WO2014103298A1 - Reactor - Google Patents

Reactor Download PDF

Info

Publication number
WO2014103298A1
WO2014103298A1 PCT/JP2013/007580 JP2013007580W WO2014103298A1 WO 2014103298 A1 WO2014103298 A1 WO 2014103298A1 JP 2013007580 W JP2013007580 W JP 2013007580W WO 2014103298 A1 WO2014103298 A1 WO 2014103298A1
Authority
WO
WIPO (PCT)
Prior art keywords
core
reactor
winding
cooling member
cooling
Prior art date
Application number
PCT/JP2013/007580
Other languages
French (fr)
Japanese (ja)
Inventor
智彰 田宮
正志 澤田
Original Assignee
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎重工業株式会社 filed Critical 川崎重工業株式会社
Publication of WO2014103298A1 publication Critical patent/WO2014103298A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2876Cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/08Cooling; Ventilating
    • H01F27/10Liquid cooling
    • H01F27/16Water cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/10Composite arrangements of magnetic circuits
    • H01F3/14Constrictions; Gaps, e.g. air-gaps

Definitions

  • the present invention relates to a reactor cooling structure having a winding wound in a coil shape around a magnetic core having a gap.
  • the reactor has a gap in the core to adjust the inductance.
  • the leakage magnetic flux in the gap is linked to the neighboring winding, and an eddy current is generated in the winding. For this reason, it is known that the winding near the gap has a large copper loss and causes local heat generation. Winding heat can shorten the life of the equipment due to deterioration and, in some cases, cause serious accidents due to burning. Therefore, in the design of the reactor, it is required to efficiently cool the winding near the gap.
  • This invention was made in order to solve the above problems, and it aims at providing the reactor which can suppress a temperature rise efficiently.
  • a reactor according to an aspect of the present invention includes a magnetic core having a gap, a winding wound around the core in a coil shape, and a portion of the core including the gap.
  • a plate-like cooling member disposed between the windings and provided with a coolant channel therein.
  • the plate-like cooling member (heat sink) in which the refrigerant flow path is provided directly cools the windings in the vicinity of the gap where the temperature rise is large, so that the reactor can be efficiently cooled. Furthermore, by selecting the flow path and flow rate of the refrigerant, it is possible to achieve an optimal heat dissipation design that reduces heat generation and increases heat dissipation, so that the reactor can be downsized.
  • the refrigerant flow path may be formed along the gap of the core.
  • the cooling member may be a plate-like member having nonmagnetic properties and thermal conductivity.
  • the plate-like cooling member has nonmagnetic and thermal conductivity, a shielding effect against the leakage magnetic flux in the gap can be obtained, and the temperature rise of the winding can be suppressed.
  • copper or aluminum may be used as the non-magnetic and thermally conductive member.
  • An insulator may be further provided between the winding and the cooling member.
  • the cooling member may be arranged so that both ends in the circumferential direction of the core do not contact each other.
  • FIG. 1 is a perspective view of a reactor according to Embodiment 1 of the present invention.
  • FIG. 2 is a cross-sectional view of the reactor of FIG. 1 along the line AA ′.
  • 3 is a cross-sectional view of the reactor of FIG. 1 taken along the line BB ′.
  • FIG. 4 is an exploded perspective view of a cooling member provided in the reactor of FIG.
  • FIG. 5 is an enlarged partial cross-sectional view of the vicinity of the gap of the reactor of FIG.
  • FIG. 6 is a first cross-sectional view of the reactor according to the second embodiment of the present invention.
  • FIG. 7 is a second cross-sectional view of the reactor according to the second embodiment of the present invention.
  • FIG. 8 is a cross-sectional view of a reactor according to a modification of the second embodiment of the present invention.
  • FIG. 1 is a perspective view of a reactor 1 according to Embodiment 1 of the present invention.
  • a reactor 1 includes a magnetic core 2, a winding 3 wound around the core 2 in a coil shape, and a plate-like cooling member 4 disposed between the core 2 and the winding 3. And comprising.
  • Use of reactor 1 according to the present embodiment is not particularly limited.
  • the reactor 1 is used for an input / output filter of an inverter, for example.
  • winding 3 which comprise the reactor 1 do not need to use the member of a special specification, and can use a well-known thing.
  • FIG. 2 is a cross-sectional view taken along line AA ′ of reactor 1 in FIG.
  • the core 2 of the iron core that is a magnetic body has a gap 5.
  • the core 2 penetrates the inside of the coiled winding 3.
  • four gaps 5 are formed in the core 2.
  • the winding 3 is disposed in a portion including the gap 5 of the core 2, and the plate-like cooling member 4 provided with a flow path 9 between the portion including the gap 5 of the core 2 and the winding 3. Is arranged.
  • FIG. 3 is a cross-sectional view of the reactor of FIG. 1 taken along the line BB ′.
  • the cooling member 4 provided with the flow path 9 is disposed around the core 2 constituting the magnetic circuit, and the winding 3 is disposed outside thereof. Needless to say, the wires (electric wires) constituting the winding 3 are themselves covered with an insulating layer.
  • four cooling members 4 are arranged in four directions around the core 2.
  • the cooling member 4 is disposed so that both ends in the circumferential direction of the core 2 do not contact each other. That is, the four cooling members 4 need to be arranged so that at least the ends in the circumferential direction of the core 2 do not contact each other. This is to prevent the circulating current from flowing through the cooling member 4 induced by the magnetic flux passing through the core 2.
  • the four cooling members are arranged so that both ends in the circumferential direction of the core 2 do not contact the adjacent cooling members 4.
  • FIG. 4 is an exploded perspective view of the cooling member 4 provided in the reactor 1.
  • the cooling member 4 is provided with a refrigerant flow path 9 therein.
  • the cooling member 4 is configured by a plate-shaped water-cooled heat sink.
  • the cooling member 4 has a three-layer structure in which three plate-like members are overlapped.
  • the cooling member 4 includes a flat plate 6, a plate 7 in which a groove (flow path) 9 through which a refrigerant passes, and a supply port 10 including through holes formed in upper and lower corners on one side. And a flat plate 8 having a discharge port 11.
  • the plates 6 to 8 are plate-like members having nonmagnetic and thermal conductivity.
  • copper is used as a member having nonmagnetic properties and thermal conductivity.
