WO2014103253A1 - 熱交換器 - Google Patents

熱交換器 Download PDF

Info

Publication number
WO2014103253A1
WO2014103253A1 PCT/JP2013/007443 JP2013007443W WO2014103253A1 WO 2014103253 A1 WO2014103253 A1 WO 2014103253A1 JP 2013007443 W JP2013007443 W JP 2013007443W WO 2014103253 A1 WO2014103253 A1 WO 2014103253A1
Authority
WO
WIPO (PCT)
Prior art keywords
header tank
core
heat exchanger
thickness
groove
Prior art date
Application number
PCT/JP2013/007443
Other languages
English (en)
French (fr)
Inventor
英二 東後
隆志 江田
藤田 泰広
Original Assignee
住友精密工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=51020374&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2014103253(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 住友精密工業株式会社 filed Critical 住友精密工業株式会社
Priority to EP13868315.6A priority Critical patent/EP2942589B1/en
Priority to US14/655,683 priority patent/US9587892B2/en
Priority to CN201380067904.XA priority patent/CN104884888B/zh
Publication of WO2014103253A1 publication Critical patent/WO2014103253A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0243Header boxes having a circular cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K31/00Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
    • B23K31/02Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups relating to soldering or welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K31/00Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
    • B23K31/02Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups relating to soldering or welding
    • B23K31/027Making tubes with soldering or welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K33/00Specially-profiled edge portions of workpieces for making soldering or welding connections; Filling the seams formed thereby
    • B23K33/004Filling of continuous seams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/04Tubular or hollow articles
    • B23K2101/14Heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0062Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by spaced plates with inserted elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2275/00Fastening; Joining
    • F28F2275/06Fastening; Joining by welding

