WO2014103196A1 - パティキュレートフィルタの自動再生制御装置 - Google Patents
パティキュレートフィルタの自動再生制御装置 Download PDFInfo
- Publication number
- WO2014103196A1 WO2014103196A1 PCT/JP2013/007219 JP2013007219W WO2014103196A1 WO 2014103196 A1 WO2014103196 A1 WO 2014103196A1 JP 2013007219 W JP2013007219 W JP 2013007219W WO 2014103196 A1 WO2014103196 A1 WO 2014103196A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- load
- unit
- particulate filter
- regeneration
- control device
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/02—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
- F01N3/021—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
- F01N3/023—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
- F01N3/025—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using fuel burner or by adding fuel to exhaust
- F01N3/0253—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using fuel burner or by adding fuel to exhaust adding fuel to exhaust gases
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/021—Introducing corrections for particular conditions exterior to the engine
- F02D41/0235—Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
- F02D41/027—Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
- F02D41/029—Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a particulate filter
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D46/00—Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
- B01D46/66—Regeneration of the filtering material or filter elements inside the filter
- B01D46/80—Chemical processes for the removal of the retained particles, e.g. by burning
- B01D46/82—Chemical processes for the removal of the retained particles, e.g. by burning with catalysts
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/105—General auxiliary catalysts, e.g. upstream or downstream of the main catalyst
- F01N3/106—Auxiliary oxidation catalysts
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N9/00—Electrical control of exhaust gas treating apparatus
- F01N9/002—Electrical control of exhaust gas treating apparatus of filter regeneration, e.g. detection of clogging
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D29/00—Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
- F02D29/04—Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N13/00—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
- F01N13/009—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
- F01N13/0097—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are arranged in a single housing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2430/00—Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics
- F01N2430/08—Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics by modifying ignition or injection timing
- F01N2430/085—Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics by modifying ignition or injection timing at least a part of the injection taking place during expansion or exhaust stroke
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2590/00—Exhaust or silencing apparatus adapted to particular use, e.g. for military applications, airplanes, submarines
- F01N2590/08—Exhaust or silencing apparatus adapted to particular use, e.g. for military applications, airplanes, submarines for heavy duty applications, e.g. trucks, buses, tractors, locomotives
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2590/00—Exhaust or silencing apparatus adapted to particular use, e.g. for military applications, airplanes, submarines
- F01N2590/10—Exhaust or silencing apparatus adapted to particular use, e.g. for military applications, airplanes, submarines for stationary applications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2900/00—Details of electrical control or of the monitoring of the exhaust gas treating apparatus
- F01N2900/06—Parameters used for exhaust control or diagnosing
- F01N2900/14—Parameters used for exhaust control or diagnosing said parameters being related to the exhaust gas
- F01N2900/1404—Exhaust gas temperature
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/021—Introducing corrections for particular conditions exterior to the engine
- F02D41/0235—Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
- F02D41/024—Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus
- F02D2041/026—Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus using an external load, e.g. by increasing generator load or by changing the gear ratio
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D2200/00—Input parameters for engine control
- F02D2200/02—Input parameters for engine control the parameters being related to the engine
- F02D2200/08—Exhaust gas treatment apparatus parameters
- F02D2200/0812—Particle filter loading
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/40—Engine management systems
Definitions
- the present invention relates to an automatic regeneration control device for a particulate filter.
- particulate matter (particulate ⁇ ⁇ ⁇ ⁇ Matter: particulate matter) emitted from automobile diesel engine is composed of carbonaceous soot and SOF content (Soluble Organic Fraction) consisting of high-boiling hydrocarbon components. It has a composition that contains a small amount of sulfate (mist-like sulfuric acid component) as the main component, but as a measure to reduce this type of particulates, a particulate filter is placed in the middle of the exhaust pipe through which the exhaust gas flows. Equipping is done.
- This type of particulate filter has a porous honeycomb structure made of a ceramic such as cordierite, and the inlets of the flow paths partitioned in a lattice pattern are alternately sealed, and the inlets are not sealed. About the flow path, the exit is sealed, and only the exhaust gas which permeate
- the particulates in the exhaust gas are collected and accumulated on the inner surface of the porous thin wall, so that the particulate filter is burned and removed before the exhaust resistance increases due to clogging, and the particulate filter is regenerated. It is necessary, but in ordinary automobile engines, there are few opportunities to obtain exhaust temperatures that are high enough for the particulates to self-combust, so a catalyst regeneration type particulate filter that integrally supports an oxidation catalyst is adopted. ing.
- a flow-through type oxidation catalyst is separately arranged in front of the particulate filter, and fuel is added to the exhaust gas upstream of the oxidation catalyst at the stage where the amount of particulate accumulation has increased. It is considered to attempt regeneration.
- the HC gas generated by the added fuel undergoes an oxidation reaction on the oxidation catalyst of the particulate filter, and the heat of reaction causes the catalyst bed temperature to increase.
- the particulates are burned out and the particulate filter is regenerated.
- particulate filter has been studied to be applied not only to automobiles, but also to construction machines such as cranes and excavators. For example, from the differential pressure before and after sandwiching the particulate filter, engine speed and load. Estimate the accumulated amount of particulates based on the cumulative value of the difference between the estimated generated amount of particulates and the estimated processing amount, and if the estimated value exceeds the set value, regenerate the particulate filter It is considered to do automatically.
- the particulate filter regeneration control is automatically applied during work, the particulate filter regeneration may not necessarily be completed depending on the intermittent state of the work. There is a possibility that the amount of the particulate deposit in the particulate filter increases due to repetition.
- Patent Document 1 A technology for efficiently regenerating a particulate filter at low cost (for example, see Patent Document 1) has been developed.
- Patent Document 1 discloses that when the particulate filter is regenerated, post-injection while forcibly increasing the engine load by forcibly applying a load to the working unit and increasing the exhaust temperature due to the increase in the load. And so on.
- Patent Document 1 the operator determines that the forcible loading on the working unit should be stopped according to the situation of the working unit.
- the load application there is no means for stopping the load application, and there is a possibility that the work may be hindered, leaving room for improvement.
- the load on the work unit such as a hydraulic unit is relatively small even during work, and the engine torque does not become so high. If the load application is stopped at the operator's discretion while the fuel is being added, the exhaust temperature may not be maintained high. In this case, the regeneration of the particulate filter may not be completed.
- the inventors have also found that there is a risk of fuel consumption deterioration and white smoke generation.
- the present invention has been made in view of the above-described conventional problems. According to the situation of the working unit, forcible loading on the working unit can be stopped, and the work can be facilitated. In addition, if the exhaust temperature cannot be kept high when the load is stopped during the automatic regeneration control of the particulate filter, the regeneration of the particulate filter can be interrupted to prevent the deterioration of fuel consumption and the generation of white smoke. A control device is to be provided.
- the present invention relates to an engine in which an oxidation catalyst and a particulate filter are sequentially arranged in an exhaust pipe of an industrial engine that drives a working unit with engine power to perform various operations, and the working unit is forcibly loaded.