  • the groove (flow path) 9 of the plate 7 is formed so as to meander in the plate plane of the cooling member 4 in the lateral direction along the gap 5 of the core 2 so that the refrigerant passes through the flow path. Yes.
  • coolant that is liquid for example, antifreeze
  • the refrigerant in the cooling member 4 is supplied from an external pump unit (not shown) to the cooling member 4 through the supply port 10, and after exchanging heat in the cooling member 4, the refrigerant is drained from the discharge port 11 to be pump unit. Return to. Thus, the refrigerant circulates through the flow path 9 in the cooling member 4.
  • this pump unit may be used in common with other water cooling units, for example, a cooling unit for cooling the IGBT used in the inverter.
  • FIG. 5 is an enlarged partial sectional view of the vicinity of the gap 5 of the reactor 1 in FIG. Arrows indicate magnetic flux. As shown in FIG. 5, in the vicinity of the gap 5 of the core 2, a leakage magnetic flux (arrow in the figure) is generated outside the gap 5. As a result, an eddy current is generated in the winding 3. When the loss due to the eddy current in the winding 3 increases, the efficiency of the reactor decreases and the temperature of the winding 3 during operation becomes high.
  • the coil 3 in the vicinity of the gap 5 having a large temperature rise is directly cooled by the plate-like cooling member 4 in which the refrigerant flow path 9 is provided.
  • winding 3 can be cooled efficiently simultaneously, and by extension, the reactor 1 can be cooled efficiently.
  • the plate-like cooling member 4 has non-magnetic and thermal conductivity, a shielding effect against the leakage magnetic flux in the gap can be obtained, and the temperature rise of the winding can be suppressed.
  • the cooling member 4 (water-cooled heat sink) 4 in each direction is a conductor, when these are integrated, there is a concern about an increase in loss due to eddy current and a deterioration in the characteristics of the reactor 1. Therefore, in the present embodiment, the cooling member 4 (water-cooled heat sink) is arranged in four directions around the core 2 but is not integrated. That is, the four cooling members 4 as a whole are arranged so that both ends in the circumferential direction of the core 2 are not in contact with each other, and both ends in the circumferential direction of the core 2 are in contact with the adjacent cooling members 4. Arranged not to. Thereby, it is possible to prevent the circulating current from flowing to the cooling member due to the magnetic flux of the core.
  • the heat sinks When integrating the cooling member 4 (water-cooled heat sink), the heat sinks may be integrated after being insulated.
  • a heat sink is inserted between the core and the winding, and heat exchange is performed with the refrigerant pipe connected to the end of the heat sink.
  • the conventional reactor is common to the present embodiment in that the liquid is used as the refrigerant and the refrigerant is circulated.
  • the cooling member 4 in which the refrigerant flow path 9 is provided is inserted between the core 2 and the winding 3, and the cooling member 4 generates heat. It is provided in the vicinity of the core gap 5 which is a portion.
  • the cooling capacity is greatly reduced.
  • the heat radiation plate and the refrigerant pipe of the conventional example are integrated as the cooling member 4 in this embodiment, the coil and the cooling member 4 can be brought into close contact with each other, and a sufficient cooling effect is obtained. be able to. Since there is no significant change in the structure with respect to the conventional reactor, an increase in new production costs can be suppressed.
  • FIG. 1 is a cross-sectional views of the reactor 1 according to Embodiment 2 of the present invention.
  • the reactor 1 of the second embodiment is different from the reactor 1 of the first embodiment in that it further includes an insulating member 12 disposed between the winding 3 and the cooling member 4.
  • the insulating member 12 only needs to be an insulator having an insulating property against a high voltage.
  • an aramid fiber sheet is used.
  • the plate constituting the cooling member 4 of the reactor 1 is a conductor, there is a possibility that a short circuit occurs between the plate and the winding at a high voltage. Therefore, in the present embodiment, in addition to the effect of the first embodiment, the insulation between the winding 3 and the cooling member 4 is reinforced, so that a high voltage is applied to the reactor 1. In addition, the possibility of a short circuit occurring between the cooling member 4 and the winding 3 that are conductors can be suppressed.
  • the use of a very thin member for the insulating member 12 can minimize the influence on heat conduction.
  • the reactor 1 of Embodiment 2 of this invention was set as the structure which arrange
  • the use of a very thin member for the insulating member 12 can minimize the influence on heat conduction.
  • the core 2 of the iron core which is a magnetic material, includes four gaps 5, but the present invention is not limited to this.
  • the present embodiment since the winding can be directly cooled by the cooling member, there can be enough room for the temperature rise around one gap, and therefore the number of gaps 5 can be further reduced. Thus, for example, there may be two gaps. Thereby, the processing cost of a core gap can be held down.
  • copper is used as a member having nonmagnetic properties and thermal conductivity.
  • other materials such as aluminum may be used.
  • the groove (flow path) 9 of the plate 7 is formed so as to meander in the plate plane of the cooling member 4 along the gap of the core. It is not limited to a simple configuration.
  • the plate 7 only needs to have a flow path formed so that the plate 7 is cooled substantially uniformly by the refrigerant.
  • the plate 7 may be formed to meander in the vertical direction, or may include a plurality of flow paths.
  • the flow path through which the refrigerant flows is formed by sandwiching one plate with grooves between two plates, but is not limited to such a configuration.
  • a refrigerant pipe may be arranged inside the plate.
  • the cooling member 4 is installed on the four sides of the core 2 (cross-sectional view is square), but if it is between the portion including the gap 5 of the core 2 and the winding 3, for example,
  • the core 2 may be installed on one side, two sides, or three sides.
  • the coolant flowing in the flow path of the cooling member is liquid cooling water (for example, antifreeze liquid).
  • the present invention is not limited to this, and the coolant is a mixture of liquid and gas. There may be.
  • the present invention can be used for a reactor that performs a cooling system (for example, a water cooling system) using a liquid or a mixture of liquid and gas as a refrigerant.
  • a cooling system for example, a water cooling system