Definitions

  • the technology disclosed herein relates to a heat exchanger, and particularly to a welded structure of a header tank to a core.
  • a separately formed header tank is attached by welding to a core in which a large number of plates are stacked and integrated. Specifically, a groove inclined at a predetermined groove angle from the inner surface to the outer surface of the header tank is provided over the entire circumference of the opening edge of the header tank, and the entire opening edge of the header tank is provided. The circumference is welded from the outside of the header tank.
  • the plate thickness of the header tank is increased to ensure strength, and the weld bead is increased in size as the plate thickness increases.
  • the enlargement of the weld bead referred to here means that the cross-sectional area of the weld bead of the groove welding is the cross-sectional area of the welded portion where the opening edge of the header tank is arranged substantially perpendicular to the mounting surface of the core. Means to grow. For example, as shown in FIG.
  • the plate thickness direction of the groove 34 provided to be inclined at a predetermined groove angle ⁇ ⁇ b> 1 from the inner surface to the outer surface of the header tank 3 by increasing the plate thickness t of the header tank 3.
  • the cross-sectional area of the weld bead 36 increases.
  • the technology disclosed herein has been made in view of such a point, and the object of the technique is to take measures against heat on the core side against welding in a structure in which the header tank is joined to the core of the heat exchanger by welding. It is to be omitted.
  • the inventor of the present application paid attention to the fact that the thickness of the header tank became thicker as the nozzle was attached. That is, a through hole is provided at a nozzle mounting location in the header tank. If no through hole is provided, the required strength can be ensured by setting the thickness of the header tank to t1. However, in order to compensate for the reduction in the thickness of the header tank by providing the through hole, the header tank needs to have a thickness that is thicker than t1. However, such a thick plate thickness is required only in the vicinity of the nozzle mounting location, and in the vicinity of the opening edge welded to the core, the header tank plate thickness can be t1.
  • the inventor of the present application has provided the second inclined portion that is inclined from the outer surface to the inner surface of the header tank at the opening edge of the header tank so that the width in the plate thickness direction of the groove is reduced. .
  • the weld bead when welding the header tank to the core is reduced, and the heat input to the core during welding is also reduced.
  • the technique disclosed herein relates to a heat exchanger, and the heat exchanger includes a core and a header tank welded to the core over the entire circumference of an opening edge thereof.
  • channel which inclines toward the outer surface from the inner surface of the said header tank with the predetermined groove angle is provided in the perimeter of the opening edge part of the said header tank, and the opening edge part of the said header tank
  • At least a part of the second tank is provided with a second inclined portion that is inclined from the outer surface of the header tank toward the inner surface at an angle larger than the predetermined groove angle.
  • the opening edge of the header tank attached to the core by welding is provided with a welding groove over the entire circumference.
  • the groove is provided so as to be inclined at a predetermined groove angle from the inner surface of the header tank.
  • At least a part of the opening edge portion of the header tank provided with the groove is inclined at an angle larger than a predetermined groove angle from the outer surface to the inner surface of the header tank.
  • An inclined part is provided.
  • the second inclined portion may be provided so as to be continuous with the groove, or may be provided so as to be discontinuous. Welding of the header tank to the core is performed on the groove portion. However, in the portion where the second inclined portion is provided, the width in the plate thickness direction of the groove is reduced, so that the weld bead is reduced in size. Also, heat input to the core during welding is reduced.
  • the range affected by heat in the core is reduced as compared with the case where the second inclined portion is not provided, and the temperature rise on the core side is also compared with the case where the second inclined portion is not provided. It is suppressed. As a result, on the core side, heat countermeasures for welding become unnecessary.
  • the inclination angle of the second inclined portion relatively large, the reduction rate of the plate thickness in the header tank is reduced, which is advantageous in terms of securing the strength. Needless to say, a necessary plate thickness should be ensured in the groove portion where the second inclined portion is provided.
  • the thickness of the header tank is set to the first thickness that is set to ensure the required strength, and the second thickness of the reinforcement that accompanies the formation of a fluid passage hole in the header tank.
  • the second inclined portion is provided so as to reduce the thickness of the header tank from the combined thickness of the first and second to the first thickness. preferable.
  • the first plate thickness may be set to an appropriate plate thickness that is equal to or greater than the minimum plate thickness that can resist the tank internal pressure and / or the external pressure under the condition that the through hole is not formed through.
  • the first plate thickness necessary to counter the tank internal pressure and / or external pressure is secured in the groove portion, so that the weld bead is secured while ensuring the necessary strength of the header tank. Miniaturize.
  • the second inclined portion may be provided over the entire periphery of the opening edge of the header tank.
  • the second inclined portion may be provided only at the opening edge portion of the header tank, particularly at a location where it is desired to reduce the thermal effect on the core. By doing so, it is possible to reduce the labor of processing for providing the second inclined portion.
  • the core may be a plate fin type in which a plurality of stacked plates are integrated by brazing.
  • the heat exchanger As described above, according to the heat exchanger, at least a part of the opening edge portion of the header tank is provided with the second inclined portion that is inclined from the outer surface to the inner surface of the header tank.
  • the width in the plate thickness direction is reduced, the weld bead is reduced, and the heat input during welding is also reduced.
  • the range affected by the heat in the core can be reduced and the temperature rise can be suppressed, and the countermeasure for the heat on the core side against welding becomes unnecessary.
  • FIG. 1 is a cross-sectional view conceptually showing a mounting portion of a header tank in a heat exchanger.
  • FIG. 2 is an enlarged cross-sectional view showing a welded portion of the header tank.
  • FIG. 3 is a diagram corresponding to FIG.
  • FIG. 4 is an explanatory diagram showing a manufacturing procedure of the heat exchanger.
  • FIG. 5A is a conceptual diagram illustrating a preferable angle as the inclination angle of the second inclined portion.
