WO2014101660A1 - 一种核动力堆芯用锆合金 - Google Patents

一种核动力堆芯用锆合金 Download PDF

Info

Publication number
WO2014101660A1
WO2014101660A1 PCT/CN2013/089201 CN2013089201W WO2014101660A1 WO 2014101660 A1 WO2014101660 A1 WO 2014101660A1 CN 2013089201 W CN2013089201 W CN 2013089201W WO 2014101660 A1 WO2014101660 A1 WO 2014101660A1
Authority
WO
WIPO (PCT)
Prior art keywords
alloy
zirconium
less
balance
nuclear power
Prior art date
Application number
PCT/CN2013/089201
Other languages
English (en)
French (fr)
Inventor
赵文金
杨忠波
苗志
戴训
易伟
黄照华
邱军
徐春容
廖志海
王朋飞
董琼根
Original Assignee
中国核动力研究设计院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国核动力研究设计院 filed Critical 中国核动力研究设计院
Priority to GB1512801.0A priority Critical patent/GB2523975B/en
Publication of WO2014101660A1 publication Critical patent/WO2014101660A1/zh
Priority to ZA2015/05320A priority patent/ZA201505320B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C16/00Alloys based on zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • C22F1/186High-melting or refractory metals or alloys based thereon of zirconium or alloys based thereon
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C13/00Pressure vessels; Containment vessels; Containment in general
    • G21C13/02Details
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C21/00Apparatus or processes specially adapted to the manufacture of reactors or parts thereof
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C3/00Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
    • G21C3/02Fuel elements
    • G21C3/04Constructional details
    • G21C3/06Casings; Jackets
    • G21C3/07Casings; Jackets characterised by their material, e.g. alloys
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C5/00Moderator or core structure; Selection of materials for use as moderator
    • G21C5/02Details
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • the invention belongs to the technical field of special alloy materials, and particularly relates to a zirconium alloy material for a nuclear power core.
  • Zirconium alloys are widely used as fuel component cladding and other internal components for nuclear power reactors due to their low neutron absorption cross section, excellent corrosion resistance and mechanical properties.
  • fuel design places high demands on reactor core components such as fuel element claddings, grids, guide tubes, etc. In the early days, these components were usually made of ⁇ ⁇ -4 alloy. to make.
  • the high fuel consumption design requires prolonging the residence time of these components in the stack and increasing the coolant temperature, which makes the zirconium alloy components face a more harsh corrosive environment. These high requirements promote the improvement of corrosion resistance of Zr-4 alloy.
  • the performance study has promoted the development of new zirconium alloys with better corrosion resistance.
  • the ratio of the components in the existing zirconium alloy is not necessarily in the optimal range.
  • the corrosion resistance is further improved (Yueh, HK, Kesterson, RL, Comstock).
  • RJ, et al. Improved ZIRLO TM cladding performance through chemistry and process modifications.
  • Zirconium in the Nuclear Industry: Fourteenth International Symposium, ASTM STP 1467, 2004, pp. 330-346. ); HANA-6 alloy formed by adding a small amount of Cu (0.05wt%) to Zr-Nb alloy also has excellent corrosion resistance.
  • M5 alloy has abnormal phenomena such as bending of fuel rod or fuel assembly and poor resistance to radiation growth during operation in the reactor. Therefore, France adds a small amount of Sn and Fe to the composition of M5 alloy to maintain excellent corrosion resistance of the alloy.
  • the mechanical properties of the alloy, especially creep and radiation growth properties, are greatly improved on the basis of performance. Therefore, zirconium alloys with better corrosion resistance can be developed by optimizing the alloy distribution ratio or adding other alloying elements based on the existing zirconium alloy to meet the ever-increasing fuel consumption.
  • the corrosion resistance of the alloy can be improved by using a suitable hot working process.
  • Zirconium alloys with high Nb content including ZIRLO, M5 and N36
  • the temperature of hot working is increased, the coarsening and uneven distribution of the second phase and the supersaturated solid solution of Nb in the alloy matrix may cause resistance.
  • Corrosion performance deteriorates, so it is emphasized that "Cryogenic Process” (Mardon, JP, Charquet, D., and Senevat, J., Influence of composition and fabrication process on out-of-pile and in-pile properties of M5) Alloy.
  • Zirconium in the Nuclear Industry: Twelfth International Symposium, ASTM STP 1354, 2000, pp. 505-524. The low temperature processing with lower hot extrusion temperature and annealing temperature enables a fine dispersion of the second phase structure, which greatly improves the corrosion and mechanical properties of the alloy, especially the corrosion resistance.
  • the problem of uniform corrosion of zirconium alloy is mainly considered. It is generally considered that the 360 ° C aqueous solution and the 400 ° C steam in the zirconium alloy corrosion test can be used for pressurized water reactors, 360 ° C outside the reactor. ⁇ -
  • a zirconium alloy for nuclear power core consisting of the following components by weight: Sn: 0.60-0.80, Nb: 0.75-1.00, Fe+Cr: 0.20-0.50, Fe/(Nb+Fe): 0.20-0.35, Cu or Bi or Ge: 0.01-0.10, Si or S: 0.002-0.020, 0: 0.06-0.15, C: less than 0.008, N: less than 0.006; balance is zirconium.
  • a zirconium alloy for a nuclear power core consisting of the following components by weight: Sn: 0.60-0.80, Nb: 0.75-1.00, Fe+Cr: 0.20-0, 50, Fe/(Nb+Fe ): 0.20-0.35, Cu or Bi or Ge: 0.01-0.10, Si or S: 0.005-0.015, 0: 0.06-0.15, C: less than 0.008, N: less than 0.006; balance is zirconium.
  • a zirconium alloy for a nuclear power core consisting of the following components by weight: Sn: 0.70, Nb: 1.00, Fe: 0.30, Cr: 0.05, Cu or Si or Bi or Ge: 0.01, 0: 0.10, C: less than 0.008, N: less than 0.006; balance is zirconium.
  • the method for preparing a zirconium alloy material for a nuclear power core as described above comprises the following steps:
  • the invention adds other components for improving the properties of the alloy based on the Zr-Sn-Nb alloy, and selects the appropriate component content, especially for the addition of Sn, Nb, Fe, Cr and Cu or Bi. Control, which not only improves the corrosion resistance of the alloy, but also improves the mechanical properties and anti-irradiation properties of the alloy.
  • the properties of the alloy provided by the invention meet the requirements of the core fuel for the high fuel consumption of the nuclear power reactor. begging.
  • the alloy material prepared from this prototype alloy improves the uniform corrosion resistance in the pure water outside the heap, especially in the aqueous lithium hydroxide solution. Through the test results in the specific embodiments, it can be considered that these alloys have better resistance to uniform corrosion, higher creep and fatigue resistance, and radiation growth resistance in the reactor.
  • the zirconium-based alloy of the invention has better resistance to uniformity and crepe corrosion, high creep resistance and fatigue resistance, and radiation growth resistance, as follows:
  • the present invention selects zirconium as a basic element, and also considers the neutron absorption of other alloying elements added to the basic zirconium.
  • the amount of tin is small, the desired effect cannot be achieved.
  • the Sn addition content is from 0.40 to 0.80% by weight, which can ensure the alloy has excellent corrosion resistance and good mechanical properties.
  • Niobium can stabilize the ⁇ -phase of zirconium, and niobium has a higher strengthening effect on zirconium. Too much hydrazine is sensitive to heat treatment.
  • the Nb addition content is 0.75-1.10% by weight, which can ensure the alloy has excellent corrosion resistance and good mechanical properties in pure water and lithium hydroxide aqueous solution. (4) Iron (Fe), chromium (Cr)
  • both iron and chromium improve the corrosion resistance and mechanical properties of the alloy, but too much or too little iron and chromium can adversely affect.
  • the sum of the contents of Fe and chromium added is controlled to be 0.20 to 0.50% by weight, which ensures excellent corrosion resistance of the alloy in pure water and lithium hydroxide aqueous solution.
  • Copper can improve the corrosion resistance of the alloy, but excessive use can have an adverse effect.
  • the copper content added in the present invention is less than 0.1% by weight, which ensures excellent corrosion resistance of the alloy in pure water and lithium hydroxide aqueous solution.
  • can improve the corrosion resistance of the alloy, but excessive use can have an adverse effect.
  • the ruthenium content added in the present invention is less than 0.1% by weight, which ensures excellent corrosion resistance of the alloy in pure water and lithium hydroxide aqueous solution.
  • can improve the corrosion resistance of the alloy, but excessive use can have an adverse effect.
  • the ruthenium content added in the present invention is less than 0.1% by weight, which ensures excellent corrosion resistance of the alloy in pure water and lithium hydroxide aqueous solution.
  • Silicon can affect the uniform distribution of the precipitated phase of the alloy, and thus the excessive amount of silicon adversely affects.
  • the silicon content to be added in the present invention is less than 0.02% by weight, which can ensure the alloy has excellent corrosion resistance in the aqueous lithium hydroxide solution.
  • Adding an appropriate amount of S to the alloy can increase the creep strength of the alloy while improving the corrosion resistance of the alloy. can.
  • excessive use of sulfur has an adverse effect.
  • the sulfur content to be added in the present invention is less than 0.02% by weight, which can ensure excellent corrosion resistance in the high-temperature steam of the alloy.
  • the content of oxygen added in the present invention is from 0.06 to 0.15% by weight, which ensures sufficient mechanical properties and creep resistance of the alloy.
  • the carbon in the alloy exists as an inevitable impurity element and the content is high, which lowers the corrosion resistance of the alloy.
  • the weight percentage of C is less than 0.008%, which ensures excellent corrosion resistance of the alloy in high temperature water and steam.
  • the weight percentage of ruthenium is less than 0.006%, which ensures excellent corrosion resistance of the alloy in high temperature water and steam.
  • a zirconium alloy for a nuclear power core composed of the following components, by weight: Sn:
  • a zirconium alloy for a nuclear power core consisting of the following components by weight: Sn: 0.4-0.8, Nb: 0.75-1.10, Fe+Cr: 0.20-0.50, Fe/(Nb+Fe): 0.20-0.35, O: 0.06-0.15, Cu or Bi or Ge: 0.01-0.1, C: less than 0.008, N: less than 0.006; balance is zirconium.
  • a zirconium alloy for a nuclear power core consisting of the following components by weight: Sn: 0.4-0.8, Nb: 0.75-1.10, Fe+Cr: 0.20-0.50, Fe/(Nb+Fe): 0.20-0.35, Si or S: 0.002-0.02, O: 0.06-0.15, C: less than 0.008, N: less than 0.006; balance is zirconium.
  • a zirconium alloy for a nuclear power core consisting of the following components by weight: Sn: 0.40-0.80, Nb: 0.75-1.10, Fe+Cr: 0.20-0.50, Fe/(Nb+Fe): 0.20-0.35, Cu or Bi or Ge: 0.01-0.1, Si or S: 0.002-0.02, 0: 0.06-0.15, C: less than 0.008, N: less than 0.006; balance is zirconium.
  • a zirconium alloy for a nuclear power core consisting of the following components by weight: Sn: 0.40-0.60, Nb: 0.90-1.10, Fe+Cr: 0.20-0.50, Fe/(Nb+Fe): 0.20-0.35 , , Cu or Bi or Ge: 0.01-0.10, Si or S: 0.002-0.020, 0: 0.06-0.15, C: less than 0.008, N: less than 0.006; balance is zirconium.
  • a zirconium alloy for a nuclear power core composed of the following components, by weight: Sn:
  • Nb 0.90-1.10
  • Fe+Cr 0.20-0.50
  • Fe/(Nb+Fe) 0.20-0.35
  • Cu or Bi or Ge 0.01-0.1, Si or S: 0.01-0.02
  • O 0.06-0.15
  • C less than 0.008, N: less than 0.006; balance is zirconium.
  • a zirconium alloy for a nuclear power core consisting of the following components by weight: Sn: 0.60-0.80, Nb: 0.75-1.00, Fe+Cr: 0.20-0.50, Fe/(Nb+Fe): 0.20-0.35, Cu or Bi or Ge: 0.01-0.10, Si or S: 0.002-0.020, O: 0.06-0.15, C: less than 0.008, N: less than 0.006; balance is zirconium.
  • a zirconium alloy for a nuclear power core consisting of the following components by weight: Sn: 0.60-0.80, Nb: 0.75-1.00, Fe+Cr: 0.20-0.50, Fe/(Nb+Fe): 0.20-0.35, Cu or Bi or Ge: 0.01-0.10, Si or S: 0.005-0.015, 0: 0.06-0.15, C: less than 0.008, N: less than 0.006; balance is zirconium.
  • a zirconium alloy for a nuclear power core composed of the following components, by weight: Sn: 0.70, Nb: 1.00, Fe: 0.30, Cr: 0.05, Cu or Si or Bi or Ge: 0.01, 0: 0.10, C: less than 0.008, N: less than 0.006; balance is zirconium.
  • the zirconium-based alloy for the core material structure of the pressurized water nuclear reactor is provided by optimizing the distribution ratio of the Zr-Sn-Nb alloy and adding a trace amount of Cr, Bi, Cu and the like to improve the alloy.
  • Table 1 shows the composition of the alloy provided by the present invention.
  • 14* and 15* are respectively the composition of the Zr-4 alloy and the N36 alloy and the corresponding test results.
  • the contents in Table 1 are the weight percentage of the corresponding components in the alloy. .
  • the method for preparing a zirconium alloy material for a nuclear power core as described above includes the following steps:
  • the material prepared by the above process is composed of equiaxed a-Zr grains and uniformly distributed fine second phase particles, which can ensure excellent performance in the harsh environment of the reactor core.
  • the performance test results of the alloy materials prepared by the above method are shown in Table 2 and Table 4 in Table 3.
  • the test conditions described in Table 2 are specifically as follows: Corrosion conditions are 360 ° C, 18.6 MPa deionized water; The test conditions described in Table 3 are: 360 ° C, 18.6 MPa containing 7 ( ⁇ g / g lithium aqueous solution (to Lithium hydroxide
  • the test conditions described in Table 4 are: 400 ° C, 10.3 MPa deionized water vapor.
  • the corrosion time in a 360 ° C water and 400 ° C steam environment was 300 days (d), respectively.
  • the corrosion rate (mg/dm 2 /d) of each alloy is given in the table.
  • the relative corrosion rates are given in the table. As can be seen from the table (2, 3, 4), all the alloys exhibited good corrosion resistance 0 performance in 360 ° C pure water, lithium hydroxide aqueous solution, and 400 ° C steam.
  • the alloy material provided by the present invention contains 7 ( ⁇ g/g lithium aqueous solution at 360 ° C)
  • the corrosion rate of the zirconium alloy of the present invention after being corroded in a 360 ° C / 18.6 MPa LiOH aqueous solution for 300 days can be reduced by 21% compared with the N36 alloy; 360 ° C / 18.6 MPa
  • the present invention employs a preferred composition range of Sn, Nb, Fe, Cr, and Cu or Bi
  • the interaction between the alloying elements in this range, combined with the low temperature processing, produces an unexpected unexpected effect.
  • the effect is mainly manifested in two aspects: 1)
  • the alloy of the present invention exhibits excellent corrosion resistance under the above three hydration conditions, and is superior to the optimized N36 alloy and Zr-4 alloy. 2)
  • the alloy of the invention is subjected to a low temperature process to obtain a second phase having a fine dispersion distribution, which improves the mechanical properties (such as creep and fatigue properties) and the radiation growth resistance of the alloy.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

一种核动力堆芯用锆合金材料,属于特种合金材料技术领域,按重量百分比计,由下列成分组成:Sn:0.4-0.8,Nb:0.75-1.1,Fe+Cr:0.20-0.50,Fe/(Fe+Nb):0.20-0.35,Cu或Bi或Ge:0.01-0.1,Si或S:0.002-0.02,O:0.06-0.15,C:小于0.008,N:小于0.006;余量为Zr。其在Zr-Sn-Nb系合金基础上,添加了其它用于改善合金性能的成分,既改善了合金的耐腐蚀性能,又改善了合金的力学性能及抗辐照性能,从而满足核动力反应堆高燃耗对堆芯结构材料的要求。

Description

说 明 书
一种核动力堆芯用锆合金
技术领域
本发明属于特种合金材料技术领域, 具体涉及一种核动力堆芯用锆合金 材料。
背景技术
锆合金由于具有中子吸收截面低、 优良的抗腐蚀性能和力学性能等优点 而被广泛用作核动力反应堆燃料元件包壳及其他堆内构件。 在压水反应堆的 发展过程中, 燃料设计对反应堆堆芯结构部件, 如燃料元件包壳、 格架、 导 向管等, 提出了很高的要求, 早期, 这些部件通常由 ΖΓ-4合金制成。 高燃料 燃耗的设计, 要求延长这些部件在堆内的停留时间和提高冷却剂温度, 从而 使得锆合金部件面临着更为苛刻的腐蚀环境,这些高要求促进了改善 Zr-4合 金的耐腐蚀性能的研究, 推动了对具有更优良的耐腐蚀性能的新型锆合金的 开发。
针对核动力技术发展对燃料包壳提出的高要求, 国际上展开了新型锆合 金的研究。 如在第十届锆合金国际研讨会上, GEORGE P. SABOL 报告了 " ZIRLO和 Zr-4合金的堆内腐蚀行为" ( " In-Reactor Corrosion Performance of ZIRLO and Zircaloy-4,, , Zirconium in the Nuclear Industry: Tenth International Symposium, ASTM STP 1245, A.M. Garde and E.R. Bradley, Eds., American Society for Testing and Materials, Philadelphia, 1994, pp.724-744), 展 示了 ZIRLO 比 Zircaloy-4具有更好的堆内耐腐蚀性能。 在第 ^—届锆合金 国际研讨会上俄罗斯的 Nikulina,A.V. 报告了 "用作 VVER和 RBMK堆芯燃 料棒包壳和部件材料的 E635锆合金" ( " Zirconium Alloy E635 as a Material for Fuel Rod Cladding and Other Components of VVER and RBMK Cores" , Zirconium in the Nuclear Industry: Eleventh International Symposium, ASTM STP 1295, E.R. Bradley and G. P. Sabol, Eds., American Society for Testing and Materials, Philadelphia, 1996, pp.785-804) , 公布了 E635 的成分为 Zr-1.0〜 1.4wt%Nb-0.9〜l. lwt%Sn -0.3〜0.5wt%Fe。该合金的堆外性能优于 Zircaloy-4 和 E110合金。在第十二届锆合金国际研讨会上法国的 Jean-Paul Mardon报告 了 "成分和制造工艺对 M5 合金堆内外性能的影响" ( " Influence of Composition and Fabrication Process on Out-of-Pile and In-Pile Properties of M5 Alloy, Zirconium in the Nuclear Industry: Twelfth International Symposium, ASTM STP 1354, Sabol,G,P, Moan, G.D., Eds., American Society for Testing and Materials,West Conshohocken ,2000,pp.505~524 ) , 公布了在高燃耗下 (> 65GWd) 耐腐蚀性能优于 Zircaloy-4 的 M5合金 (Zr-lNb-O) 。 在第十六届 锆合金国际研讨会上美国的 A.M.Garde 报告了 "压水堆用先进锆合金" ( " Advanced Zirconium Alloy for PW Application, Zirconium in the Nuclear Industry: sixteenth International Symposium, ASTM STP 1529, 2010,pp.784~826 ) , 公布了堆内外性能优于 ZIRLO 合金 的 X5A 合金 (Zr-0.5Sn-0.3Nb-0.35Fe-0.25Cr) 。
已有研究表明, 现有锆合金中成分的配比并不一定在最优范围内, 如将 ZIRLO 合金中的 Sn含量降低后, 其耐腐蚀性能进一步提高 (Yueh, H. K., Kesterson, R. L., Comstock, R. J., et al., Improved ZIRLO TM cladding performance through chemistry and process modifications. Zirconium in the Nuclear Industry: Fourteenth International Symposium, ASTM STP 1467, 2004, pp. 330-346. );在 Zr-Nb 合金中添加微量的 Cu (0.05wt%)后形成的 HANA-6 合金也具有非常优良的耐腐蚀性能(Park J. Y., Choi, B. K., Yoo, S. J. Jeong Y. H., Corrosion behavior and oxide properties of Zr - 1.1 wt%Nb - 0.05 wt%Cu alloy, J. Nucl. Mater., 359 (2006) 59 - 68. ) ; M5合金在堆内运行过程中出现 了燃料棒或燃料组件弯曲以及抗辐照生长性能差等异常现象, 因此法国在 M5合金成分基础上添加了少量的 Sn及 Fe,在保持合金优良耐腐蚀性能基础 上大幅改善了合金的力学性能, 尤其是蠕变及辐照生长性能。 因此, 在现有 锆合金的基础上优化合金成分配比或者添加其它合金元素还可开发出耐腐蚀 性能更加优良的锆合金, 以满足燃耗不断提高的需要。
另外, 在合金成分确定以后, 采用合适的热加工工艺还可以进一歩改善 合金的耐腐蚀性能。在 Nb含量较高的锆合金中,包括 ZIRLO, M5及 N36等, 当提高热加工的温度后, 由于第二相的粗化和不均匀分布以及合金基体中过 饱和固溶 Nb, 会引起耐腐蚀性能变差, 因而都强调要采用 "低温加工工艺" (Mardon, J. P., Charquet, D., and Senevat, J., Influence of composition and fabrication process on out-of-pile and in-pile properties of M5 alloy. Zirconium in the Nuclear Industry: Twelfth International Symposium, ASTM STP 1354, 2000, pp. 505-524. ) 。 采用较低热挤压温度及退火温度的低温加工工艺能够获得细 小弥散的第二相组织, 大幅改善了合金的腐蚀及力学性能, 尤其是耐腐蚀性 能。
在压水堆中主要考虑锆合金的均匀腐蚀问题, 通常认为在堆外 360°C水 溶液和 400°C蒸汽中锆合金腐蚀试验检验合格的可用于压水堆,在堆外 360°C → -
:Μ '800·04、「/ :D '510-900 :0 0·0-ΐΟΌ :S ^HS ΤΟ-ΐΟΌ '^Οψ}Η ^ ' ' Γ0~0Γ0 :(M+qN)/ 'OS'0—ΟΓΟ :·Ό+Μ '0ΐ'ΐ—06Ό :qM '09O—0†7O
:us :^ι?^¾^土申 ' 畺 旦畺軍 s ' ^ ^ ^m - OO'O壬、「/ :Μ
Figure imgf000005_0001
n ' 'ςε·0~0Γ0 :(3J+qN)/3J 'OS'O—OrO :·Ό+Μ ΌΓΪ-06Ό : M Ό9Ό-017Ό z
:us :^¾^¾^ 丄申 ' 畺 旦晷: ' ^ ^ ^m -
°¾ ^畧 ^ΟΟ :M '800·04、「/ :D '5ΐ -90Ό :0 ^Ο -ΖΟΟ :S ^HS 'ΓΟ-ΙΟΌ '^DWm nD '5£ ~0 0 :( +qN)/ 'OSO-O^O :·Ό+ 'ΟΓΐ—SZ/O :qN Ό8Ό-017Ό
:us :¾tf ¾^「ι止申 ' 晷 ^旦晷重 ¾ ' ^ ^ ^ - "
。¾ 畧
Figure imgf000005_0002
:N '漏'04、[ :。 'SrO-90'0 :0 0
: S^HS ' £Ό~ΟΓΟ :( +qM) I 'OS'0-Ο Ο :·Ό+ '0ΐ·ΐ- Ό :QM '8'0-17'0
:us -- m^M^ ' 晷 旦晷重 ¾ ^^ ^ - 畧^ ί900·04、「, :Ν '800·04、「, :0 'ΓΟ-ΙΟΌ '-^Οψ^ψ^Ο 'ςΐΌ-90Ό :0 'ςΓΟ~ΟΓΟ :(9J+qM) J 'OS -ΟΖ :·Ό+ 'ΟΠ-ςΔΌ :qM '8·0-ΐ7Ό Οϊ
:us :^¾^^「ι止申 ' 晷 旦晷重 ¾ ' ^m^ ^ -
°¾ ^ ί900Ό4、「/ :M '800Ό4、「/ :D '510-900 :0 'S 0~0r0 :(9d+ M) J 'OS'0-ΟΓΟ :·Ό+Μ ΌΓΐ-ςΔ :qN'08 -0l
:us -- ^^u^ ' 晷 旦畺重 ¾ ' ^m^ ^ -
: ¾W¾^ K½¾* '^目一 ¾¾¾丄^ s
。^ ¾¾^*^^ ίΓ¾4 m m m^ w ¾ m^ ^ ^m^ m
°ψ?^工 藤颦 i f5i3¾t¾¾¾附 ^ ¾^^ί^ψ 缀 藤
T0Z680/Cl0ZN3/X3d 099丽 OZ OAV 小于 0.006; 余量为锆。
一种核动力堆芯用锆合金, 按重量百分含量计, 由下列成分组成: Sn: 0.60-0.80, Nb: 0.75-1.00, Fe+Cr: 0.20-0.50, Fe/(Nb+Fe): 0.20-0.35 , Cu或 Bi或 Ge: 0.01-0.10, Si或 S: 0.002-0.020, 0: 0.06-0.15, C: 小于 0.008, N: 小于 0.006; 余量为锆。
一种核动力堆芯用锆合金, 按重量百分含量计, 由下列成分组成: Sn: 0.60-0.80, Nb: 0.75-1.00, Fe+Cr: 0.20-0,50, Fe/(Nb+Fe): 0.20-0.35 , Cu或 Bi或 Ge: 0.01-0.10, Si或 S: 0.005-0.015, 0: 0.06-0.15, C: 小于 0.008, N: 小于 0.006; 余量为锆。
一种核动力堆芯用锆合金, 按重量百分含量计, 由下列成分组成: Sn: 0.70, Nb: 1.00, Fe: 0.30, Cr: 0.05, Cu或 Si或 Bi或 Ge: 0.01, 0: 0.10, C: 小于 0.008, N: 小于 0.006; 余量为锆。
如上所述的一种核动力堆芯用锆合金材料的制备方法, 包括以下步骤:
( 1 ) 将锆合金中的各种组分按照合金组分的配方量进行配料;
(2) 在真空自耗电弧炉中进行熔炼, 制成合金铸锭;
(3 ) 将合金铸锭在 950°C— 1080°C 的 β相区锻造成所需形状的坯材;
(4)将坯材在 1000°C_ 1100°C的 β相区加热均匀化,并进行淬火处理;
( 5) 将淬火后的坯材在 600°C— 650°C 的 α相区进行热加工;
( 6)将热加工后的坯材进行冷加工,并在 550°C— 620°C进行中间退火;
(7)在 460°C— 600°C 内进行消除应力退火或再结晶退火处理, 得到所 述锆合金材料。
本发明在 Zr-Sn-Nb系合金基础上,添加了其他用于改善合金性能的成分, 并选择了适当的组分含量, 尤其是对于 Sn、 Nb、 Fe、 Cr和 Cu或 Bi的添加 量控制, 既改善了合金的耐腐蚀性能, 又改善了合金的力学性能及抗辐照性 能, 本发明提供的合金性能, 满足核动力反应堆高燃耗对堆芯结构材料的要 求。 由这种原型合金制备的合金材料提高了在堆外纯水特别是在氢氧化锂水 溶液中的耐均匀腐蚀性能。 通过具体实施方式中的试验检测结果, 可以认为 这些合金在反应堆内使用具有更优良的耐均匀腐蚀性能、 较高的抗蠕变和疲 劳特性、 抗辐照生长性能。
具体实施方式
下面通过具体实施方式对本发明作更为详细的说明。
对用于核反应堆的锆合金材料来讲, 合金的耐腐蚀性能是首要考虑的因 素, 在此基础上生产成本及可加工性是选择合金元素时要考虑的, 因此, 需 要详细研究每一合金元素对耐腐蚀性、 机械性能及蠕变行为的影响及合金体 系及每种合金元素的用量范围。 本发明所述的锆基合金, 具有更优良的耐均 匀和疖状腐蚀性能、 具有较高的抗蠕变和疲劳特性、 具有抗辐照生长性能, 具体情况如下:
( 1 ) 锆 (Zr)
通过对中子吸收因素的考虑, 本发明选择锆作为基本元素, 同时也考虑 添加到基本锆中其他合金元素的中子吸收情况。
(2) 锡 (Sn)
锡能够稳定锆的 α -相, 能增加其强度,并能抵消氮对腐蚀的有害作用。 当锡用量少时, 不能达到所需的效果。 本发明中 Sn添加含量在 0.40-0.80重 量%, 其能够保证合金具有优良的耐腐蚀性能和良好的力学性能。
(3 ) 铌 (Nb)
铌能够稳定锆的 β -相,铌对锆有较高的强化作用。 铌用量过多对热处理 敏感。 本发明中 Nb添加含量在 0.75-1.10重量%, 其能够保证合金在纯水和 氢氧化锂水溶液中具有优良的耐腐蚀性能和良好的力学性能。 (4) 铁 (Fe)、 铬 (Cr)
铁和铬均能够改进合金耐腐蚀性和力学性能, 但铁和铬的用量过多或过 少都会有不利的影响。 本发明中 Fe和铬添加的含量之和控制在 0.20-0.50重 量%, 其能够保证合金在纯水和氢氧化锂水溶液中具有优良的耐腐蚀性能。
(5 ) 铜 (Cu)
铜能够改进合金耐腐蚀性能, 但用量过多会有不利的影响。 本发明中添 加的铜含量小于 0.1 重量%, 其能够保证合金在纯水和氢氧化锂水溶液中具 有优良的耐腐蚀性能。
(6) 铋 (Bi)
铋能够改进合金耐腐蚀性能, 但用量过多会有不利的影响。 本发明中添 加的铋含量小于 0.1 重量%, 其能够保证合金在纯水和氢氧化锂水溶液中具 有优良的耐腐蚀性能。
(7) 锗 (Ge)
锗能够改进合金耐腐蚀性能, 但用量过多会有不利的影响。 本发明中添 加的锗含量小于 0.1 重量%, 其能够保证合金在纯水和氢氧化锂水溶液中具 有优良的耐腐蚀性能。
( 8) 硅 (Si)
硅能够影响合金析出相的均匀分布,因而硅的用量过多会有不利的影响。 本发明中将添加的硅含量小于 0.02重量%,其能够保证合金在氢氧化锂水溶 液中具有优良的耐腐蚀性能。
(9) 硫 (S)
在合金中添加适量的 S能提高合金蠕变强度, 同时改进合金的抗腐蚀性 能。 但硫的用量过多会有不利的影响。 本发明中将添加的硫含量小于 0.02重 量%, 其能够保证合金高温水蒸气中具有优良的耐腐蚀性能。
( 10) 氧 (〇)
氧能够稳定锆的 α -相,合金中添加氧能提高屈服强度。本发明中氧添加 的含量在 0.06-0.15重量%,其能够保证合金具有足够的机械性能和抗蠕变性 能。 氧含量的增加, 大大降低了材料加工过程中的控制难度。
( 11 ) 碳 (C )
合金中的碳作为不可避免的杂质元素存在且含量较高时, 会降低合金的 抗腐蚀性能。 本发明中 C 的重量百分比小于 0.008 %, 其能够保证合金在高 温水和蒸汽中具有优良的耐腐蚀性能。
( 12) 氮 (Ν)
合金中的氮作为不可避免的杂质元素存在且含量较高时, 会降低合金的 抗腐蚀性能。 本发明中 Ν的重量百分比小于 0.006%, 其能够保证合金在高 温水和蒸汽中具有优良的耐腐蚀性能。
一种核动力堆芯用锆合金, 按重量百分含量计, 由下列成分组成: Sn:
0.40-0.80, Nb: 0.75-1.10, Fe+Cr: 0.20-0.50, Fe/(Nb+Fe): 0.20-0.35 , 0: 0.06-0.15, C: 小于 0.008, N: 小于 0.006; 余量为锆。
一种核动力堆芯用锆合金, 按重量百分含量计, 由下列成分组成: Sn: 0.4-0.8, Nb: 0.75-1.10, Fe+Cr: 0.20-0.50, Fe/(Nb+Fe): 0.20-0.35 , O: 0.06-0.15, Cu或 Bi或 Ge: 0.01-0.1, C: 小于 0.008, N: 小于 0.006; 余量为锆。
一种核动力堆芯用锆合金, 按重量百分含量计, 由下列成分组成: Sn: 0.4-0.8, Nb: 0.75-1.10, Fe+Cr: 0.20-0.50, Fe/(Nb+Fe): 0.20-0.35, Si或 S: 0.002-0.02, O: 0.06-0.15, C: 小于 0.008, N: 小于 0.006; 余量为锆。
一种核动力堆芯用锆合金, 按重量百分含量计, 由下列成分组成: Sn: 0.40-0.80 , Nb: 0.75-1.10 , Fe+Cr: 0.20-0.50, Fe/(Nb+Fe): 0.20-0.35 , Cu 或 Bi或 Ge: 0.01-0.1, Si或 S: 0.002-0.02 , 0: 0.06-0.15, C: 小于 0.008, N: 小于 0.006; 余量为锆。
一种核动力堆芯用锆合金, 按重量百分含量计, 由下列成分组成: Sn: 0.40-0.60, Nb: 0.90-1.10, Fe+Cr: 0.20-0.50, Fe/(Nb+Fe): 0.20-0.35 , , Cu 或 Bi或 Ge: 0.01-0.10, Si或 S: 0.002-0.020, 0: 0.06-0.15, C: 小于 0.008, N: 小于 0.006; 余量为锆。
一种核动力堆芯用锆合金, 按重量百分含量计, 由下列成分组成: Sn:
0.40-0.60, Nb: 0.90-1.10, Fe+Cr: 0.20-0.50, Fe/(Nb+Fe): 0.20-0.35 , , Cu 或 Bi或 Ge: 0.01-0.1, Si或 S: 0.01-0.02, O: 0.06-0.15, C: 小于 0.008, N: 小于 0.006; 余量为锆。
一种核动力堆芯用锆合金, 按重量百分含量计, 由下列成分组成: Sn: 0.60-0.80 , Nb : 0.75-1.00 , Fe+Cr: 0.20-0.50 , Fe/(Nb+Fe) : 0.20-0.35 , Cu 或 Bi或 Ge: 0.01-0.10, Si或 S: 0.002-0.020, O: 0.06-0.15, C: 小于 0.008, N: 小于 0.006; 余量为锆。
一种核动力堆芯用锆合金, 按重量百分含量计, 由下列成分组成: Sn: 0.60-0.80 , Nb : 0.75-1.00 , Fe+Cr: 0.20-0.50 , Fe/(Nb+Fe) : 0.20-0.35 , Cu 或 Bi或 Ge: 0.01-0.10, Si或 S: 0.005-0.015 , 0: 0.06-0.15 , C: 小于 0.008, N: 小于 0.006; 余量为锆。
一种核动力堆芯用锆合金, 按重量百分含量计, 由下列成分组成: Sn: 0.70, Nb: 1.00, Fe: 0.30, Cr: 0.05, Cu或 Si或 Bi或 Ge: 0.01, 0: 0.10, C: 小于 0.008, N: 小于 0.006; 余量为锆。
本发明提供的用于压水核反应堆堆芯结构材料的锆基合金, 是通过优化 Zr-Sn-Nb合金成分配比的同时, 添加微量 Cr、 Bi、 Cu等元素, 以提高合金
5 的耐腐蚀性能。
表 1为本发明所提供合金的组成,表中 14*和 15*分别为 Zr-4合金和 N36 合金组成及相应的试验检验结果, 表 1中各含量为相应组分在合金中的重量 百分比。
表 1 本发明所提供合金组成
Figure imgf000011_0001
* 1.27 —— 0.22 0.12 —— —- 0.09 0.014 0.008 余量* 1.05 1.10 0.32 —- —- 0.09 0.014 0.008 余量
如上所述的一种核动力堆芯用锆合金材料的制备方法, 包括以下歩骤:
( 1 )将锆合金中的各种组分按照合金组分的配方量进行配料;
(2)在真空自耗电弧炉中进行熔炼, 制成合金铸锭;
(3 )将合金铸锭在 950°C— 1080°C 的 β相区锻造成所需形状的坯材;
5 (4)将坯材在 1000°C— 1100°C的 β相区加热均匀化,并进行淬火处理;
(5 )将淬火后的坯材在 600°C— 650°C 的 α相区进行热加工;
(6)将热加工后的坯材进行冷加工,并在 550°C— 620°C进行中间退火;
(7)在 460°C— 600°C 内进行消除应力退火或再结晶退火处理, 得到所 述锆合金材料。
10 按上述加工工艺制备的材料由等轴的 a-Zr 晶粒和均匀分布的细小第二 相粒子组成的微观组织, 能保证在反应堆堆芯苛刻的环境中具有优良的使用 性能。 通过上述方法制备的合金材料, 其性能检测结果如表 2、 表 3表 4所 示。 表 2中所述的试验条件具体为: 腐蚀条件为 360°C、 18.6MPa去离子水; 表 3所述的试验条件为: 360°C、 18.6MPa含 7(^g/g锂水溶液 (以氢氧化锂
15 形式加入到去离子水中); 表 4所述的试验条件为: 400°C、 10.3MPa去离子 水蒸汽。在 360°C水和 400°C蒸汽环境中的腐蚀时间分别是 300天 (d)。表中 给出了每种合金的腐蚀速率(mg/dm2/d), 为了便于比较合金的相对性能, 并 在表中给出了相对腐蚀速率。 从表 (2, 3, 4) 中可以看出, 所有的合金在 360°C纯水、 氢氧化锂水溶液, 以及 400°C蒸汽中均表现出了良好的耐腐蚀 0 性能。
表 2 本发明所提供合金材料在 360°C去离子水中腐蚀 300天后的腐蚀速率 合金组分 (重量 360°C/18.6MPa纯水
Cu或
序号 Zr及 腐蚀速率 相对速
Sn Nb Fe Cr Bi或 Si或 S 0 C N
杂质 (mg/dm2/d) 率 Ge
1 0.40 0.81 0.30 0.15 0.01 —- 0.15 0.007 0.005 余量 0.18 1.00
2 0.80 1.10 0.31 0.05 0.07 —- 0.10 0.006 0.005 余量 0.33 1.83
3 0.52 1.02 0.35 0.10 ——
—- 0.08 0.007 0.005 余量 0.24 1.33
4 0.48 0.80 0.26 0.22 0.10 0.005 0.06 0.006 0.005 余量 0.23 1.28
5 0.60 1.00 0.29 0.21 ——
—- 0.09 0.006 0.004 余量 0.26 1.44
6 0.68 1.06 0.23 —— 0.08 0.01 0.10 0.007 0.004 余量 0.29 1.61
7 0.70 1.00 0.30 0.05 0.005 —- 0.10 0.007 0.005 余量 0.32 1.78
8 0.75 0.75 0.25 —— 0.07 0.002 0.12 0.007 0.004 余量 0.32 1.78
9 0.42 1.10 0.31 0.10 ——
0.015 0.09 0.007 0.005 余量 0.23 1.28
10 0.60 1.00 0.25 0.20 0.10 —- 0.15 0.005 0.005 余量 0.31 1.72
11 0.75 0.76 0.28 0.08 0.09 0.015 0.10 0.006 0.004 余量 0.32 1.78
12 0.5 0.70 0.33 0.05 —— —- 0.09 0.007 0.005 余量 0.22 1.22
13 0.70 1.00 0.30 0.05 —— 0.005 0.10 0.007 0.005 余量 0.23 1.28
14* 1.27 —— 0.22 0.12 —— —- 0.09 0.014 0.008 余量 0.22 1.22
15* 1.05 1.10 0.32 —- —- 0.09 0.014 0.008 余量 0.28 1.22 表 3 本发明所提供合金材料在 360°C含 7(^g/g锂水溶液中
腐蚀 300天后的腐蚀速率
Figure imgf000013_0001
0.52 1.02 0.35 0.10 ——
—- 0.08 0.007 0.005 余量 0.32 0.94
0.48 0.80 0.26 0.22 0.10 0.005 0.06 0.006 0.005 余量 0.35 1.03
0.60 1.00 0.29 0.21 ——
—- 0.09 0.006 0.004 余量 0.38 1.12
0.68 1.06 0.23 —— 0.08 0.01 0.10 0.007 0.004 余量 0.37 1.09
0.70 1.00 0.30 0.05 0.005 —- 0.10 0.007 0.005 余量 0.40 1.18
0.75 0.75 0.25 —— 0.07 0.002 0.12 0.007 0.004 余量 0.37 1.09
0.42 1.10 0.31 0.10 ——
0.015 0.09 0.007 0.005 余量 0.32 0.94
0.60 1.00 0.25 0.20 0.10 —- 0.15 0.005 0.005 余量 0.36 1.06
0.75 0.76 0.28 0.08 0.09 0.015 0.10 0.006 0.004 余量 0.38 1.12
0.5 0.70 0.33 0.05 —— —- 0.09 0.007 0.005 余量 0.32 0.94
0.70 1.00 0.30 0.05 —— 0.005 0.10 0.007 0.005 余量 0.32 0.94* 1.27 —— 0.22 0.12 —— —- 0.09 0.014 0.008 余量 4.52 13.29* 1.05 1.10 0.32 —- —- 0.09 0.014 0.008 余量 0.41 1.21 表 4本发明所提供合金材料在 400°C蒸汽中腐蚀 300天后的腐蚀速率 合金组分 (重量 400°C蒸汽
Cu或
Zr及 腐蚀速率 相对速
Sn Nb Fe Cr Bi或 Si或 S 0 C N
杂质 (mg/dm2/d) 率 Ge
0.40 0.81 0.30 0.15 0.01 —- 0.15 0.007 0.005 余量 0.70 1.00
0.80 1.10 0.31 0.05 0.07 —- 0.10 0.006 0.005 余量 0.84 1.20
0.52 1.02 0.35 0.10 ——
—- 0.08 0.007 0.005 余量 0.76 1.09
0.48 0.80 0.26 0.22 0.10 0.005 0.06 0.006 0.005 余量 0.72 1.03
0.60 1.00 0.29 0.21 ——
—- 0.09 0.006 0.004 余量 0.74 1.06
0.68 1.06 0.23 —— 0.08 0.01 0.10 0.007 0.004 余量 0.78 1.11
0.70 1.00 0.30 0.05 0.005 —- 0.10 0.007 0.005 余量 0.78 1.11
0.75 0.75 0.25 —— 0.07 0.002 0.12 0.007 0.004 余量 0.76 1.09
0.42 1.10 0.31 0.10 ——
0.015 0.09 0.007 0.005 余量 0.71 1.01
0.60 1.00 0.25 0.20 0.10 —- 0.15 0.005 0.005 余量 0.75 1.07 0.75 0.76 0.28 0.08 0.09 0.015 0.10 0.006 0.004 余量 0.3 0.43
0.5 0.70 0.33 0.05 —— —- 0.09 0.007 0.005 余量 0.74 1.06
0.70 1.00 0.30 0.05 —— 0.005 0.10 0.007 0.005 余量 0.72 1.03* 1.27 —— 0.22 0.12 —— —- 0.09 0.014 0.008 余量 0.43 0.61* 1.05 1.10 0.32 —- —- 0.09 0.014 0.008 余量 1.03 1.47 本发明提供的应用实例表明, 本发明合金在上述 3种水化学条件下腐蚀 时都表现出非常优良的耐腐蚀性能, 明显优于 Zr-4 合金及我国研发的 N36(Zr-1.0Sn-1.0Nb-0.3Fe) 合金。 本发明锆合金在 360 °C/18.6 MPa LiOH 水 溶液中腐蚀 300天后的腐蚀速率可比 N36合金降低 21%; 360°C/18.6 MPa去
5 离子水中腐蚀 300天后的腐蚀速率可比 N36合金降低 35%; 400 °C/ 10.3 MPa 过热蒸汽中腐蚀 300天后的腐蚀速率可比 N36合金降低 23%。
由于本发明采用了优选的 Sn、 Nb、 Fe、 Cr和 Cu或 Bi的成分范围, 在 此范围内的合金元素之间的相互作用, 结合低温加工工艺, 产生了事先意想 不到的效果, 这种效果主要表现在两个方面: 1 )本发明合金在上述 3种水化 10 学条件下腐蚀时都表现出非常优良的耐腐蚀性能, 明显优于优化 N36合金和 Zr-4合金。 2) 本发明合金经低温工艺加工后获得了细小弥散分布的第二相, 改善了合金的力学性能 (如蠕变及疲劳性能) 及抗辐照生长性能。

Claims

权 利 要 求
1. 一种核动力堆芯用锆合金, 其特征在于: 按重量百分含量计, 由下列 成分组成: Sn: 0.40-0.80, Nb: 0.75-1.10, Fe+Cr: 0.10-0.50, Fe/(Nb+Fe): 0.20-0.35, 0: 0.06-0.15, C: 小于 0.008, N: 小于 0.006; 余量为锆。
2. 一种核动力堆芯用锆合金, 其特征在于: 按重量百分含量计, 由下列 成分组成: Sn: 0.40-0.80, Nb: 0.75-1.10, Fe+Cr: 0.10-0.50, Fe/(Nb+Fe): 0.20-0.35, O: 0.06-0.15, Cu或 Bi或 Ge: 0.01-0.10, C: 小于 0.008, N: 小于 0.006; 余量为锆。
3. 一种核动力堆芯用锆合金, 其特征在于: 按重量百分含量计, 由下列 成分组成: Sn: 0.40-0.80, Nb: 0.75-1.10, Fe+Cr: 0.10-0.50, Fe/(Nb+Fe):
0.20-0.35, Si或 S: 0.002-0.020, O: 0.06-0.15, C: 小于 0.008, N: 小于 0.006; 余量为锆。
4. 一种核动力堆芯用锆合金, 其特征在于: 按重量百分含量计, 由下列 成分组成: Sn: 0.40-0.80, Nb: 0.75-1.10, Fe+Cr: 0.10-0.50, Fe/(Nb+Fe): 0.20-0.35, Cu或 Bi或 Ge: 0.01-0.10, Si或 S: 0.002-0.020, 0: 0.06-0.15, C: 小于 0.008, N: 小于 0.006; 余量为锆。
5.如权利要求 4所述的一种核动力堆芯用锆合金, 其特征在于: 按重量 百分含量计,由下列成分组成: Sn: 0.40-0.60, Nb: 0.90-1.10, Fe+Cr: 0.10-0.50, Fe/(Nb+Fe): 0.20-0.35, Cu或 Bi或 Ge: 0.01-0.10, Si或 S: 0.002-0.020, O: 0.06-0.15 , C: 小于 0.008, N: 小于 0.006; 余量为锆和杂质。
6.如权利要求 5所述的一种核动力堆芯用锆合金, 其特征在于: 按重量 百分含量计,由下列成分组成: Sn: 0.40-0.60, Nb: 0.90-1.10, Fe+Cr: 0.10-0.50, Fe/(Nb+Fe): 0.20-0.35 , , Cu或 Bi或 Ge: 0.01-0.1, Si或 S: 0.01-0.02, O: 0.06-0.15, C: 小于 0.008, N: 小于 0.006; 余量为锆和杂质。
7.如权利要求 4所述的一种核动力堆芯用锆合金, 其特征在于: 按重量 百分含量计,由下列成分组成: Sn: 0.60-0.80, Nb: 0.75-1.00, Fe+Cr: 0.10-0.50, Fe/(Nb+Fe): 0.20-0.35, Cu或 Bi或 Ge: 0.01-0.10, Si或 S: 0.002-0.020, 0: 0.06-0.15 , C: 小于 0.008, N: 小于 0.006; 余量为锆和杂质。
8.如权利要求 7所述的一种核动力堆芯用锆合金, 其特征在于: 按重量 百分含量计,由下列成分组成: Sn: 0.60-0.80, Nb: 0.75-1.00, Fe+Cr: 0.10-0.50, Fe/(Nb+Fe): 0.20-0.35, Cu或 Bi或 Ge: 0.01-0.10, Si或 S: 0.005-0.015, 0: 0.06-0.15 , C: 小于 0.008, N: 小于 0.006; 余量为锆和杂质。
9.一种核动力堆芯用锆合金, 其特征在于: 按重量百分含量计, 由下列 成分组成: Sn: 0.70, Nb: 1,00, Fe: 0.30, Cr: 0.05, Cu或 Si或 Bi或 Ge: 0.01, O: 0.10, C: 小于 0.008, N: 小于 0.006; 余量为锆。
10.如权利要求 1〜9中任一项权利要求所述的一种核动力堆芯用锆合金 材料的制备方法, 其特征在于, 包括以下歩骤:
( 1 )将锆合金中的各种组分按照合金组分的配方量进行配料;
(2)在真空自耗电弧炉中进行熔炼, 制成合金铸锭;
(3 )将合金铸锭在 950°C— 1080°C 的 β相区锻造成所需形状的坯材;
(4)将坯材在 1000°C— 1100°C的 β相区加热均匀化,并进行淬火处理; (5 )将淬火后的坯材在 600°C— 650°C 的 α相区进行热加工;
(6)将热加工后的坯材进行冷加工,并在 550°C— 620°C进行中间退火;
(7)在 460°C— 600°C 内进行消除应力退火或再结晶退火处理, 得到所 述锆合金材料 <
PCT/CN2013/089201 2012-12-27 2013-12-12 一种核动力堆芯用锆合金 WO2014101660A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
GB1512801.0A GB2523975B (en) 2012-12-27 2013-12-12 Zirconium alloy for nuclear power reactor core
ZA2015/05320A ZA201505320B (en) 2012-12-27 2015-07-23 Zirconium alloy for nuclear power reactor core

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210578413.9A CN103898361B (zh) 2012-12-27 2012-12-27 一种核动力堆芯用锆合金
CN201210578413.9 2012-12-27

Publications (1)

Publication Number Publication Date
WO2014101660A1 true WO2014101660A1 (zh) 2014-07-03

Family

ID=50989926

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/089201 WO2014101660A1 (zh) 2012-12-27 2013-12-12 一种核动力堆芯用锆合金

Country Status (5)

Country Link
CN (1) CN103898361B (zh)
AR (1) AR094256A1 (zh)
GB (1) GB2523975B (zh)
WO (1) WO2014101660A1 (zh)
ZA (1) ZA201505320B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105483444B (zh) * 2015-12-09 2018-08-03 上海大学 核电站燃料包壳用锆铌铁系合金
CN105483443B (zh) * 2015-12-09 2018-08-07 上海大学 核电站燃料包壳用含铜和锗的锆铌铁合金
CN109692880B (zh) * 2018-12-19 2021-01-01 西部超导材料科技股份有限公司 一种Zr-2.5Nb合金棒材及其挤压加工方法
CN113462998B (zh) * 2020-03-30 2023-05-02 国核宝钛锆业股份公司 一种Zr-Nb系合金棒材的制备方法
CN117292852B (zh) * 2023-11-27 2024-03-08 西安稀有金属材料研究院有限公司 一种氢化锆慢化材料及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1194052A (zh) * 1995-07-27 1998-09-23 法玛通公司 用于核燃料组件的管子及其制造方法
CN1161482C (zh) * 2001-11-02 2004-08-11 韩国原子力研究所 制备用于核燃料棒包层的含铌的基于锆合金的方法
CN102212719A (zh) * 2011-06-14 2011-10-12 苏州热工研究院有限公司 一种核反应堆用低锡锆合金材料
CN102268571A (zh) * 2011-06-30 2011-12-07 苏州热工研究院有限公司 一种锆合金材料

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100382997B1 (ko) * 2001-01-19 2003-05-09 한국전력공사 고연소도 핵연료 용 니오븀 함유 지르코늄 합금 관재 및판재의 제조방법
FR2860803B1 (fr) * 2003-10-08 2006-01-06 Cezus Co Europ Zirconium Procede d'elaboration d'un produit plat en alliage de zirconium, produit plat ainsi obtenu et grille de reacteur de centrale nucleaire realisee a partir de ce produit plat
FR2909388B1 (fr) * 2006-12-01 2009-01-16 Areva Np Sas Alliage de zirconium resistant a la corrosion en ombres portees pour composant d'assemblage de combustible pour reacteur a eau bouillante,composant realise en cet alliage, assemblage de combustible et son utilisation.
KR100999387B1 (ko) * 2008-02-29 2010-12-09 한국원자력연구원 다양한 산소화합물 및 석출상의 제어를 통한 우수한내식성을 갖는 지르코늄 합금 조성물 및 이의 제조방법
CN101270425B (zh) * 2008-03-24 2010-08-11 中国核动力研究设计院 一种用于轻水反应堆的锆基合金
CN102433465A (zh) * 2011-12-14 2012-05-02 国核宝钛锆业股份公司 一种含铋锆合金
CN102605213B (zh) * 2011-12-20 2014-06-11 上海大学 核电站燃料包壳用含锗的锆锡铌合金

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1194052A (zh) * 1995-07-27 1998-09-23 法玛通公司 用于核燃料组件的管子及其制造方法
CN1161482C (zh) * 2001-11-02 2004-08-11 韩国原子力研究所 制备用于核燃料棒包层的含铌的基于锆合金的方法
CN102212719A (zh) * 2011-06-14 2011-10-12 苏州热工研究院有限公司 一种核反应堆用低锡锆合金材料
CN102268571A (zh) * 2011-06-30 2011-12-07 苏州热工研究院有限公司 一种锆合金材料

Also Published As

Publication number Publication date
AR094256A1 (es) 2015-07-22
GB201512801D0 (en) 2015-09-02
GB2523975A (en) 2015-09-09
CN103898361B (zh) 2017-02-22
CN103898361A (zh) 2014-07-02
ZA201505320B (en) 2016-09-28
GB2523975B (en) 2017-12-20

Similar Documents

Publication Publication Date Title
WO2014101658A1 (zh) 一种核动力用锆合金
WO2014101660A1 (zh) 一种核动力堆芯用锆合金
CN103898366B (zh) 一种用于核动力反应堆燃料组件的锆基合金
CN101265538B (zh) 一种用于轻水反应堆的锆基合金
CN101654751B (zh) 一种核燃料包壳用含铌锆基合金
CN103898362A (zh) 一种水冷核反应堆用锆基合金
JP2001262260A (ja) 原子炉用の改良されたジルコニウム−ニオブ−錫合金
CN103898368B (zh) 一种核燃料组件用锆基合金
CN105568056B (zh) 一种压水堆燃料元件包壳用锆合金
CN102864338B (zh) 一种用于较高燃耗下的耐蚀性锆基合金及其制备方法
CN101285140B (zh) 用于核反应堆堆芯结构材料的锆基合金
CN103898367A (zh) 一种用于核动力反应堆堆芯的锆基合金
CN101654752A (zh) 一种核反应堆用锆-锡-铌系锆合金
CN105441717B (zh) 一种核动力堆芯结构材料用锆基合金
CN105296803B (zh) 一种核反应堆燃料包壳用锆铌合金及其制备方法
CN103898369A (zh) 一种核动力反应堆用锆合金
CN103898360A (zh) 一种核反应堆芯用锆合金
CN101805842B (zh) 一种核燃料包壳用锆-锡-铌系耐腐蚀锆基合金
CN101270425B (zh) 一种用于轻水反应堆的锆基合金
CN114703397B (zh) 一种兼具耐腐蚀和蠕变性能的核反应堆燃料包壳用锆基合金及其制备锆基合金管材的方法
CN102220519B (zh) 一种用作核压水反应堆结构材料的锆合金
CN103898365A (zh) 一种用于水冷核反应堆的锆基合金
CN101649404B (zh) 一种核燃料包壳用耐腐蚀锆基合金
CN102140595B (zh) 一种核燃料包壳用锆合金
CN102220520A (zh) 一种核反应堆燃料包壳用锆合金

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13866869

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 1512801

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20131212

WWE Wipo information: entry into national phase

Ref document number: 1512801.0

Country of ref document: GB

122 Ep: pct application non-entry in european phase

Ref document number: 13866869

Country of ref document: EP

Kind code of ref document: A1