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Coils Of Transformers For General Uses (AREA)
  • Transformer Cooling (AREA)

Abstract

 This reactor (1) is equipped with: a magnetic core (2) having a gap (5); a winding (3) wrapped around the core (2) in a coil shape; and a plate-shaped cooling member (4) which is arranged between the winding (3) and a part of the core (2) that includes a gap (5), and the inside of which is provided with a flow path (9) for coolant.

Description

リアクトルReactor
 本発明は、ギャップを有する磁性体のコアにコイル状に巻かれた巻線を有するリアクトルの冷却構造に関する。 The present invention relates to a reactor cooling structure having a winding wound in a coil shape around a magnetic core having a gap.
 リアクトルはインダクタンスを調整するために、コアがギャップを有している。ギャップが巻線の内側に位置する構造のリアクトルにおいて、ギャップ部の漏れ磁束が近傍の巻線に鎖交し、巻線中に渦電流を発生させる。このため、ギャップ近傍の巻線は銅損が大きく、局所的な発熱の要因となることが知られている。巻線の発熱は劣化による機器寿命の短縮、場合によっては焼損による重大事故の原因となる可能性がある。そのため、リアクトルの設計においては、ギャップ近傍の巻線の冷却を効率よく行うことが求められる。 The reactor has a gap in the core to adjust the inductance. In a reactor having a structure in which the gap is located inside the winding, the leakage magnetic flux in the gap is linked to the neighboring winding, and an eddy current is generated in the winding. For this reason, it is known that the winding near the gap has a large copper loss and causes local heat generation. Winding heat can shorten the life of the equipment due to deterioration and, in some cases, cause serious accidents due to burning. Therefore, in the design of the reactor, it is required to efficiently cool the winding near the gap.
 従来のリアクトルは、冷却方式に空冷又は強制空冷が用いられることが多い。しかし、リアクトルにおいてコアと巻線の間は絶縁材や巻線用支持材により冷却が妨げられ、空冷又は強制空冷では問題となるギャップ近傍の巻線を効率よく冷却することが難しい。このため、構造上スペースに余裕のある設計を採用することが多く、製品が大型になるという問題がある。また、冷却ファン(強制空冷のみ)や通気口が必要となるため、騒音や制御盤の大型化を招くといった問題もある。 Conventional reactors often use air cooling or forced air cooling as a cooling method. However, in the reactor, the cooling between the core and the windings is hindered by an insulating material or a supporting material for windings, and it is difficult to efficiently cool the windings in the vicinity of the gap, which is a problem in air cooling or forced air cooling. For this reason, there is often a problem that a design having a sufficient space in the structure is adopted, resulting in a large product. Moreover, since a cooling fan (forced air cooling only) and a vent are required, there is a problem that noise and an increase in the size of the control panel are caused.
 また、その他の冷却方式として巻線の内部に流路を設け、ここに冷媒を循環させる構造もある。しかしこの方式は特殊な巻線を使用する関係上、従来のものと基本的な構造が異なるためにコストが高くなるという問題がある。 Also, as another cooling method, there is a structure in which a flow path is provided inside the winding to circulate the refrigerant. However, this method has a problem that the cost increases because the basic structure is different from the conventional one due to the use of special windings.
 最近では、放熱効率が高く、基本的な構造が従来のものとほとんど変わらない水冷式のリアクトルが提案されている(例えば、特許文献1を参照)。従来の水冷式のリアクトルは、コアと巻線との間には放熱板のみが挿入され、放熱板の端部で冷媒用配管と熱交換が行われる。 Recently, a water-cooled reactor has been proposed that has high heat dissipation efficiency and a basic structure that is almost the same as a conventional one (see, for example, Patent Document 1). In the conventional water-cooled reactor, only the heat radiating plate is inserted between the core and the winding, and heat exchange with the refrigerant pipe is performed at the end of the heat radiating plate.
特開平11-288819号公報Japanese Patent Laid-Open No. 11-288819
 しかし、上記従来の水冷式リアクトルは、コアと巻線との間に挿入された放熱板の端部で冷媒用配管と熱交換を行うため、冷媒用配管と発熱部との間に一定の距離が生じ、熱交換を行う放熱板端部までの経路の面積が小さくなってしまう。このため、熱抵抗が大きく、放熱板内部での温度勾配が大きくなるという課題があった。 However, since the conventional water-cooled reactor performs heat exchange with the refrigerant pipe at the end of the heat sink inserted between the core and the winding, a certain distance is provided between the refrigerant pipe and the heat generating part. Occurs, and the area of the path to the end of the heat radiating plate that performs heat exchange is reduced. For this reason, there existed a subject that thermal resistance was large and the temperature gradient inside a heat sink became large.
 本発明は以上のような課題を解決するためになされたものであり、温度上昇を効率的に抑制可能なリアクトルを提供することを目的とする。 This invention was made in order to solve the above problems, and it aims at providing the reactor which can suppress a temperature rise efficiently.
 上記の課題を解決するために、本発明のある態様に係るリアクトルは、ギャップを有する磁性体のコアと、前記コアにコイル状に巻かれた巻線と、前記コアの前記ギャップを含む部分と前記巻線との間に配置され、その内部に冷媒の流路が設けられたプレート状の冷却部材とを備える。 In order to solve the above problems, a reactor according to an aspect of the present invention includes a magnetic core having a gap, a winding wound around the core in a coil shape, and a portion of the core including the gap. A plate-like cooling member disposed between the windings and provided with a coolant channel therein.
 上記構成により、その内部に冷媒の流路が設けられたプレート状の冷却部材(ヒートシンク)が温度上昇の大きいギャップ近傍の巻線を直接冷却するので、効率的にリアクトルを冷却することができる。更に、冷媒の流路及び流量を選択することによって、発熱を小さくし、放熱を大きくする最適な放熱設計が可能となるため、リアクトルの小型化が実現できる。 With the above-described configuration, the plate-like cooling member (heat sink) in which the refrigerant flow path is provided directly cools the windings in the vicinity of the gap where the temperature rise is large, so that the reactor can be efficiently cooled. Furthermore, by selecting the flow path and flow rate of the refrigerant, it is possible to achieve an optimal heat dissipation design that reduces heat generation and increases heat dissipation, so that the reactor can be downsized.
 前記冷媒の流路は、前記コアのギャップに沿って形成されていてもよい。上記構成により、ギャップ近傍の温度上昇をより効率的に抑制することができる。 The refrigerant flow path may be formed along the gap of the core. With the above configuration, a temperature rise near the gap can be more efficiently suppressed.
 前記冷却部材は、非磁性及び熱伝導性を有するプレート状の部材であってもよい。 The cooling member may be a plate-like member having nonmagnetic properties and thermal conductivity.
 上記構成により、プレート状の冷却部材が非磁性及び熱伝導性を有するので、ギャップの漏れ磁束に対するシールド効果が得られ、巻線の温度上昇を抑えることができる。非磁性及び熱伝導性を有する部材として例えば銅、アルミであってもよい。 With the above configuration, since the plate-like cooling member has nonmagnetic and thermal conductivity, a shielding effect against the leakage magnetic flux in the gap can be obtained, and the temperature rise of the winding can be suppressed. For example, copper or aluminum may be used as the non-magnetic and thermally conductive member.
 前記巻線と前記冷却部材との間に配置された絶縁体を更に備えてもよい。 An insulator may be further provided between the winding and the cooling member.
 上記構成により、前記巻線と前記冷却部材との間の絶縁性が強化されるので、リアクトルに高い電圧が印加された場合であっても、導体である上記冷却部材と巻線との間に発生する短絡の可能性を抑制することができる。 With the above configuration, since the insulation between the winding and the cooling member is reinforced, even when a high voltage is applied to the reactor, between the cooling member and the winding, which is a conductor, The possibility of a short circuit occurring can be suppressed.
