JP2006312422A - Hydrogen fuel vehicle - Google Patents

Hydrogen fuel vehicle Download PDF

Info

Publication number
JP2006312422A
JP2006312422A JP2005136540A JP2005136540A JP2006312422A JP 2006312422 A JP2006312422 A JP 2006312422A JP 2005136540 A JP2005136540 A JP 2005136540A JP 2005136540 A JP2005136540 A JP 2005136540A JP 2006312422 A JP2006312422 A JP 2006312422A
Authority
JP
Japan
Prior art keywords
hydrogen
coil
liquid hydrogen
reactor
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005136540A
Other languages
Japanese (ja)
Inventor
Shingo Oohashi
紳悟 大橋
Toru Okazaki
徹 岡崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2005136540A priority Critical patent/JP2006312422A/en
Publication of JP2006312422A publication Critical patent/JP2006312422A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04201Reactant storage and supply, e.g. means for feeding, pipes
    • H01M8/04208Cartridges, cryogenic media or cryogenic reservoirs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M16/00Structural combinations of different types of electrochemical generators
    • H01M16/003Structural combinations of different types of electrochemical generators of fuel cells with other electrochemical devices, e.g. capacitors, electrolysers
    • H01M16/006Structural combinations of different types of electrochemical generators of fuel cells with other electrochemical devices, e.g. capacitors, electrolysers of fuel cells with rechargeable batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04858Electric variables
    • H01M8/04865Voltage
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Landscapes

  • Sustainable Energy (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Fuel Cell (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce a Joule loss produced in a reactor installed in a booster converter. <P>SOLUTION: In this hybrid automobile 10, a dc power from a battery 1 is converted into an alternating current by an inverter 2 after its voltage is increased by a booster converter 14 and then fed to a motor 3 and a liquid hydrogen tank 11 storing a liquid hydrogen as a fuel is mounted thereon. The booster converter 14 comprises the reactor 15 formed by fitting a coil 29 onto magnetic cores 27 and 28. The coil 29 of the reactor 15 is stored in a heat-insulated refrigerant container 23 and a refrigerant feed tube 21 feeding the liquid hydrogen H from the liquid hydrogen tank 11 is connected to the heat-insulated refrigerant container 23. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、水素燃料車に関し、詳しくは、液体水素タンクからの水素により燃料電池で発電して或いは該水素を水素エンジンで燃焼して駆動源を得る車両であって、バッテリーからの直流電力を昇圧コンバータで電圧上昇させているものに関する。   The present invention relates to a hydrogen fuel vehicle, and more particularly to a vehicle that generates power in a fuel cell using hydrogen from a liquid hydrogen tank or burns the hydrogen in a hydrogen engine to obtain a drive source, and that uses DC power from a battery. It relates to a voltage booster that raises the voltage.

近年、ガソリン等の化石燃料の枯渇や排気ガスによる環境悪化を改善すべく、ガソリンエンジンと併用して電気エネルギーによるモータで駆動して走行するハイブリッド自動車の開発が進められている(特開平11−164494号公報等)。
図9は当初のハイブリッド自動車を示し、バッテリー1からの直流電力をインバータで交流に変換して車両駆動用のモータ3に給電している。一方、エンジン4からの回転動力は動力分配機5を介して車輪側に伝達している。また、エンジン4からの回転動力は動力分配機5を介して発電機6にも伝達され、そこで生成された電力をインバータ2に戻している。
In recent years, in order to improve the exhaustion of fossil fuels such as gasoline and the deterioration of the environment due to exhaust gas, development of hybrid vehicles that are driven by electric energy motors in combination with gasoline engines has been developed (Japanese Patent Laid-Open No. 11-1990). 164494 gazette).
FIG. 9 shows an initial hybrid vehicle, in which direct current power from the battery 1 is converted into alternating current by an inverter and supplied to the motor 3 for driving the vehicle. On the other hand, the rotational power from the engine 4 is transmitted to the wheel side via the power distributor 5. The rotational power from the engine 4 is also transmitted to the generator 6 through the power distributor 5, and the generated electric power is returned to the inverter 2.

