WO2014103005A1 - 含水バラ物の荷揚げ方法 - Google Patents

含水バラ物の荷揚げ方法 Download PDF

Info

Publication number
WO2014103005A1
WO2014103005A1 PCT/JP2012/084038 JP2012084038W WO2014103005A1 WO 2014103005 A1 WO2014103005 A1 WO 2014103005A1 JP 2012084038 W JP2012084038 W JP 2012084038W WO 2014103005 A1 WO2014103005 A1 WO 2014103005A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
unloading
spring water
suspended
polymer
Prior art date
Application number
PCT/JP2012/084038
Other languages
English (en)
French (fr)
Inventor
友規 衣笠
祥和 早坂
憲司 大屋
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to PCT/JP2012/084038 priority Critical patent/WO2014103005A1/ja
Priority to CA2894830A priority patent/CA2894830C/en
Priority to JP2014553996A priority patent/JP6066129B2/ja
Priority to KR1020157016059A priority patent/KR101773271B1/ko
Priority to CN201280077987.6A priority patent/CN104870343B/zh
Priority to BR112015014549-3A priority patent/BR112015014549B1/pt
Priority to AU2012397782A priority patent/AU2012397782B2/en
Publication of WO2014103005A1 publication Critical patent/WO2014103005A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B25/00Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby
    • B63B25/02Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods
    • B63B25/04Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods solid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B27/00Arrangement of ship-based loading or unloading equipment for cargo or passengers
    • B63B27/19Other loading or unloading equipment involving an intermittent action, not provided in groups B63B27/04 - B63B27/18

Definitions

  • the present invention when unloading ores and coal containing moisture are intermittently or continuously unloaded from a carrier ship or barge ( ⁇ ) by a bridge crane, an unloader or a bucket of a continuous unloader, spring water is generated.
  • the present invention relates to a method for unloading hydrous roses that has been developed in order to eliminate unloading troubles caused by the operation.
  • Patent Documents 1 and 2 that is, when spring water is generated, the spring water is once pumped through a drainage facility (suction machine), and thereafter A method of resuming unloading has been proposed.
  • JP 60-204526 A Japanese Utility Model Publication No. 50-13339
  • Patent Documents 1 and 2 are used to move the ship to a place with drainage (pumping) facilities in order to pump the spring water, or drainage (pumping).
  • the facilities themselves are arranged between the holds and the spring water is pumped up from each hold, there is a problem that the drainage takes time in addition to the increase in equipment costs.
  • the spring water appears in the depressions that are generated after grabbing a rose with a grab bucket in the middle of unloading or after excavation of a rose with a bucket of a continuous unloader, When it is repeated frequently, there has been a problem that the work efficiency is greatly reduced due to the suspension and resumption of the unloading work.
  • ore and coal have become inferior, for example, those with high moisture content, and such problems have become more apparent.
  • Patent Documents 1 and 2 assumes that only spring water is pumped, a depression that occurs after grabbing a rose with a grab bucket or after excavating a rose with a bucket
  • powder particles with a small particle size separated from bulk material with a large particle size flow into the part and become muddy (slurry). In this case, it is difficult to pump with conventional pumps, and it is unloaded. It was a decisive obstacle to work.
  • an object of the present invention is to propose an effective treatment method of spring water inevitably generated when unloading hydrous roses and suspended spring water.
  • the present invention can be used to remove a wet bulk material such as ore or coal from a cargo ship, a bridge crane, When unloading grab buckets or continuous unloader buckets for unloading intermittently or continuously, when suspended springs with powder particles suspended in the spring water are generated during the unloading operation.
  • a wet bulk material such as ore or coal
  • the suspension spring powder and powder particles are condensed, aggregated and / or suspended
  • the unloading method (1) Add only a polymer flocculant to the suspended spring to cause the spring water and powder particles to coagulate and aggregate, or add only a water adsorbent to the suspended spring. By adding, at least spring water can be adsorbed to the moisture adsorbent.
  • the polymer flocculant is added in an amount equivalent to 0.4 to 1.0 mass% of the amount of suspended spring water, (6) Adding a polymer flocculant to the position where the suspended spring is generated and mixing and stirring the roses in other parts to generate agglomerated particles and agglomerated particles and unload them. (7) Adding a moisture adsorbent to the position where the suspended spring is generated and mixing and stirring the roses from other parts, and then unloading. (8) A polymer flocculant and a water adsorbent are added to the position where the suspended spring is generated, and the aggregated particles and aggregated particles are generated by the polymer flocculant, while the aggregated particles and aggregated particles are generated.
  • Unloading after adsorbing at least the spring water of the remaining portion of the suspended spring water to the water adsorbent (9) A moisture adsorbent is added to the position where the suspended spring is generated, and at least the spring water in the suspended spring is reduced, and then, by adding a polymer flocculant, condensed particles and aggregated particles are generated. Unloading, (10) The fine ore ratio (-) expressed by the ratio of the weight of roses and the weight of suspended spring is set to 7 or more, However, it is considered that a more preferable solution can be provided.
  • the polymer flocculant and ore powder particles react to form smooth particles, eliminating adverse effects such as making it difficult to mix the raw materials with adhesion. it can. Further, since the amount used is small, there are advantages such as low cost.
  • the polymer flocculant in addition to the limited moisture content, the polymer flocculant is entangled with powder particles and takes water into it, so it is susceptible to the hydrophilicity of the rose itself, Depending on the type, there is a disadvantage that it is necessary to increase or decrease the amount of medicine used.
  • any amount of water can be adsorbed by increasing the amount of the drug.
  • the unit price is high and the amount of use is high, the cost is high.
  • the polymer adsorbent jumps on the conveyor belt or creates gaps and unevenly distributed water between the powder particles. There is a disadvantage that the transfer line is adversely affected.
  • the upper limit of the moisture content of roses can be increased by adsorbing water in a range that cannot be taken up by the polymer flocculant to the water adsorbent.
  • the cost can be reduced as compared with the case where only the agent is used, and there is an advantage that the influence on the next process and the conveying line can be reduced as compared with the case where only the moisture adsorbent is used.
  • FIG. 2 is an illustration of a preferred unloading method using a continuous unloader bucket according to the method of the present invention. It is explanatory drawing of the other suitable method of this invention using the grab bucket of an unloader.
  • a depression 4 is formed in a portion of the rose accumulation layer after grabbing with a grab bucket, and mainly gravel-like ores in the depression 4 It is known that suspended spring water Wm in a state where the powder particles separated from the powder are dispersed and suspended is accumulated.
  • a vertical support beam portion is inserted into the hold 1, and unloading is performed by continuous excavation by a large number of buckets 5.
  • the bucket 5 is connected via a chain, and the length between the sprockets can be adjusted by the hydraulic cylinder mechanism to adjust the insertion length into the hold 1 and the scraping length. The drilling depth can be adjusted.
  • the bucket 5 is rotated counterclockwise in the drawing while adjusting the amount of excavation at the drive link portion by driving by a separate driving device, and the material surface is excavated by the bucket 5 for unloading with high work efficiency. Can be done. The excavated roses are unloaded by the bucket elevator.
  • a puddle 3 that is separated from the rose in the transportation process and collected at the bottom of the hold, or a puddle 3 that is accumulated with high moisture due to rainwater is generated.
  • a hollow 4 is formed in a part of the bulk deposit layer after excavation by the bucket, and suspended spring water suspended in the hollow 4 Wm is generated.
  • the slurry gradually becomes slurried, and unloading becomes difficult even by the bucket 5 of the continuous unloader.
  • the suspended spring water Wm when the suspended spring water Wm is generated, at least one of a polymer flocculant and a water adsorbent such as a polymer water absorbent is placed on the suspended spring water Wm in the recess 4.
  • a fixed amount for example, entangle the powder particles in the suspension spring (spring water + powder particles) with a polymer flocculant to condense and aggregate to form particles, and also suspension spring water Wm
  • the unloading work efficiency is improved by unloading with the rose in the state of adsorbing (absorbing and retaining water) on the moisture adsorbent. That is, according to the method of the present invention, the water adsorbent that adsorbs the aggregated and aggregated particles and / or the suspended spring water Wm can be unloaded at the same time together with the roses 2 such as ores.
  • FIGS. 3A to 3C show a state in which the polymer flocculant A is added to the suspended spring water Wm containing the powder particles P.
  • FIG. 3 (b) the suspension spring water Wm is such that a part of the powder particle P is entangled with the polymer in which the molecular chain of the polymer flocculant A spreads in a branch shape. Aggregates and first forms some of the small, granular agglomerated particles 6. Next, as time passes (unloading progress), a plurality of the aggregated particles 6 eventually aggregate (aggregate) and grow into aggregated particles 7 having a large particle size as shown in FIG.
  • the suspended spring water Wm is in a solid state and can be easily grasped and scraped by the grab bucket 5 or the like, and the suspended spring water Wm itself is also unloaded with the roses. It will be.
  • FIGS. 3D and 3E show a state in which the moisture adsorbent B is added to the suspended spring water Wm containing the powder particles P.
  • FIG. Here, the water of the suspension spring Wm is granulated in a swollen form confined in the crosslinked structure of the moisture adsorbent B together with the powder particles P as shown in FIG.
  • the suspended spring water Wm is absorbed in the moisture adsorbent B and becomes a solid state (swelled state). Thereafter, the suspended spring water Wm can be easily grasped by the grab bucket 5.
  • the suspended spring Wm itself can be unloaded with the roses 2. Similarly, the suspension spring Wm can be excavated together with the rose 2 even in the bucket of the continuous unloader.
  • At least one of a polymer flocculant and a water adsorbent is added to the suspended spring water Wm, and gravel-like roses 2 in the vicinity of the depression 4 or other parts are grabbed.
  • at least one of a polymer flocculant and a water adsorbent is added to the suspended spring Wm, and a gravel-like rose in the vicinity of the dent 4 or other part generated by bucket excavation. It is desirable to scrape 2 using a bucket and, if possible, further agitation (an operation to repeat switching of the scraping direction by the bucket) in order to promote solidification and increase the efficiency of unloading work.
  • the water-soluble polymer flocculant used in the present invention by adding this agent to the suspension spring water, an adsorption activity is generated in the powder by the electrostatic force and hydrogen bond of the polymer,
  • the thing of forming a solidified structure by causing a crosslinking action to form a condensed particle can be used.
  • polyacrylamide-based (copolymerized acrylamide and sodium acrylate), polyvinylamidine-based, and amphoteric polymer-based flocculants that are powder, granular or liquid organic flocculants are not only coagulating. It is preferable because it exhibits an aggregating action. Of course, you may mix and use an inorganic type flocculant.
  • an acrylic acid cationic polymer an acrylamide-based cationic polymer, a methacrylic acid-based polymer, a methacrylic acid aminoester cationic polymer, an amidine polymer, and the like can also be used.
  • a super absorbent polymer for example, a super absorbent polymer (abbreviated as SAP) can be used, it has a high water absorption rate, has high water absorption and high water retention, and has once absorbed water.
  • SAP super absorbent polymer
  • a drug that hardly releases water even when a certain amount of force is applied from the outside for example, a polymer water-absorbing agent such as polyacrylate (sodium, potassium) resin is suitable.
  • This polymeric water-absorbing agent has physical properties that do not exhibit tackiness even when moisture is adsorbed in the molecular structure after moisture absorption. In this sense, inorganic silica gel, activated alumina, zeolite, etc. should also be used. Is more preferable.
  • the particle size is 0.5 mm or more and less than 10 mm. More preferably, one of 1 mm or more and 5 mm or less is used.
  • the particle size when the particle size is less than 0.5 mm, scattering during use cannot be effectively prevented, while when the particle size is 10 mm or more, the contact surface area with the spring water becomes relatively small and the moisture absorption rate decreases. It tends to take a long time to absorb moisture, and a sufficient effect cannot be obtained in a short time. Therefore, it is more preferably 1 mm or more and 5 mm or less.
  • the polymer flocculant and the polymer water-absorbing agent for coping with water that cannot be handled by the flocculant alone are simultaneously added and stirred, The entanglement of the powder particles and the water molecules with the polymer polymer is performed, and the polymer particles are adsorbed with the polymer water-absorbing agent such as excess water molecules. Finally, as shown in FIG. The particles and the swollen polymer water-absorbing agent are agglomerated.
  • the aggregated particles are aggregates having a strength that can be grasped by, for example, a grab bucket.
  • brazilian calajas iron ore with a high water content was used as the hydrous rose ore using the iron container C shown in FIG. 5, and the water was added to the iron container C in a conical shape and deposited. Then, the central part of the conical sedimentary layer is grabbed and lifted, and a dent is made there with a scoop to generate a puddle (equivalent to a suspended spring), and the polymer water absorption in the puddle A granular (bead) sodium polyacrylic salt resin was added as an agent.
  • the results of this experiment are shown in Table 2. According to this, it has been found that simply adding a polymer water-absorbing agent makes the polymer water-absorbing agent after the addition and water absorption a dull form (lumps), which hinders handling.
  • the polymer water-absorbing agent refers to a drug that swells by taking in water several hundred times or more of its own weight.
  • a polymer water-absorbing agent water-absorbing polymer polymer
  • about 200 times is the practical limit for suspended spring water in which powder particles and spring water are in a suspended state.
  • the swelling rate of the added polymer water-absorbing agent is small, the swollen body is likely to jump and is expected to scatter outside the conveyor when transported by a belt conveyor or the like, so that the swelling rate is 30 times or more. It is preferable to make it.
  • the amount of the water adsorbent (water-absorbing polymer) added to the suspended spring water Wm should be approximately 200 times in terms of the swelling rate. Addition amount exceeding 0.5 mass%. When the swelling ratio is 30 times or more, the amount of the moisture adsorbent added is within 3.3 mass%. As shown in Table 2, if the swelling rate is within 100 times, the amount of water adsorbent added is 1.0 mass% or more, and if the swelling rate is within 50 times, the amount of water adsorbent added is 2.0 mass%. It can be said that the following is preferable.
  • Carajas iron ore which is an iron ore that separates moisture and bulk material during the import process and causes spring water to accumulate at the bottom of the hold when it arrives in Japan.
  • the amount of the polymer water-absorbing agent relative to the amount of the suspended spring is estimated from the capacity of the grab bucket 5 because the suspended spring Wm is generated in the depression 4 after being grabbed by the grab bucket. This was done by determining the amount of molecular absorbent. Similarly, the determination of the numerical value 7 or more indicating the ratio of the weight of the rose to the suspended spring water as the weight ratio was also estimated from the grab bucket capacity.
  • the polymer water-absorbing agent may gather together to form a large lump only by repeated lifting and lifting and dropping, and it is easy to clog with a hopper, and even if the polymer water-absorbing agent can be dispersed, the swollen body is likely to jump. Because there is a fear of falling from the belt conveyor during transportation, the ratio of the powdered ore weight to the weight of the polymer water-absorbing agent that absorbed suspended spring water is set to 7 or more. In addition, a swollen body (polymer water-absorbing agent) that absorbed the suspended spring water Wm was further dispersed.
  • Fig. 8 When the iron ore in the state shown in a) is unloaded from the carrier, the amount of the polyacrylate resin granule, which is a polymer water-absorbing agent, corresponding to 1.0 to 2.0 mass% with respect to the suspended spring water was added.
  • the amount of the polymeric water-absorbing agent relative to the amount of the suspended spring water Wm is estimated from the excavation amount based on the bucket capacity and the excavation depth because the suspended spring water Wm is generated in the depression after excavation with the bucket. This was done by determining the amount of polymer absorbent to be added.
  • the numerical value shown as a weight ratio described later was estimated from the excavation amount based on the bucket capacity and the excavation depth.
  • the polymeric water-absorbing agent may gather together to form a large lump, which is easily clogged with a hopper, and even if the polymeric water-absorbing agent can be dispersed, the swollen body Because it is easy to jump and there is a fear of falling from the belt conveyor during transportation, by setting the ratio of the fine ore weight to the weight of the polymer water absorbent that absorbed the suspended spring water to 7 or more, The swelling body (polymer water-absorbing agent) that absorbed the suspended spring water Wm could be further dispersed in the rose.
  • the amount of the polymer absorbent relative to the amount of suspended spring water Wm is estimated from the amount of excavation based on the bucket capacity and excavation depth, since suspended spring water is generated in the depression after excavating with the bucket. This was done by determining the amount of polymeric absorbent to be used. Similarly, the numerical value shown as the weight ratio was estimated from the excavation amount based on the bucket capacity and the excavation depth.
  • Carajas iron ore which is an iron ore that becomes a state where spring water is accumulated at the bottom of the cargo hold when water and bulk are separated during the import process, will be explained.
  • the numerical value 7 which is a ratio of the weight of the loose material to the weight of the suspended spring Wm including the polymer flocculant, expressed as a weight ratio, also obtains the amount of depression from the excavation amount based on the bucket capacity and the excavation depth. The amount of suspended spring water Wm generated in this depression was estimated.
  • the amount of depression is calculated from the excavation amount based on the bucket capacity and the excavation depth.
  • the amount of suspended spring water Wm generated in the depression was estimated and the amount of the polymer flocculant to be added was determined.
  • the numerical value indicating the ratio of the weight of the bulk material to the weight of the polymer flocculant that absorbed suspended spring water is also the amount of excavation based on the bucket capacity and the excavation depth. It was estimated from.
  • Fig. 9 When the iron ore in the state shown in a) is unloaded from the carrier ship, the acrylamide polymer flocculant is added to the suspended spring water in such an amount that the chemical concentration is equivalent to 0.6 mass%, and then More than 1.0 to 2.0 mass% of a polyacrylate resin granule, which is a polymer water-absorbing agent, was added to the amount of suspended spring water with a fine ore ratio of less than 7.
  • the amount of the polymer water-absorbing agent and the polymer flocculant added to the amount of the suspended spring water Wm is based on the bucket capacity and the excavation depth because the suspended spring water Wm is generated in the depression after excavating with the bucket. It was estimated from the amount of excavation, and was performed by determining the amount of drug to be added.
  • the amount of the polymer water-absorbing agent and the polymer flocculant added to the amount of the suspended spring water Wm depends on the bucket capacity and the excavation depth because the suspended spring water Wm is generated in the depression after excavating with the grab bucket. It was estimated by the amount of excavation based on the method, and the amount of drug to be added was determined.
  • the roses around the suspended spring water Wm ( Calajas iron ore) was added to the suspended spring water Wm and stirred for 30-80 seconds using a grab bucket. That is, after each operation of grabbing roses (polymer flocculant) and opening and dropping with a grab bucket was repeated, the unloading operation was performed.
  • the above-described technique for unloading roses according to the present invention can be applied to the unloading work of loose objects such as gravel, sand, and grains in addition to the exemplified hydrous ore and coal.

Abstract

 含水バラ物の荷揚げの際に不可避的に発生する湧水ならびに懸濁湧水の効果的な処理方法を提案する。 鉱石や石炭の如き含水バラ物を貨物船から橋形クレーンやアンローダのグラブバケット(5)を使って荷揚げするに当たり、荷揚げ作業時に、湧水中に粉体粒子が懸濁した状態の懸濁湧水(Wm)が生成した場合に、該懸濁湧水(Wm)に高分子凝集剤を添加することにより、懸濁湧水(Wm)の湧水と粉体粒子との凝結・凝集を起こさせてからバラ物とともに荷揚げする。

Description

含水バラ物の荷揚げ方法
 本発明は、水分を含む鉱石や石炭等のバラ物を運搬船やはしけ(艀)などから橋形クレーンやアンローダまたは連続式アンローダのバケットによって、間欠的もしくは連続的に荷揚げする時、湧水が発生することによって起こる荷揚げ障害を解消するために開発された含水バラ物の荷揚げ方法に関するものである。
 鉱石や石炭などのバラ物は、大部分が外国から輸入されており、そのほとんどが船舶によって輸送されている。これらのバラ物、特に鉱石や石炭は、近年、高水分のものが多く、その水分は輸送過程においてバラ物から分離して船倉底部に溜まった状態になる。その結果、アンローダ等による荷揚げ過程の中盤或いは後半において、荷揚げのためのグラブバケットによる掴み取り等の後にバラ物に窪みができ、そこに粉体粒子と湧水とが混濁した状態の懸濁湧水を生成して溜まるだけではなく、やがてスラリー状態となって荷揚げ障害になるという問題があった。この問題は、バケットコンベア等からなる連続式アンローダのバケットによる荷揚げ過程でも同様に発生する。
 また、船舶からの荷揚げ中に豪雨等が発生したときは、荷揚げを継続すると否とにかかわらず、バラ物が高水分となり、雨水が船倉底部に溜まった状態となる点でも同様な荷揚げ障害現象を生じることになる。
 このことは、雨季を持つ国においても同様であり、船舶を含め橋形クレーンやアンローダを覆う屋根を備えないと、荷揚げ中のバラ物が高水分となり、荷揚げの継続に伴ってやがてスラリー状態となり、荷揚げ障害に至るという問題があった。
 このような問題に対し、従来、特許文献1、2に開示されているような方法、即ち、湧水が発生したときは一旦その湧水を排水設備(吸引機)を介して汲み揚げ、その後、荷揚げを再開するという方法などが提案されてきた。
特開昭60-204526号公報 実公昭50-13339号公報
 しかしながら、特許文献1、2で提案している汲み揚げ排水方法は、湧水を汲み揚げるために、船舶を排水(汲み揚げ)設備をもつ場所までその都度移動させるとか、あるいは、排水(汲み揚げ)設備自体を船倉間に配設して各船倉から湧水を汲み揚げることなどから、設備コストの増加に加え、排水に時間がかかるという問題があった。
 とりわけ、湧水は、荷揚げ途中のグラブバケットによるバラ物の掴み取り後、または、連続式アンローダのバケットによるバラ物の掘削後に生ずる窪みに発現することから、上記のような湧水の汲み揚げ作業をたびたび繰り返す場合は、荷揚げ作業の中断、再開の繰り返を招いて、作業効率が大幅に低下するという問題があった。特に、近年では、鉱石や石炭は劣悪なもの、例えば、高水分のものが多くを占めるようになり、こうした問題がより顕在化している。
 さらに、特許文献1、2で提案している従来技術は、湧水のみを汲み揚げることを想定しているが、グラブバケットによるバラ物の掴み取り後、または、バケットによるバラ物の掘削後に生じる窪み部分には、粒径の大きいバラ物から分離した粒径の小さい粉体粒子が流入して泥状(スラリー)化していることが多く、この場合、従来の揚水機では汲み揚げが困難で荷揚げ作業の決定的な障害になっていた。
 そこで、本発明の目的は、含水バラ物の荷揚げの際に不可避的に発生する湧水ならびに懸濁湧水の効果的な処理方法を提案することにある。
 従来技術が抱えている上述した問題を克服することができ、かつ上記目的を達成する上で有効な解決手段として、本発明は、鉱石や石炭の如き含水バラ物を貨物船から橋形クレーンやアンローダのグラブバケット、または、連続式アンローダのバケットを使って間欠的もしくは連続的に荷揚げするに当たり、荷揚げ作業時に、湧水中に粉体粒子が懸濁した状態の懸濁湧水が生成した場合に、その懸濁湧水に対して高分子凝集剤および水分吸着剤の少なくとも一方を添加することにより、懸濁湧水の湧水と粉体粒子の凝結、凝集および/または懸濁湧水の少なくとも湧水の吸着を生じさせてから、バラ物とともに荷揚げすることを特徴とする含水バラ物の荷揚げ方法を提案する。
 上記本発明に係る荷揚げ方法においては、
(1)前記懸濁湧水に対して高分子凝集剤だけを添加して湧水と粉体粒子の凝結・凝集を起こさせること、または、前記懸濁湧水に対して水分吸着剤だけを添加することにより、水分吸着剤に少なくとも湧水を吸着させることもできる。
 また、本発明方法では、
(2)前記水分吸着剤として、高分子吸水剤を用いること、
(3)前記水分吸着剤は、懸濁湧水量の0.5超~3.3mass%相当量を添加すること、
(4)前記水分吸着剤は、懸濁湧水量の1.0~2.0mass%相当量を添加すること、
が好ましい。
 なお、
(5)前記高分子凝集剤は、懸濁湧水量の0.4~1.0mass%相当量を添加すること、
(6)前記懸濁湧水の発生位置に高分子凝集剤を添加すると共に、他の部位のバラ物を混ぜて攪拌することにより、凝結粒子、凝集粒子を生成させて荷揚げすること、
(7)前記懸濁湧水の発生位置に水分吸着剤を添加すると共に、他の部位のバラ物を混ぜて攪拌してから荷揚げすること、
(8)前記懸濁湧水の発生位置に高分子凝集剤および水分吸着剤を添加して、高分子凝集剤により、凝結粒子、凝集粒子を生成させる一方で、凝結粒子、凝集粒子の生成がない前記懸濁湧水の残存部分の少なくとも湧水を水分吸着剤に吸着させてから荷揚げすること、
(9)前記懸濁湧水の発生位置に水分吸着剤を添加し、前記懸濁湧水中の少なくとも湧水を減じた後、高分子凝集剤の添加により、凝結粒子、凝集粒子を生成させて荷揚げすること、
(10)バラ物重量と懸濁湧水重量との比率で表わされる粉鉱比(-)を7以上とすること、
が、より好ましい解決手段を提供できるものと考えられる。
 前記のような構成を有する本発明方法を採用すれば、貨物船の船倉内で荷揚げの途中に懸濁湧水が発生した場合でも、高分子凝集剤および水分吸着剤の少なくとも一方を添加することにより、湧水と粉体粒子の凝結・凝集をもたらし、および/または少なくとも湧水を該水分吸着剤に吸着(吸水・保水)させてから、固形物(湧水、高分子凝集剤、水分吸着剤、粉体粒子)を、他のバラ物とともに一緒に荷揚げするようにしたため、懸濁湧水のみの汲み揚げ作業を行なう必要がなくなる。
 そのため、従来のように荷揚げ作業の中断を招くことなく、連続的な荷揚げ作業を行なうことができるので、荷揚げ作業効率が著しく向上することになる。
 なおここで、高分子凝集剤だけを用いる場合は、高分子凝集剤と、鉱石の粉体粒子とが反応してサラサラの粒子となるため、付着性をもって原料を混ざり難くするなどの悪影響を排除できる。また、使用量が少なくて済むため、コストが低いなどの利点がある。
 この一方で、高分子凝集剤には、含水率に限りがあることに加え、粉体粒子を絡めとり、中に水を取り込むため、バラ物自体の親水性の影響を受け易く、バラ物の種類によって、薬剤使用量を増減させることが必要になる不利がある。
 これに対し、水分吸着剤だけを用いる場合は、薬剤量を増せば水をいくらでも吸着できるので、吸水量に上限がない利点がある。
 しかるに、単価が高く、使用量が多いためコスト高になる他、たとえば高分子吸着剤は、コンベアベルト上で跳ねたり、粉体粒子間に隙間や水の偏在箇所を作ることから、次工程や搬送ラインに悪影響がでるという不利がある。
 ところで、高分子凝集剤と水分吸着剤を併用したときは、高分子凝集剤で取り込めない範囲の水分を水分吸着剤に吸着させることでバラ物の含水量の上限を高めることができ、水分吸着剤のみを使用する場合に比してコストを低下させることができ、そして、水分吸着剤のみの使用に比して、次工程や搬送ラインへの影響を小さくできる利点がある。
貨物船内のバラ物をアンローダのグラブバケットを使って荷揚げする様子を示す説明図である。 貨物船内のバラ物を連続式アンローダのバケットを使って荷揚げする様子を示す説明図である。 懸濁湧水に高分子凝集剤または水分吸着剤を添加したときの作用を説明する概念図である。 懸濁湧水に高分子凝集剤および水分吸着剤の双方を添加したときの作用を説明する概念図である。 実験容器の略線図である。 本発明方法に従うアンローダのグラブバケットを使う荷揚げ方法の説明図である。 連続式アンローダの、船倉内に挿入される部分の名称を示す図である。 本発明方法に従う連続式アンローダのバケットを使う荷揚げ方法の説明図である。 本発明方法に従う連続式アンローダのバケットを使う好適な荷揚げ方法の説明図である。 アンローダのグラブバケットを用いる本発明の他の好適方法の説明図である。
 以下に本発明の実施形態を図面に示すところに基いて説明する。
 図1に示すところにおいて、貨物船の船倉(荷室)1に収容されているバラ物2と呼ばる鉱石や石炭(以下、「鉱石類」とも言う)を橋形クレーンやアンローダのグラブバケットを使って荷揚げする場合、一般に、鉱石類堆積層の下層部分には湧水からなる水溜り3が発生する。バラ物2の荷揚げ作業が進み、中層~下層部分に達すると、バラ物堆積層の一部にはグラブバケットによる掴み出し後に窪み4が生じ、その窪み4内に、主に礫状の鉱石類から分離した粉体粒子が分散して懸濁した状態の懸濁湧水Wmが溜まることが知られている。
 船倉内のバラ物堆積層に前記懸濁湧水Wmが発生すると、荷揚げが進むと共に次第にスラリー化して、アンローダのグラブバケット5などでの荷揚げが困難になる。しかも、一旦、スラリー化したものは、たとえグラブバケット5で掴み得たとしても、アンローダ機内の図示を省略したホッパーやベルトコンベア部分で流出してしまい、アンローダの運転が継続できなくなる。特に、船倉1の底部ではこのような状態になることが多く、荷揚げ作業をしばしば中断して、湧水を汲み揚げることが必要になる。この問題はグラブバケットによる荷揚げに代わり、近年使用されている連続式アンローダのバケットによる荷揚げを行なう場合にも同様である。
 図2、7に示すように、連続式アンローダでは船倉1内に垂直支持ビーム部が挿入され、多数のバケット5による連続掘削で荷揚げが行われる。バケット5はチェーンを介して連結されて、油圧シリンダー機構によりスプロケット間の長さ調整によって、船倉1への挿入長さ、掻き取り長さ等の調整ができるようになっており、駆動リンク部では掘削深さ調整が行えるようになっている。また、別途の駆動装置による駆動で、駆動リンク部で掘削量を調整しながらバケット5が、図では反時計回りに回転され、該バケット5により原料表面を掘削して高い作業能率での荷揚げを行なうことができる。掘削したバラ物はバケットエレベータで船外に荷揚げされる。
 バラ物堆積層の下層部分には輸送過程においてバラ物から分離して船倉底部に溜まった水溜り3、あるいは雨水により高水分化して溜まった水溜り3が発生する。連続式アンローダによる荷揚げ作業が進み、中層~下層部分に達すると、バラ物堆積層の一部にはバケットによる掘削後に窪み4が生じ、その窪み4内に、懸濁した状態の懸濁湧水Wmが発生する。荷揚げが進むと共に次第にスラリー化して、連続式アンローダのバケット5によっても荷揚げが困難になる。
 即ち、一旦、スラリー化したものは、グラブバケットと同様にバケット5により掘削し得たとしても、連続式アンローダ機内のホッパーやベルトコンベア部分で流出してしまい、連続式アンローダであってもその運転が継続できなくなる。
 そこで本発明では、前記懸濁湧水Wmが発生したとき、前記窪み4内の懸濁湧水Wmに対し、高分子凝集剤および、高分子吸水剤のような水分吸着剤の少なくとも一方を所定量添加し、たとえば、高分子凝集剤で該懸濁湧水(湧水+粉体粒子)中の粉体粒子を絡めとって凝結・凝集させて粒体化させ、また、懸濁湧水Wmを水分吸着剤に吸着(吸水および保水)させた状態でバラ物とともに荷揚げすることにより、荷揚げ作業効率の向上を図るようにした。
 即ち、本発明方法に従えば、鉱石類等のバラ物2と共に、凝結・凝集された粒状体および/または懸濁湧水Wmを吸着した水分吸着剤を同時に荷揚げすることができる。
 図3(a)~(c)は、粉体粒子Pを含む懸濁湧水Wm中に高分子凝集剤Aを添加した状態を示すものである。この添加により、懸濁湧水Wmは図3(b)に示すように、粉体粒子Pの一部が高分子凝集剤Aの分子鎖が枝状に広がったポリマーに絡めとられるようにして凝結し、まず、粒状の小さい凝結粒子6の幾らかを形成する。次いで、時間の経過(荷揚げの進捗)と共に、その凝結粒子6の複数個がやがて凝集(集合)して、図3(c)に示すように、粒径の大きな凝集粒子7へと成長する。
 この段階になると、懸濁湧水Wmは固形物状態となり、グラブバケット5等によって容易に掴み取り、掻き取り等することができるようになって、懸濁湧水Wm自体もバラ物と共に荷揚げされることになる。
 図3(d)、(e)は、粉体粒子Pを含む懸濁湧水Wm中に水分吸着剤Bを添加した状態を示すものである。ここでは、懸濁湧水Wmの水は図3(e)に示すように、粉体粒子Pとともに水分吸着剤Bの架橋構造の中に閉じ込められて膨潤した形で粒状化する。
 即ち、懸濁湧水Wmは、水分吸着剤B中に吸収されて固形物状態(膨潤状態)となるので、その後は、グラブバケット5により、容易に掴み取ることができるようになって、この懸濁湧水Wm自体もバラ物2と共に荷揚げできるようになる。同様にして、連続式アンローダのバケットでも、懸濁湧水Wmをバラ物2とともに掘削できるようになる。
 本発明の他の実施形態では、前記懸濁湧水Wmに、高分子凝集剤および水分吸着剤の少なくとも一方を添加すると共に、窪み4近傍あるいはその他の部位にある礫状のバラ物2をグラブバケット5を使って加えて、できればさらに攪拌(グラブバケットによる掴み揚げと開放落下とを繰返す操作を)することが、前述の固形物化を促進し、荷揚げ作業の効率化を図る上で望ましい。
 なお、連続式アンローダでは、前記懸濁湧水Wmに、高分子凝集剤および水分吸着剤の少なくとも一方を添加すると共に、バケット掘削により発生した窪み4近傍あるいはその他の部位にある礫状のバラ物2をバケットを使って掻き寄せ、できればさらに攪拌(バケットによる掻き寄せ方向の切り替えを繰返す操作を)することが、前述の固形物化を促進し、荷揚げ作業の効率化を図る上で望ましい。
 本発明で使用する水溶性の高分子凝集剤としては、懸濁湧水にこの薬剤を添加することによって、高分子のもつ静電気力および水素結合によって粉体に吸着活性を生じさせ、粉体間架橋作用を起すことにより、固粒化構造を形成して、凝結粒子を形成させる類のものが使用可能である。例えば、粉末、顆粒状または液状の有機系凝集剤であるポリアクリルアミド系(アクリルアミドとアクリル酸ナトリウムを共重合したもの)、ポリビニルアミジン系、両性高分子系の凝集剤などは、凝結作用のみならず、凝集作用を発揮するので好ましい。勿論、無機系凝集剤と混ぜて使用してもよい。
 また、アクリル酸カチオンポリマー、アクリルアミド系カチオンポリマー、メタクリル酸系ポリマー、メタクリル酸アミノエステルカチオンポリマー、アミジンポリマーなどを使用することもできる。
 また、水分吸着剤としては、たとえば、高吸水性樹脂(Super Absorbent Polymer、略してSAP)が使用でき、水分吸収速度が速く、かつ高い吸水性と高い保水性とを具え、しかも一度吸水した水分は外部から多少の力がかかっても水分をほとんど放出しない薬剤、例えば、ポリアクリル酸塩(ナトリウム、カリウム)樹脂などの高分子吸水剤が好適である。この高分子吸水剤は、水分吸収後に、分子構造内に水分を吸着しても粘着性を示さない物性を有し、この意味において、無機系のシリカゲル、活性アルミナ、ゼオライト等も併せて用いることがより好ましい。この水分吸着剤としては、粉状、顆粒状のものが用いられる。
 なお、水分吸着剤として粉状、顆粒状のものを用いる理由は、湧水との接触面積を高め、水分吸収速度を速めるためであり、使用時の飛散防止のため微粉状のものは避け、粒径が0.5mm以上、10mm未満のものとする。より好ましくは1mm以上、5mm以下のものを使用する。
 即ち、粒径が0.5mm未満では使用時の飛散を有効に防止することができず、一方、10mm以上では、湧水との接触表面積が相対的に小さくなって、水分吸収速度が低下する傾向にあり、水分の吸収に時間がかかりすぎて、短時間のうちに十分な効果を得ることができない。従って、より好ましくは1mm以上、5mm以下とする。
 ところで、懸濁湧水Wm内への高分子凝集剤と、水分吸着剤としての高分子吸水剤との両者を添加する場合は、図4(a)~(c)に示すように、それらを同時に添加すると、図4(d)~(f)に示すように、高分子凝集剤を先に添加し、高分子吸水剤を遅れて添加するとの別なく、最終的には同様の効果が得られることになる。
 つまり、図4(a)~(c)に示すところでは、高分子凝集剤と、該凝集剤だけでは対応できない水に対処するための高分子吸水剤とを同時に添加して攪拌することで、粉体粒子と水分子との高分子ポリマーによる絡めとりが行われるとともに、余剰の水分子等の高分子吸水剤による吸着が行われ、最終的には図4(c)に示すように、凝集粒子と、膨潤した高分子吸水剤とが塊状となる。
 また、図4(d)~(f)に示すところでは、懸濁湧水Wm内へ、はじめに高分子凝集剤の一例としての、クリサットC-333L(栗田工業(株)登録商標)を添加し、攪拌して粉体粒子と水分子との凝結をもたらし、その後、高分子吸水剤の一例としての、クリサットC-500L(栗田工業(株)登録商標)を添加して攪拌した。
 その結果、図4(f)に示すように、凝集粒子と、膨潤した高分子吸水剤が塊状に一体化した、図4(c)に示すものと同様の塊状体が得られた。
 次に、本発明の作用効果を確認するために行なった実験について説明する。
 この実験は、図5に示す鉄製容器Cを用いて行なった。
 含水バラ物鉱石として水分の多いブラジル産カラジャス鉄鉱石を使用し、上記鉄製容器C中に円錐状に装入し堆積させて水を加え、次いで、その円錐状堆積層のちょうど中央部分を掴み揚げ、そこに窪みを作って水溜り(懸濁湧水相当)が発生した段階で、水溶性のポリアクリルアミド系高分子凝集剤を加えた。
 この実験では、カラジャス鉄鉱石に単にポリアクリルアミド系高分子凝集剤を添加しただけでも、粉体粒子と水分子を高分子ポリマーで絡めとる作用が生じたが、それはまだ小さく何らかの処理が必要であることが判明した。そこで、スコップによって中央窪み部分に生じた前記水溜り部分を掻き混ぜる攪拌を行なった。なお、この掻き混ぜ操作は、実機でのグラブバケットによる掴み揚げ、開放落下の繰り返し操作を模擬したものである。
 この実験の結果を表1に示す。この実験結果から判るように、攪拌を伴わない、高分子凝集剤等の単なる添加は効果が少ない。一方、攪拌(30~80sec)を伴うとき、とくに、バラ物重量に対する高分子凝集剤や水分吸着剤を含む懸濁湧水重量の割合を示す粉鉱比(-)は、7以上となるようにする。なお、このとき、懸濁湧水には、0.4~1.0mass%に相当する量の高分子凝集剤を添加すると、よりよい効果が得られた。
 なお、懸濁湧水中に高分子凝集剤を添加した上で、さらにそこに別のバラ物であるカラジャス鉄鉱石を加えて混ぜ合わせると添加の効果がさらに向上することもわかった。
 表1において、重量比として示される数値、即ち、懸濁湧水中に含まれるバラ物の重量の割合が、7以上であれば、粉体粒子の凝結・凝集が十分に進行して凝集粒子を確実に得ることができる。なお、凝集粒子とは、例えばグラブバケット等で掴める程度の強度をもつ凝集体となったものである。

Figure JPOXMLDOC01-appb-T000001
 さらに、本発明の作用効果を確認するために行なった他の実験について説明する。
 この実験は、図5に示す鉄製容器Cを用いて、含水バラ物鉱石として水分の多いブラジル産カラジャス鉄鉱石を使用し、上記鉄製容器C中に円錐状に装入し堆積させて水を加え、次いで、その円錐状堆積層のちょうど中央部分を、掴み揚げて、そこにスコップを使って窪みを作って水溜り(懸濁湧水相当)を発生させ、そして、水溜りに前記高分子吸水剤として顆粒状(ビーズ)のポリアクリル塩ナトリウム樹脂を加えた。
 この実験の結果を表2に示す。これによれば、単に高分子吸水剤を添加するだけでは、添加、吸水後の高分子吸水剤がだま状(塊状)となり、取扱いに支障をきたすことが判明した。ここで、高分子吸水剤は、自重の数百倍以上の水分を取り込んで膨潤する薬剤をいう。
 例えば、高分子吸水剤(吸水性高分子ポリマー)は、純水中では約400倍に膨潤する特性をもっている。但し、本発明のように、粉体粒子と湧水が懸濁状態にある懸濁湧水では約200倍程度が実用上の限界であることを確認している。なお、添加した高分子吸水剤の膨潤率が小さい時、その膨潤体は跳ねやすく、ベルトコンベアなどによる輸送時にコンベア外へ飛散することが予想されるため、膨潤率にして30倍以上となるようにすることが好ましい。
 懸濁湧水Wmに対する上記水分吸着剤(吸水性高分子ポリマー)の添加量は、前記膨潤率に換算して約200倍以内にするには、懸濁湧水に対する該水分吸着剤の量を0.5mass%超の添加量にする。また、膨潤率30倍以上にする場合、該水分吸着剤の添加量は3.3mass%以内とする。
 表2に示したように、膨潤率が100倍以内なら、水分吸着剤の添加量は1.0mass%以上が、そして、膨潤率50倍以内では、水分吸着剤の添加量は2.0mass%以下が好ましいと言える。
Figure JPOXMLDOC01-appb-T000002
 前述したように、この実験では、カラジャス鉄鉱石にポリアクリル酸ナトリウム樹脂顆粒を単に添加しただけでも、だま状(塊状)にはなるが、粉体粒子入り懸濁湧水の吸着作用としては弱く、それ故にさらに何らかの処理を加える必要のあることが判明した。そこで、この実験においては、中央窪み4部分に生じた前記水溜り部分をスコップによって掻き混ぜる攪拌操作を行なった。なお、この掻き混ぜの操作は、実機でのグラブバケットによる掴み揚げ、開放落下の繰り返し操作、あるいは、連続式アンローダのバケットによる掻き寄せ方向の切り替えを繰返す操作による攪拌操作を模擬したものである。
 輸入過程において水分とバラ物とが分離して国内到着時に船倉底部に湧水が溜まった状態になる鉄鉱石であるカラジャス鉄鉱石を例にとって説明する。
 図6(a)に示す状態にある鉄鉱石の荷揚げにおいて、水分値が7.9mass%~24.7mass%のカラジャス鉄鉱石を運搬船から荷揚げする際、アクリルアミド系高分子凝集剤を懸濁湧水量に対し、0.6mass%に相当する薬液濃度になるような量を添加した。この懸濁湧水Wmの量に対する高分子凝集剤の量は、懸濁湧水Wmがグラブバケットで掴み取った後に発生するため、グラブバケット容量から推定し、添加すべき高分子凝集剤の量を決定するという方法で行なった。同様に、重量比として示される、バラ物重量と懸濁湧水重量との比である粉鉱比:7以上の判定も、グラブバケット容量から推定して行った。
 次に、船倉内の鉱石堆積層に生じた窪み部分に発生した懸濁湧水Wmに、高分子凝集剤を添加した後、その懸濁湧水Wmの周囲のバラ物(カラジャス鉄鉱石)をその懸濁湧水Wm中に、懸濁湧水Wmの約10倍相当を加えてグラブバケットを使って30~80秒掻き混ぜた。即ち、グラブバケット5にてバラ物(高分子凝集剤)の掴み揚げと開放落下の各操作を繰り返した後に、荷揚げの作業を行なった。
 その結果、懸濁湧水Wmに高分子凝集剤を加えてかき混ぜることによって、懸濁湧水Wmの粉体粒子と湧水を高分子ポリマーによって絡めとる作用が促進され、ポリマーによって凝結した粒子がさらに大きな塊(凝集粒子)を作って、荷揚げが可能になった。
 特に、従来、船底に多量の湧水が残っていたが、上記の処理によって残湧水も少なくなった。以上の結果から、従来のカラジャス鉄鉱石の輸送では、カラジャス鉄鉱石自体に水分が多いため、陸上への荷揚げに際しては、湧水が多く発生するため、間欠的に懸濁湧水Wmの除去(排水)作業を行ないつつ実施していたものが、本発明に適合する上記の荷揚げ方法を採用すると、湧水の発生がない時の効率を100%とした時、排水作業を行なう荷揚げでは、65%の効率しか出せなかったものが、約92%の効率を達成することができた。
 図6(a)に示す状態にあるバラ物2の一例であるカラジャス鉄鉱石を運搬船の船倉1から荷揚げする際、実施例1の高分子凝集剤に代えて、高分子吸水剤であるポリアクリル酸塩樹脂顆粒を懸濁湧水量に対し、1.0~2.0mass%に相当する量を添加した。
 この懸濁湧水の量に対する高分子吸水剤の量は、懸濁湧水Wmが、グラブバケットで掴み取った後の窪み4に発生するため、グラブバケット5容量から推定し、添加すべき高分子吸収剤の量を決定するという方法で行なった。同様に、重量比としての、懸濁湧水量に対するバラ物の重量の比率を示す数値7以上の判定もグラブバケット容量から推定して行った。
 次に、船倉内の鉱石堆積層に生じた窪み4部分に発生した懸濁湧水Wmに、高分子吸水剤を添加した後、その懸濁湧水Wmの周囲のバラ物2(カラジャス鉄鉱石)をその懸濁湧水Wm中に投入し、グラブバケット5を使って掻き混ぜた。即ち、グラブバケット5にてバラ物の掴み揚げと開放落下の各操作を繰り返した後に、荷揚げの作業を繰り返した。
 その結果、懸濁湧水Wmに高分子吸水剤を加えてかき混ぜることによって、懸濁湧水Wm中の粉体と湧水分子を高分子吸着剤に吸着する作用が促進され、荷揚げが容易になった。
 なお、掴み揚げと開放落下の繰り返しのみでは、高分子吸水剤どうしが集合して大きな塊を作る場合があり、ホッパーで詰り易く、また、高分子吸水剤が分散できても膨潤体は跳ねやすく、輸送中のベルトコンベアからの落下の憂いがあるため、懸濁湧水を吸水した高分子吸水剤の重量に対するバラ物重量の比を示す粉鉱比を7以上とすることにより、バラ物中に、懸濁湧水Wmを吸水した膨潤体(高分子吸水剤)をより分散させた。
 これにより、従来は、船底に多量の水が残っていたが、上記の処理によって残湧水も少なくなった。
 以上の結果から、カラジャス鉄鉱石の輸送では、カラジャス鉄鉱石自体の水分が多いため、陸上への荷揚げに際しては、湧水が多く、従来は、懸濁湧水Wmの除去(排水)を行ないつつ実施していたものを、本発明に適合する上記の荷揚げ方法を採用すると、湧水の発生がない場合の効率を100%とした時、従来の排水方法での荷揚げでは65%の効率しか出せなかったものが、約90%の効率を達成することができた。
 豪雨時に、連続式アンローダによる荷揚げを継続し、水分過多となった鉄鉱石を例にとって以下に説明する。
 豪雨中も図7に示すような連続式アンローダのバケットによる荷揚げを継続し、荷揚げ作業が進み、荷揚げ後半の下層部分に達する段階で豪雨による高水分化により湧水が観察され始めた図8(a)に示す状態にある鉄鉱石を、運搬船から荷揚げする際、高分子吸水剤であるポリアクリル酸塩樹脂顆粒を、懸濁湧水量に対し、1.0~2.0mass%に相当する量を添加した。
 この懸濁湧水Wmの量に対する高分子吸水剤の量は、懸濁湧水Wmが、バケットで掘削した後の窪みに発生するため、バケット容量と掘削深さに基づく掘削量から推定し、添加すべき高分子吸収剤の量を決定するという方法で行なった。同様に、後述する重量比として示す数値もバケット容量と掘削深さに基づく掘削量から推定して行った。
 次に、船倉1内のバラ物堆積層に生じた窪み部分に発生した懸濁湧水Wmに、高分子吸水剤を添加した後、その懸濁湧水周囲のバラ物をバケットを使ってかき寄せその懸濁湧水中に投入し、バケットを使って掻き混ぜた。
 即ち、連続式アンローダのバケットにて掻き寄せ方向の切り替えを繰返す操作による攪拌操作によりバラ物と高分子吸収剤の攪拌を繰り返した後に、荷揚げの作業を継続した。その結果、懸濁湧水Wmに高分子吸水剤を加えてかき混ぜることによって、懸濁湧水中の粉体粒子と湧水分子の、高分吸水剤による吸着作用が促進され、荷揚げが容易になった。
 なお、バケットの掻き寄せ方向の切り替えを繰返す攪拌のみでは、高分子吸水剤どうしが集合して大きな塊を作る場合があり、ホッパーで詰り易く、また、高分子吸水剤が分散できても膨潤体は跳ねやすく、輸送中のベルトコンベアからの落下の憂いがあるため、懸濁湧水を吸水した高分子吸水剤の重量に対するバラ物重量の比率を示す粉鉱比を7以上とすることにより、バラ物中に、懸濁湧水Wmを吸水した膨潤体(高分子吸水剤)をより分散させることができた。
 荷揚げ途中に、湧水が観察されたときは、従来は、船底に多量の水が残っていたが、上記の処理によって残湧水も少なくなった。以上の結果から、従来は、豪雨中での荷揚げを控えていた。しかるに、陸上への荷揚げに際しては、本発明に適合する上記の荷揚げ方法を採用すると、通常時の効率を100%とした時、長時間の豪雨時の荷揚げでも、約85%の効率を達成することができた。
 豪雨時に、連続式アンローダによる荷揚げを継続し、水分過多となった石炭を例にとって以下に説明する。
 豪雨中も図7に示すような連続式アンロータのバケットによる荷揚げを継続し、荷揚げ作業が進み、荷揚げ後半の下層部分に達する段階で豪雨による高水分化により湧水が観察され始めた、図9(a)に示す状態にある石炭を、実施例1、2、3の鉄鉱石の荷揚げと同様に、運搬船から荷揚げする際、高分子吸水剤であるポリアクリル酸塩樹脂顆粒を懸濁湧水量に対し、1.0~2.0mass%に相当する量を添加した。
 この懸濁湧水Wmの量に対する高分子吸収剤の量は、懸濁湧水が、バケットで掘削した後の窪みに発生するため、バケット容量と掘削深さに基づく掘削量から推定し、添加すべき高分子吸収剤の量を決定するという方法で行なった。同様に、重量比として示される数値も、バケット容量と掘削深さに基づく掘削量から推定して行った。
 次に、船倉内のバラ物堆積層に生じた窪み部分に発生した懸濁湧水Wmに、高分子吸水剤を添加した後、その懸濁湧水周囲の石炭をバケットを使ってその懸濁湧水中に掻き寄せ、バケットを使って掻き混ぜた。即ち、連続式アンローダのバケットにて掻き寄せ方向の切り替えを繰返す操作による攪拌操作により石炭と高分子吸水剤の攪拌を繰り返した後に、荷揚げの作業を継続した。
 その結果、懸濁湧水Wmに高分子吸水剤を加えてかき混ぜることによって、懸濁湧水中の粉体粒子と湧水分子を高分子吸水剤によって吸着する作用が促進され、荷揚げが容易になったことが確認できた。
 なお、石炭でも鉄鉱石と同様に掻き寄せ方向の切り替えを繰返す攪拌のみでは、高分子吸水剤どうしが集合して大きな塊を作る場合があり、ホッパーで詰り易く、また、高分子吸水剤が分散できても膨潤体は跳ねやすく、輸送中のベルトコンベアからの落下の憂いがあるため、バラ物重量と懸濁湧水を吸水した高分子吸水剤重量との比率を示す粉鉱比(-)を7以上とすることによって、バラ物中に懸濁湧水を吸水した膨潤体(高分子吸水剤)をより分散させた。
 荷揚げの途中、湧水が観察されたとき、従来は、船底に多量の水が残っていたが、上記の処理によって残湧水も少なくなった。
 以上の結果から、従来は、豪雨中では荷揚げを控えていた陸上への荷揚げに際しては、本発明に適合する上記の荷揚げ方法を採用すると、通常時の効率を100%とした時、長時間の豪雨時での荷揚げでも、約95%の効率を達成することができた。
 なお、実施例2~4とも高分子吸水剤の使用は過少であるので、グラブバケットあるいはバケットを介してベルトコンベアで陸上に荷揚げされた後は、原料ヤードに積み上げられ、そのまま、鉄鉱石は焼結原料として、石炭は、コークス原料として使用可能であった。
 輸入過程において水分とバラ物とが分離して国内到着時に船倉底部に湧水が溜まった状態になる鉄鉱石であるカラジャス鉄鉱石の、連続式アンローダによる荷揚げを例にとって説明する。
 図6(a)に示す状態にある鉄鉱石の荷揚げにおいて、水分値が7.9mass%~24.7mass%のカラジャス鉄鉱石を運搬船から荷揚げする際、アクリルアミド系高分子凝集剤を懸濁湧水量に対し、0.6mass%に相当する薬液濃度になるような量を添加した。この懸濁湧水Wmの量に対する高分子凝集剤の量は、懸濁湧水Wmが連続式アンローダのバケットで掻き取った(掘削)後の窪みに発生するため、グラブバケット容量と掘削深さに基づく掘削量から窪み量を求め、この窪みに生じている懸濁湧水Wmを推定し、添加すべき高分子凝集剤の量を決定するという方法で行なった。同様に、重量比として示される、バラ物重量の、高分子凝集剤を含む懸濁湧水Wmの重量に対する比である数値7も、バケット容量と掘削深さに基づく掘削量から窪み量を求め、この窪みに生じている懸濁湧水Wm量を推定して行った。
 次に、船倉内の鉱石堆積層に生じた窪み部分に発生した懸濁湧水Wmに、高分子凝集剤を添加した後、その懸濁湧水Wmの周囲のバラ物(カラジャス鉄鉱石)をその懸濁湧水Wm中に、該懸濁湧水Wmの約10倍相当を加えてバケットを使ってバラ物を掻き寄せ、30~80秒掻き混ぜた。
 即ち、連続式アンローダのバケットにて掻き寄せ方向の切り替えを繰返す操作による攪拌操作によりバラ物と高分子凝集剤の攪拌を繰り返した後に、荷揚げの作業を継続した。
 その結果、懸濁湧水Wmに高分子凝集剤を加えてかき混ぜることによって、グラブバケットを使用するときと同じように、懸濁湧水Wm中の粉体粒子と湧水を高分子ポリマーによって絡めとる作用が促進され、ポリマーによって凝結した粒子がさらに大きな塊(凝集粒子)を作って、荷揚げが可能になった。
 特に、従来、船底に多量の湧水が残っていたが、上記の処理によって残湧水もほとんどみられなくなった。以上の結果から、従来のカラジャス鉄鉱石の輸送では、カラジャス鉄鉱石自体に水分が多く、陸上への荷揚げに際しては、湧水が多く発生するため、間欠的に懸濁湧水Wmの除去(排水)作業を行ないつつ実施していたものが、本発明に適合する上記の荷揚げ方法を採用すると、湧水の発生がない時の効率を100%とした時、排水作業を行なう荷揚げでは、65%の効率しか出せなかったものが、約93%の効率を達成することができた。
 豪雨時に、連続式アンローダによる荷揚げを継続し、水分過多となった鉄鉱石の荷揚げを例にとって以下に説明する。
 豪雨中も図7に示すような連続式アンローダのバケットによる荷揚げを継続し、荷揚げ作業が進み、荷揚げ後半の下層部分に達する段階で豪雨による高水分化により湧水が観察され始めた図8(a)に示す状態にある鉄鉱石を、運搬船から荷揚げする際、アクリルアミド系高分子凝集剤を懸濁湧水量に対し、0.6mass%に相当する薬液濃度になるような量を添加した。
 この懸濁湧水Wmの量に対する高分子凝集剤の量は、懸濁湧水Wmが、バケットで掘削した後の窪みに発生するため、バケット容量と掘削深さに基づく掘削量から窪み量を求め、この窪みに生じている懸濁湧水Wm量を推定し、添加すべき高分子凝集剤の量を決定するという方法で行なった。
 同様に、後述する重量比としての、懸濁湧水を吸水した高分子凝集剤の重量に対するバラ物の重量の比率を示す数値(粉鉱比)も、バケット容量と掘削深さに基づく掘削量から推定して行った。
 次に、船倉1内のバラ物堆積層に生じた窪み部分に発生した懸濁湧水Wmに、高分子凝集剤を添加した後、その懸濁湧水周囲のバラ物をバケットを使ってかき寄せその懸濁湧水中に投入し、バケットを使って掻き混ぜた。
 即ち、連続式アンローダのバケットにて掻き寄せ方向の切り替えを繰返す操作による攪拌操作によりバラ物と高分子凝集剤の攪拌を繰り返した後に、荷揚げの作業を継続した。
 その結果、懸濁湧水Wmに高分子凝集剤を加えてかき混ぜることによって、懸濁湧水Wm中の粉体粒子と湧水を高分子ポリマーによって絡めとる作用が促進され、ポリマーによって凝結した粒子がさらに大きな塊(凝集粒子)を作って、荷揚げが可能になった。
 荷揚げ途中に、湧水が観察されたときは、従来は、船底に多量の水が残っていたが、上記の処理によって残湧水も少し観察される程度であった。
 以上の結果から、従来は、豪雨中での荷揚げを控えていた。しかるに、陸上への荷揚げに際しては、本発明に適合する上記の荷揚げ方法を採用すると、通常時の効率を100%とした時、長時間の豪雨時の荷揚げでも、約87%の効率を達成することができた。
 豪雨時に、連続式アンローダによる荷揚げを継続し、高分子凝集剤単体では改質が出来ない状態(粉鉱比が7未満)の水分過多となった鉄鉱石を例にとって以下に説明する。
 豪雨中も図9に示すような連続式アンローダのバケットによる荷揚げを継続し、荷揚げ作業が進み、荷揚げ後半の下層部分に達する段階で豪雨による高水分化により湧水が観察され始めた図9(a)に示す状態にある鉄鉱石を、運搬船から荷揚げする際、アクリルアミド系高分子凝集剤を懸濁湧水量に対し、0.6mass%に相当する薬液濃度になるような量を添加し、その後、粉鉱比にして7未満となる懸濁湧水量に対し、高分子吸水剤であるポリアクリル酸塩樹脂顆粒を、1.0超~2.0mass%添加した。
 この懸濁湧水Wmの量に対する高分子吸水剤および高分子凝集剤の添加量は、懸濁湧水Wmが、バケットで掘削した後の窪みに発生するため、バケット容量と掘削深さに基づく掘削量から推定し、添加すべき薬剤の量を決定するという方法で行なった。
 次に、船倉1内のバラ物堆積層に生じた窪み部分に発生した懸濁湧水Wmに、高分子凝集剤及び高分子吸水剤を添加した後、その懸濁湧水周囲のバラ物をバケットを使ってかき寄せその懸濁湧水中に投入し、バケットを使って掻き混ぜた。
 即ち、連続式アンローダのバケットにて掻き寄せ方向の切り替えを繰返す操作による攪拌操作によりバラ物と高分子凝集剤、高分子吸収剤の攪拌を繰り返した後に、荷揚げの作業を継続した。
 その結果、懸濁湧水Wmに高分子吸水剤を加えてかき混ぜることによって、高分子凝集剤単体では改質しきれなかった水分が高分子吸水剤に吸着され、残った懸濁湧水中の粉体粒子と湧水分子の、高分子凝集剤による改質作用が促進され、荷揚げが容易になった。
なお、高分子吸水剤と高分子凝集剤の添加順序は逆、もしくは同時に添加しても同様の効果が得られた。
 荷揚げ途中に、湧水が観察されたときは、従来は、船底に多量の水が残っていたが、上記の処理によって残湧水も殆ど見られなくなった。
 以上の結果から、従来は、豪雨中での荷揚げを控えていた。しかるに、陸上への荷揚げに際しては、本発明に適合する上記の荷揚げ方法を採用すると、通常時の効率を100%とした時、長時間の豪雨時の荷揚げでも、約90%の効率を達成することができた。
 豪雨時に、グラブ式アンローダによる荷揚げを継続し、高分子凝集剤単体では改質が出来ない状態(粉鉱比が7未満)の水分過多となった鉄鉱石を例にとって以下に説明する。
 豪雨中も図10に示すようなグラブ式アンローダによる荷揚げを継続し、荷揚げ作業が進み、荷揚げ後半の下層部分に達する段階で豪雨による高水分化により湧水が観察され始めた図10(a)に示す状態にある鉄鉱石を、運搬船から荷揚げする際、アクリルアミド系高分子凝集剤を懸濁湧水量に対し、0.6mass%に相当する薬液濃度になるような量を添加し、その後、粉鉱比にて7未満となる懸濁湧水量に対し、高分子吸水剤であるポリアクリル酸塩樹脂顆粒を1.0超~2.0mass%添加した。
 この懸濁湧水Wmの量に対する高分子吸水剤および高分子凝集剤の添加量は、懸濁湧水Wmが、グラブバケットで掘削した後の窪みに発生するため、バケット容量と掘削深さに基づく掘削量から推定し、添加すべき薬剤の量を決定するという方法で行なった。
 次に、船倉内の鉱石堆積層に生じた窪み部分に発生した懸濁湧水Wmに、高分子吸水剤及び高分子凝集剤を添加した後、その懸濁湧水Wmの周囲のバラ物(カラジャス鉄鉱石)をその懸濁湧水Wm中に加えてグラブバケットを使って30~80秒掻き混ぜた。即ち、グラブバケットにてバラ物(高分子凝集剤)の掴み揚げと開放落下の各操作を繰り返した後に、荷揚げの作業を行なった。
 その結果、懸濁湧水Wmに高分子吸水剤を加えてかき混ぜることによって、高分子凝集剤単体では改質しきれなかった水分が高分子吸水剤に吸着され、残った懸濁湧水中の粉体粒子と湧水分子の、高分子凝集剤による改質作用が促進され、荷揚げが容易になった。
なお、高分子吸水剤と高分子凝集剤の添加順序は逆、もしくは同時に添加しても同様の効果が得られた。
 荷揚げ途中に、湧水が観察されたときは、従来は、船底に多量の水が残っていたが、上記の処理によって残湧水も殆ど見られなくなった。
 以上の結果から、従来は、豪雨中での荷揚げを控えていた。しかるに、陸上への荷揚げに際しては、本発明に適合する上記の荷揚げ方法を採用すると、通常時の効率を100%とした時、長時間の豪雨時の荷揚げでも、約93%の効率を達成することができた。
 本発明の上述したバラ物の荷揚げ技術は、例示した含水鉱石や石炭の他、砂利、砂、穀物等のバラ物の荷揚げ作業にも適用が可能である。
1 船倉
2 バラ物
3 水溜り
4 窪み
5 バケット
A 水分吸着剤
C 鉄製容器
P 粉体
Wm 懸濁湧水 

Claims (12)

  1.  鉱石や石炭の如き含水バラ物を貨物船から橋形クレーンやアンローダのグラブバケットまたは連続式アンローダのバケットを使って荷揚げするに当たり、荷揚げ作業時に、湧水中に粉体粒子が懸濁した状態の懸濁湧水が生成した場合に、前記懸濁湧水に対し、高分子凝集剤および水分吸着剤の少なくとも一方を添加することにより、懸濁湧水の湧水と粉体粒子の凝結・凝集および/または懸濁湧水の少なくとも湧水の吸着を起こさせてから、バラ物とともに荷揚げを行なうことを特徴とする含水バラ物の荷揚げ方法。
  2.  前記懸濁湧水に対して高分子凝集剤だけを添加して湧水と粉体粒子の凝結・凝集を起こさせてから、バラ物とともに荷揚げを行なうことを特徴とする請求項1に記載の含水バラ物の荷揚げ方法。
  3.  前記懸濁湧水に対して水分吸着剤だけを添加することにより、該水分吸着剤に少なくとも湧水を吸着させてから、バラ物とともに荷揚げすることを特徴とする請求項1に記載の含水バラ物の荷揚げ方法。
  4.  前記水分吸着剤として、高分子吸水剤を用いることを特徴とする請求項1または3に記載の含水バラ物の荷揚げ方法。
  5.  前記水分吸着剤は、懸濁湧水量の0.5超~3.3mass%相当量を添加することを特徴とする請求項1、3または4のいずれか1項に記載の含水バラ物の荷揚げ方法。
  6.  前記水分吸着剤は、懸濁湧水量の1.0~2.0mass%相当量を添加することを特徴とする請求項1、3、4、5のいずれか1項に記載の含水バラ物の荷揚げ方法。
  7.  前記高分子凝集剤は、懸濁湧水量の0.4~1.0mass%相当量を添加することを特徴とする請求項1または2に記載の含水バラ物の荷揚げ方法。
  8.  前記懸濁湧水の発生位置に高分子凝集剤を添加すると共に、他の部位のバラ物を混ぜて攪拌することにより、凝結粒子、凝集粒子を生成させてから荷揚げすることを特徴とする請求項1、2または7いずれか1項に記載の含水バラ物の荷揚げ方法。
  9.  前記懸濁湧水の発生位置に水分吸着剤を添加すると共に、他の部位のバラ物を混ぜて攪拌してから荷揚げすることを特徴とする請求項1、3、4~6のいずれか1項に記載の含水バラ物の荷揚げ方法。
  10.  前記懸濁湧水発生位置に高分子凝集剤および水分吸着剤を添加して、高分子凝集剤の添加により、凝結粒子、凝集粒子を生成させ、凝結粒子、凝集粒子の生成がない前記懸濁湧水部分の少なくとも湧水を水分吸着剤に吸着させてから、バラ物とともに荷揚げすることを特徴とする請求項1に記載の含水バラ物の荷揚げ方法。
  11.  前記懸濁湧水の発生位置に水分吸着剤を添加し、前記懸濁湧水中の少なくとも湧水を減じた後、高分子凝集剤の添加により、凝結粒子、凝集粒子を生成させ、バラ物とともに荷揚げすることを特徴とする請求項1に記載の含水バラ物の荷揚げ方法。
  12.  バラ物重量と懸濁湧水重量との比率で表わされる粉鉱比(-)を7以上とすることを特徴とする請求項1~11のいずれか1項に記載の含水バラ物の荷揚げ方法。
PCT/JP2012/084038 2012-12-28 2012-12-28 含水バラ物の荷揚げ方法 WO2014103005A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
PCT/JP2012/084038 WO2014103005A1 (ja) 2012-12-28 2012-12-28 含水バラ物の荷揚げ方法
CA2894830A CA2894830C (en) 2012-12-28 2012-12-28 Method for unloading water-containing bulk material
JP2014553996A JP6066129B2 (ja) 2012-12-28 2012-12-28 含水バラ物の荷揚げ方法
KR1020157016059A KR101773271B1 (ko) 2012-12-28 2012-12-28 함수 벌크재의 언로딩 방법
CN201280077987.6A CN104870343B (zh) 2012-12-28 2012-12-28 含水散装物料的卸料方法
BR112015014549-3A BR112015014549B1 (pt) 2012-12-28 2012-12-28 método para descarregar material a granel contendo água
AU2012397782A AU2012397782B2 (en) 2012-12-28 2012-12-28 Method for unloading water-containing bulk material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/084038 WO2014103005A1 (ja) 2012-12-28 2012-12-28 含水バラ物の荷揚げ方法

Publications (1)

Publication Number Publication Date
WO2014103005A1 true WO2014103005A1 (ja) 2014-07-03

Family

ID=51020156

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/084038 WO2014103005A1 (ja) 2012-12-28 2012-12-28 含水バラ物の荷揚げ方法

Country Status (7)

Country Link
JP (1) JP6066129B2 (ja)
KR (1) KR101773271B1 (ja)
CN (1) CN104870343B (ja)
AU (1) AU2012397782B2 (ja)
BR (1) BR112015014549B1 (ja)
CA (1) CA2894830C (ja)
WO (1) WO2014103005A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015151524A1 (ja) * 2014-04-01 2015-10-08 Jfeスチール株式会社 含水バラ物処理方法および含水バラ物への凝集剤添加装置
WO2019151347A1 (ja) * 2018-02-02 2019-08-08 株式会社Ihi 荷揚げ装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60204526A (ja) * 1984-03-29 1985-10-16 Nisshin Steel Co Ltd 鉱石類荷揚途次における船倉からの水分除去方法
JP2000176493A (ja) * 1998-12-17 2000-06-27 Kyoei Kinzoku Kogeisha:Kk 汚泥固化材及び固化処理方法
JP2002371279A (ja) * 2001-06-14 2002-12-26 Chuo Kogyo Kk 土壌改良剤
JP2005013973A (ja) * 2003-06-25 2005-01-20 Eco Project:Kk 汚泥の固化処理材、それを用いる汚泥の処理方法及び汚泥固化物の再利用方法
JP2006110537A (ja) * 2004-09-16 2006-04-27 Idemitsu Kosan Co Ltd 家畜排泄物用処理剤および家畜排泄物の処理方法
JP2006305537A (ja) * 2005-04-28 2006-11-09 Okamoto Kogyo Kk 高吸水性樹脂による浄水場高含水汚泥類の処理に関する手法
JP2008088304A (ja) * 2006-10-02 2008-04-17 Nippon Poly-Glu Co Ltd 高含水比の泥土の流動性抑制方法とこれに用いる流動性抑制剤
JP2013023375A (ja) * 2011-07-25 2013-02-04 Jfe Steel Corp 含水バラ物の荷揚げ方法
JP2013023374A (ja) * 2011-07-25 2013-02-04 Jfe Steel Corp 含水バラ物の荷揚げ方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60204526A (ja) * 1984-03-29 1985-10-16 Nisshin Steel Co Ltd 鉱石類荷揚途次における船倉からの水分除去方法
JP2000176493A (ja) * 1998-12-17 2000-06-27 Kyoei Kinzoku Kogeisha:Kk 汚泥固化材及び固化処理方法
JP2002371279A (ja) * 2001-06-14 2002-12-26 Chuo Kogyo Kk 土壌改良剤
JP2005013973A (ja) * 2003-06-25 2005-01-20 Eco Project:Kk 汚泥の固化処理材、それを用いる汚泥の処理方法及び汚泥固化物の再利用方法
JP2006110537A (ja) * 2004-09-16 2006-04-27 Idemitsu Kosan Co Ltd 家畜排泄物用処理剤および家畜排泄物の処理方法
JP2006305537A (ja) * 2005-04-28 2006-11-09 Okamoto Kogyo Kk 高吸水性樹脂による浄水場高含水汚泥類の処理に関する手法
JP2008088304A (ja) * 2006-10-02 2008-04-17 Nippon Poly-Glu Co Ltd 高含水比の泥土の流動性抑制方法とこれに用いる流動性抑制剤
JP2013023375A (ja) * 2011-07-25 2013-02-04 Jfe Steel Corp 含水バラ物の荷揚げ方法
JP2013023374A (ja) * 2011-07-25 2013-02-04 Jfe Steel Corp 含水バラ物の荷揚げ方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015151524A1 (ja) * 2014-04-01 2015-10-08 Jfeスチール株式会社 含水バラ物処理方法および含水バラ物への凝集剤添加装置
WO2019151347A1 (ja) * 2018-02-02 2019-08-08 株式会社Ihi 荷揚げ装置

Also Published As

Publication number Publication date
BR112015014549B1 (pt) 2020-12-22
KR20150086509A (ko) 2015-07-28
AU2012397782A1 (en) 2015-07-09
CN104870343A (zh) 2015-08-26
CA2894830C (en) 2018-02-20
CN104870343B (zh) 2017-04-05
BR112015014549A2 (pt) 2017-07-11
JP6066129B2 (ja) 2017-01-25
AU2012397782B2 (en) 2016-03-17
KR101773271B1 (ko) 2017-08-31
JPWO2014103005A1 (ja) 2017-01-12
CA2894830A1 (en) 2014-07-03

Similar Documents

Publication Publication Date Title
JP5817974B2 (ja) 含水バラ物の荷揚げ方法
KR101869330B1 (ko) 석탄 및/또는 철광석 슬러리의 개질방법
JP2009537315A (ja) 水性懸濁液の処理
MXPA05009477A (es) Tratamiento de suspensiones acuosas.
EA016958B1 (ru) Способ рекультивации отвала и применение полимера при обезвоживании суспензии измельченного минерального материала
JP5910810B2 (ja) 含水バラ物の荷揚げ方法
TWI558639B (zh) Discharge Handling Method for Waterborne Bulk Cargo
JP6041627B2 (ja) 製鉄原料の搬送方法及び製鉄原料固化体の製造方法
CA2983393A1 (en) Separation of suspensions of solids employing water soluble polymer and a chemical agent
JP6066129B2 (ja) 含水バラ物の荷揚げ方法
JP6041109B2 (ja) 含水バラ物の荷揚げ方法
JPH10272306A (ja) 排泥水の脱水方法
JP5999393B2 (ja) 含水バラ物の荷揚げ方法
TWI558640B (zh) Discharge method of watery bulk cargo
JP6505668B2 (ja) 含水バラ物処理方法および含水バラ物への凝集剤添加装置
JP6131902B2 (ja) 含水バラ物への薬液添加装置
JP4035090B2 (ja) 建築掘削土の処理方法
JP2004321939A (ja) 脱水ケーキの減容化処理方法及び減容化処理機械

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12890988

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014553996

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2894830

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 20157016059

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015014549

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2012397782

Country of ref document: AU

Date of ref document: 20121228

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 12890988

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 112015014549

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20150618