 前記冷却部材は、前記コアの周方向における両端が接触しないように配置されていてもよい。 The cooling member may be arranged so that both ends in the circumferential direction of the core do not contact each other.
 上記構成により、コアを通る磁束に誘起されて冷却部材に循環電流が流れることを防止できる。 With the above configuration, it is possible to prevent the circulating current from flowing through the cooling member induced by the magnetic flux passing through the core.
 本発明によれば、温度上昇を効率的に抑制可能なリアクトルを提供することが可能となる。 According to the present invention, it is possible to provide a reactor capable of efficiently suppressing a temperature rise.
 本発明の上記目的、他の目的、特徴、及び利点は、添付図面参照の下、以下の好適な実施態様の詳細な説明から明らかにされる。 The above object, other objects, features, and advantages of the present invention will become apparent from the following detailed description of preferred embodiments with reference to the accompanying drawings.
図1は、本発明の実施の形態1に係るリアクトルの斜視図である。FIG. 1 is a perspective view of a reactor according to Embodiment 1 of the present invention. 図2は、図1のリアクトルのA-A´線断面図である。FIG. 2 is a cross-sectional view of the reactor of FIG. 1 along the line AA ′. 図3は、図1のリアクトルのB-B´線断面図である。3 is a cross-sectional view of the reactor of FIG. 1 taken along the line BB ′. 図4は、図1のリアクトルが備える冷却部材の分解斜視図である。FIG. 4 is an exploded perspective view of a cooling member provided in the reactor of FIG. 図5は、図2のリアクトルのギャップ付近を拡大した部分断面図である。FIG. 5 is an enlarged partial cross-sectional view of the vicinity of the gap of the reactor of FIG. 図6は、本発明の実施の形態2に係るリアクトルの第1の断面図である。FIG. 6 is a first cross-sectional view of the reactor according to the second embodiment of the present invention. 図7は、本発明の実施の形態2に係るリアクトルの第2の断面図である。FIG. 7 is a second cross-sectional view of the reactor according to the second embodiment of the present invention. 図8は、本発明の実施の形態2の変形例に係るリアクトルの断面図である。FIG. 8 is a cross-sectional view of a reactor according to a modification of the second embodiment of the present invention.
 本発明の実施の形態について、図面を参照しつつ説明する。以下では、全ての図面を通じて同一又は相当する要素には同じ符号を付して、重複する説明は省略する。 Embodiments of the present invention will be described with reference to the drawings. Below, the same code | symbol is attached | subjected to the element which is the same or it corresponds through all the drawings, and the overlapping description is abbreviate | omitted.
 (実施の形態1)
 図1は本発明の実施の形態1によるリアクトル1の斜視図である。図1に示すように、リアクトル1は、磁性体のコア2と、コア2にコイル状に巻かれた巻線3と、コア2と巻線3の間に配置されたプレート状の冷却部材4と、を備える。本実施の形態に係るリアクトル1は、特に用途を限定されない。リアクトル1は、例えばインバータの入出力フィルタに用いられる。尚、リアクトル1を構成するコア2や巻線3は特別な仕様の部材を使用する必要は無く、公知のものを用いることができる。
(Embodiment 1)
FIG. 1 is a perspective view of a reactor 1 according to Embodiment 1 of the present invention. As shown in FIG. 1, a reactor 1 includes a magnetic core 2, a winding 3 wound around the core 2 in a coil shape, and a plate-like cooling member 4 disposed between the core 2 and the winding 3. And comprising. Use of reactor 1 according to the present embodiment is not particularly limited. The reactor 1 is used for an input / output filter of an inverter, for example. In addition, the core 2 and the coil | winding 3 which comprise the reactor 1 do not need to use the member of a special specification, and can use a well-known thing.
 図2は、図1のリアクトル1のA-A´線断面図である。図2に示すように、磁性体である鉄心のコア2は、ギャップ5を有する。コア2はコイル状の巻線3の内側を貫通している。本実施の形態では、コア2には、4つのギャップ5が形成されている。そして、コア2のギャップ5を含む部分に巻線3が配置され、当該コア2のギャップ5を含む部分と巻線3との間には、流路9が設けられたプレート状の冷却部材4が配置されている。 FIG. 2 is a cross-sectional view taken along line AA ′ of reactor 1 in FIG. As shown in FIG. 2, the core 2 of the iron core that is a magnetic body has a gap 5. The core 2 penetrates the inside of the coiled winding 3. In the present embodiment, four gaps 5 are formed in the core 2. Then, the winding 3 is disposed in a portion including the gap 5 of the core 2, and the plate-like cooling member 4 provided with a flow path 9 between the portion including the gap 5 of the core 2 and the winding 3. Is arranged.
 図3は、図1のリアクトルのB-B´線断面図である。図3に示すように、磁気回路を構成するコア2の周囲に、流路9が設けられた冷却部材4が配置され、その外側に巻線3が配置される。なお、巻線3を構成する素線(電線)はそれ自体が絶縁層で被覆されていることはいうまでもない。本実施の形態では、コア2の周囲の四方に4枚の冷却部材4が配置されている。ここで冷却部材4は、コア2の周方向における両端が接触しないように配置されている。つまり、4枚の冷却部材4は、少なくとも全体として、コア2の周方向における両端が接触しないよう配置されることが必要である。コア2を通る磁束に誘起されて冷却部材4に循環電流が流れることを防止するためである。ここでは、4枚の冷却部材は、それぞれ、隣り合う冷却部材4に対し、コア2の周方向における両端が接触しないように配置されている。 FIG. 3 is a cross-sectional view of the reactor of FIG. 1 taken along the line BB ′. As shown in FIG. 3, the cooling member 4 provided with the flow path 9 is disposed around the core 2 constituting the magnetic circuit, and the winding 3 is disposed outside thereof. Needless to say, the wires (electric wires) constituting the winding 3 are themselves covered with an insulating layer. In the present embodiment, four cooling members 4 are arranged in four directions around the core 2. Here, the cooling member 4 is disposed so that both ends in the circumferential direction of the core 2 do not contact each other. That is, the four cooling members 4 need to be arranged so that at least the ends in the circumferential direction of the core 2 do not contact each other. This is to prevent the circulating current from flowing through the cooling member 4 induced by the magnetic flux passing through the core 2. Here, the four cooling members are arranged so that both ends in the circumferential direction of the core 2 do not contact the adjacent cooling members 4.
 図4は、リアクトル1が備える冷却部材4の分解斜視図である。図4に示すように、冷却部材4は、その内部に冷媒の流路9が設けられている。本実施の形態では、冷却部材4は、プレート状の水冷ヒートシンクで構成される。冷却部材4は、3枚のプレート状の部材が重ね合わされた3層構造である。具体的には、冷却部材4は、平板状のプレート6と、冷媒が通る溝(流路)9が形成されたプレート7と、片側の上下の隅に形成された貫通孔からなる供給口10と排出口11とを有する平板状のプレート8を含む。 FIG. 4 is an exploded perspective view of the cooling member 4 provided in the reactor 1. As shown in FIG. 4, the cooling member 4 is provided with a refrigerant flow path 9 therein. In the present embodiment, the cooling member 4 is configured by a plate-shaped water-cooled heat sink. The cooling member 4 has a three-layer structure in which three plate-like members are overlapped. Specifically, the cooling member 4 includes a flat plate 6, a plate 7 in which a groove (flow path) 9 through which a refrigerant passes, and a supply port 10 including through holes formed in upper and lower corners on one side. And a flat plate 8 having a discharge port 11.
 プレート6~8は、非磁性及び熱伝導性を有するプレート状の部材である。本実施の形態では、非磁性及び熱伝導性を有する部材として銅が使用される。 The plates 6 to 8 are plate-like members having nonmagnetic and thermal conductivity. In the present embodiment, copper is used as a member having nonmagnetic properties and thermal conductivity.
 プレート7の溝(流路)9は、コア2のギャップ5に沿って、冷却部材4のプレート平面内を横方向に蛇行するようにして形成され、この流路を冷媒が通るようになっている。本実施の形態では、流路9を通る冷媒には液体である冷却水(例えば不凍液)が使用される。 The groove (flow path) 9 of the plate 7 is formed so as to meander in the plate plane of the cooling member 4 in the lateral direction along the gap 5 of the core 2 so that the refrigerant passes through the flow path. Yes. In the present embodiment, coolant that is liquid (for example, antifreeze) is used as the refrigerant passing through the flow path 9.