ハイブリッド自動車においても低燃費・低環境負荷を追及するためには、モータ3の小型高出力化を実現する必要があり、モータ3を高速回転させて駆動することが求められる。高速回転域においてはモータ3から発生する逆起電力以上の電圧を発生させる必要があるが、単純にバッテリー1の数を増加させて高圧化させることはスペースやコスト面からみて現実的ではない。そこで最近は、図10に示すように、バッテリー1とインバータ2の間に昇圧コンバータ7(DC−DCコンバータ)を介設して高電圧化するものが現れている。これにより、モータ3の高速回転を行いたい時には、昇圧コンバータ7を利用することで、バッテリー1を大きくする事なく、また、弱め界磁制御する事なく高速回転を実現することができる。   In order to pursue low fuel consumption and low environmental load even in a hybrid vehicle, it is necessary to realize a small and high output of the motor 3, and it is required to drive the motor 3 by rotating it at high speed. In the high-speed rotation range, it is necessary to generate a voltage higher than the counter electromotive force generated from the motor 3, but simply increasing the number of batteries 1 to increase the voltage is not realistic from the viewpoint of space and cost. Therefore, recently, as shown in FIG. 10, there has been an increase in voltage by providing a boost converter 7 (DC-DC converter) between the battery 1 and the inverter 2. Thereby, when it is desired to perform high-speed rotation of the motor 3, by using the step-up converter 7, it is possible to realize high-speed rotation without increasing the battery 1 and without performing field weakening control.

昇圧コンバータ7には昇圧動作時のエネルギーを貯めておくリアクトルが備えられており、該リアクトルのコイルには最大数100A相当の大電流が通電される。該コイルは断面積の大きな銅線で形成されているが、高出力時には大電流を流す必要があり、該コイルに発生するジュール熱は入力電力の数%に相当する場合もある。この損失分は熱となるだけであるので、可能な限りジュール損を抑制することが走行燃費改善およびCO2削減に役立つ。
特開平11−164494号公報
The step-up converter 7 is provided with a reactor for storing energy during the step-up operation, and a large current corresponding to a maximum of several hundreds of A is supplied to the coil of the reactor. Although the coil is formed of a copper wire having a large cross-sectional area, it is necessary to pass a large current at high output, and the Joule heat generated in the coil may correspond to several percent of the input power. Since this loss only becomes heat, suppressing joule loss as much as possible is useful for improving driving fuel consumption and reducing CO 2 .
JP-A-11-164494

本発明は、前記問題に鑑みてなされたもので、昇圧コンバータに備えられたリアクトルで発生するジュール損を低減することを課題としている。   This invention is made | formed in view of the said problem, and makes it a subject to reduce the Joule loss which generate | occur | produces in the reactor with which the boost converter was equipped.

前記課題を解決するため、本発明は、バッテリーからの直流電力を昇圧コンバータで電圧上昇させた上でインバータにより交流に変換してモータに給電すると共に、液体水素を燃料として貯留する液体水素タンクを搭載する車両であって、
前記昇圧コンバータは磁気コアにコイルを外嵌配置したリアクトルを有し、前記リアクトルのコイルを断熱冷媒容器に収容していると共に、前記断熱冷媒容器には前記液体水素タンクからの液体水素を供給する冷媒供給管を接続していることを特徴とする水素燃料車を提供している。
In order to solve the above-mentioned problems, the present invention provides a liquid hydrogen tank for storing direct supply of liquid hydrogen as a fuel while increasing the voltage of DC power from a battery with a boost converter, converting the DC power into an AC with an inverter and supplying power to the motor. A vehicle to be mounted,
The boost converter has a reactor in which a coil is externally disposed on a magnetic core, the coil of the reactor is accommodated in a heat insulating refrigerant container, and liquid hydrogen from the liquid hydrogen tank is supplied to the heat insulating refrigerant container. A hydrogen fuel vehicle characterized by connecting a refrigerant supply pipe is provided.

前記構成とすると、車載された極低温の液体水素を冷媒として有効活用し、昇圧コンバータに備えられたリアクトルのコイルを冷却しているので、コイルの導電率が改善してジュール損を低減することができる。また、リアクトルコイルを冷却する冷媒には、燃料として既に車載されている液体水素を利用しているので、別途、冷媒を自動車に搭載する必要がなくなり、車両重量や車載スペースの増加を抑制することができる。   With the above configuration, since the cryogenic liquid hydrogen mounted on the vehicle is effectively used as a refrigerant and the reactor coil provided in the boost converter is cooled, the coil conductivity is improved and Joule loss is reduced. Can do. In addition, since liquid hydrogen already mounted on the vehicle is used as the coolant for cooling the reactor coil, there is no need to separately mount the coolant on the vehicle, thereby suppressing an increase in vehicle weight and in-vehicle space. Can do.

前記液体水素タンクからの水素により燃料電池で発電して駆動源とし、あるいは、該水素を水素エンジンで燃焼して駆動源としており、
前記断熱冷媒容器には冷媒排出管を接続しており、前記冷媒供給管から前記断熱冷媒容器に導入されて前記コイルとの熱交換により昇温気化した水素を前記冷媒排出管を介して前記燃料電池あるいは水素エンジンに供給していると好ましい。
The fuel cell generates power with hydrogen from the liquid hydrogen tank as a drive source, or the hydrogen is burned with a hydrogen engine as a drive source,
A refrigerant discharge pipe is connected to the heat insulating refrigerant container, and hydrogen introduced into the heat insulating refrigerant container from the refrigerant supply pipe and heated and evaporated by heat exchange with the coil is supplied to the fuel via the refrigerant discharge pipe. It is preferable to supply it to a battery or a hydrogen engine.