- the load is intentionally increased, and fuel is added to the exhaust gas upstream of the oxidation catalyst while raising the exhaust temperature due to the increase in load, and the reaction heat immediately after the added fuel undergoes an oxidation reaction on the oxidation catalyst
- An engine control device that outputs a fuel injection signal to the industrial engine when it is determined that an estimated value of the accumulated amount of the particulates exceeds a set value;
- a unit control device for outputting a unit control signal for cooperatively controlling the hydraulic unit, wherein a cooperative control signal is input / output to / from the engine control device;
- a loading cancellation switch that outputs a cancellation signal to the unit control device for stopping forced loading to
- a regeneration interruption signal is output from the unit controller to the engine controller, and the engine controller
- the particulate matter automatic regeneration control device is configured to perform the regeneration interruption signal reception process and stop the fuel regeneration and interrupt the automatic regeneration control without forcibly applying a load to the working unit.
- the particulate filter automatic regeneration control device when regeneration of the particulate filter based on the collected particulate accumulation determination is started, a load request to the working unit is controlled by the engine during idling or light load operation. Output to the unit control unit from the device, when the load application is not possible or when the load application cancel switch is ON, and the exhaust temperature can be maintained without further application of the load, the operation unit is forced
- the automatic regeneration control can be continued by adding fuel without applying a load to the vehicle.
- the particulate filter automatic regeneration control device when regeneration of the particulate filter based on the collected particulate accumulation determination is started, a load request to the working unit is issued during idling or light load operation.
- the engine control device outputs to the unit control device, and when the load application is possible and the load application cancel switch is OFF, the engine unit is intentionally increased by forcibly applying a load to the work unit, While increasing the exhaust temperature due to the increase, it is possible to add the fuel and continue the automatic regeneration control.
- the particulate filter automatic regeneration control device when regeneration of the particulate filter based on the collected particulate accumulation determination is started, when the idling operation is not performed and the light load operation is not performed, The automatic regeneration control can be continued by adding fuel without forcibly applying a load.
- the particulate filter automatic regeneration control device of the present invention it is possible to stop the forced loading of the work unit according to the status of the work unit, and to facilitate the work.
- the regeneration of the particulate filter can be interrupted, and an excellent effect of preventing deterioration of fuel consumption and generation of white smoke can be achieved.
- FIG. 1 is an overall schematic configuration diagram showing an embodiment of an automatic regeneration control device for a particulate filter according to the present invention. It is a flowchart which shows the flow of control in the Example of the automatic regeneration control apparatus of the particulate filter of this invention. It is a flowchart which shows the flow of control in the Example of the automatic regeneration control apparatus of the particulate filter of this invention.
- 1 to 3 show an embodiment of an automatic regeneration control device for a particulate filter according to the present invention, in which 1 is an industrial engine mounted on a construction machine such as a crane or an excavator, and 2 is driven by the industrial engine 1.
- a filter case 5 is interposed in the middle of the exhaust pipe 4 through which the exhaust gas 3 discharged from the industrial engine 1 circulates.
- the fuel injection control in the industrial engine 1 is performed based on the fuel injection signal 8a output from the engine control device 8.
- the particulate filter 6 is sandwiched.
- the accumulated amount of particulates is estimated based on the differential pressure before and after, the cumulative value of the difference between the estimated generation amount of particulates calculated from the engine speed and load, and the estimated processing amount.
- a cooperative control signal 10 is mutually input / output between the engine control device 8 and the unit control device 9 that controls the hydraulic unit 2 as the working unit, and unit control output from the unit control device 9
- the hydraulic unit 2 is cooperatively controlled by a signal 9a.
- a load application cancel switch 11 for outputting to the unit control device 9 a cancel signal 11a for stopping forced load application to the hydraulic unit 2 according to the situation of the hydraulic unit 2 is provided, An operator can operate the cancel switch 11 as necessary.
- step S1 when regeneration of the particulate filter 6 is started by the collected particulate accumulation determination in the engine control device 8 (see step S1). ), It is determined whether idling or light load operation is being performed (see step S2). When it is determined that idling or light load operation is being performed, the load request to the hydraulic unit 2 as the working unit is determined. Is output from the engine control device 8 to the unit control device 9 (see step S3). Subsequently, it is determined whether or not it is possible to apply a load (see step S4), and it is determined whether or not it is not possible to apply a load, or whether or not the load application cancel switch 11 is OFF.
- Step S5 When it is determined that the load application cancel switch 11 is ON, it is further determined whether the exhaust temperature can be maintained without applying the load (see Step S6). If it is determined that the exhaust temperature cannot be maintained without the output, a regeneration interruption signal is output from the unit control device 9 to the engine control device 8 (see step S7), and the engine control device 8 performs a regeneration interruption signal reception process. (Refer to Step S8), without forcibly applying a load to the hydraulic unit 2 (see Step S9), fuel addition such as post injection is stopped and automatic regeneration control is performed. Interrupted are constituted (step S10 see) as. After the automatic regeneration control is interrupted in step S1, the process returns to step S2 to determine whether idling or light load operation is being performed, and the control including the same determination as described above is repeated. It is like that.
- step S6 it is determined whether or not the exhaust temperature can be maintained without applying a load. If it is determined that the exhaust temperature can be maintained without applying a load, the hydraulic unit as the working unit is determined.
- the automatic regeneration control is continued (see step S12) by adding fuel such as post-injection without forcibly applying a load to 2 (see step S11).
- step S12 it is determined whether regeneration of the particulate filter 6 is completed (see step S13), and it is determined that regeneration of the particulate filter 6 is completed. If it is determined that regeneration has ended and regeneration of the particulate filter 6 has not been completed, the process returns to step S2 to determine whether idling or light load operation is being performed.
- the control including the determination similar to the above is repeatedly performed.
- step S4 it is determined whether or not it is possible to apply a load, it is determined that it is possible to apply a load, and whether or not the load application cancel switch 11 is OFF is determined in step S5. If it is determined that the load application cancel switch 11 is OFF, the hydraulic unit 2 as the working unit is forcibly applied (see step S14) and the engine load is intentionally increased.
- the automatic regeneration control is continued by adding fuel such as post-injection while increasing the exhaust temperature due to the load increase (see step S15).
- step S15 it is determined whether or not the regeneration of the particulate filter 6 is completed (see step S13), and it is determined that the regeneration of the particulate filter 6 is completed. If it is determined that regeneration has ended and regeneration of the particulate filter 6 has not been completed, the process returns to step S2 to determine whether idling or light load operation is being performed.
- the control including the determination similar to the above is repeatedly performed.
- step S2 it is determined whether or not idling or light load operation is performed in step S2, and when it is determined that the engine is not idling operation and not light load operation, the load has already been applied.
- the hydraulic unit 2 is not forcedly loaded (see step S11), and fuel is added such as post injection, and automatic regeneration control is continued (see step S12).
- Step S1 when regeneration of the particulate filter 6 is started by the collected particulate accumulation determination in the engine control device 8 (see step S1), it is determined whether idling or light load operation is being performed. (See Step S2) When it is determined that the engine is idling or lightly loaded, a load request to the hydraulic unit 2 as the working unit is output from the engine control device 8 to the unit control device 9 (Step S3). reference).
- step S4 a determination is made as to whether or not the load application is possible (see step S4). If it is determined that the load application is not possible, or whether or not the load application cancel switch 11 is OFF. Is performed (see step S5), and when it is determined that the load application cancel switch 11 is ON, it is further determined whether or not the exhaust temperature can be maintained without applying a load (see step S6). When it is determined that the exhaust temperature cannot be maintained without applying a load, a regeneration interruption signal is output from the unit control device 9 to the engine control device 8 (see step S7). Reception processing is performed (see step S8), and the fuel addition such as post injection is stopped without forcibly applying a load to the hydraulic unit 2 (see step S9). Automatic regeneration control is interrupted (see step S10).
- step S1 After the automatic regeneration control is interrupted in step S1, the process returns to step S2 to determine whether idling or light load operation is being performed, and control including the same determination as described above is performed. Repeatedly.
- step S6 it is determined whether or not the exhaust temperature can be maintained without applying a load. If it is determined that the exhaust temperature can be maintained without applying a load, the hydraulic pressure as the working unit is determined. Without forcibly applying a load to the unit 2 (see step S11), fuel addition such as post injection is performed and automatic regeneration control is continued (see step S12).
- step S11 fuel addition such as post injection is performed and automatic regeneration control is continued.
- step S12 automatic regeneration control is performed on the engine side and fuel such as post injection is added. In this state, even if the load application cancel switch 11 is turned ON by the operator's judgment to stop the load application, the exhaust temperature can be kept high.
- step S12 the automatic regeneration control is continued, and it is determined whether regeneration of the particulate filter 6 is completed (see step S13), and it is determined that regeneration of the particulate filter 6 is completed. In this case, when it is determined that the regeneration is completed and the regeneration of the particulate filter 6 is not completed, the process returns to step S2 to determine whether idling or light load operation is being performed. The control including the determination and the like similar to the above is repeated.
- step S4 it is determined whether or not the load application is possible.
- step S5 whether or not the load application cancel switch 11 is OFF is determined.
- a load is forcibly applied to the hydraulic unit 2 as the working unit (see step S14) to intentionally load the engine.
- fuel addition such as post-injection is performed and automatic regeneration control is continued (see step S15).
- step S15 the automatic regeneration control is continued, and it is determined whether regeneration of the particulate filter 6 is completed (see step S13), and it is determined that regeneration of the particulate filter 6 is completed.
- step S2 determines whether idling or light load operation is being performed.
- the control including the determination and the like similar to the above is repeated.
- step S2 whether or not idling or light load operation is being performed is determined in step S2, and when it is determined that it is not idling operation and not light load operation, the load has already been applied. Without forcibly applying a load to the hydraulic unit 2 as a unit (see step S11), fuel addition such as post injection is performed and automatic regeneration control is continued (see step S12).