 冷却部材4内の冷媒は、外部のポンプユニット(図示せず)から冷却部材4に供給口10を通じて給水され、冷却部材4内で熱交換を行った後、排出口11から排水されてポンプユニットへと戻る。このように冷媒は冷却部材4内の流路9を通って循環する。尚、このポンプユニットは、他の水冷ユニット、例えばインバータ内で使用されるIGBTを冷却する冷却ユニットと共有して使用されてもよい。 The refrigerant in the cooling member 4 is supplied from an external pump unit (not shown) to the cooling member 4 through the supply port 10, and after exchanging heat in the cooling member 4, the refrigerant is drained from the discharge port 11 to be pump unit. Return to. Thus, the refrigerant circulates through the flow path 9 in the cooling member 4. In addition, this pump unit may be used in common with other water cooling units, for example, a cooling unit for cooling the IGBT used in the inverter.
 次に、以上のような構成のリアクトル1による作用効果について用いて説明する。 Next, the operation and effect of the reactor 1 having the above configuration will be described.
 図5は、図2のリアクトル1のギャップ5付近を拡大した部分断面図である。矢印は磁束を示している。図5に示すように、コア2のギャップ5近傍では、ギャップ5の外側に漏れ磁束(図の矢印)が生じる。その結果、巻線3に渦電流が発生する。巻線3の渦電流による損失が増えると、リアクトルの効率が低下すると共に、稼動時の巻線3の温度が高温となってしまう。 FIG. 5 is an enlarged partial sectional view of the vicinity of the gap 5 of the reactor 1 in FIG. Arrows indicate magnetic flux. As shown in FIG. 5, in the vicinity of the gap 5 of the core 2, a leakage magnetic flux (arrow in the figure) is generated outside the gap 5. As a result, an eddy current is generated in the winding 3. When the loss due to the eddy current in the winding 3 increases, the efficiency of the reactor decreases and the temperature of the winding 3 during operation becomes high.
 そこで、本実施の形態では、冷媒の流路9が内部に設けられたプレート状の冷却部材4により、温度上昇の大きいギャップ5近傍の巻線3を直接冷却する。これにより、コア2と巻線3とを同時に効率よく冷却することができ、ひいてはリアクトル1を効率よく冷却することができる。 Therefore, in the present embodiment, the coil 3 in the vicinity of the gap 5 having a large temperature rise is directly cooled by the plate-like cooling member 4 in which the refrigerant flow path 9 is provided. Thereby, the core 2 and the coil | winding 3 can be cooled efficiently simultaneously, and by extension, the reactor 1 can be cooled efficiently.
 また、プレート状の冷却部材4は、非磁性及び熱伝導性を有するので、ギャップの漏れ磁束に対するシールド効果が得られ、巻線の温度上昇を抑えることができる。 Also, since the plate-like cooling member 4 has non-magnetic and thermal conductivity, a shielding effect against the leakage magnetic flux in the gap can be obtained, and the temperature rise of the winding can be suppressed.
 更に、冷媒の流路及び流量を選択することによって、発熱を小さくし、放熱を大きくする最適な放熱設計が可能となる。これにより、リアクトルの小型化が実現できる。また、冷却ファン(強制空冷)や通気口が必要で無い構成であるので、低騒音且つ省スペースを実現できる。 Furthermore, by selecting the flow path and flow rate of the refrigerant, it is possible to design an optimum heat dissipation that reduces heat generation and increases heat dissipation. Thereby, size reduction of a reactor is realizable. Further, since the cooling fan (forced air cooling) and the vent are not required, low noise and space saving can be realized.
 尚、各々の方向の冷却部材(水冷ヒートシンク)4は導体であるため、これらを一体化した場合には、渦電流による損失の増加及びリアクトル1の特性の悪化が懸念される。そこで、本実施の形態では、冷却部材4(水冷ヒートシンク)はコア2の周囲の四方に配置させつつ、これらを一体化させてはいない。すなわち、4枚の冷却部材4は、全体として、コア2の周方向における両端が接触しないよう配置されており、且つ、それぞれ、隣り合う冷却部材4に対し、コア2の周方向における両端が接触しないように配置されている。これにより、冷却部材にコアの磁束よって循環電流が流れることを防止できる。 In addition, since the cooling member (water-cooled heat sink) 4 in each direction is a conductor, when these are integrated, there is a concern about an increase in loss due to eddy current and a deterioration in the characteristics of the reactor 1. Therefore, in the present embodiment, the cooling member 4 (water-cooled heat sink) is arranged in four directions around the core 2 but is not integrated. That is, the four cooling members 4 as a whole are arranged so that both ends in the circumferential direction of the core 2 are not in contact with each other, and both ends in the circumferential direction of the core 2 are in contact with the adjacent cooling members 4. Arranged not to. Thereby, it is possible to prevent the circulating current from flowing to the cooling member due to the magnetic flux of the core.
 冷却部材4(水冷ヒートシンク)を一体化させる場合には、各ヒートシンク間を絶縁した上で一体化させればよい。 When integrating the cooling member 4 (water-cooled heat sink), the heat sinks may be integrated after being insulated.
 次に、本実施の形態の効果について従来例と比較して説明する。 Next, the effect of this embodiment will be described in comparison with a conventional example.
 従来のリアクトルは、コアと巻線の間に放熱板が挿入され、放熱板の端部に連結した冷媒用配管と熱交換を行う。従来のリアクトルは、液体を冷媒に用いる点、及び冷媒を循環させる点で、本実施の形態と共通している。 In the conventional reactor, a heat sink is inserted between the core and the winding, and heat exchange is performed with the refrigerant pipe connected to the end of the heat sink. The conventional reactor is common to the present embodiment in that the liquid is used as the refrigerant and the refrigerant is circulated.
 しかし、従来例では、冷媒用配管と発熱部であるコアとの間に距離が生じ、熱交換を行う放熱板端部までの経路の面積が小さくなってしまう。このため、熱抵抗が大きく、放熱板内部での温度勾配が大きくなってしまう。 However, in the conventional example, a distance is generated between the refrigerant pipe and the core that is the heat generating portion, and the area of the path to the end of the heat radiating plate that performs heat exchange is reduced. For this reason, a thermal resistance is large and the temperature gradient inside a heat sink will become large.
 これに対し、本実施の形態では、図2に示すように、内部に冷媒用の流路9が設けられた冷却部材4がコア2と巻線3の間に挿入され、冷却部材4が発熱部であるコアギャップ5の近傍に設けられている。これにより、リアクトルの変更を極力抑えたまま温度上昇の大きい近傍の巻線を直接冷却できるので、従来例と比べて冷却能力を向上させることができる。 On the other hand, in the present embodiment, as shown in FIG. 2, the cooling member 4 in which the refrigerant flow path 9 is provided is inserted between the core 2 and the winding 3, and the cooling member 4 generates heat. It is provided in the vicinity of the core gap 5 which is a portion. Thereby, since the coil | winding of the vicinity with a large temperature rise can be directly cooled, suppressing the change of a reactor as much as possible, a cooling capability can be improved compared with a prior art example.
 また、従来例では、放熱板が使用されるため、コイルと放熱板、放熱板と冷媒用配管とがそれぞれ密着していなければ冷却能力が大幅に低下してしまう。これに対し、従来例の放熱板と冷媒用配管とが、本実施の形態では冷却部材4として一体化されているので、コイルと冷却部材4を密着させることができ、十分な冷却効果を得ることができる。従来のリアクトルに対して構造の大幅な変更が無いので、新たな製作コストの上昇を抑制することができる。 In the conventional example, since a heat sink is used, if the coil and the heat sink, and the heat sink and the refrigerant pipe are not in close contact with each other, the cooling capacity is greatly reduced. On the other hand, since the heat radiation plate and the refrigerant pipe of the conventional example are integrated as the cooling member 4 in this embodiment, the coil and the cooling member 4 can be brought into close contact with each other, and a sufficient cooling effect is obtained. be able to. Since there is no significant change in the structure with respect to the conventional reactor, an increase in new production costs can be suppressed.