  • FIG. 5B is a conceptual diagram illustrating a preferable inclination angle of the second inclined portion when the groove and the second inclined portion are discontinuous.
  • FIG. 1 is a diagram conceptually showing a mounting portion of the header tank 3 in the heat exchanger 1.
  • the heat exchanger 1 includes a core 2 that performs heat exchange between the first fluid and the second fluid, and a header tank 3 that allows the first or second fluid to flow into or out of the core 2. It is configured. Although only a specific header tank 3 is shown in FIG. 1, the heat exchanger 1 includes at least one header tank different from the header tank 3 shown in the figure.
  • the technique disclosed here can be applied to a core through which three or more kinds of fluids pass.
  • the core 2 is alternately stacked while the first flow path through which the first fluid flows and the second flow path through which the second fluid flows are partitioned by a tube plate as a primary heat transfer surface. Configured. A corrugated fin as an enlarged heat transfer surface may be disposed in the first and / or second flow path.
  • Such a core 2 is comprised by laminating
  • the header tank 3 is attached to the inlet or outlet of the first or second flow path in the core 2.
  • the header tank 3 has a function of dispersing the first or second fluid and flowing into the core 2 or collecting and discharging the first or second fluid flowing out from the core 2.
  • the header tank 3 includes a semi-cylindrical main body 31 having an opening on the lower side and a nozzle 32 attached to the main body 31.
  • a through hole 33 communicating with the nozzle 32 is formed at a location where the nozzle 32 is attached.
  • the header tank 3 is attached to the core 2 by welding the edge of the opening from the outside of the header tank 3 over the entire circumference. Details of this welded structure will be described later.
  • the thickness t of the header tank 3 is resistant to the internal pressure P and / or the external pressure, etc., assuming that the through-hole 33 communicating with the nozzle 32 is not formed. It is set as the sum of the first plate thickness t1 that can be performed and the second plate thickness t2 to compensate for the decrease in strength in the vicinity of the nozzle 32 as the through-hole 33 is formed. .
  • the first plate thickness t1 is appropriately set to be equal to or greater than the minimum plate thickness that can counter the tank internal pressure and / or the external pressure.
  • the header tank 3 is configured to have a constant thickness from the viewpoint of formability.
  • board thickness t1 is ensured, it will become possible to ensure sufficient intensity
  • 1 inclined portion 34 is provided.
  • This groove angle ⁇ 1 can be set in an appropriate range according to welding conditions and the like.
  • a second inclined portion 35 is provided so as to be continuous with the groove 34 thus formed.
  • the second inclined portion 35 is set to have an angle ⁇ 2 larger than the groove angle ⁇ 1 and continues to the outer surface of the header tank 3.
  • the second inclined portion 35 is equivalent to reducing the thickness of the header tank 3 from t to t1, the second inclined portion 35 can be set to an inclination angle ⁇ 2 having a size that does not cause a sudden change in the thickness. preferable.
  • the second inclined portion 35 may be set to an angle ⁇ 2 that is inclined at a length of t2 ⁇ 3 times or more with respect to the decrease t2 in thickness. desirable.
  • the width of the groove 34 in the plate thickness direction is reduced accordingly.
  • the welding of the header tank 3 to the core 2 is performed with the groove portion of the header tank 3 in a state where the opening edge of the header tank 3 is substantially orthogonal to the surface of the core 2.
  • a backing metal may be provided at the welded portion of the header tank 3.
  • the weld bead 36 is reduced in size as the width of the groove 34 in the plate thickness direction becomes smaller.
  • FIG. 3 shows a welding structure in the case where the groove 34 is provided from the inner surface to the outer surface of the header tank 3 without providing the second inclined portion 35.
  • the plate thickness t of the header tank 3 is the same in FIGS. 2 and 3, and the angle ⁇ 1 of the groove 34 is also the same in FIGS.
  • the weld bead 36 is increased in size as the width of the groove 34 in the thickness direction is increased, and the heat input during welding is also increased.
  • the range affected by the heat in the core 2 is increased, and the temperature rise is also increased.
  • the weld bead 36 is reduced in size and heat input during welding is reduced.
  • the range affected by the heat in the core 2 is reduced, and the temperature rise in the core 2 is also suppressed. In this way, it is possible to omit the heat countermeasure in the core 2.
  • the thickness t1 of the header tank 3 is secured at the groove 34, sufficient tank strength can be obtained.
  • providing the second inclined portion 35 in the header tank 3 to reduce the size of the weld bead 36 has an advantage that the welding cost in the core 2 can be reduced. As shown in FIG. 1, since the header tank 3 is attached to the end of the core 2, the desired welding strength can be ensured even when the welding allowance cannot be sufficiently ensured. .
  • the manufacturing procedure of the heat exchanger 1 will be described with reference to FIG.
  • the main body 31 of the header tank 3 is created by performing a bending process etc. so that a board
  • the nozzle 32 of the header tank 3 is created by shaping the pipe material into a predetermined shape.
  • the created main body 31 and the nozzle 32 are joined by welding, whereby the header tank 3 is completed.
  • an opening edge portion of the header tank 3 thus completed is provided with a groove processing and a second inclined portion 35 (step P4).
  • the second inclined portion 35 is provided only in a portion where it is desired to reduce the thermal effect in the core 2. Also good.
  • the second inclined portion 35 may be provided only at the edge portion of the specific side in the opening edge portion of the header tank 3 configured by four sides as a square. Since both the groove 34 and the second inclined portion 35 are processed in a straight line along the opening edge of the header tank 3, they can be formed relatively easily.
  • the core plate 2 is completed by laminating tube plates and the like cut into a predetermined shape and integrating them by brazing.
  • the heat exchanger 1 is completed by welding the header tank 3 to a predetermined portion of the core 2 thus completed (see step P6).
  • the heat exchanger 1 demonstrated here makes the heat input to the core 2 accompanying welding of the header tank 3 as small as possible, especially a large sized heat exchanger, a high-pressure heat exchanger, or high This is effective in the heat exchanger 1, such as a heat exchanger, in which the thickness of the header tank 3 is increased.
  • the second inclined portion 35 is provided continuously to the groove 34.
  • the setting of the inclination angle ⁇ 2 of the second inclined portion 35 is the same as described above.
  • the distance L between the groove 34 and the second inclined portion 35 can be set as appropriate.
  • the core 2 may employ a core having a different configuration in addition to the plate fin type core 2 in which a tube plate or the like is integrated by brazing.
  • the heat exchanger disclosed herein is particularly effective for large heat exchangers, high pressure heat exchangers, or high temperature heat exchangers in which the thickness of the header tank can be increased.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)