前記構成とすると、コイル冷却用に用いた冷媒としての水素を燃料用に再利用することができ、資源の有効活用が図られる。また、コイルとの熱交換により気化した水素を用いているので、燃料電池あるいは水素エンジンに供給する際の水素気化工程を省略することができる利点もある。   If it is set as the said structure, hydrogen as a refrigerant | coolant used for coil cooling can be reused for fuels, and effective utilization of resources is achieved. Further, since hydrogen vaporized by heat exchange with the coil is used, there is an advantage that the hydrogen vaporization step when supplying the fuel cell or the hydrogen engine can be omitted.

前記断熱冷媒容器は、前記磁気コアを収容せずに前記コイルを収容していると好ましい。
前記構成とすると、磁気コアは液体水素により冷却されないので、磁気コアの過冷却による渦電流損の増大を防ぐことができる。
It is preferable that the heat insulation refrigerant container accommodates the coil without accommodating the magnetic core.
With this configuration, since the magnetic core is not cooled by liquid hydrogen, an increase in eddy current loss due to overcooling of the magnetic core can be prevented.

あるいは、前記断熱冷媒容器は、前記磁気コアおよび前記コイルをまとめて収容しても好ましい。
前記構成とすると、断熱冷媒容器の構造を簡単なボックス状で形成することができ、生産性が向上する。この際、磁気コアを圧粉磁性体で形成すれば、個々の磁性粉末の間が絶縁されるため、磁気コアを冷却しても渦電流損失が低減されて良好な磁気特性を得ることができる。なお、圧粉磁性体は、磁性粉末を絶縁樹脂で結合し、あるいは、被膜で覆った磁性粉末を絶縁樹脂で結合した構成とする。
Alternatively, the heat insulating refrigerant container preferably accommodates the magnetic core and the coil together.
If it is the said structure, the structure of a heat insulation refrigerant | coolant container can be formed in a simple box shape, and productivity improves. At this time, if the magnetic core is formed of a powdered magnetic material, the individual magnetic powders are insulated from each other. Therefore, even if the magnetic core is cooled, eddy current loss is reduced and good magnetic properties can be obtained. . The dust magnetic body has a configuration in which magnetic powder is bonded with an insulating resin, or magnetic powder covered with a coating is bonded with an insulating resin.

前記リアクトルのコイルを超電導線材で形成していると好ましい。
即ち、コイルを超電導線材で形成すれば、所要の超電導性能を発揮させるための冷媒として前記液体水素が利用され、ジュール損はほとんど無視できるレベルに低減することができる。
The reactor coil is preferably formed of a superconducting wire.
That is, if the coil is formed of a superconducting wire, the liquid hydrogen is used as a refrigerant for exerting the required superconducting performance, and the Joule loss can be reduced to a level that can be almost ignored.

以上の説明より明らかなように、本発明によれば、燃料として既に車載された極低温の液体水素を冷媒として有効活用し、昇圧コンバータに備えられたリアクトルのコイルを冷却しているので、車両重量や車載スペースを増加することなくコイルの導電率を改善してジュール損を低減することが可能となる。   As is clear from the above description, according to the present invention, the cryogenic liquid hydrogen already mounted on the vehicle as the fuel is effectively used as the refrigerant, and the reactor coil provided in the boost converter is cooled. It is possible to improve the coil conductivity and reduce Joule loss without increasing the weight or on-vehicle space.

本発明の実施形態を図面を参照して説明する。
図1乃至図5は第1実施形態を示す。
図1はハイブリッド自動車10(水素燃料車)を示し、極低温(約20ケルビン)まで冷却して液化した液体水素が液体水素タンク11に貯留されており、液体水素タンク11からの液体水素は気化装置12で気化されて燃料電池13に供給され、燃料電池13で発電された電力はバッテリー1に蓄電される。なお、燃料電池13は、公知の水素と酸素を反応させて発電するものである。
Embodiments of the present invention will be described with reference to the drawings.
1 to 5 show a first embodiment.
FIG. 1 shows a hybrid vehicle 10 (hydrogen fuel vehicle) in which liquid hydrogen cooled to a very low temperature (about 20 Kelvin) is stored in a liquid hydrogen tank 11, and the liquid hydrogen from the liquid hydrogen tank 11 is vaporized. The power vaporized by the device 12 and supplied to the fuel cell 13, and the electric power generated by the fuel cell 13 is stored in the battery 1. The fuel cell 13 generates electric power by reacting known hydrogen and oxygen.