- the basic control is to forcibly apply a load to the hydraulic unit 2 as the working unit (see step S14), intentionally increase the engine load, and exhaust the exhaust gas by increasing the load.
- the automatic regeneration control is continued by adding fuel such as post-injection while raising the temperature (see step S15). Forcibly applying a load to the hydraulic unit 2 depending on the situation of the hydraulic unit 2 If the operator determines that the load should be stopped, the load application can be stopped by turning on the load application cancel switch 11 so that the work is not hindered.
- the load applied to the hydraulic unit 2 as a working unit is relatively small even during work, and the engine torque does not become so high. If fuel addition such as injection is being performed, if the load application cancel switch 11 is turned ON by the operator's judgment to stop the load application, the exhaust temperature may not be maintained high. However, in this embodiment, when automatic regeneration control is performed on the engine side and fuel addition such as post-injection is performed, the load application cancel switch 11 is turned ON and the load application is stopped according to the judgment of the operator.
- step S6 If it is determined in step S6 that the exhaust temperature cannot be maintained high, a regeneration interruption signal is output from the unit controller 9 to the engine controller 8 in step S7, and the regeneration interruption signal is output in the engine controller 8 in step S8.
- the reception process is performed, and the load is not forcibly applied to the hydraulic unit 2 in step S9, but the fuel addition such as post injection is stopped in step S10 and the automatic regeneration control is interrupted. The generation of smoke can be avoided.
- the particulate filter automatic regeneration control device of the present invention is not limited to the above-described embodiment.
- the description will be given in the case of an industrial engine of a construction machine equipped with a hydraulic unit as a working unit.
- the working unit may be a generator, a compressor, etc., and the hydraulic unit is forced to apply a load by driving the hydraulic pump and circulating the hydraulic oil while releasing the hydraulic pressure.
- the load may be applied by a method of intentionally braking the drive system by the working unit, and it is also applied to a transport machine such as a forklift other than a construction machine.
- a transport machine such as a forklift
- the particulate filter automatic regeneration control device of the present invention can be used for an industrial engine that performs various operations by driving a working unit with engine power.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Processes For Solid Components From Exhaust (AREA)
- Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
Abstract
パティキュレート堆積判定によるフィルタ再生が開始された際、アイドリング又は軽負荷運転時に、作業用ユニットへの負荷要求をエンジン制御装置からユニット制御装置へ出力し、負荷掛け可能状態でない場合、或いは負荷掛けキャンセルスイッチがONである場合であって、更に負荷掛けなしで排気温度維持可能でない場合は、ユニット制御装置からエンジン制御装置へ再生中断信号を出力し(ステップS7)、エンジン制御装置で再生中断信号受信処理を行い(ステップS8)、油圧ユニットに強制的に負荷を掛けずに(ステップS9)、燃料添加を停止し自動再生制御を中断する(ステップS10)。
Description
本発明は、パティキュレートフィルタの自動再生制御装置に関するものである。
一般に、自動車のディーゼルエンジンから排出されるパティキュレート(Particulate Matter:粒子状物質)は、炭素質から成る煤分と、高沸点炭化水素成分から成るSOF分(Soluble Organic Fraction:可溶性有機成分)とを主成分とし、更に微量のサルフェート(ミスト状硫酸成分)を含んだ組成を成すものであるが、この種のパティキュレートの低減対策としては、排ガスが流通する排気管の途中に、パティキュレートフィルタを装備することが行われている。
この種のパティキュレートフィルタは、コージェライト等のセラミックから成る多孔質のハニカム構造となっており、格子状に区画された各流路の入口が交互に目封じされ、入口が目封じされていない流路については、その出口が目封じされるようになっており、各流路を区画する多孔質薄壁を透過した排ガスのみが下流側へ排出されるようになっている。
そして、排ガス中のパティキュレートは、前記多孔質薄壁の内側表面に捕集されて堆積するので、目詰まりにより排気抵抗が増加しないうちにパティキュレートを燃焼除去してパティキュレートフィルタの再生を図る必要があるが、通常の自動車用エンジンでは、パティキュレートが自己燃焼するほどの高い排気温度が得られる機会が少ないため、酸化触媒を一体的に担持させた触媒再生型のパティキュレートフィルタが採用されている。
即ち、このような触媒再生型のパティキュレートフィルタを採用すれば、捕集されたパティキュレートの酸化反応が促進されて着火温度が低下し、従来と比べて低い排気温度でもパティキュレートを燃焼除去することが可能となる。
但し、斯かる触媒再生型のパティキュレートフィルタを採用した場合であっても、排気温度の低い運転領域では、パティキュレートの処理量よりも捕集量が上回ってしまうので、このような低い排気温度での運転状態が続くと、パティキュレートフィルタの再生が良好に進まずに該パティキュレートフィルタが過捕集状態に陥る虞がある。
そこで、パティキュレートフィルタの前段に、フロースルー型の酸化触媒を別途配置し、パティキュレートの堆積量が増加してきた段階で前記酸化触媒より上流側の排ガス中に燃料を添加してパティキュレートフィルタの再生を図ることが考えられている。
つまり、パティキュレートフィルタより上流側でポスト噴射等により燃料を添加すれば、その添加された燃料により発生したHCガスがパティキュレートフィルタの酸化触媒上で酸化反応し、その反応熱により触媒床温度が上げられてパティキュレートが燃やし尽くされ、パティキュレートフィルタの再生が図られることになる。
この種の燃料添加を実行するための具体的手段としては、圧縮上死点付近で行われる燃料のメイン噴射に続いて圧縮上死点より遅い非着火のタイミングでポスト噴射を追加することで排ガス中に燃料を添加すれば良い。
近年、この種のパティキュレートフィルタは、自動車だけでなくクレーンやショベルといった建設機械にも適用することが検討されており、例えば、パティキュレートフィルタを挟んだ前後の差圧、エンジン回転数や負荷から算出されるパティキュレートの推定発生量と推定処理量との差の累積値等に基づいてパティキュレートの堆積量を推定し、その推定値が設定値を超えている場合に、パティキュレートフィルタの再生を自動的に行うことが考えられている。
しかしながら、作業中にパティキュレートフィルタの再生制御が自動的にかかったとしても、その作業の断続状況によっては、必ずしもパティキュレートフィルタの再生が完了まで到らないこともあるため、そのような状況が繰り返されることでパティキュレートフィルタ内のパティキュレートの堆積量が増加してくる虞があった。
このため、パティキュレートフィルタ内に多量のパティキュレートが溜ってしまった場合には、作業時間外でも運転者の意思(適切なフラグ立てによる自動制御としても良い)によりパティキュレートフィルタの再生を任意に実施できるようにする必要があるが、作業時間外にアイドリング状態でパティキュレートフィルタを再生しようとしても、排気温度が低すぎてHCガスの酸化触媒上での充分な酸化反応が期待できなかった。
例えば、自動車の場合には、アイドリング中にアイドル回転数を上げつつ排気ブレーキや吸気弁を閉じて排ガスの昇温化を図るという手法が既に提案されているが、建設機械の場合には、自動車のような排気ブレーキや吸気弁といったデバイスが実装されておらず、これらをパティキュレートフィルタの再生のためだけに新たに備えるのはコストの大幅な高騰を招く結果となる。
しかも、仮に排気ブレーキや吸気弁を新たに備えて排気絞りや吸気絞りを実施したとしても、アイドリング状態では大幅な排ガスの昇温化は望めないため、パティキュレートフィルタの再生を完了するまでに時間がかかり、燃料添加量が増えることによるコストの高騰も避けられない。
こうした不具合を解消すべく、本発明者等は、建設機械等に搭載されるエンジンのように、エンジン動力で油圧ユニット等の作業用ユニットを駆動して各種作業を行う産業用エンジンに設けられたパティキュレートフィルタを効率良く低コストで再生する技術(例えば、特許文献1参照)を開発している。
特許文献1に開示されたものは、前記パティキュレートフィルタの再生時に、前記作業用ユニットに強制的に負荷を掛けてエンジン負荷を意図的に増やし、該負荷増加により排気温度を上昇させながらポスト噴射等の燃料添加を行うようにしたものである。
しかしながら、特許文献1に開示されたものにおいては、前記作業用ユニットの状況に応じて該作業用ユニットへの強制的な負荷掛けを停止すべきであるとオペレータが判断したような場合であっても、負荷掛けを停止する手段がなく、作業に支障を来たす虞があり、改善の余地が残されていた。
又、ある種の建設機械では、作業中であっても油圧ユニット等の作業用ユニットに掛かる負荷は比較的小さく、エンジントルクはあまり高くならないため、エンジン側で自動再生制御が実施されポスト噴射等の燃料添加が行われている状態で、仮にオペレータの判断で負荷掛けを停止すると、排気温度を高く維持できなくなることがあり、この場合、パティキュレートフィルタの再生が完了まで到らないだけでなく、燃費悪化や白煙発生につながる虞があることも、本発明者等の研究により判明している。
本発明は、上記従来の問題点に鑑みてなしたもので、作業用ユニットの状況に応じて該作業用ユニットへの強制的な負荷掛けを停止し得、作業の円滑化を図ることができ、又、パティキュレートフィルタの自動再生制御中における負荷掛け停止時に排気温度を高く維持できない場合、パティキュレートフィルタの再生を中断して、燃費悪化や白煙発生を防止し得るパティキュレートフィルタの自動再生制御装置を提供しようとするものである。
本発明は、エンジン動力で作業用ユニットを駆動して各種作業を行う産業用エンジンの排気管に酸化触媒とパティキュレートフィルタとを順次配列し、前記作業用ユニットに強制的に負荷を掛けてエンジン負荷を意図的に増やし、該負荷増加により排気温度を上昇させながら酸化触媒より上流側で排ガス中への燃料添加を行い、該添加燃料が酸化触媒上で酸化反応した時の反応熱により直後のパティキュレートフィルタ内の捕集済みパティキュレートを燃焼させて該パティキュレートフィルタの再生を行うパティキュレートフィルタの自動再生制御装置において、
前記パティキュレートの堆積量の推定値が設定値を超えていると判定された場合に、前記産業用エンジンへ燃料噴射信号を出力するエンジン制御装置と、
該エンジン制御装置との間で協調制御信号が相互に入出力され、前記油圧ユニットを協調制御するためのユニット制御信号を出力するユニット制御装置と、
前記作業用ユニットの状況に応じて該作業用ユニットへの強制的な負荷掛けを停止するためのキャンセル信号を前記ユニット制御装置へ出力する負荷掛けキャンセルスイッチとを備え、
捕集済みパティキュレート堆積判定によるパティキュレートフィルタの再生が開始された際、アイドリング又は軽負荷運転時に、前記作業用ユニットへの負荷要求を前記エンジン制御装置からユニット制御装置へ出力し、負荷掛け可能状態でない場合或いは負荷掛けキャンセルスイッチがONである場合であって、更に負荷掛けなしで排気温度維持可能でない場合に、前記ユニット制御装置からエンジン制御装置へ再生中断信号を出力し、該エンジン制御装置で再生中断信号受信処理を行い、作業用ユニットに強制的に負荷を掛けずに、燃料添加を停止し自動再生制御を中断するよう構成したパティキュレートフィルタの自動再生制御装置にかかるものである。
前記パティキュレートの堆積量の推定値が設定値を超えていると判定された場合に、前記産業用エンジンへ燃料噴射信号を出力するエンジン制御装置と、
該エンジン制御装置との間で協調制御信号が相互に入出力され、前記油圧ユニットを協調制御するためのユニット制御信号を出力するユニット制御装置と、
前記作業用ユニットの状況に応じて該作業用ユニットへの強制的な負荷掛けを停止するためのキャンセル信号を前記ユニット制御装置へ出力する負荷掛けキャンセルスイッチとを備え、
捕集済みパティキュレート堆積判定によるパティキュレートフィルタの再生が開始された際、アイドリング又は軽負荷運転時に、前記作業用ユニットへの負荷要求を前記エンジン制御装置からユニット制御装置へ出力し、負荷掛け可能状態でない場合或いは負荷掛けキャンセルスイッチがONである場合であって、更に負荷掛けなしで排気温度維持可能でない場合に、前記ユニット制御装置からエンジン制御装置へ再生中断信号を出力し、該エンジン制御装置で再生中断信号受信処理を行い、作業用ユニットに強制的に負荷を掛けずに、燃料添加を停止し自動再生制御を中断するよう構成したパティキュレートフィルタの自動再生制御装置にかかるものである。
前記パティキュレートフィルタの自動再生制御装置においては、捕集済みパティキュレート堆積判定によるパティキュレートフィルタの再生が開始された際、アイドリング又は軽負荷運転時に、前記作業用ユニットへの負荷要求を前記エンジン制御装置からユニット制御装置へ出力し、負荷掛け可能状態でない場合或いは負荷掛けキャンセルスイッチがONである場合であって、更に負荷掛けなしで排気温度維持可能である場合に、前記作業用ユニットに強制的に負荷を掛けずに、燃料添加を行い自動再生制御を継続するよう構成することができる。
又、前記パティキュレートフィルタの自動再生制御装置においては、捕集済みパティキュレート堆積判定によるパティキュレートフィルタの再生が開始された際、アイドリング又は軽負荷運転時に、前記作業用ユニットへの負荷要求を前記エンジン制御装置からユニット制御装置へ出力し、負荷掛け可能状態で且つ負荷掛けキャンセルスイッチがOFFである場合に、前記作業用ユニットに強制的に負荷を掛けてエンジン負荷を意図的に増やし、該負荷増加により排気温度を上昇させながら、燃料添加を行い自動再生制御を継続するよう構成することもできる。
更に又、前記パティキュレートフィルタの自動再生制御装置においては、捕集済みパティキュレート堆積判定によるパティキュレートフィルタの再生が開始された際、アイドリング運転でなく且つ軽負荷運転でない時、前記作業用ユニットに強制的に負荷を掛けずに、燃料添加を行い自動再生制御を継続するよう構成することもできる。
本発明のパティキュレートフィルタの自動再生制御装置によれば、作業用ユニットの状況に応じて該作業用ユニットへの強制的な負荷掛けを停止し得、作業の円滑化を図ることができ、又、パティキュレートフィルタの自動再生制御中における負荷掛け停止時に排気温度を高く維持できない場合、パティキュレートフィルタの再生を中断して、燃費悪化や白煙発生を防止し得るという優れた効果を奏し得る。
以下、本発明の実施の形態を添付図面を参照して説明する。
図1~図3は本発明のパティキュレートフィルタの自動再生制御装置の実施例であって、1はクレーンやショベル等の建設機械に搭載された産業用エンジン、2は産業用エンジン1によって駆動される作業用ユニットとしての油圧ユニットであり、前記産業用エンジン1から排出された排ガス3が流通している排気管4の途中にフィルタケース5が介装されており、該フィルタケース5内における後段には、排ガス3中からパティキュレートを捕集するパティキュレートフィルタ6が収容されており、前記フィルタケース5内における前段には、排ガス3中の未燃のHCガスを酸化処理する酸化触媒7が収容されている。
又、前記産業用エンジン1における燃料噴射制御は、エンジン制御装置8から出力される燃料噴射信号8aに基づいて行われるようになっており、該エンジン制御装置8において、パティキュレートフィルタ6を挟んだ前後の差圧や、エンジン回転数や負荷から算出されるパティキュレートの推定発生量と推定処理量との差の累積値等に基づきパティキュレートの堆積量が推定され、その推定値が設定値を超えていると判定された場合に、圧縮上死点(クランク角0゜)付近で行われる燃料のメイン噴射に続いて圧縮上死点より遅い非着火のタイミングでポスト噴射を行うような燃料噴射信号8aが出力されるようになっている。
つまり、メイン噴射に続いて圧縮上死点より遅い非着火のタイミングでポスト噴射が行われると、このポスト噴射により排ガス3中に未燃の燃料が添加されることになり、この未燃の燃料により高濃度のHCガスが生成されて前段の酸化触媒7に向け送り出されることになる。
同時に、前記エンジン制御装置8と、前記作業用ユニットとしての油圧ユニット2を制御するユニット制御装置9との間で協調制御信号10が相互に入出力され、ユニット制御装置9から出力されるユニット制御信号9aによって、前記油圧ユニット2が協調制御されるようになっており、該油圧ユニット2に負荷掛けを行う際には、油圧ポンプを駆動して作動油を循環させることにより、負荷を掛ける作動が油圧ユニット2で実行されるようになっている。
更に、前記油圧ユニット2の状況に応じて該油圧ユニット2への強制的な負荷掛けを停止するためのキャンセル信号11aを前記ユニット制御装置9へ出力する負荷掛けキャンセルスイッチ11を備え、該負荷掛けキャンセルスイッチ11をオペレータが必要に応じて操作できるようになっている。
そして、本実施例の場合、図2及び図3のフローチャートに示す如く、先ず、エンジン制御装置8での捕集済みパティキュレート堆積判定によりパティキュレートフィルタ6の再生が開始された際(ステップS1参照)、アイドリング又は軽負荷運転が行われているか否かの判断を行い(ステップS2参照)、アイドリング又は軽負荷運転であると判断された時には、前記作業用ユニットとしての油圧ユニット2への負荷要求を前記エンジン制御装置8からユニット制御装置9へ出力する(ステップS3参照)。続いて、負荷掛け可能状態であるか否かの判断を行い(ステップS4参照)、負荷掛け可能状態でないと判断された場合、或いは負荷掛けキャンセルスイッチ11がOFFであるか否かの判断を行い(ステップS5参照)、負荷掛けキャンセルスイッチ11がONであると判断された場合であって、更に負荷掛けなしで排気温度維持可能であるか否かの判断を行い(ステップS6参照)、負荷掛けなしで排気温度維持可能でないと判断された場合には、前記ユニット制御装置9からエンジン制御装置8へ再生中断信号を出力し(ステップS7参照)、該エンジン制御装置8で再生中断信号受信処理を行い(ステップS8参照)、油圧ユニット2に強制的に負荷を掛けずに(ステップS9参照)、ポスト噴射等の燃料添加を停止し自動再生制御を中断する(ステップS10参照)よう構成してある。尚、前記ステップS1で自動再生制御を中断した後は、前記ステップS2へ戻ってアイドリング又は軽負荷運転が行われているか否かの判断を行い、上述と同様の判断等を含む制御を繰り返し行うようにしてある。
又、前記ステップS6で負荷掛けなしで排気温度維持可能であるか否かの判断を行い、負荷掛けなしで排気温度維持可能であると判断された場合には、前記作業用ユニットとしての油圧ユニット2に強制的に負荷を掛けずに(ステップS11参照)、ポスト噴射等の燃料添加を行い自動再生制御を継続する(ステップS12参照)よう構成してある。尚、前記ステップS12で自動再生制御を継続し、パティキュレートフィルタ6の再生が完了したか否かの判断を行い(ステップS13参照)、該パティキュレートフィルタ6の再生が完了したと判断された場合には、再生を終了し、前記パティキュレートフィルタ6の再生が完了していないと判断された場合には、前記ステップS2へ戻ってアイドリング又は軽負荷運転が行われているか否かの判断を行い、上述と同様の判断等を含む制御を繰り返し行うようにしてある。
更に又、前記ステップS4で負荷掛け可能状態であるか否かの判断を行い、負荷掛け可能状態であると判断され、且つ前記ステップS5で負荷掛けキャンセルスイッチ11がOFFであるか否かの判断を行い、該負荷掛けキャンセルスイッチ11がOFFであると判断された場合には、前記作業用ユニットとしての油圧ユニット2に強制的に負荷を掛けて(ステップS14参照)エンジン負荷を意図的に増やし、該負荷増加により排気温度を上昇させながら、ポスト噴射等の燃料添加を行い自動再生制御を継続する(ステップS15参照)よう構成してある。尚、前記ステップS15で自動再生制御を継続し、パティキュレートフィルタ6の再生が完了したか否かの判断を行い(ステップS13参照)、該パティキュレートフィルタ6の再生が完了したと判断された場合には、再生を終了し、前記パティキュレートフィルタ6の再生が完了していないと判断された場合には、前記ステップS2へ戻ってアイドリング又は軽負荷運転が行われているか否かの判断を行い、上述と同様の判断等を含む制御を繰り返し行うようにしてある。
一方、前記ステップS2でアイドリング又は軽負荷運転が行われているか否かの判断を行い、アイドリング運転でなく且つ軽負荷運転でないと判断された時には、既に負荷が掛かっているため、前記作業用ユニットとしての油圧ユニット2に強制的に負荷を掛けずに(ステップS11参照)、ポスト噴射等の燃料添加を行い自動再生制御を継続する(ステップS12参照)よう構成してある。
次に、上記実施例の作用を説明する。
先ず、エンジン制御装置8での捕集済みパティキュレート堆積判定によりパティキュレートフィルタ6の再生が開始された際(ステップS1参照)、アイドリング又は軽負荷運転が行われているか否かの判断が行われ(ステップS2参照)、アイドリング又は軽負荷運転であると判断された時には、前記作業用ユニットとしての油圧ユニット2への負荷要求が前記エンジン制御装置8からユニット制御装置9へ出力される(ステップS3参照)。
続いて、負荷掛け可能状態であるか否かの判断が行われ(ステップS4参照)、負荷掛け可能状態でないと判断された場合、或いは負荷掛けキャンセルスイッチ11がOFFであるか否かの判断が行われ(ステップS5参照)、負荷掛けキャンセルスイッチ11がONであると判断された場合であって、更に負荷掛けなしで排気温度維持可能であるか否かの判断が行われ(ステップS6参照)、負荷掛けなしで排気温度維持可能でないと判断された場合には、前記ユニット制御装置9からエンジン制御装置8へ再生中断信号が出力され(ステップS7参照)、該エンジン制御装置8で再生中断信号受信処理が行われ(ステップS8参照)、油圧ユニット2に強制的に負荷を掛けずに(ステップS9参照)、ポスト噴射等の燃料添加が停止され自動再生制御が中断される(ステップS10参照)。
尚、前記ステップS1で自動再生制御が中断された後は、前記ステップS2へ戻ってアイドリング又は軽負荷運転が行われているか否かの判断が行われ、上述と同様の判断等を含む制御が繰り返し行われる。
又、前記ステップS6で負荷掛けなしで排気温度維持可能であるか否かの判断が行われ、負荷掛けなしで排気温度維持可能であると判断された場合には、前記作業用ユニットとしての油圧ユニット2に強制的に負荷を掛けずに(ステップS11参照)、ポスト噴射等の燃料添加が行われ自動再生制御が継続される(ステップS12参照)。因みに、ショベルのような建設機械では、作業中、油圧ユニット2に掛かる負荷は比較的大きく、エンジントルクは高くなるため、エンジン側で自動再生制御が実施されポスト噴射等の燃料添加が行われている状態で、仮にオペレータの判断で負荷掛けキャンセルスイッチ11をONにして負荷掛けを停止しても、排気温度を高く維持することは可能となる。尚、前記ステップS12で自動再生制御が継続され、パティキュレートフィルタ6の再生が完了したか否かの判断が行われ(ステップS13参照)、該パティキュレートフィルタ6の再生が完了したと判断された場合には、再生が終了し、前記パティキュレートフィルタ6の再生が完了していないと判断された場合には、前記ステップS2へ戻ってアイドリング又は軽負荷運転が行われているか否かの判断が行われ、上述と同様の判断等を含む制御が繰り返し行われる。
更に又、前記ステップS4で負荷掛け可能状態であるか否かの判断が行われ、負荷掛け可能状態であると判断され、且つ前記ステップS5で負荷掛けキャンセルスイッチ11がOFFであるか否かの判断が行われ、該負荷掛けキャンセルスイッチ11がOFFであると判断された場合には、前記作業用ユニットとしての油圧ユニット2に強制的に負荷を掛けて(ステップS14参照)エンジン負荷を意図的に増やし、該負荷増加により排気温度を上昇させながら、ポスト噴射等の燃料添加が行われ自動再生制御が継続される(ステップS15参照)。尚、前記ステップS15で自動再生制御が継続され、パティキュレートフィルタ6の再生が完了したか否かの判断が行われ(ステップS13参照)、該パティキュレートフィルタ6の再生が完了したと判断された場合には、再生が終了し、前記パティキュレートフィルタ6の再生が完了していないと判断された場合には、前記ステップS2へ戻ってアイドリング又は軽負荷運転が行われているか否かの判断が行われ、上述と同様の判断等を含む制御が繰り返し行われる。
一方、前記ステップS2でアイドリング又は軽負荷運転が行われているか否かの判断が行われ、アイドリング運転でなく且つ軽負荷運転でないと判断された時には、既に負荷が掛かっているため、前記作業用ユニットとしての油圧ユニット2に強制的に負荷を掛けずに(ステップS11参照)、ポスト噴射等の燃料添加が行われ自動再生制御が継続される(ステップS12参照)。
ここで、本実施例において、あくまでも基本となる制御は、前記作業用ユニットとしての油圧ユニット2に強制的に負荷を掛けて(ステップS14参照)エンジン負荷を意図的に増やし、該負荷増加により排気温度を上昇させながら、ポスト噴射等の燃料添加を行い自動再生制御を継続する(ステップS15参照)ものであるが、前記油圧ユニット2の状況に応じて該油圧ユニット2への強制的な負荷掛けを停止すべきであるとオペレータが判断したような場合、負荷掛けキャンセルスイッチ11をONにすれば、負荷掛けを停止することが可能となり、作業に支障を来たさなくなる。
又、クレーンのような建設機械では、作業中であっても作業用ユニットとしての油圧ユニット2に掛かる負荷は比較的小さく、エンジントルクはあまり高くならないため、エンジン側で自動再生制御が実施されポスト噴射等の燃料添加が行われている状態で、仮にオペレータの判断で負荷掛けキャンセルスイッチ11をONにして負荷掛けを停止すると、排気温度を高く維持できなくなることがある。しかし、本実施例では、エンジン側で自動再生制御が実施されポスト噴射等の燃料添加が行われている状態で、仮にオペレータの判断で負荷掛けキャンセルスイッチ11をONにして負荷掛けを停止した際、排気温度を高く維持できなくなることがステップS6で判断された場合、ステップS7で前記ユニット制御装置9からエンジン制御装置8へ再生中断信号が出力され、ステップS8においてエンジン制御装置8で再生中断信号受信処理が行われ、ステップS9で油圧ユニット2に強制的に負荷を掛けずに、ステップS10でポスト噴射等の燃料添加が停止され自動再生制御が中断されるため、燃費が悪化することや白煙が発生することが回避可能となる。
こうして、作業用ユニットとしての油圧ユニット2の状況に応じて該油圧ユニット2への強制的な負荷掛けを停止し得、作業の円滑化を図ることができ、又、パティキュレートフィルタ6の自動再生制御中における負荷掛け停止時に排気温度を高く維持できない場合、パティキュレートフィルタ6の再生を中断して、燃費悪化や白煙発生を防止し得る。
尚、本発明のパティキュレートフィルタの自動再生制御装置は、上述の実施例にのみ限定されるものではなく、実施例では油圧ユニットを作業用ユニットとして搭載した建設機械の産業用エンジンの場合で説明しているが、作業用ユニットは発電機やコンプレッサ等であっても良いこと、又、油圧をリリースしながら油圧ポンプを駆動して作動油を循環させることで油圧ユニットに強制的に負荷を与える場合を例示しているが、作業用ユニットによる駆動系に意図的に制動をかけるような手法で負荷を与えるようにしても良いこと、更に又、建設機械以外にフォークリフト等の運搬機械に適用したものであっても良いこと等、その他、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。
本発明のパティキュレートフィルタの自動再生制御装置は、エンジン動力で作業用ユニットを駆動して各種作業を行う産業用エンジンに利用することができる。
1 産業用エンジン
2 油圧ユニット(作業用ユニット)
3 排ガス
4 排気管
6 パティキュレートフィルタ
7 酸化触媒
8 エンジン制御装置
8a 燃料噴射信号
9 ユニット制御装置
9a ユニット制御信号
10 協調制御信号
11 負荷掛けキャンセルスイッチ
11a キャンセル信号
2 油圧ユニット(作業用ユニット)
3 排ガス
4 排気管
6 パティキュレートフィルタ
7 酸化触媒
8 エンジン制御装置
8a 燃料噴射信号
9 ユニット制御装置
9a ユニット制御信号
10 協調制御信号
11 負荷掛けキャンセルスイッチ
11a キャンセル信号
Claims (5)
- エンジン動力で作業用ユニットを駆動して各種作業を行う産業用エンジンの排気管に酸化触媒とパティキュレートフィルタとを順次配列し、前記作業用ユニットに強制的に負荷を掛けてエンジン負荷を意図的に増やし、該負荷増加により排気温度を上昇させながら酸化触媒より上流側で排ガス中への燃料添加を行い、該添加燃料が酸化触媒上で酸化反応した時の反応熱により直後のパティキュレートフィルタ内の捕集済みパティキュレートを燃焼させて該パティキュレートフィルタの再生を行うパティキュレートフィルタの自動再生制御装置において、
前記パティキュレートの堆積量の推定値が設定値を超えていると判定された場合に、前記産業用エンジンへ燃料噴射信号を出力するエンジン制御装置と、
該エンジン制御装置との間で協調制御信号が相互に入出力され、前記油圧ユニットを協調制御するためのユニット制御信号を出力するユニット制御装置と、
前記作業用ユニットの状況に応じて該作業用ユニットへの強制的な負荷掛けを停止するためのキャンセル信号を前記ユニット制御装置へ出力する負荷掛けキャンセルスイッチとを備え、
捕集済みパティキュレート堆積判定によるパティキュレートフィルタの再生が開始された際、アイドリング又は軽負荷運転時に、前記作業用ユニットへの負荷要求を前記エンジン制御装置からユニット制御装置へ出力し、負荷掛け可能状態でない場合或いは負荷掛けキャンセルスイッチがONである場合であって、更に負荷掛けなしで排気温度維持可能でない場合に、前記ユニット制御装置からエンジン制御装置へ再生中断信号を出力し、該エンジン制御装置で再生中断信号受信処理を行い、作業用ユニットに強制的に負荷を掛けずに、燃料添加を停止し自動再生制御を中断するよう構成したパティキュレートフィルタの自動再生制御装置。 - 捕集済みパティキュレート堆積判定によるパティキュレートフィルタの再生が開始された際、アイドリング又は軽負荷運転時に、前記作業用ユニットへの負荷要求を前記エンジン制御装置からユニット制御装置へ出力し、負荷掛け可能状態でない場合或いは負荷掛けキャンセルスイッチがONである場合であって、更に負荷掛けなしで排気温度維持可能である場合に、前記作業用ユニットに強制的に負荷を掛けずに、燃料添加を行い自動再生制御を継続するよう構成した請求項1記載のパティキュレートフィルタの自動再生制御装置。
- 捕集済みパティキュレート堆積判定によるパティキュレートフィルタの再生が開始された際、アイドリング又は軽負荷運転時に、前記作業用ユニットへの負荷要求を前記エンジン制御装置からユニット制御装置へ出力し、負荷掛け可能状態で且つ負荷掛けキャンセルスイッチがOFFである場合に、前記作業用ユニットに強制的に負荷を掛けてエンジン負荷を意図的に増やし、該負荷増加により排気温度を上昇させながら、燃料添加を行い自動再生制御を継続するよう構成した請求項1又は2記載のパティキュレートフィルタの自動再生制御装置。
- 捕集済みパティキュレート堆積判定によるパティキュレートフィルタの再生が開始された際、アイドリング運転でなく且つ軽負荷運転でない時、前記作業用ユニットに強制的に負荷を掛けずに、燃料添加を行い自動再生制御を継続するよう構成した請求項1又は2記載のパティキュレートフィルタの自動再生制御装置。
- 捕集済みパティキュレート堆積判定によるパティキュレートフィルタの再生が開始された際、アイドリング運転でなく且つ軽負荷運転でない時、前記作業用ユニットに強制的に負荷を掛けずに、燃料添加を行い自動再生制御を継続するよう構成した請求項3記載のパティキュレートフィルタの自動再生制御装置。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/655,093 US9850793B2 (en) | 2012-12-25 | 2013-12-09 | Automatic regeneration control device for particulate filter |
EP13869791.7A EP2940263B1 (en) | 2012-12-25 | 2013-12-09 | Automatic regeneration control device for particulate filter |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012280693A JP6071530B2 (ja) | 2012-12-25 | 2012-12-25 | パティキュレートフィルタの自動再生制御装置 |
JP2012-280693 | 2012-12-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014103196A1 true WO2014103196A1 (ja) | 2014-07-03 |
Family
ID=51020320
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/007219 WO2014103196A1 (ja) | 2012-12-25 | 2013-12-09 | パティキュレートフィルタの自動再生制御装置 |
Country Status (4)
Country | Link |
---|---|
US (1) | US9850793B2 (ja) |
EP (1) | EP2940263B1 (ja) |
JP (1) | JP6071530B2 (ja) |
WO (1) | WO2014103196A1 (ja) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016113900A (ja) * | 2014-12-11 | 2016-06-23 | 日野自動車株式会社 | パティキュレートフィルタの再生方法 |
JP2021060026A (ja) * | 2019-10-09 | 2021-04-15 | トヨタ自動車株式会社 | 車両およびその制御方法 |
US20220279718A1 (en) * | 2021-03-04 | 2022-09-08 | Deere & Company | State-based mechanism for performing engine regeneration procedure |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005155574A (ja) * | 2003-11-28 | 2005-06-16 | Hino Motors Ltd | 排気浄化装置 |
JP2009191654A (ja) | 2008-02-12 | 2009-08-27 | Hino Motors Ltd | パティキュレートフィルタの再生方法 |
JP2011017256A (ja) * | 2009-07-07 | 2011-01-27 | Yanmar Co Ltd | エンジン装置 |
JP2012047107A (ja) * | 2010-08-27 | 2012-03-08 | Hitachi Constr Mach Co Ltd | 作業車両の排気ガス浄化システム |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8161736B2 (en) * | 2007-11-06 | 2012-04-24 | Hitachi Construction Machinery Co., Ltd. | Exhaust gas cleaning system for engineering vehicle |
JP5101436B2 (ja) * | 2008-08-26 | 2012-12-19 | ヤンマー株式会社 | ディーゼルエンジン |
JP4774096B2 (ja) * | 2008-11-17 | 2011-09-14 | 日立建機株式会社 | 作業機械の排気ガス浄化システム |
CN102472135B (zh) | 2009-07-02 | 2015-02-11 | 洋马株式会社 | 发动机装置 |
JP5614996B2 (ja) * | 2010-01-28 | 2014-10-29 | 三菱重工業株式会社 | 内燃機関の排気ガス処理方法及び装置 |
KR101737637B1 (ko) * | 2010-12-24 | 2017-05-18 | 두산인프라코어 주식회사 | 전자유압펌프를 포함하는 건설기계의 dpf 강제 재생 시스템 및 방법 |
-
2012
- 2012-12-25 JP JP2012280693A patent/JP6071530B2/ja active Active
-
2013
- 2013-12-09 WO PCT/JP2013/007219 patent/WO2014103196A1/ja active Application Filing
- 2013-12-09 EP EP13869791.7A patent/EP2940263B1/en not_active Not-in-force
- 2013-12-09 US US14/655,093 patent/US9850793B2/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005155574A (ja) * | 2003-11-28 | 2005-06-16 | Hino Motors Ltd | 排気浄化装置 |
JP2009191654A (ja) | 2008-02-12 | 2009-08-27 | Hino Motors Ltd | パティキュレートフィルタの再生方法 |
JP2011017256A (ja) * | 2009-07-07 | 2011-01-27 | Yanmar Co Ltd | エンジン装置 |
JP2012047107A (ja) * | 2010-08-27 | 2012-03-08 | Hitachi Constr Mach Co Ltd | 作業車両の排気ガス浄化システム |
Also Published As
Publication number | Publication date |
---|---|
JP2014125891A (ja) | 2014-07-07 |
US20150369099A1 (en) | 2015-12-24 |
EP2940263A4 (en) | 2016-08-03 |
US9850793B2 (en) | 2017-12-26 |
JP6071530B2 (ja) | 2017-02-01 |
EP2940263A1 (en) | 2015-11-04 |
EP2940263B1 (en) | 2019-07-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4169076B2 (ja) | 排気ガス浄化システムの制御方法及び排気ガス浄化システム | |
JP3988776B2 (ja) | 排気ガス浄化システムの制御方法及び排気ガス浄化システム | |
EP2284368B1 (en) | Exhaust gas purifier | |
JP4613961B2 (ja) | 内燃機関の排気浄化装置および排気浄化方法 | |
CN102947558B (zh) | 废气净化系统 | |
EP2041406B1 (en) | Method and system for regenerating an exhaust gas purification unit. | |
CN102985645B (zh) | Dpf系统 | |
WO2012157265A1 (ja) | パティキュレートフィルタの手動再生方法 | |
JP2007247595A (ja) | 排気ガス浄化システムの制御方法及び排気ガス浄化システム | |
JP5585226B2 (ja) | 排ガス浄化システム | |
WO2011155587A1 (ja) | Dpfシステム | |
JP6071530B2 (ja) | パティキュレートフィルタの自動再生制御装置 | |
JP2016113900A (ja) | パティキュレートフィルタの再生方法 | |
JP2008223612A (ja) | 排気浄化装置 | |
JP2009191654A (ja) | パティキュレートフィルタの再生方法 | |
US9540983B2 (en) | Construction machine | |
JP2015017565A (ja) | 排気ガス浄化装置 | |
JP2004150417A (ja) | 排気浄化装置 | |
JP5471834B2 (ja) | 排気ガス浄化システム | |
JP2016006311A (ja) | ディーゼルエンジンの排気浄化装置及び排気浄化方法 | |
JP5012167B2 (ja) | エンジンの排気浄化装置 | |
KR101886903B1 (ko) | 작업기계의 배기가스 처리방법 | |
JP2017129019A (ja) | パティキュレートフィルタの手動再生方法 | |
JP5613477B2 (ja) | パティキュレートフィルタの再生装置 | |
JP2010229985A (ja) | 作業車両および作業車両の制御方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13869791 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 14655093 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2013869791 Country of ref document: EP |