Abstract

 熱交換器は、コアとヘッダータンクとを備える。コアに溶接されるヘッダータンクの開口縁部の全周には、所定の開先角度で、ヘッダータンクの内面から外面に向かって傾斜する開先を設ける。ヘッダータンクの開口縁部の少なくとも一部には、所定の開先角度よりも大きい角度でヘッダータンクの外面から内面に向かって傾斜する第2の傾斜部を設ける。

Description

熱交換器
 ここに開示する技術は、熱交換器に関し、特にコアに対するヘッダータンクの溶接構造に関する。
 例えば特許文献1に記載されているように、プレートフィン型熱交換器においては、多数のプレートを積層し一体化したコアに対して、別途、成形をしたヘッダータンクを溶接によって取り付けるようにしている。具体的には、ヘッダータンクの開口縁部の全周に亘って、ヘッダータンクの内面から外面に向かって所定の開先角度で傾斜した開先を設けると共に、このヘッダータンクの開口縁部の全周を、ヘッダータンクの外側から溶接するようにしている。
特開2002-11573号公報
 ところで、大型熱交換器や高圧熱交換器、又は高温熱交換器では、ヘッダータンクの板厚が、強度確保のために分厚くなり、板厚の増大に伴い、溶接ビードも大型化することになる。尚、ここで言う溶接ビードの大型化とは、コアの取付面に対し、ヘッダータンクの開口縁部がほぼ垂直に配置される溶接箇所の横断面において、開先溶接の溶接ビードの断面積が大きくなることを意味する。例えば図3にも示すように、ヘッダータンク3の板厚tが分厚くなることで、ヘッダータンク3の内面から外面まで、所定の開先角度θ1で傾斜して設けられる開先34の板厚方向の幅が大きくなることに伴い、溶接ビード36の断面積が大きくなるのである。
 ところが、溶接ビード36が大型化すると、溶接時間の増大に伴いコア2に対する入熱も増大する。その結果、図3に一点鎖線で例示するように、コア2において、熱の影響を受ける範囲が広くなると共に、溶接箇所付近の温度もより一層高くなり得る。従来では、そうした入熱の影響に対して、コア側に対策を講じておく場合があった。しかしながら、そのような対策を省略したいという要求がある。
 ここに開示する技術は、かかる点に鑑みてなされたものであり、その目的とするところは、熱交換器のコアにヘッダータンクを溶接により接合する構造において、溶接に対するコア側の熱の対策を省略することにある。
 本願発明者は、ヘッダータンクの板厚は、ノズルを取り付けることに伴い、一段と分厚くなっている点に着目した。つまり、ヘッダータンクにおいてノズルの取付箇所には、貫通孔が設けられる。仮に貫通孔が設けられないのであれば、ヘッダータンクの板厚をt1にすれば、必要な強度が確保できる。ところが、貫通孔を設けることによって、ヘッダータンクの肉が減少する分を補うために、ヘッダータンクには、t1よりも分厚い板厚が必要になるのである。ところが、そのような分厚い板厚が必要となるのは、ノズルの取付箇所の近傍だけであり、コアに対して溶接される開口縁部付近では、ヘッダータンクの板厚はt1で済む。そこで、本願発明者は、ヘッダータンクにおける開口縁部に、ヘッダータンクの外面から内面に向かって傾斜する第2の傾斜部を設けることによって、開先の板厚方向の幅が小さくなるようにした。それによって、ヘッダータンクをコアに溶接するときの溶接ビードを小さくかつ、溶接時のコアに対する入熱も少なくなるようにした。
 具体的に、ここに開示する技術は、熱交換器に係り、この熱交換器は、コアと、前記コアに対して、その開口縁部の全周に亘って溶接されるヘッダータンクと、を備える。そして、前記ヘッダータンクの開口縁部の全周には、所定の開先角度で、当該ヘッダータンクの内面から外面に向かって傾斜する開先が設けられていると共に、前記ヘッダータンクの開口縁部の少なくとも一部には、前記所定の開先角度よりも大きい角度で前記ヘッダータンクの前記外面から前記内面に向かって傾斜する第2の傾斜部が設けられている。
 この構成によると、コアに対して溶接により取り付けられるヘッダータンクの開口縁部には、その全周に亘って溶接開先が設けられている。開先は、ヘッダータンクの内面から所定の開先角度で傾斜するように設けられる。
 そして、前記の構成では、開先が設けられたヘッダータンクの開口縁部の少なくとも一部には、所定の開先角度よりも大きい角度でヘッダータンクの外面から内面に向かって傾斜する第2の傾斜部を設ける。第2の傾斜部は、開先に連続するように設けてもよいし、不連続となるように設けてもよい。コアに対するヘッダータンクの溶接は、開先の部分に対して行うが、第2の傾斜部を設けた箇所においては、開先の板厚方向の幅が小さくなるから、溶接ビードが小型化すると共に、溶接時のコアに対する入熱も少なくなる。このことにより、コアにおいて熱影響を受ける範囲が、第2の傾斜部を設けない場合と比較して縮小しかつ、コア側の温度上昇も、第2の傾斜部を設けない場合と比較して抑制される。その結果、コア側において、溶接に対する熱の対策が不要になる。
 また、第2の傾斜部の傾斜角度を比較的大きくすることにより、ヘッダータンクにおける板厚の減少率が小さくなり、強度確保の点で有利になる。尚、第2の傾斜部を設ける箇所の開先部分において、必要な板厚を確保すべきことは言うまでもない。