バッテリー1からの直流電力は昇圧コンバータ14で200V程度から500V程度まで電圧上昇された後にインバータ2により三相交流に変換され、該交流をモータ3に給電することで車輪24の回転駆動力を得ている。
一方、ガソリンを燃料としたエンジン4からの回転動力は動力分配機5により車輪24側に伝達することで車輪24の駆動力を得ている。また、エンジン4からの回転動力は動力分配機5で発電機6にも伝達し、該発電機6で生成された電力はインバータ2に戻されている。
The DC power from the battery 1 is increased in voltage from about 200 V to about 500 V by the boost converter 14 and then converted into three-phase AC by the inverter 2, and the rotational driving force of the wheels 24 is obtained by supplying the AC to the motor 3. ing.
On the other hand, the rotational power from the engine 4 using gasoline as fuel is transmitted to the wheel 24 side by the power distributor 5 to obtain the driving force of the wheel 24. Further, the rotational power from the engine 4 is transmitted to the generator 6 by the power distributor 5, and the electric power generated by the generator 6 is returned to the inverter 2.

昇圧コンバータ14は、図2に示すように、リアクトル15、コンデンサ16、20、IGBT17、ダイオード18、抵抗19により構成されている。
リアクトル15は、図3乃至図5に示すように、一対の銅線からなる巻線29a、29bを対向配置して直列接続したコイル29が断熱冷媒容器23に収容され、一対の断面コ字状の磁気コア27、28を断熱冷媒容器23の外部でコイル29の中空部に貫通させている。詳しくは、断熱冷媒容器23は、図3および図5に示すように、ボックス状の外壁部23aと、隣接する一対の貫通孔25、26を形成する一対の内周壁部23b、23cとを備え、外壁部23aと一対の内周壁部23b、23cとの間で液体水素Hおよびコイル29を収容する空間が形成されている。外壁部23aおよび内周壁部23b、23cは、二重壁の間に真空層を形成した真空断熱構造を採用している。断熱冷媒容器23は、ステンレスやFRP等で形成されているが、コイル29に生じるリップル電流(直流電流に付加される高調波脈動電流)による渦電流の発生を回避するためには、FRP等の非導電性材料を用いることが好ましい。
As shown in FIG. 2, boost converter 14 includes a reactor 15, capacitors 16 and 20, IGBT 17, diode 18, and resistor 19.
As shown in FIGS. 3 to 5, the reactor 15 includes a coil 29 in which windings 29 a and 29 b made of a pair of copper wires are arranged so as to face each other and are connected in series, and is accommodated in a heat insulating refrigerant container 23. The magnetic cores 27 and 28 are passed through the hollow portion of the coil 29 outside the heat insulating refrigerant container 23. Specifically, as shown in FIGS. 3 and 5, the heat insulating refrigerant container 23 includes a box-shaped outer wall portion 23 a and a pair of inner peripheral wall portions 23 b and 23 c that form a pair of adjacent through holes 25 and 26. A space for accommodating the liquid hydrogen H and the coil 29 is formed between the outer wall portion 23a and the pair of inner peripheral wall portions 23b and 23c. The outer wall portion 23a and the inner peripheral wall portions 23b and 23c employ a vacuum heat insulating structure in which a vacuum layer is formed between double walls. The adiabatic refrigerant container 23 is formed of stainless steel, FRP, or the like, but in order to avoid the generation of eddy current due to the ripple current generated in the coil 29 (harmonic pulsation current added to the direct current), FRP or the like It is preferable to use a non-conductive material.

図5に示すように、断熱冷媒容器23内にはコイル29が収容され、一方の巻線29aが一方の内周壁部23bに巻き付けられ、他方の巻線29bが他方の内周壁部23cに巻き付けられている。なお、コイル29には図示しない電力入出力線が接続されている。この電力入出力線は超電導線材を用いた電流リードを採用することで熱伝導率を低減し、断熱冷媒容器23内への外部からの熱侵入を防止していると好適である。
一対の断面コ字状の磁気コア27、28は鉄等の磁性材料からなり、互いの先端部27a、27b、28a、28b同士がギャップGをあけて対向するように断熱冷媒容器23の貫通孔25、26に先端部27a、27b、28a、28bを挿入している。このようにすることで、コイル29の巻線29a、29bの各中空部に磁気コア27、28が配置されると共に、コイル29のみが液体水素Hで冷却され磁気コア27、28は冷却されない構成を実現している。
As shown in FIG. 5, a coil 29 is accommodated in the heat insulating refrigerant container 23, one winding 29a is wound around one inner peripheral wall 23b, and the other winding 29b is wound around the other inner peripheral wall 23c. It has been. The coil 29 is connected to a power input / output line (not shown). It is preferable that the power input / output line employs a current lead using a superconducting wire to reduce thermal conductivity and prevent heat from entering the heat-insulating refrigerant container 23 from the outside.
The pair of U-shaped magnetic cores 27 and 28 are made of a magnetic material such as iron, and the through holes of the heat-insulating refrigerant container 23 are arranged such that the tip portions 27a, 27b, 28a, 28b face each other with a gap G therebetween. End portions 27a, 27b, 28a and 28b are inserted into 25 and 26, respectively. By doing so, the magnetic cores 27 and 28 are disposed in the hollow portions of the windings 29a and 29b of the coil 29, and only the coil 29 is cooled with liquid hydrogen H and the magnetic cores 27 and 28 are not cooled. Is realized.

断熱冷媒容器23には液体水素タンク11からの冷媒供給管21が接続されていると共に、燃料電池13へ導出する冷媒排出管22が接続されている。即ち、液体水素タンク11からの液体水素Hが断熱冷媒容器23内を循環し、コイル29を冷却することで昇温気化した水素は冷媒排出管22より燃料電池13へと導かれる。   A refrigerant supply pipe 21 from the liquid hydrogen tank 11 is connected to the heat insulating refrigerant container 23, and a refrigerant discharge pipe 22 leading to the fuel cell 13 is connected to the heat insulating refrigerant container 23. That is, the liquid hydrogen H from the liquid hydrogen tank 11 circulates in the adiabatic refrigerant container 23, and the hydrogen that has been heated and vaporized by cooling the coil 29 is guided to the fuel cell 13 through the refrigerant discharge pipe 22.

以上の構成とすると、燃料電池13への燃料として既に車載された液体水素を冷媒として有効活用し、昇圧コンバータ14に内蔵されたリアクトル15のコイル29を冷却しているので、車両重量や車載スペースを増加することなくコイル29の導電率を改善してジュール損を低減することが可能となる。即ち、図6は銅線の温度と抵抗率との関係を示すグラフであるが、20ケルビンまで冷却した場合は、抵抗率は1桁下がる(導電率は1桁上がる)ため、結果としてコイル29で発生する銅損は1桁低減させることができる。
また、コイル29を冷却した後の気化水素を燃料用に再利用することができ、資源の有効活用が図られると共に、燃料電池13に供給する際の水素気化工程を省略することも可能となる。さらに、磁気コア27、28は液体水素Hにより冷却されない構成としているので、磁気コア27、28の過冷却による渦電流損の増大も防止される。
With the above configuration, liquid hydrogen already mounted on the vehicle as fuel to the fuel cell 13 is effectively used as a refrigerant, and the coil 29 of the reactor 15 built in the boost converter 14 is cooled. It is possible to improve the electrical conductivity of the coil 29 without increasing the Joule loss and reduce the Joule loss. That is, FIG. 6 is a graph showing the relationship between the temperature and the resistivity of the copper wire, but when cooled to 20 Kelvin, the resistivity decreases by an order of magnitude (conductivity increases by an order of magnitude). The copper loss generated in can be reduced by an order of magnitude.
In addition, the hydrogen vapor after cooling the coil 29 can be reused for fuel, so that resources can be effectively used and the hydrogen vaporization step when supplying the fuel cell 13 can be omitted. . Furthermore, since the magnetic cores 27 and 28 are not cooled by the liquid hydrogen H, an increase in eddy current loss due to overcooling of the magnetic cores 27 and 28 is also prevented.

図7は第2実施形態を示す。
第1実施形態との相違点は、液体水素タンク11に貯留された液体水素を水素エンジン30への燃料として搭載している点である。
即ち、液体水素タンク11からの液体水素は気化装置12で気化された上で水素エンジン30に供給されている。また、液体水素タンク11からの液体水素は冷媒供給管21を介して昇圧コンバータ14内のリアクトル15に冷媒として供給されている。リアクトル15でコイル29を冷却することにより昇温気化した水素は冷媒排出管22を介して水素エンジン30に供給している。なお、他の構成は第1実施形態と同様であるため説明を省略する。
FIG. 7 shows a second embodiment.
The difference from the first embodiment is that liquid hydrogen stored in the liquid hydrogen tank 11 is mounted as fuel for the hydrogen engine 30.
That is, liquid hydrogen from the liquid hydrogen tank 11 is supplied to the hydrogen engine 30 after being vaporized by the vaporizer 12. Liquid hydrogen from the liquid hydrogen tank 11 is supplied as a refrigerant to the reactor 15 in the boost converter 14 via the refrigerant supply pipe 21. Hydrogen that has been heated and vaporized by cooling the coil 29 by the reactor 15 is supplied to the hydrogen engine 30 via the refrigerant discharge pipe 22. Since other configurations are the same as those of the first embodiment, description thereof is omitted.

図8は第3実施形態を示す。
第1実施形態との相違点は、リアクトルの磁気コア27、28およびコイル29をまとめて断熱冷媒容器31で囲繞している点である。
FIG. 8 shows a third embodiment.
The difference from the first embodiment is that the magnetic cores 27 and 28 of the reactor and the coil 29 are collectively surrounded by a heat insulating refrigerant container 31.

本実施形態のリアクトルは、ギャップGを設けた状態で対向配置された磁気コア27、28に一対の巻線29a、29bからなるコイル29を直接巻き付けている。この磁気コア27、28およびコイル29をボックス状の断熱冷媒容器31に収容している。断熱冷媒容器31の壁面は二重壁の間に真空層を形成した真空断熱構造としている。また、断熱冷媒容器31の材料は、ステンレスやFRP等が挙げられるが、コイル29に生じるリップル電流による渦電流の発生を回避するためには、FRP等の非導電性材料を用いるよい。
磁気コア27、28は、磁性粉末(鉄粉等)を絶縁樹脂でプレス結合して加熱処理を施した圧粉磁性体、あるいは、被膜(燐酸化合物被膜等)で覆った磁性粉末(鉄粉等)を絶縁樹脂で結合して加熱処理を施した圧粉磁性体としている。圧粉磁性体の結合用樹脂としては、ポリフェニレンサルファイドや可溶性ポリイミド等の樹脂が好適に用いられる。
In the reactor according to the present embodiment, a coil 29 including a pair of windings 29a and 29b is directly wound around magnetic cores 27 and 28 arranged to face each other with a gap G provided. The magnetic cores 27 and 28 and the coil 29 are accommodated in a box-shaped heat-insulating refrigerant container 31. The wall surface of the heat insulating refrigerant container 31 has a vacuum heat insulating structure in which a vacuum layer is formed between double walls. In addition, examples of the material of the heat insulating refrigerant container 31 include stainless steel and FRP. In order to avoid generation of eddy current due to a ripple current generated in the coil 29, a nonconductive material such as FRP may be used.
The magnetic cores 27 and 28 are magnetic powder (iron powder or the like) covered with a powder magnetic material obtained by press-bonding magnetic powder (iron powder or the like) with an insulating resin and subjected to heat treatment, or a film (phosphoric acid compound film or the like). ) Is bonded with an insulating resin, and a heat treated magnetic powder is used. A resin such as polyphenylene sulfide or soluble polyimide is preferably used as the resin for binding the dust magnetic material.

以上の構成とすると、断熱冷媒容器31の構造を簡単なボックス状で形成できるため生産性が良好となる。また、磁気コア27、28を圧粉磁性体で形成しているので、個々の磁性粉末の間が絶縁され、磁気コア27、28を冷却しても渦電流損失が低減されて良好な磁気特性を得ることができる。なお、他の構成は第1実施形態と同様であるため説明を省略する。   If it is set as the above structure, since the structure of the heat insulation refrigerant | coolant container 31 can be formed in a simple box shape, productivity will become favorable. In addition, since the magnetic cores 27 and 28 are made of powdered magnetic material, the individual magnetic powders are insulated from each other, and eddy current loss is reduced even when the magnetic cores 27 and 28 are cooled. Can be obtained. Since other configurations are the same as those of the first embodiment, description thereof is omitted.

また、前述の第1〜第3実施形態はリアクトルのコイル29を銅線等からなる常電導線材としているが、各実施形態においてビスマス系あるいはイットリウム系等の超電導線材でコイル29を形成しても好適である。
コイル29を超電導線材で形成すれば、所要の超電導性能を発揮させるための冷媒として液体水素Hが利用され、ジュール損はほとんど無視できるレベルに低減することが可能となる。また、液体水素温度(約20ケルビン)であれば、例えば銅(常温)と比較してビスマス系超電導線材は100倍以上の電流密度を確保することができるため、コイルを大幅に小型化することも可能となる。
In the first to third embodiments described above, the reactor coil 29 is a normal conducting wire made of copper wire or the like. However, in each embodiment, the coil 29 is formed of a bismuth-based or yttrium-based superconducting wire. Is preferred.
If the coil 29 is formed of a superconducting wire, liquid hydrogen H is used as a refrigerant for exhibiting the required superconducting performance, and the Joule loss can be reduced to a level that can be almost ignored. In addition, at a liquid hydrogen temperature (about 20 Kelvin), for example, bismuth-based superconducting wire can secure a current density of 100 times or more compared to copper (room temperature), so that the coil can be greatly downsized. Is also possible.

本発明の第1実施形態の水素燃料車を示すブロック図である。1 is a block diagram showing a hydrogen fuel vehicle according to a first embodiment of the present invention. 昇圧コンバータを示す回路図である。It is a circuit diagram which shows a boost converter. 断熱冷媒容器および磁気コアを示す斜視図である。It is a perspective view which shows an adiabatic refrigerant container and a magnetic core. コイルを示す斜視図である。It is a perspective view which shows a coil. リアクトルの水平断面図である。It is a horizontal sectional view of a reactor. 銅線の温度と抵抗率との関係を示すグラフである。It is a graph which shows the relationship between the temperature and resistivity of a copper wire. 第2実施形態の水素燃料車を示すブロック図である。It is a block diagram which shows the hydrogen fuel vehicle of 2nd Embodiment. 第3実施形態のリアクトルの水平断面図である。It is a horizontal sectional view of the reactor of a 3rd embodiment. 従来例を示す図面である。It is drawing which shows a prior art example. 別の従来例を示す図面である。It is drawing which shows another prior art example.

符号の説明Explanation of symbols

1 バッテリー
2 インバータ
3 モータ
4 エンジン
5 動力分配機
6 発電機
10 ハイブリッド自動車(水素燃料車)
11 液体水素タンク
12 気化装置
13 燃料電池
14 昇圧コンバータ
15 リアクトル
21 冷媒供給管
22 冷媒排出管
23、31 断熱冷媒容器
25、26 貫通孔
27、28 磁気コア
29 コイル
30 水素エンジン
H 水素
DESCRIPTION OF SYMBOLS 1 Battery 2 Inverter 3 Motor 4 Engine 5 Power distribution machine 6 Generator 10 Hybrid vehicle (hydrogen fuel vehicle)
DESCRIPTION OF SYMBOLS 11 Liquid hydrogen tank 12 Vaporizer 13 Fuel cell 14 Boost converter 15 Reactor 21 Refrigerant supply pipe 22 Refrigerant discharge pipe 23, 31 Adiabatic refrigerant container 25, 26 Through hole 27, 28 Magnetic core 29 Coil 30 Hydrogen engine H Hydrogen

Claims (5)

バッテリーからの直流電力を昇圧コンバータで電圧上昇させた上でインバータにより交流に変換してモータに給電すると共に、液体水素を燃料として貯留する液体水素タンクを搭載する車両であって、
前記昇圧コンバータは磁気コアにコイルを外嵌配置したリアクトルを有し、前記リアクトルのコイルを断熱冷媒容器に収容していると共に、前記断熱冷媒容器には前記液体水素タンクからの液体水素を供給する冷媒供給管を接続していることを特徴とする水素燃料車。
It is a vehicle equipped with a liquid hydrogen tank for storing liquid hydrogen as fuel, while DC power from the battery is increased in voltage by a boost converter, converted to alternating current by an inverter and supplied to the motor,
The boost converter has a reactor in which a coil is externally disposed on a magnetic core, the coil of the reactor is accommodated in a heat insulating refrigerant container, and liquid hydrogen from the liquid hydrogen tank is supplied to the heat insulating refrigerant container. A hydrogen fuel vehicle characterized by connecting a refrigerant supply pipe.
前記液体水素タンクからの水素により燃料電池で発電して駆動源とし、あるいは、該水素を水素エンジンで燃焼して駆動源としており、
前記断熱冷媒容器には冷媒排出管を接続しており、前記冷媒供給管から前記断熱冷媒容器に導入されて前記コイルとの熱交換により昇温気化した水素を前記冷媒排出管を介して前記燃料電池あるいは水素エンジンに供給している請求項1に記載の水素燃料車。
The fuel cell generates power with hydrogen from the liquid hydrogen tank as a drive source, or the hydrogen is burned with a hydrogen engine as a drive source,
A refrigerant discharge pipe is connected to the heat insulating refrigerant container, and hydrogen introduced into the heat insulating refrigerant container from the refrigerant supply pipe and heated and evaporated by heat exchange with the coil is supplied to the fuel via the refrigerant discharge pipe. The hydrogen fuel vehicle according to claim 1, wherein the hydrogen fuel vehicle is supplied to a battery or a hydrogen engine.
前記断熱冷媒容器は、前記磁気コアを収容せずに前記コイルを収容している請求項1または請求項2に記載の水素燃料車。   The hydrogen fuel vehicle according to claim 1, wherein the heat insulation refrigerant container accommodates the coil without accommodating the magnetic core. 前記断熱冷媒容器は、前記磁気コアおよび前記コイルをまとめて収容している請求項1または請求項2に記載の水素燃料車。   The hydrogen fuel vehicle according to claim 1, wherein the heat insulating refrigerant container accommodates the magnetic core and the coil together. 前記リアクトルのコイルを超電導線材で形成している請求項1乃至請求項4のいずれか1項に記載の水素燃料車。   The hydrogen fuel vehicle according to any one of claims 1 to 4, wherein a coil of the reactor is formed of a superconducting wire.
JP2005136540A 2005-05-09 2005-05-09 Hydrogen fuel vehicle Withdrawn JP2006312422A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005136540A JP2006312422A (en) 2005-05-09 2005-05-09 Hydrogen fuel vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005136540A JP2006312422A (en) 2005-05-09 2005-05-09 Hydrogen fuel vehicle

Publications (1)

Publication Number Publication Date
JP2006312422A true JP2006312422A (en) 2006-11-16

Family

ID=37534093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005136540A Withdrawn JP2006312422A (en) 2005-05-09 2005-05-09 Hydrogen fuel vehicle

Country Status (1)

Country Link
JP (1) JP2006312422A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008265733A (en) * 2007-03-23 2008-11-06 Honda Motor Co Ltd Vehicle
JP2009049082A (en) * 2007-08-15 2009-03-05 Toyota Motor Corp Reactor cooling system
JP2009088378A (en) * 2007-10-02 2009-04-23 Daikin Ind Ltd Reactor
JP2010027384A (en) * 2008-07-18 2010-02-04 Toyota Motor Corp Fuel cell exhaust treatment system
JP2010055796A (en) * 2008-08-26 2010-03-11 Toyota Motor Corp Fuel cell system
JP2010182511A (en) * 2009-02-04 2010-08-19 Toyota Motor Corp Temperature rising system
JP2010187433A (en) * 2009-02-10 2010-08-26 Railway Technical Res Inst Smoothing reactor apparatus for electric railway vehicle with fuel cell
JP2014127610A (en) * 2012-12-27 2014-07-07 Kawasaki Heavy Ind Ltd Reactor
JP2017117694A (en) * 2015-12-25 2017-06-29 公益財団法人鉄道総合技術研究所 Fuel cell system
JP2019160783A (en) * 2018-01-10 2019-09-19 ゼネラル・エレクトリック・カンパニイ Power generation system and method for operating the same

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008265733A (en) * 2007-03-23 2008-11-06 Honda Motor Co Ltd Vehicle
JP2009049082A (en) * 2007-08-15 2009-03-05 Toyota Motor Corp Reactor cooling system
JP2009088378A (en) * 2007-10-02 2009-04-23 Daikin Ind Ltd Reactor
JP2010027384A (en) * 2008-07-18 2010-02-04 Toyota Motor Corp Fuel cell exhaust treatment system
JP2010055796A (en) * 2008-08-26 2010-03-11 Toyota Motor Corp Fuel cell system
JP2010182511A (en) * 2009-02-04 2010-08-19 Toyota Motor Corp Temperature rising system
JP2010187433A (en) * 2009-02-10 2010-08-26 Railway Technical Res Inst Smoothing reactor apparatus for electric railway vehicle with fuel cell
JP2014127610A (en) * 2012-12-27 2014-07-07 Kawasaki Heavy Ind Ltd Reactor
JP2017117694A (en) * 2015-12-25 2017-06-29 公益財団法人鉄道総合技術研究所 Fuel cell system
JP2019160783A (en) * 2018-01-10 2019-09-19 ゼネラル・エレクトリック・カンパニイ Power generation system and method for operating the same
JP7034059B2 (en) 2018-01-10 2022-03-11 ゼネラル・エレクトリック・カンパニイ Power generation system and its operation method

Similar Documents

Publication Publication Date Title
JP2006312422A (en) Hydrogen fuel vehicle
US12009133B2 (en) Temperature regulation of an inductor assembly
CN110957504B (en) Fuel cell power system
US10490333B2 (en) Inductor assembly support structure
CN100495790C (en) Cooling device for fuel cell and vehicle having the same
JP5769386B2 (en) Electric propulsion device and electric vehicle equipped with the same
JP2009049082A (en) Reactor cooling system
US20140132382A1 (en) Inductor assembly
US20140132379A1 (en) Integrated inductor assembly
JP2011216424A (en) Power storage module
JP2014514902A (en) Pole shoe
JP2011222202A (en) Power storage module
US20140146588A1 (en) Capacitance element housing unit
Shinzato et al. Development of high-temperature superconducting motor for automobiles
JP2007060747A (en) Superconducting motor and vehicle equipped with that motor
JP2011003288A (en) Fuel cell system
JP2008247320A (en) Vehicle mounting structure for gas fuel tank and battery
JP2005269868A (en) Superconductive motor device and movable body with use of superconductive motor device
JP2014150215A (en) Cooling device and motor control device including the same
JP2005086914A (en) Electric vehicle provided with superconducting motor
JP2004104925A (en) Cooling structure for motor
JP2005204492A (en) Superconducting motor device
JP5175828B2 (en) Fuel cell system
Oyama et al. Development of high-temperature superconducting DC motor for automobiles
CN217692883U (en) Vehicle-mounted power take-off generator

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080805