 (実施の形態2)
 次に、本発明の実施の形態2を説明する。以下では、実施の形態1と共通する点についての説明は省略し、相違する点を中心に説明する。図6及び図7は、本発明の実施の形態2に係るリアクトル1の断面図である。本実施の形態2のリアクトル1は、巻線3と冷却部材4との間に配置された絶縁部材12を更に備える点において、実施の形態1のリアクトル1と相違する。絶縁部材12は、高電圧に対しても絶縁性を有する絶縁体であればよく、本実施の形態では、例えばアラミド繊維シートを使用する。
(Embodiment 2)
Next, a second embodiment of the present invention will be described. In the following, description of the points common to the first embodiment will be omitted, and different points will be mainly described. 6 and 7 are cross-sectional views of the reactor 1 according to Embodiment 2 of the present invention. The reactor 1 of the second embodiment is different from the reactor 1 of the first embodiment in that it further includes an insulating member 12 disposed between the winding 3 and the cooling member 4. The insulating member 12 only needs to be an insulator having an insulating property against a high voltage. In the present embodiment, for example, an aramid fiber sheet is used.
 リアクトル1の冷却部材4を構成するプレートは導体であるため、高電圧では巻線との間に短絡が発生する可能性がある。そのため、本実施の形態では、実施の形態1による効果に加えて、巻線3と冷却部材4との間の絶縁性が強化されるので、リアクトル1に高い電圧が印加された場合であっても、導体である冷却部材4と巻線3との間に発生する短絡の可能性を抑制することができる。 Since the plate constituting the cooling member 4 of the reactor 1 is a conductor, there is a possibility that a short circuit occurs between the plate and the winding at a high voltage. Therefore, in the present embodiment, in addition to the effect of the first embodiment, the insulation between the winding 3 and the cooling member 4 is reinforced, so that a high voltage is applied to the reactor 1. In addition, the possibility of a short circuit occurring between the cooling member 4 and the winding 3 that are conductors can be suppressed.
 尚、本実施の形態においては、絶縁部材12に非常に薄い部材を使用することにより熱伝導への影響を軽微なものにすることができる。 In the present embodiment, the use of a very thin member for the insulating member 12 can minimize the influence on heat conduction.
 [変形例]
 また、本発明の実施の形態2のリアクトル1は、巻線3と冷却部材4との間に絶縁部材12を配置する構成としたが、図8の変形例に示すように、更に絶縁部材12をコア2と冷却部材4の間に挿入してもよい。コア2は、通常、導体であるので、実施の形態2の構成では、コア2と冷却部材4により不所望に循環電流が流れるループ状の流路が形成される可能性がある。そこで、絶縁部材12を配置することで、そのような状態を回避することができる。
[Modification]
Moreover, although the reactor 1 of Embodiment 2 of this invention was set as the structure which arrange | positions the insulating member 12 between the coil | winding 3 and the cooling member 4, as shown in the modification of FIG. May be inserted between the core 2 and the cooling member 4. Since the core 2 is usually a conductor, in the configuration of the second embodiment, there is a possibility that a loop-like flow path in which a circulating current flows undesirably by the core 2 and the cooling member 4 may be formed. Therefore, by disposing the insulating member 12, such a state can be avoided.
 尚、本変形例においても、実施の形態2と同様に、絶縁部材12に非常に薄い部材を使用することにより熱伝導への影響を軽微なものにすることができる。 In this modification as well, as in the second embodiment, the use of a very thin member for the insulating member 12 can minimize the influence on heat conduction.
 尚、上記各実施の形態では、磁性体である鉄心のコア2はギャップ5を4つ備えたがこれに限られるものではない。本実施の形態によれば、冷却部材により巻線を直接冷却できるので、ギャップ1つ辺りの温度上昇に余裕ができるので、更にギャップ5の数を少なくすることができる。よってギャップは例えば2つでもよい。これにより、コアギャップの加工費を抑えることができる。 In each of the embodiments described above, the core 2 of the iron core, which is a magnetic material, includes four gaps 5, but the present invention is not limited to this. According to the present embodiment, since the winding can be directly cooled by the cooling member, there can be enough room for the temperature rise around one gap, and therefore the number of gaps 5 can be further reduced. Thus, for example, there may be two gaps. Thereby, the processing cost of a core gap can be held down.
 尚、上記各本実施の形態では、非磁性及び熱伝導性を有する部材として銅を使用したが、その他の材料として例えばアルミであってもよい。 In each of the above embodiments, copper is used as a member having nonmagnetic properties and thermal conductivity. However, other materials such as aluminum may be used.
 尚、上記各本実施の形態では、プレート7の溝(流路)9は、コアのギャップに沿って、冷却部材4のプレート平面内を横に蛇行するようにして形成されたが、このような構成に限定されるものではない。プレート7は、冷媒によってプレート7が実質的に均一に冷却されるように流路が形成されていればよい。プレート7は、例えば、縦方向に蛇行するように形成してもよいし、その他、複数の流路を備えてもよい。 In each of the above embodiments, the groove (flow path) 9 of the plate 7 is formed so as to meander in the plate plane of the cooling member 4 along the gap of the core. It is not limited to a simple configuration. The plate 7 only needs to have a flow path formed so that the plate 7 is cooled substantially uniformly by the refrigerant. For example, the plate 7 may be formed to meander in the vertical direction, or may include a plurality of flow paths.
 尚、上記各実施の形態では、冷媒が流れる流路は、溝が形成された1枚のプレートを2枚のプレートで挟み込んで形成したが、このような構成に限定されるものではない。例えば冷媒用の配管をプレート内部に配置してもよい。 In each of the above embodiments, the flow path through which the refrigerant flows is formed by sandwiching one plate with grooves between two plates, but is not limited to such a configuration. For example, a refrigerant pipe may be arranged inside the plate.
 尚、上記各実施の形態では、冷却部材4をコア2(断面視が四角形)の四方に設置しているが、コア2のギャップ5を含む部分と巻線3との間であれば、例えばコア2の一方、二方、三方のいずれかに設置してもよい。 In each of the above-described embodiments, the cooling member 4 is installed on the four sides of the core 2 (cross-sectional view is square), but if it is between the portion including the gap 5 of the core 2 and the winding 3, for example, The core 2 may be installed on one side, two sides, or three sides.
 尚、上記各実施の形態では、冷却部材の流路に流れる冷媒は、液体である冷却水(例えば不凍液)を使用したが、これに限られるものではなく、冷媒は、液体及び気体の混合物であってもよい。 In each of the above embodiments, the coolant flowing in the flow path of the cooling member is liquid cooling water (for example, antifreeze liquid). However, the present invention is not limited to this, and the coolant is a mixture of liquid and gas. There may be.
 上記説明から、当業者にとっては、本発明の多くの改良や他の実施形態が明らかである。従って、上記説明は、例示としてのみ解釈されるべきであり、本発明を実行する最良の態様を当業者に教示する目的で提供されたものである。本発明の精神を逸脱することなく、その構造及び/又は機能の詳細を実質的に変更できる。 From the above description, many modifications and other embodiments of the present invention are apparent to persons skilled in the art. Accordingly, the foregoing description should be construed as illustrative only and is provided for the purpose of teaching those skilled in the art the best mode of carrying out the invention. The details of the structure and / or function may be substantially changed without departing from the spirit of the invention.
 本発明は、液体、又は液体及び気体の混合物を冷媒とした冷却方式(例えば水冷式)を行うリアクトルに用いることができる。 The present invention can be used for a reactor that performs a cooling system (for example, a water cooling system) using a liquid or a mixture of liquid and gas as a refrigerant.
1 リアクトル
2 コア
3 巻線
4 冷却部材
5 ギャップ
6 プレート
7 溝付きプレート
8 口付きプレート
9 溝(流路)
10 供給口
11 排出口
12 絶縁部材
 
1 Reactor 2 Core 3 Winding 4 Cooling member 5 Gap 6 Plate 7 Grooved plate 8 Plate with mouth 9 Groove (flow path)
10 Supply port 11 Discharge port 12 Insulating member

Claims (5)

  1.  ギャップを有する磁性体のコアと、
     前記コアにコイル状に巻かれた巻線と、
     前記コアの前記ギャップを含む部分と前記巻線との間に配置され、その内部に冷媒の流路が設けられたプレート状の冷却部材とを備える、リアクトル。
    A magnetic core having a gap;
    Windings coiled around the core;
    A reactor comprising: a plate-like cooling member disposed between a portion including the gap of the core and the winding, and having a refrigerant flow path provided therein.
  2.  前記冷媒の流路は、前記コアのギャップに沿って形成されている、請求項1に記載のリアクトル。 The reactor according to claim 1, wherein the flow path of the refrigerant is formed along a gap of the core.
  3.  前記冷却部材は、非磁性及び熱伝導性を有するプレート状の部材である、請求項1又は2に記載のリアクトル。 The reactor according to claim 1 or 2, wherein the cooling member is a plate-like member having nonmagnetic properties and thermal conductivity.
  4.  前記巻線と前記冷却部材との間に配置された絶縁体を更に備える、請求項1乃至3のいずれかに記載のリアクトル。 The reactor according to any one of claims 1 to 3, further comprising an insulator disposed between the winding and the cooling member.
  5.  前記冷却部材は、前記コアの周方向における両端が接触しないように配置されている、請求項1乃至4のいずれかに記載のリアクトル。 The reactor according to any one of claims 1 to 4, wherein the cooling member is disposed so that both ends in the circumferential direction of the core do not contact each other.
PCT/JP2013/007580 2012-12-27 2013-12-25 Reactor WO2014103298A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-283943 2012-12-27
JP2012283943A JP6055306B2 (en) 2012-12-27 2012-12-27 Reactor

Publications (1)

Publication Number Publication Date
WO2014103298A1 true WO2014103298A1 (en) 2014-07-03

Family

ID=51020414

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/007580 WO2014103298A1 (en) 2012-12-27 2013-12-25 Reactor

Country Status (2)

Country Link
JP (1) JP6055306B2 (en)
WO (1) WO2014103298A1 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9160228B1 (en) 2015-02-26 2015-10-13 Crane Electronics, Inc. Integrated tri-state electromagnetic interference filter and line conditioning module
US9230726B1 (en) * 2015-02-20 2016-01-05 Crane Electronics, Inc. Transformer-based power converters with 3D printed microchannel heat sink
US9293999B1 (en) 2015-07-17 2016-03-22 Crane Electronics, Inc. Automatic enhanced self-driven synchronous rectification for power converters
WO2016080131A1 (en) * 2014-11-17 2016-05-26 株式会社 豊田自動織機 Induction apparatus
US9419538B2 (en) 2011-02-24 2016-08-16 Crane Electronics, Inc. AC/DC power conversion system and method of manufacture of same
US9735566B1 (en) 2016-12-12 2017-08-15 Crane Electronics, Inc. Proactively operational over-voltage protection circuit
US9742183B1 (en) 2016-12-09 2017-08-22 Crane Electronics, Inc. Proactively operational over-voltage protection circuit
US9780635B1 (en) 2016-06-10 2017-10-03 Crane Electronics, Inc. Dynamic sharing average current mode control for active-reset and self-driven synchronous rectification for power converters
US9831768B2 (en) 2014-07-17 2017-11-28 Crane Electronics, Inc. Dynamic maneuvering configuration for multiple control modes in a unified servo system
US9888568B2 (en) 2012-02-08 2018-02-06 Crane Electronics, Inc. Multilayer electronics assembly and method for embedding electrical circuit components within a three dimensional module
WO2018033451A1 (en) * 2016-08-18 2018-02-22 Manfred Schmelzer Gmbh Multi-phase differential mode power choke
US9979285B1 (en) 2017-10-17 2018-05-22 Crane Electronics, Inc. Radiation tolerant, analog latch peak current mode control for power converters
US10425080B1 (en) 2018-11-06 2019-09-24 Crane Electronics, Inc. Magnetic peak current mode control for radiation tolerant active driven synchronous power converters
WO2020101905A1 (en) * 2018-11-12 2020-05-22 Carrier Corporation Cooled transformer for an energy storage device
CN112997263A (en) * 2018-11-15 2021-06-18 三菱电机株式会社 Power converter
WO2024047739A1 (en) * 2022-08-30 2024-03-07 スミダコーポレーション株式会社 Bobbin for coil device, coil device, and assembly method for coil device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016096314A (en) * 2014-11-17 2016-05-26 株式会社豊田自動織機 Electronic apparatus
JP6317306B2 (en) * 2015-10-22 2018-04-25 東芝産業機器システム株式会社 Water-cooled iron core
CN105761904B (en) * 2016-02-25 2017-03-08 胡长磊 A kind of transformer with cooling structure
TWI620210B (en) * 2016-08-22 2018-04-01 致茂電子股份有限公司 Transformer embedded with thermally conductive member
CN106531424B (en) * 2016-12-30 2018-08-28 北京金风科创风电设备有限公司 Water-cooled air reactor, power conversion device and wind generating set

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59109122U (en) * 1983-01-12 1984-07-23 神鋼電機株式会社 Medium frequency saturable reactor
JP2004135465A (en) * 2002-10-11 2004-04-30 Toyota Motor Corp Voltage changer and computer-readable recording medium with program recorded thereon for causing computer to control voltage change
JP2008186904A (en) * 2007-01-29 2008-08-14 Daikin Ind Ltd Reactor and air conditioner
JP2009188034A (en) * 2008-02-04 2009-08-20 Sumitomo Electric Ind Ltd Reactor, and mounting structure thereof
JP2012089838A (en) * 2010-10-19 2012-05-10 General Electric Co <Ge> Liquid cooled magnetic component with indirect cooling for high frequency and high power applications

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006312422A (en) * 2005-05-09 2006-11-16 Sumitomo Electric Ind Ltd Hydrogen fuel vehicle
JP2011040651A (en) * 2009-08-17 2011-02-24 Fuji Electric Systems Co Ltd Magnetic part

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59109122U (en) * 1983-01-12 1984-07-23 神鋼電機株式会社 Medium frequency saturable reactor
JP2004135465A (en) * 2002-10-11 2004-04-30 Toyota Motor Corp Voltage changer and computer-readable recording medium with program recorded thereon for causing computer to control voltage change
JP2008186904A (en) * 2007-01-29 2008-08-14 Daikin Ind Ltd Reactor and air conditioner
JP2009188034A (en) * 2008-02-04 2009-08-20 Sumitomo Electric Ind Ltd Reactor, and mounting structure thereof
JP2012089838A (en) * 2010-10-19 2012-05-10 General Electric Co <Ge> Liquid cooled magnetic component with indirect cooling for high frequency and high power applications

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9419538B2 (en) 2011-02-24 2016-08-16 Crane Electronics, Inc. AC/DC power conversion system and method of manufacture of same
US11172572B2 (en) 2012-02-08 2021-11-09 Crane Electronics, Inc. Multilayer electronics assembly and method for embedding electrical circuit components within a three dimensional module
US9888568B2 (en) 2012-02-08 2018-02-06 Crane Electronics, Inc. Multilayer electronics assembly and method for embedding electrical circuit components within a three dimensional module
US9831768B2 (en) 2014-07-17 2017-11-28 Crane Electronics, Inc. Dynamic maneuvering configuration for multiple control modes in a unified servo system
WO2016080131A1 (en) * 2014-11-17 2016-05-26 株式会社 豊田自動織機 Induction apparatus
US9230726B1 (en) * 2015-02-20 2016-01-05 Crane Electronics, Inc. Transformer-based power converters with 3D printed microchannel heat sink
US9160228B1 (en) 2015-02-26 2015-10-13 Crane Electronics, Inc. Integrated tri-state electromagnetic interference filter and line conditioning module
US9293999B1 (en) 2015-07-17 2016-03-22 Crane Electronics, Inc. Automatic enhanced self-driven synchronous rectification for power converters
US9780635B1 (en) 2016-06-10 2017-10-03 Crane Electronics, Inc. Dynamic sharing average current mode control for active-reset and self-driven synchronous rectification for power converters
US9866100B2 (en) 2016-06-10 2018-01-09 Crane Electronics, Inc. Dynamic sharing average current mode control for active-reset and self-driven synchronous rectification for power converters
WO2018033451A1 (en) * 2016-08-18 2018-02-22 Manfred Schmelzer Gmbh Multi-phase differential mode power choke
US9742183B1 (en) 2016-12-09 2017-08-22 Crane Electronics, Inc. Proactively operational over-voltage protection circuit
US9735566B1 (en) 2016-12-12 2017-08-15 Crane Electronics, Inc. Proactively operational over-voltage protection circuit
US9979285B1 (en) 2017-10-17 2018-05-22 Crane Electronics, Inc. Radiation tolerant, analog latch peak current mode control for power converters
US10425080B1 (en) 2018-11-06 2019-09-24 Crane Electronics, Inc. Magnetic peak current mode control for radiation tolerant active driven synchronous power converters
WO2020101905A1 (en) * 2018-11-12 2020-05-22 Carrier Corporation Cooled transformer for an energy storage device
CN112997263A (en) * 2018-11-15 2021-06-18 三菱电机株式会社 Power converter
WO2024047739A1 (en) * 2022-08-30 2024-03-07 スミダコーポレーション株式会社 Bobbin for coil device, coil device, and assembly method for coil device

Also Published As

Publication number Publication date
JP6055306B2 (en) 2016-12-27
JP2014127610A (en) 2014-07-07

Similar Documents

Publication Publication Date Title
JP6055306B2 (en) Reactor
US9148984B2 (en) High-power electromagnetic assembly
US6825583B2 (en) Linear motor including cooling system
US20150310976A1 (en) Magnetic element
US8462506B2 (en) Water-cooled reactor
JP2017103461A (en) Non-contact feeding transformer
JP2000051180A (en) Coil system of mr device
US20160027568A1 (en) Air-cooled reactor
JP2013236051A (en) Magnetic member having heat radiation bobbin
US20090066453A1 (en) Choke of electric device
US20140116651A1 (en) Heat sink applicable for eletromagnetic device
KR20140083231A (en) Inductor with the cooling structure
JP4330477B2 (en) Gradient magnetic field coil and magnetic resonance imaging apparatus using the same
JP3119995B2 (en) Cooling structure for static induction equipment windings
JP6527931B1 (en) Water-cooled transformer
JP2013191623A (en) Reactor
US20180053593A1 (en) Transformer embedded with thermally conductive member
JP2008186904A (en) Reactor and air conditioner
KR101243291B1 (en) Apparatus of air cooling for stator coils of superconduting motor or generator
JP2009105078A (en) Heating coil for induction heating device
JP2008218699A (en) Reactor and air-conditioning machine
JP5566418B2 (en) Heating device with cooler
JP2010226902A (en) Motor stator and divided stator
JP7410416B2 (en) winding equipment
KR100664509B1 (en) Shell-type transformer and manufacture method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13868667

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13868667

Country of ref document: EP

Kind code of ref document: A1