 すなわち、前記ヘッダータンクの板厚は、必要強度を確保するために設定される第1の板厚に、当該ヘッダータンクに流体の通過孔を貫通形成することに伴う補強分の第2の板厚を加えて設定されており、前記第2の傾斜部は、前記ヘッダータンクの板厚を、第1及び第2を合わせた板厚から第1の板厚まで減らすように設けられていることが好ましい。
 ここで、第1の板厚は、通過孔が貫通形成されていない条件下で、タンク内圧及び/又は外圧に対抗することができる最低板厚以上で、適宜の板厚に設定すればよい。
 こうすることで、開先の部分においては、タンク内圧及び/又は外圧に対抗するために必要な第1の板厚が確保されているから、ヘッダータンクの必要強度を確保しつつ、溶接ビードが小型化する。
 第2の傾斜部は、前記ヘッダータンクの開口縁部の全周に亘って設けられている、としてもよい。
 また、第2の傾斜部は、前記ヘッダータンクの開口縁部において、特にコアへの熱影響を小さくしたい箇所のみに設けてもよい。こうすることで、第2の傾斜部を設ける加工の手間を軽減することが可能になる。
 前記コアは、積層した複数のプレートを、ろう付けにより一体化したプレートフィン型である、としてもよい。
 前述したように、ヘッダータンクの開口縁部の少なくとも一部に第2の傾斜部を設けることによって、ろう付けによって作成したプレートフィン型のコアにおいて、溶接時の入熱が少なくなるため、コア側の熱の対策が不要になる。
 以上説明したように、前記の熱交換器によると、ヘッダータンクの開口縁部の少なくとも一部に、ヘッダータンクの外面から内面に向かって傾斜する第2の傾斜部を設けることによって、開先の板厚方向の幅が小さくなり、溶接ビードが小さくかつ、溶接時の入熱も少なくなる。その結果、コアにおいて熱影響を受ける範囲が縮小しかつ、温度上昇を抑制することができ、溶接に対するコア側の熱の対策が不要になる。
図1は、熱交換器におけるヘッダータンクの取付部分を概念的に示す断面図である。 図2は、ヘッダータンクの溶接箇所を拡大して示す断面図である。 図3は、溶接箇所の従来構造を示す図2対応図である。 図4は、熱交換器の製造手順を示す説明図である。 図5Aは、第2の傾斜部の傾斜角度として好ましい角度を説明する概念図である。 図5Bは、開先と第2の傾斜部とが不連続であるときの、第2の傾斜部の好ましい傾斜角度を説明する概念図である。
 以下、熱交換器1の実施形態を図面に基づいて説明する。尚、以下の実施形態の説明は例示である。図1は、熱交換器1におけるヘッダータンク3の取付部分を概念的に示す図である。熱交換器1は、第1流体と第2流体との間で熱交換を行うコア2と、コア2に第1又は第2流体を、流入又は流出させるためのヘッダータンク3と、を備えて構成されている。図1においては、特定のヘッダータンク3のみを示しているが、この熱交換器1には、図示するヘッダータンク3とは別のヘッダータンクを、少なくとも1つ備えている。尚、ここに開示する技術は、3種類以上の流体が通過するコアにおいても適用可能である。
 コア2は、詳細な図示は省略するが、第1流体が流れる第1流路と、第2流体が流れる第2流路とを、一次伝熱面としてのチューブプレートによって区画しながら交互に積層して構成されている。第1及び/又は第2流路内には、拡大伝熱面としてのコルゲートフィンが配設される場合がある。こうしたコア2は、例えば、チューブプレート等を積層し、それらをろう付けによって一体化することにより構成される。つまり、コア2は、プレートフィン型のコアとしてもよい。
 ヘッダータンク3は、コア2における第1又は第2流路の入口又は出口に取り付けられる。ヘッダータンク3は、第1又は第2流体を分散してコア2に流入したり、コア2から流出した第1又は第2流体を集合して、排出したりする機能を有している。ヘッダータンク3は、図4にも例示するように半円筒型でかつ下側が開口した本体31と、当該本体31に対して取り付けられたノズル32とを有して構成されている。本体31において、ノズル32が取り付けられる箇所には、ノズル32に連通する貫通孔33が形成されている。ヘッダータンク3は、その開口縁部が全周に亘って、ヘッダータンク3の外側から溶接されることによって、コア2に取り付けられている。この溶接構造についての詳細は後述する。
 ここで、図1、2に示すように、ヘッダータンク3の板厚tは、仮にノズル32に連通する貫通孔33が形成されていないと仮定した場合に、内圧P及び/又は外圧等に抗することができる第1の板厚t1と、貫通孔33が形成されることに伴い、ノズル32付近において強度が減少することを補うための第2の板厚t2との和として設定されている。尚、第1の板厚t1は、タンク内圧及び/又は外圧に対抗することができる最低板厚以上で、適宜設定される。ヘッダータンク3は、その成形性の観点から、一定板厚となるように構成されているが、ヘッダータンク3の板厚は、ノズル32が取り付けられた付近においては、t1+t2=tが必要になる一方で、コア2に対して溶接される開口縁部においては、板厚t1を確保すれば、内圧等に対し十分な強度を確保することが可能になる。
 そこで、この熱交換器1では、ヘッダータンク3の溶接を行う開口縁部においては、溶接に必要な開先加工に加えて、開先34に連続する第2の傾斜部35を設けることによって、開先34の板厚方向の幅を小さくしている。
 具体的には、図2に示すように、ヘッダータンク3の開口縁部の全周に亘って、ヘッダータンク3の内面から外面に向かって、所定の開先角度θ1で傾斜した開先(第1の傾斜部)34を設ける。この開先角度θ1は、溶接条件等に応じて適宜の範囲に設定することが可能である。そうして形成した開先34に連続するように、第2の傾斜部35を設ける。第2の傾斜部35は、開先の角度θ1よりも大きい角度θ2となるように設定されており、ヘッダータンク3の外面まで続いている。第2の傾斜部35は、ヘッダータンク3の板厚をtからt1に減少させていることと等価であるため、板厚の急変を招かないような大きさの傾斜角度θ2に設定することが好ましい。例えば、図5Aに概念的に示すように、第2の傾斜部35は、板厚の減少分t2に対して、t2×3倍以上の長さで傾斜するような角度θ2に設定することが望ましい。
 こうして第2の傾斜部35を設けることによって、その分だけ、開先34の板厚方向の幅が小さくなる。図2に示すように、ヘッダータンク3のコア2に対する溶接は、コア2の表面に対して、ヘッダータンク3の開口縁部をほぼ直交するように配置した状態で、ヘッダータンク3の開先部分についてのみ、ヘッダータンク3の外側から行うことになる(尚、図2では図示しないが、ヘッダータンク3の溶接箇所に裏当て金を設けてもよい)。このため、開先34の板厚方向の幅が小さくなることに伴い、溶接ビード36は小型化する。ここで図3は、第2の傾斜部35を設けずに、ヘッダータンク3の内面から外面まで開先34を設けた場合の溶接構造を示している。尚、ヘッダータンク3の板厚tは、図2及び図3で同じであり、開先34の角度θ1もまた、図2及び図3で同じである。図3から明らかなように、ヘッダータンク3の板厚tが分厚くなると、開先34の板厚方向の幅が大きくなることに伴い溶接ビード36が大型化し、そして、溶接時の入熱も増える。その結果、図3に一点鎖線で例示するように、コア2において熱影響を受ける範囲が大きくなりかつ、その温度上昇も大きくなる。
 これに対し、図2に示す溶接構造においては、第2の傾斜部35を設けることによって溶接ビード36が小型化すると共に、溶接時の入熱も少なくなる。その結果、コア2における熱影響を受ける範囲は小さくなり、しかも、コア2における温度上昇も抑制される。こうして、コア2における熱の対策を省略することが可能になる。しかも、開先34の箇所においてはヘッダータンク3の板厚t1が確保されているため、十分なタンク強度が得られる。
 また、ヘッダータンク3に第2の傾斜部35を設けて溶接ビード36を小型化することは、コア2における溶接代が少なくて済むという利点もある。このことは、図1に例示するように、ヘッダータンク3をコア2の端に取り付けるため、溶接代を十分に確保できないような場合においても、所望の溶接強度を確保することができるようになる。
 ここで、図4を参照しながら、熱交換器1の製造手順について説明する。先ず、工程P1においては、板材を所定形状となるように曲げ加工等を行うと共に、各部品を溶接接合することによって、ヘッダータンク3の本体31を作成する。また、工程P2においては、管材を所定形状となるように整形加工することによって、ヘッダータンク3のノズル32を作成する。そうして、工程P3において、作成した本体31とノズル32とを溶接により接合することで、ヘッダータンク3が完成する。こうして完成したヘッダータンク3の開口縁部に、図示は省略するが、開先加工を施すと共に、第2の傾斜部35を設ける(工程P4)。ここで、第2の傾斜部35は、ヘッダータンク3の開口縁部の全周に亘って設ける他にも、コア2において熱影響を小さくしたい箇所についてのみ、第2の傾斜部35を設けてもよい。例えば、4つの辺によって四角に構成されるヘッダータンク3の開口縁部において、特定の辺の縁部についてのみ、第2の傾斜部35を設けてもよい。開先34も、第2の傾斜部35も、ヘッダータンク3の開口縁部に沿って直線状に加工されるため、比較的容易に形成可能である。
 一方、詳細な図示は省略するが、工程P5では、所定の形状に切り出されたチューブプレート等を積層し、それらをろう付けによって一体化することでコア2が完成する。
 こうして完成したコア2の所定箇所に対して、ヘッダータンク3を溶接することにより、熱交換器1が完成する(工程P6参照)。
 このように、ここで説明をした熱交換器1は、ヘッダータンク3の溶接に伴うコア2への入熱をできるだけ小さくしているから、特に、大型熱交換器や高圧熱交換器、又は高温熱交換器等の、ヘッダータンク3の板厚が分厚くなる熱交換器1において有効である。
 尚、前記の例では、第2の傾斜部35を、開先34に連続して設けているが、図5Bに概念的に示すように、第2の傾斜部35を開先34とは不連続にしてもよい。この場合においても、第2の傾斜部35の傾斜角度θ2の設定は、前記と同様である。また、開先34と第2の傾斜部35との間隔Lは、適宜設定することが可能である。
 また、コア2は、前述したように、チューブプレート等をろう付け一体化したプレートフィン型のコア2の他に、別の構成のコアを採用することも可能である。
 以上説明したように、ここに開示した熱交換器は、特にヘッダータンクの板厚が分厚くなり得る、大型熱交換器や高圧熱交換器、又は高温熱交換器に有効である。
1 熱交換器
2 コア
3 ヘッダータンク
34 開先
35 第2の傾斜部
t1 第1の板厚
t2 第2の板厚
θ1 開先角度
θ2 第2の傾斜部の角度

Claims (4)

  1.  コアと、
     前記コアに対して、その開口縁部の全周に亘って溶接されるヘッダータンクと、を備え、
     前記ヘッダータンクの開口縁部の全周には、所定の開先角度で、当該ヘッダータンクの内面から外面に向かって傾斜する開先が設けられていると共に、前記ヘッダータンクの開口縁部の少なくとも一部には、前記所定の開先角度よりも大きい角度で前記ヘッダータンクの前記外面から前記内面に向かって傾斜する第2の傾斜部が設けられている熱交換器。
  2.  請求項1に記載の熱交換器において、
     前記ヘッダータンクの板厚は、必要強度を確保するために設定される第1の板厚に、当該ヘッダータンクに流体の通過孔を貫通形成することに伴う補強分の第2の板厚を加えて設定されており、
     前記第2の傾斜部は、前記ヘッダータンクの板厚を、第1及び第2を合わせた板厚から第1の板厚まで減らすように設けられている熱交換器。
  3.  請求項1又は2に記載の熱交換器において、
     前記コアは、積層した複数のプレートを、ろう付けにより一体化したプレートフィン型である熱交換器。
  4.  請求項1~3のいずれか1項に記載の熱交換器において、
     前記第2の傾斜部は、前記ヘッダータンクの開口縁部の全周に亘って設けられている熱交換器。
PCT/JP2013/007443 2012-12-26 2013-12-18 熱交換器 WO2014103253A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP13868315.6A EP2942589B1 (en) 2012-12-26 2013-12-18 Heat exchanger
US14/655,683 US9587892B2 (en) 2012-12-26 2013-12-18 Heat exchanger
CN201380067904.XA CN104884888B (zh) 2012-12-26 2013-12-18 热交换器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012282754A JP5764116B2 (ja) 2012-12-26 2012-12-26 熱交換器
JP2012-282754 2012-12-26

Publications (1)

Publication Number Publication Date
WO2014103253A1 true WO2014103253A1 (ja) 2014-07-03

Family

ID=51020374

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/007443 WO2014103253A1 (ja) 2012-12-26 2013-12-18 熱交換器

Country Status (5)

Country Link
US (1) US9587892B2 (ja)
EP (1) EP2942589B1 (ja)
JP (1) JP5764116B2 (ja)
CN (1) CN104884888B (ja)
WO (1) WO2014103253A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2557320B (en) * 2016-12-06 2021-10-27 Denso Marston Ltd Heat exchanger
US11346618B1 (en) * 2018-01-22 2022-05-31 Hudson Products Corporation Boxed header for air-cooled heat exchanger
WO2020074119A1 (de) * 2018-10-09 2020-04-16 Linde Aktiengesellschaft Verfahren zum herstellen eines plattenwärmetauschers und plättenwärmetauscher

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5478722U (ja) * 1977-11-15 1979-06-04
JPS63104888U (ja) * 1986-12-22 1988-07-07
JP2001030091A (ja) * 1999-07-21 2001-02-06 Hitachi Constr Mach Co Ltd 挟開先t継手の構造およびその溶接方法ならびに溶接構造物
JP2002011573A (ja) 2000-06-28 2002-01-15 Kobe Steel Ltd 溶接構造およびそれを備えた熱交換器
JP2009208651A (ja) * 2008-03-05 2009-09-17 Kawasaki Heavy Ind Ltd 鉄道車両用パネル及び鉄道車両の台枠、側構体、妻構体、屋根構体
JP2009222306A (ja) * 2008-03-17 2009-10-01 Sumitomo Precision Prod Co Ltd プレートフィン型熱交換器の単位コアとそれを用いる熱交換器の組み立て構造並びに熱交換器の製造方法
JP2012210653A (ja) * 2011-03-18 2012-11-01 Nippon Steel Corp 熱加工制御鋼板の溶接方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3265129A (en) * 1964-06-26 1966-08-09 United Aircraft Corp Heat exchanger construction
GB1253250A (ja) 1968-09-24 1971-11-10
JPS492271B1 (ja) * 1970-06-26 1974-01-19
US4150720A (en) * 1976-04-29 1979-04-24 Imperial Chemical Industries Limited Heat exchanger
US4624379A (en) * 1985-02-04 1986-11-25 Smithco Engineering Lethal service header box
JPS63104888A (ja) * 1986-10-23 1988-05-10 Daicel Chem Ind Ltd 光情報記録媒体
JP2001221582A (ja) * 2000-02-09 2001-08-17 Kobe Steel Ltd プレートフィン型熱交換器
DE102008014978A1 (de) 2008-03-19 2009-09-24 Linde Aktiengesellschaft Schweißbadsicherung
US9022100B2 (en) * 2010-11-17 2015-05-05 Denso Marston Ltd. Adjustable tank for bar-plate heat exchanger
US10837720B2 (en) * 2013-11-06 2020-11-17 Trane International Inc. Heat exchanger with aluminum tubes rolled into an aluminum tube support

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5478722U (ja) * 1977-11-15 1979-06-04
JPS63104888U (ja) * 1986-12-22 1988-07-07
JP2001030091A (ja) * 1999-07-21 2001-02-06 Hitachi Constr Mach Co Ltd 挟開先t継手の構造およびその溶接方法ならびに溶接構造物
JP2002011573A (ja) 2000-06-28 2002-01-15 Kobe Steel Ltd 溶接構造およびそれを備えた熱交換器
JP2009208651A (ja) * 2008-03-05 2009-09-17 Kawasaki Heavy Ind Ltd 鉄道車両用パネル及び鉄道車両の台枠、側構体、妻構体、屋根構体
JP2009222306A (ja) * 2008-03-17 2009-10-01 Sumitomo Precision Prod Co Ltd プレートフィン型熱交換器の単位コアとそれを用いる熱交換器の組み立て構造並びに熱交換器の製造方法
JP2012210653A (ja) * 2011-03-18 2012-11-01 Nippon Steel Corp 熱加工制御鋼板の溶接方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2942589A4

Also Published As

Publication number Publication date
US9587892B2 (en) 2017-03-07
US20150345876A1 (en) 2015-12-03
EP2942589A4 (en) 2016-11-23
JP5764116B2 (ja) 2015-08-12
EP2942589A1 (en) 2015-11-11
CN104884888A (zh) 2015-09-02
CN104884888B (zh) 2017-02-22
EP2942589B1 (en) 2018-02-21
JP2014126258A (ja) 2014-07-07

Similar Documents

Publication Publication Date Title
JP6567097B2 (ja) プレート式熱交換器、およびそれを備えたヒートポンプ式暖房給湯システム
JP5043930B2 (ja) 最外伝熱板の外側に設けられた補強板を含むプレート熱交換器
US10215497B2 (en) Heat exchanger and production method for heat exchanger
EP2394129B1 (en) A plate heat exchanger
EP2594885B1 (en) Heat exchanger having extended heat transfer surface around fastening points
US20180238630A1 (en) Heat transfer segment
WO2016190445A1 (ja) 熱交換器のタンク構造およびその製造方法
US11982492B2 (en) Heat exchanger, tank for heat exchanger, and method of making the same
JP6109473B2 (ja) Egrクーラ
WO2014103253A1 (ja) 熱交換器
US7121331B2 (en) Heat exchanger
CN110073163B (zh) 板式热交换器
JP6358848B2 (ja) エバポレータ
US10048014B2 (en) Plate heat exchanger with improved strength in port area
JP5903911B2 (ja) 熱交換器
JP2015203508A (ja) プレート式熱交換器
JP2011137623A (ja) プレート式熱交換器及びヒートポンプ装置
JPWO2019235069A1 (ja) 熱交換器及び熱交換器の製造方法
JP6330646B2 (ja) 熱交換器
US20150285569A1 (en) Heat exchanger with dimpled manifold
JP2022147760A (ja) プレート式熱交換器
CN201569314U (zh) 一种铝制层叠式散热器
JP2017166715A (ja) 熱交換器
JP2006162196A (ja) 熱交換器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13868315

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013868315

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14655683

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE