付き多気筒エンジン
JP5549544B2 (ja) 内燃機関の制御装置
JP5344101B2 (ja) 筒内噴射式内燃機関
JP3711939B2 (ja) 火花点火式エンジンの制御装置
JP3879613B2 (ja) 火花点火式エンジンの制御装置
JP3940799B2 (ja) NOx低減型ディーゼル機関
WO2013140998A1 (ja) 内燃機関
JP3711941B2 (ja) 火花点火式エンジンの制御装置
JP2008303745A (ja) 内燃機関の制御装置
JP3888261B2 (ja) 火花点火式エンジンの制御装置
JP2008128083A (ja) 内燃機関
JP6638499B2 (ja) エンジンおよびエンジンの制御方法
JP4123102B2 (ja) 火花点火式エンジンの制御装置
JP2004176620A (ja) 2サイクル運転可能な頭上弁式多気筒エンジン
JP3951855B2 (ja) 火花点火式エンジンの制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13867178

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13867178

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP