WO2014101381A1 - 薄片类介质厚度鉴别装置及其鉴别方法 - Google Patents

薄片类介质厚度鉴别装置及其鉴别方法 Download PDF

Info

Publication number
WO2014101381A1
WO2014101381A1 PCT/CN2013/078628 CN2013078628W WO2014101381A1 WO 2014101381 A1 WO2014101381 A1 WO 2014101381A1 CN 2013078628 W CN2013078628 W CN 2013078628W WO 2014101381 A1 WO2014101381 A1 WO 2014101381A1
Authority
WO
WIPO (PCT)
Prior art keywords
thickness
shaft
synchronous belt
data
belt gear
Prior art date
Application number
PCT/CN2013/078628
Other languages
English (en)
French (fr)
Inventor
常洋
陈�光
谭栋
Original Assignee
广州广电运通金融电子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州广电运通金融电子股份有限公司 filed Critical 广州广电运通金融电子股份有限公司
Priority to AU2013370765A priority Critical patent/AU2013370765B2/en
Priority to EP13867896.6A priority patent/EP2937841B1/en
Priority to US14/650,917 priority patent/US9589408B2/en
Publication of WO2014101381A1 publication Critical patent/WO2014101381A1/zh
Priority to ZA2015/04615A priority patent/ZA201504615B/en

Links

Classifications

    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07DHANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
    • G07D7/00Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency
    • G07D7/16Testing the dimensions
    • G07D7/164Thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B5/00Measuring arrangements characterised by the use of mechanical techniques
    • G01B5/02Measuring arrangements characterised by the use of mechanical techniques for measuring length, width or thickness
    • G01B5/06Measuring arrangements characterised by the use of mechanical techniques for measuring length, width or thickness for measuring thickness
    • G01B5/068Measuring arrangements characterised by the use of mechanical techniques for measuring length, width or thickness for measuring thickness of objects while moving

Definitions

  • the invention relates to a Chinese patent application filed on December 24, 2012 by the Chinese Patent Office, the application number is 201210571601.9, and the invention is entitled "Sheet medium thickness identification device and its identification method". Priority is hereby incorporated by reference in its entirety.
  • the present invention relates to an authentication apparatus and authentication method for discriminating the thickness of a sheet-like value document in a financial self-service device. Background technique
  • the thickness of banknotes is an indispensable test method for the identification of the liquidity of banknotes.
  • the general mechanical contact value document thickness identification method is mainly realized by the relative rotational motion of the active component and the driven component.
  • the active component is a thickness driving shaft
  • the driven component includes a shaft and a floating member mounted on the shaft.
  • the floating member has a surface tangential contact with the thickness driving shaft under the external pressure, and can be changed up and down with the thickness of the banknote. Floating, so the thickness of the banknote can be detected.
  • the mechanical contact type document thickness discriminating device has a very smooth thickness of the active shaft surface and the driven shaft surface due to the processing precision requirement, and at the same time, since the active device drives the driven device to rotate during the design, it is generated during the rotation process.
  • the slip phenomenon causes the same point on the thickness drive shaft to be tangent to any point on the surface of the driven shaft.
  • the phase of the output is not regular, and the period is not changed, resulting in inaccurate thickness detection results.
  • the thickness of the drive shaft and the follower The shaft has slipping phenomenon, which causes the sliding surface friction of the shaft surface during the rotation process to accelerate the surface wear of the shaft and reduce the precision.
  • the measured objects with the same thickness are consistent in different time periods. That is to say, the problem of slippage brings errors to the thickness detection of the value document, which reduces the measurement accuracy of the thickness detection and affects the detection rate of the financial equipment. Summary of the invention
  • the present invention provides a sheet medium thickness discriminating device for preventing slipping of the main shaft and the driven shaft and a discriminating method thereof.
  • the sheet medium thickness discriminating device comprises: a frame comprising two side plates and a front surface for mounting and carrying the following components; a thickness shaft, the two ends of which are mounted on the two side plates of the frame by bearings a floating shaft, the two ends of which are mounted on the two side plates of the frame by bearings, the outer surface of the floating shaft is in tangential contact with the outer surface of the thickness shaft; an inductor is mounted on the front surface of the frame for detecting the An amplitude of a tangent point of the floating axis tangential to the thickness axis; wherein a first timing pulley is fixedly coupled to one end of the thickness shaft, and the first timing belt passes through a first timing belt and a first timing belt a second timing pulley is fixedly connected to one end of the floating shaft, and the
  • the first timing belt gear includes a timing pulley portion and a gear portion, and the first synchronization belt is sleeved on the timing belt portion of the first timing pulley and the first timing belt gear.
  • the second timing belt gear includes a timing pulley portion and a gear portion, and the second timing belt is sleeved on the synchronous pulley portion of the second timing pulley and the second timing belt gear, the first The gear portion of the second timing belt gear meshes with the gear portion of the first timing belt gear.
  • the second timing belt gear is sleeved on a bearing, and the bearing sleeve is sleeved on a shaft of the frame side plate, and the second timing belt gear is rotatable about the shaft.
  • one end of the thickness shaft and the first timing pulley and one end of the floating shaft and the second timing pulley are fixedly connected by a D-shaped structure.
  • the floating shaft comprises, in order from the inside to the outside, an axial center, an elastic material layer and an outer wheel shell layer, and an outer surface of the outer wheel shell layer is in tangential contact with an outer surface of the thickness shaft.
  • the elastic material layer comprises at least three elastic foils, one end of each elastic foil is fixed on the axis, the other end is fixed on the inner wall of the outer wheel shell layer, and the three elastic foils are vortexed.
  • the shape is uniformly distributed.
  • the step 01 further includes: Step 011, the sensor collects the signal reference data VmO when no medium passes; Step 012, smooths the signal reference data VmO; and Step 013, stores the signal reference data VmO.
  • the step 02 further includes: Step 021, the sensor collects the signal data Vml when the normal medium passes; Step 022, smooths the signal data Vml; Step 023, reads the signal reference data VmO; and Step 024, calculates Sheet medium standard thickness
  • Hstd V (Vml(t) - VmO(t)) I n
  • the first timing pulley is connected to a first timing belt gear through a first timing belt, and the second timing pulley is fixedly connected to one end of the floating shaft.
  • the second timing pulley is coupled to a second timing belt gear via a second timing belt; the first timing belt gear meshes with the second timing belt gear, and the first timing belt gear is mounted on a shaft of a drive motor Therefore, the driving motor can drive the first timing belt gear to rotate, and simultaneously drive the first timing belt connected to the first timing belt to rotate, thereby driving the thickness shaft to rotate, and, in addition, due to the first timing belt gear
  • the second timing belt gear meshes, so that the first timing belt gear drives the second timing belt gear to rotate in the opposite direction, and the second timing belt gear drives the second timing belt to rotate through the second timing belt, thereby driving the floating
  • the shaft rotates, therefore, a drive motor simultaneously drives the thickness shaft and the floating shaft to rotate, fundamentally changing the thickness shaft to drive the rotation of the floating shaft Type, thickness effectively prevent slippage between the shaft and
  • the floating shaft adopts a special combination of elastic material layer and outer wheel shell layer, so that the floating shaft satisfies the outer wheel shell layer and can rotate with the shaft center, and the elastic outer wheel shell layer can be changed according to the thickness of the sheet medium. Floating up and down, that is to say, when the sheet medium enters or exits, only the outer wheel shell layer needs to be displaced, and the entire shaft does not need to be displaced to be detected. The thickness of the sheet-like medium reduces the error.
  • FIG. 1 is a schematic structural view of a sheet-like medium thickness discriminating device according to a preferred embodiment of the present invention
  • Figure 2 is a schematic view showing the radial cross-sectional structure of the floating shaft shown in Figure 1;
  • Figure 3 is a schematic view showing the structure of the right side of the sheet medium thickness discriminating device of Figure 1;
  • FIG. 4 is a general flow chart of a method for discriminating a sheet-like medium thickness according to a preferred embodiment of the present invention
  • Figure 5 is a step-by-step flow chart when calibrating the reference data
  • Figure 6 is a phase-amplitude diagram of the tangent points on the thickness axis and the floating axis when no sheet-like medium enters;
  • Figure 7 is a schematic diagram showing the reference amplitude of a single channel signal when no sheet medium enters
  • Figure 8 is a step-by-step flow chart for calibrating the standard thickness data of the sheet medium
  • Figure 9 is a schematic view showing the working principle of the sheet medium when entering the thickness discriminating device.
  • Figure 10 is a phase-amplitude diagram of each cut point when a uniform thickness sheet medium enters the thickness detecting device
  • Figure 11 is a schematic diagram showing the amplitude of a single channel signal after a normal sheet medium enters the thickness discriminating device
  • Figure 12 is a schematic illustration of the amplitude of a single channel signal after an abnormal sheet-like medium enters the thickness discriminating device. detailed description
  • a sheet-like medium thickness includes a frame 40, a thickness axis 10, a floating shaft 20, and a sensor 30.
  • the frame 40 includes two side panels 41 and 42 and a front side 43 that is mounted to the front side 43 of the frame. Both ends of the floating shaft 20 and the thickness shaft 10 are respectively mounted on the side plates 41 and 42 of the frame 40, the floating shaft 20 and the thickness The shafts 10 are parallel and the outer surface is tangent. Referring to FIG. 3, one end of the thickness shaft 10 which is erected on the side plate 42 is fixedly connected with a timing belt pulley 6.
  • the timing belt pulley 6 is sleeved with a timing belt 7, and the timing belt 7 is also sleeved at the timing belt of the timing belt gear 5.
  • the gear portion 51 of the timing belt gear 5 meshes with the gear portion 42 of the other timing belt gear 4, and the timing belt portion 41 of the timing belt gear 4 is covered with a timing belt 7, and the timing belt 7 is also sleeved at the same time.
  • the timing pulley 3 is fixedly coupled to one end of the floating shaft 20 which is mounted on the side plate 42.
  • one end of the thickness shaft 10 that is erected on the side plate 42 is opened as a D-shaped shaft, and the corresponding synchronous pulley 6 defines a D-shaped groove, and the D-shaped shaft is sleeved in the D-shaped groove.
  • the thickness shaft 10 and the timing pulley 6 are fixedly connected by the D-axis and the D-shaped groove.
  • the floating shaft 20 and the timing pulley 3 are also fixedly connected by the same structural features.
  • the drive motor 8 is fixedly mounted on the side plate 42 of the frame 40, which is mounted on the shaft 81 of the drive motor 8, i.e., the timing belt gear 5 is rotatable with the drive motor shaft 81. Further, the timing belt gear 4 is sleeved on a bearing which is riveted to a shaft 43 which is rotatably mounted on the side plate of the frame, and the timing belt gear 4 is rotatable about the shaft 43.
  • the timing belt 7 drives the timing belt pulley 6 to rotate in the same direction as the timing belt gear 5. Since the timing belt pulley 6 is fixedly coupled to the thickness shaft 10, the thickness shaft 10 is driven to rotate in the same direction. At the same time, since the gear portion 52 of the timing belt gear 5 meshes with the gear portion 42 of the timing belt gear 4, when the timing belt gear 5 rotates, the timing belt gear 4 is rotated in the direction, and the timing belt 7 is driven by the timing belt 7 3 Rotating in the same direction as the timing belt gear 4, since the timing pulley 3 is fixedly coupled to the floating shaft 20, the floating shaft 20 rotates together with the timing pulley, thereby realizing a drive motor 8 to simultaneously drive the thickness shaft 10 and the floating shaft The reverse rotation of 20 fundamentally changes the mode in which the thickness shaft 10 drives the rotation of the floating shaft 20, and the drive shaft and the driven shaft are no longer distinguished, thereby avoiding the occurrence of slippage.
  • the floating shaft 20 includes an axis 23, an elastic material layer 22 and an outer wheel shell layer 21 in order, and the outer surface of the floating shaft 20 is actually the outer surface of the outer wheel shell layer 21. It is in tangential contact with the outer surface of the thickness shaft 10.
  • the elastic material layer 22 includes a plurality of elastic foils, as shown in FIG.
  • each elastic foil is fixed on the axis 23, and the other end is It is fixed on the inner wall of the outer wheel shell layer 21, and the six elastic foils are distributed in a spiral shape and have better elastic characteristics.
  • the floating shaft 20 satisfies that the outer wheel shell layer 21 can rotate with the shaft center 23, and the outer wheel shell layer 21 which ensures elasticity can be floated up and down as the thickness of the sheet medium changes.
  • the elastic material layer 22 may also be in other forms, such as an elastic wire or other elastic material that is uniformly filled, and the function of the elastic material layer 22 may be achieved.
  • the sheet medium thickness discriminating method of the sheet-like medium thickness discriminating device of the present embodiment will be described in detail below.
  • step 01 further includes step 011, the sensor collects signal reference data VmO when no medium passes; step 012, performs smooth filtering on the signal reference data VmO; and step 013, stores signal reference data VmO.
  • the outer diameter of the floating shaft 20d be CU
  • the outer diameter of the thickness shaft 10 be CA
  • K is a fixed constant
  • the points on the thickness axis 10 be PI, P2, P3, P4.Pn; the points on the circumferential surface of the floating axis 20 are Ul, U2, U3, U4 Un, where Pn and Un are corresponding tangent points, and the position of the tangent point is recorded.
  • Dn The phase-amplitude map of the phase output of each pair of tangent points when no sheet-like medium enters the rotation, as shown in Fig. 6.
  • the sensor 30 can detect the displacement variation of the outer wheel shell layer 21 of the floating shaft 20, and collect data.
  • the data Vi(t) ⁇ Vi(tl), Vi(t2), ..., Vi(tj), Vi(tn) ⁇ , 0 ⁇ i ⁇ n for a single channel.
  • a single channel data is used for judging, and when there is a thickness abnormality of a single channel signal, it can be determined that the thickness is abnormal.
  • the sensor signal Vm0 is acquired when no sheet-like medium passes through the thickness discriminating device. Since the floating axis 20 of the device rotates synchronously with the thickness axis 10, the acquired zero-value reference thickness periodically changes, and the acquired signal can be set to VmO as a signal within one cycle, as shown in FIG.
  • step 02 further includes: Step 021, the sensor collects signal data Vml when the normal medium passes; Step 022, smooths the signal data Vml; Step 023, reads the signal reference data. VmO; and step 024, calculating the sheet
  • Hstd V (Vm ⁇ (t) - VmO(t)) I n
  • step 021 it is assumed that when a sheet-like medium 100 having a flat surface and a uniform thickness, such as a banknote, enters the thickness discriminating device, the outer wheel shell layer 21 of the floating shaft 20 is lifted upward in the direction of the arrow, as shown in FIG.
  • the search data Vr the statistical Vr data is greater than The number of zero data is Vrplus, and it is judged whether Vrplus is greater than Th3. If yes, the thickness of the sheet medium is abnormal.
  • Th3 is a threshold set according to the characteristics of the device, which is calculated by a formula. After Vr, the maximum allowable value of the resulting error.
  • the single-channel signal amplitude when the sheet-like medium shown in Fig. 12 passes indicates that the sheet-like medium thickness is abnormal.
  • the thickness axis and the floating shaft are simultaneously driven by a driving motor, thereby avoiding the phenomenon of slippage between the thickness axis and the floating shaft, reducing mechanical wear and improving the thickness discrimination accuracy.
  • the floating shaft adopts a special combination of elastic material layer and outer wheel shell layer, so that the floating shaft satisfies the outer wheel shell layer and can rotate with the shaft center, and the elastic outer wheel shell layer can be changed according to the thickness of the sheet medium. Floating up and down, that is to say, when the sheet medium enters or exits, only the outer wheel shell layer needs to be displaced, and the thickness of the sheet medium can be detected without the displacement of the entire shaft, thereby reducing the error.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Controlling Sheets Or Webs (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • A Measuring Device Byusing Mechanical Method (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Inspection Of Paper Currency And Valuable Securities (AREA)

Abstract

一种薄片类介质厚度鉴别装置包括一厚度轴(10),其两端通过轴承安装于一框架(40)的两侧板上;一浮动轴(20),其两端通过轴承安装于该框架(40)的两侧板上,该浮动轴(20)外表面与该厚度轴(10)的外表面相切接触;一感应器(30),安装于该框架的正面,用于检测该浮动轴(20)与该厚度轴(10)相切的切点的振幅。该厚度轴(10)的一端固定连接有一第一同步带轮(6),该第一同步带轮(6)通过一第一同步带(7)与一第一同步带齿轮(5)连接;该浮动轴(20)的一端固定连接有一第二同步带轮(3),该第二同步带轮(3)通过一第二同步带(7)与一第二同步带齿轮(4)连接;该第一同步带齿轮(5)与该第二同步带齿轮(4)啮合,且该第一同步带齿轮(5)装配在一驱动马达(8)的轴(81)上。该厚度鉴别装置避免了厚度轴与浮动轴之间打滑的现象。还公开了一种薄片类介质厚度鉴别方法。

Description

薄片类介质厚度鉴别装置及其鉴别方法 本申请要求于 2012 年 12 月 24 日提交中国专利局、 申请号为 201210571601.9、 发明名称为"薄片类介质厚度鉴别装置及其鉴别方法"的 中国专利申请的优先权, 其全部内容通过引用结合在本申请中。 技术领域
本发明涉及一种用于金融自助设备中鉴别薄片类有价文件厚度的鉴别 装置和鉴别方法。 背景技术
现有的金融服务设备领域对纸币的可流通性鉴别过程中, 纸币的厚度 是一项不可缺少的检测方法。 目前通用的机械接触有价文件厚度鉴别方式 主要是通过主动部件和从动部件的相对旋转运动加以实现。 其中主动部件 是厚度主动轴, 从动部件包括一轴以及安装在该轴上的浮动件, 浮动件在 外在压力作用下其表面与厚度主动轴相切接触, 是可以随纸币的厚度变化 而上下浮动的, 因此可检测纸币的厚度。
然而, 机械接触式有价文件厚度鉴别装置由于加工精度的需求, 厚度 主动轴表面与从动轴表面非常光滑, 同时由于设计中是主动装置带动从动 装置进行旋转, 故在旋转过程中会产生打滑现象, 使得厚度主动轴上的同 一点会与从动轴表面的任意点相切, 输出的相位没有规律性, 不是呈现周 期变化, 导致厚度检测结果不准确; 另外, 厚度主动轴与从动轴存在打滑 现象, 使得轴表面在旋转过程中产生滑动摩擦, 加速轴表面磨损, 降低其 精度, 对于同一厚度均勾一致的受测对象在不同时间段测量结果不一致。 也就是说, 打滑的问题给有价文件的厚度检测带来误差, 降低了厚度检测 的测量精度, 影响了金融设备的检出率。 发明内容
为了提高机械接触式薄片类介质厚度鉴别装置的测量精度, 本发明提 供一种防止主动轴与从动轴打滑的薄片类介质厚度鉴别装置及其鉴别方 法。 该薄片类介质厚度鉴别装置, 其包括: 一框架, 包括两侧板以及一正 面, 用于安装和承载下述零部件; 一厚度轴, 其两端通过轴承安装于该框 架的两侧板上; 一浮动轴, 其两端通过轴承安装于该框架的两侧板上, 该 浮动轴外表面与该厚度轴的外表面相切接触; 一感应器, 安装于该框架的 正面, 用于检测该浮动轴与该厚度轴相切的切点的振幅; 其特征在于, 该 厚度轴的一端固定连接有一第一同步带轮, 该第一同步带轮通过一第一同 步带与一第一同步带齿轮连接; 该浮动轴的一端固定连接有一第二同步带 轮, 该第二同步带轮通过一第二同步带与一第二同步带齿轮连接; 该第一 同步带齿轮与该第二同步带齿轮啮合, 且该第一同步带齿轮装配在一驱动 马达的轴上。
具体的, 该第一同步带齿轮包括一同步带轮部和一齿轮部, 该第一同 步带套接在该第一同步带轮和第一同步带齿轮的该同步带轮部上。
进一步的, 该第二同步带齿轮包括一同步带轮部和一齿轮部, 该第二 同步带套接在该第二同步带轮和第二同步带齿轮的该同步带轮部上, 该第 二同步带齿轮的该齿轮部与该第一同步带齿轮的该齿轮部相啮合。
具体的, 该第二同步带齿轮套在一轴承上, 该轴承套在一铆接在该框 架侧板上的一轴上, 该第二同步带齿轮可绕该轴旋转。
具体的, 该厚度轴的一端与该第一同步带轮之间以及该浮动轴的一端 与该第二同步带轮之间通过 D型结构固定连接。
优选的, 该浮动轴由内向外依次包括轴心、 弹性材料层和外轮壳层, 该外轮壳层的外表面与该厚度轴的外表面相切接触。
优选的, 该弹性材料层包括至少三个弹性箔片, 每一弹性箔片的一端 固定在该轴心上, 另一端固定在该外轮壳层的内壁上, 且该三个弹性箔片 呈漩涡状均勾分布。
该薄片类介质厚度鉴别方法, 包括: 步骤 01 , 校准基准数据 VmO; 步 骤 02, 校准薄片类介质标准厚度数据 Hstd; 步骤 03 , 传感器采集薄片类 介质通过时的信号数据 Vm2; 步骤 04, 计算 Vr, 首先修正采集数据 Vm2 去除零值基准数据 VmO得到修正数据 2^(0 = ^2(0 - ^0(0 , 然后计算 Vr(t) = Vm2re(t) - Hstd + ATh2 , 其中 Δ7¾2为按照设备特性设定的一阈值; 步骤 05 , 统计 Vr数据中存在大于零的数据个数 Vrplus; 以及步骤 06 , 判 断 Vrplus是否大于按照设备特性设定的另一阈值 Th3 , 如果是, 则薄片类 介质厚度异常, 如果否, 则薄片类介质厚度正常。
具体的, 该步骤 01进一步包括: 步骤 011 , 传感器采集无介质通过时 的信号基准数据 VmO; 步骤 012 , 对信号基准数据 VmO进行平滑滤波; 以 及步骤 013 , 存储信号基准数据 VmO。
具体的, 该步骤 02进一步包括: 步骤 021 , 传感器采集有正常介质通 过时的信号数据 Vml ; 步骤 022 , 对信号数据 Vml进行平滑滤波; 步骤 023 , 读取信号基准数据 VmO; 以及步骤 024 , 计算薄片类介质标准厚度
Hstd = V (Vml(t) - VmO(t)) I n
Hstd, 其中 ^ , n代表一次采集数据的长度。
由于该厚度轴的一端固定连接有一第一同步带轮, 该第一同步带轮通 过一第一同步带与一第一同步带齿轮连接; 该浮动轴的一端固定连接有一 第二同步带轮, 该第二同步带轮通过一第二同步带与一第二同步带齿轮连 接; 该第一同步带齿轮与该第二同步带齿轮啮合, 且该第一同步带齿轮装 配在一驱动马达的轴上,因此该驱动马达可以驱动该第一同步带齿轮转动, 同时带动该第一同步带连接的该第一同步带轮转动, 从而带动该厚度轴转 动, 另外, 由于该第一同步带齿轮与该第二同步带齿轮啮合, 因此该第一 同步带齿轮带动该第二同步带齿轮相反方向转动, 该第二同步带齿轮又通 过第二同步带带动第二同步带轮转动, 从而带动该浮动轴转动, 因此, 一 个驱动马达同时驱动该厚度轴和浮动轴转动, 从根本上改变了厚度轴带动 浮动轴转动的模式, 有效防止厚度轴和浮动轴之间打滑。
另外, 浮动轴采用特殊的弹性材料层和外轮壳层结合的方式, 使得该 浮动轴满足外轮壳层可以随轴心转动, 且保证富有弹性的外轮壳层可以随 薄片类介质厚度的变化而进行上下浮动, 也就是说, 薄片类介质进入或退 出时, 只需要外轮壳层发生位移, 而不需要整个轴发生位移即可检测得到 薄片类介质的厚度, 减少了误差。 附图说明
下面附图和实施例对本发明进一步说明。
图 1是本发明一较佳实施例提供的薄片类介质厚度鉴别装置结构示意 图;
图 2是图 1中所示浮动轴的径向截面结构示意图;
图 3是图 1中薄片类介质厚度鉴别装置右侧面结构示意图;
图 4是本发明一较佳实施例提供的薄片类介质厚度鉴别方法总体流程 图;
图 5是校准基准数据时的分步流程图;
图 6 是没有薄片类介质进入时厚度轴与浮动轴上各切点相位-振幅示 意图;
图 7是没有薄片类介质进入时单通道信号基准振幅示意图;
图 8是校准薄片类介质标准厚度数据的分步流程图;
图 9是薄片类介质进入厚度鉴别装置时的工作原理示意图;
图 10是均匀厚度薄片类介质进入厚度检测装置时各切点相位-振幅示 意图;
图 11是正常薄片类介质进入厚度鉴别装置后单通道信号振幅示意图; 以及
图 12是异常薄片类介质进入厚度鉴别装置后单通道信号振幅示意。 具体实施方式
为进一步阐述本发明所提供的这种薄片类介质厚度鉴别装置, 以下结 合本发明的一个优选实施例的图示做进一步的详细介绍。
如图 1所示,本发明一较佳实施例提供的薄片类介质厚度包括框架 40, 厚度轴 10, 浮动轴 20以及传感器 30。 该框架 40包括两个侧板 41和 42 以及一正面 43 , 该传感器 30安装在框架的正面 43。 该浮动轴 20和厚度轴 10的两端分别架设在该框架 40的两侧板 41和 42上, 该浮动轴 20和厚度 轴 10平行, 外表面相切。 结合图 3 , 该厚度轴 10架设在侧板 42上的一端 固定连接一同步带轮 6, 同步带轮 6上套有一同步带 7, 同步带 7同时还套 接在同步带齿轮 5的同步带部 51上, 该同步带齿轮 5的齿轮部 51与另一 个同步带齿轮 4的齿轮部 42啮合, 该同步带齿轮 4的同步带部 41上套有 同步带 7, 同步带 7同时还套接在一同步带轮 3上, 而该同步带轮 3与浮 动轴 20架设在侧板 42上的一端固定连接。 具体的, 本实施例中, 该厚度 轴 10架设在该侧板 42上的一端开设成 D型轴, 相应的该同步带轮 6开设 D型槽, 该 D型轴套接在该 D型槽中, 该厚度轴 10与该同步带轮 6之间 即通过该 D型轴和 D型槽实现固定连接。 同样浮动轴 20与该同步带轮 3 之间也是通过同样的结构特征进行固定连接。
该驱动马达 8固定安装在框架 40的侧板 42上, 该同步带齿轮 5即装 配在该驱动马达 8的轴 81上,也就是说,该同步带齿轮 5可以随驱动马达 轴 81旋转。 另外, 同步带齿轮 4套在一轴承上, 该轴承套在一铆接在该框 架侧板上的一轴 43上, 该同步带齿轮 4可绕该轴 43旋转。
当同步带齿轮 5旋转时, 同步带 7带动同步带轮 6与该同步带齿轮 5 同方向旋转, 由于同步带轮 6与厚度轴 10固定连接, 因此带动厚度轴 10 同方向转动。 同时, 由于同步带齿轮 5的齿轮部 52与同步带齿轮 4的齿轮 部 42啮合, 因此, 同步带齿轮 5旋转时, 带动同步带齿轮 4方向转动, 在 同步带 7的带动下, 同步带轮 3与同步带齿轮 4同方向转动, 由于同步带 轮 3与浮动轴 20固定连接, 因此浮动轴 20与同步带轮一起同向转动, 因 此实现了一个驱动马达 8同时驱动厚度轴 10与浮动轴 20反向转动, 从根 本上改变了厚度轴 10带动浮动轴 20转动的模式, 不再区分主动轴与从动 轴, 避免了打滑现象的发生。
优选的, 如图 2所示, 该浮动轴 20内向外依次包括轴心 23、 弹性材 料层 22和外轮壳层 21 ,该浮动轴 20的外表面实际上也就是该外轮壳层 21 的外表面与该厚度轴 10的外表面相切接触。如图 5所示, 由于该弹性材料 层 22的设置,使得薄片类介质 100进入厚度轴 10与浮动轴 20之间时,外 轮壳层 21可沿箭头方向位移, 而薄片类介质 100离开时, 外轮壳层 21又 能复位。本实施例中,该弹性材料层 22包括有多片弹性箔片,如图 2所示, 具体的是 6片弹性箔片,每一弹性箔片的一端固定在该轴心 23上, 另一端 固定在该外轮壳层 21的内壁上,且该 6个弹性箔片呈漩涡状均勾分布,具 有较好的弹性特征。该浮动轴 20满足外轮壳层 21可以随轴心 23转动,且 保证富有弹性的外轮壳层 21 可以随薄片类介质厚度的变化而进行上下浮 动。该弹性材料层 22还可以是其他形式,例如均勾填充的弹性金属丝或其 他弹性材料, 可以实现该弹性材料层 22的功能即可。
以下详细介绍本实施例提供的薄片类介质厚度鉴别装置的薄片类介质 厚度鉴别方法。
如图 4所示,该鉴别方法总体流程包括:步骤 01 ,校准基准数据 VmO; 步骤 02, 校准薄片类介质标准厚度数据 Hstd; 步骤 03 , 传感器采集薄片 类介质通过时的信号数据 Vm2;步骤 04,计算 Vr,首先修正采集数据 Vm2 去除零值基准数据 VmO得到修正数据 2^(0 = ^2(0 - ^0(0 , 然后计算 Vr(t) = Vm2re(t) - Hstd + ATh2 , 其中 Δ7¾2为按照设备特性设定的一阈值; 步骤 05 , 统计 Vr数据中存在大于零的数据个数 Vrplus; 以及步骤 06, 判 断 Vrplus是否大于按照设备特性设定的另一阈值 Th3 , 如果是, 则薄片类 介质厚度异常, 如果否, 则薄片类介质厚度正常。
其中, 如图 5所示, 步骤 01进一步包括步骤 011 , 传感器采集无介质 通过时的信号基准数据 VmO; 步骤 012,对信号基准数据 VmO进行平滑滤 波; 以及步骤 013 , 存储信号基准数据 VmO。
设浮动轴 20d的外径为 C U,厚度轴 10的外径为 C A , 其中 C U/ C A=K ( K为一固定常数),确保厚度轴 10与浮动轴 20圓周的切点在旋转过程中 不会发生偏移, 从而固定其切点相位特征。
设厚度轴 10上的点是 PI , P2, P3 , P4 .Pn; 浮动轴 20圓周表 面的点是 Ul , U2, U3 , U4 Un, 其中 Pn与 Un是对应相切的点, 切点位置记为 Dn。没有薄片类介质进入旋转时,各对切点相位输出的相位 -振幅图, 如图 6所示。
传感器 30能够检测到浮动轴 20的外轮壳层 21位移变动,其采集数据 为 Vm={Vl,V2,...,Vi,...,Vm}, 包含 m个通道数据, 每个通道数据由传感器 30 中单个厚度传感器采集。 对于单个通道的数据 Vi(t)={Vi(tl), Vi(t2), ..., Vi(tj), Vi(tn) }, 0<i<n。 本实施例中采用单个通道数据判断, 当存在单个 通道信号存在厚度异常则可判断为厚度异常。
在没有薄片类介质通过厚度鉴别装置时采集传感器信号 Vm0。 由于本 装置浮动轴 20与厚度轴 10同步转动, 采集的零值基准厚度存在周期性变 化, 这里采集信号可以设定成 VmO为一个周期内的信号, 如图 7所示。 信 号采集过程由同步装置进行控制, 保证 t=0时每张薄片介质数据采集开始 时 VmO与标准 VmO保持一致。
另外, 如图 8和图 11所示, 步骤 02进一步包括: 步骤 021 , 传感器 采集有正常介质通过时的信号数据 Vml; 步骤 022,对信号数据 Vml进行 平滑滤波; 步骤 023 , 读取信号基准数据 VmO; 以及步骤 024, 计算薄片
Hstd = V (Vm\(t) - VmO(t)) I n
类介质标准厚度 Hstd,其中 '=。 , n代表一次采集数据 的长度。 步骤 021 中, 假设当一表面平整、 厚度均匀的薄片类介质 100, 例如 纸币, 进入厚度鉴别装置时, 浮动轴 20的外轮壳层 21沿箭头方向向上抬 起,如图 9所示,此时感应器 30能够检测到由于薄片类介质 100进入引起 的各点振幅变化量 Δ η (图 10中振幅阴影部分),各对应切点的振幅会随之 升高, 但振幅的变换量保持不变, 即 Δ 1= Δ 2= Δ 3= = Δ η , 如图 10 所示。
在薄片类介质通过时采集到数据 Vm2, 如图 12所示, 然后修正采集 数据去除零值基准偏差得到修正数据 Vm2/^) = Vm2W-VmQW , 再计算 Vr(t) = Vmlreit) - Hstd + Δ7¾2 , 其中 Δ7¾2是按照设备特性设定的阈值, 是信号 噪声产生误差的最大允许值。 最后搜索数据 Vr, 统计 Vr数据中存在大于 零的数据个数 Vrplus, 再判断 Vrplus是否大于 Th3 , 如果是, 则该薄片类 介质存在厚度异常, 否, 则薄片类介质厚度正常, 其中 Th3是按照设备特 性设定的阈值, 是通过公式计算 Vr后, 结果误差的最大允许值。 图 12示 出的薄片类介质通过时的单通道信号振幅显示该薄片类介质厚度异常。
本实施例提供的薄片类介质厚度鉴别装置其厚度轴与浮动轴通过一驱 动马达同时驱动, 避免了厚度轴与浮动轴之间打滑的现象, 减少了机械磨 损, 提高了厚度鉴别精度。 另外, 浮动轴采用特殊的弹性材料层和外轮壳 层结合的方式, 使得该浮动轴满足外轮壳层可以随轴心转动, 且保证富有 弹性的外轮壳层可以随薄片类介质厚度的变化而进行上下浮动,也就是说, 薄片类介质进入或退出时, 只需要外轮壳层发生位移, 而不需要整个轴发 生位移即可检测得到薄片类介质的厚度, 减少了误差。
以上仅是本发明的优选实施方式, 应当指出的是, 上述优选实施方式 不应视为对本发明的限制, 本发明的保护范围应当以权利要求所限定的范 围为准。 对于本技术领域的普通技术人员来说, 在不脱离本发明的精神和 范围内, 还可以做出若干改进和润饰, 这些改进和润饰也应视为本发明的 保护范围。

Claims

权 利 要 求
1、 一种薄片类介质厚度鉴别装置, 其包括:
一框架, 包括两侧板以及一正面, 用于安装和承载下述零部件; 一厚度轴, 其两端通过轴承安装于该框架的两侧板上;
一浮动轴, 其两端通过轴承安装于该框架的两侧板上, 其外表面与该 厚度轴的外表面相切接触;
一感应器, 安装于该框架的正面, 用于检测该浮动轴与该厚度轴相切 的切点的振幅;
其特征在于, 该厚度轴的一端固定连接有一第一同步带轮, 该第一同 步带轮通过一第一同步带与一第一同步带齿轮连接; 该浮动轴的一端固定 连接有一第二同步带轮, 该第二同步带轮通过一第二同步带与一第二同步 带齿轮连接; 该第一同步带齿轮与该第二同步带齿轮啮合, 且该第一同步 带齿轮装配在一驱动马达的轴上。
2、如权利要求 1所述的薄片类介质厚度鉴别装置, 其特征在于, 该第 一同步带齿轮包括一同步带轮部和一齿轮部, 该第一同步带套接在该第一 同步带轮和第一同步带齿轮的该同步带轮部上。
3、如权利要求 2所述的薄片类介质厚度鉴别装置, 其特征在于, 该第 二同步带齿轮包括一同步带轮部和一齿轮部, 该第二同步带套接在该第二 同步带轮和第二同步带齿轮的该同步带轮部上, 该第二同步带齿轮的该齿 轮部与该第一同步带齿轮的该齿轮部相啮合。
4、如权利要求 3所述的薄片类介质厚度鉴别装置, 其特征在于, 该第 二同步带齿轮套在一轴承上,该轴承套在一铆接在该框架侧板上的一轴上, 该第二同步带齿轮可绕该轴旋转。
5、如权利要求 1所述的薄片类介质厚度鉴别装置, 其特征在于, 该厚 度轴的一端与该第一同步带轮之间以及该浮动轴的一端与该第二同步带轮 之间通过 D型结构固定连接。
6、 如权利要求 1~5 中任意一项所述的薄片类介质厚度鉴别装置, 其 特征在于, 该浮动轴由内向外依次包括轴心、 弹性材料层和外轮壳层, 该 外轮壳层的外表面与该厚度轴的外表面相切接触。
7、 如权利要求 6所述的薄片类介质厚度鉴别装置, 其特征在于, 该弹 性材料层包括至少三个弹性箔片, 每一弹性箔片的一端固定在该轴心上, 另一端固定在该外轮壳层的内壁上,且该三个弹性箔片呈漩涡状均勾分布。
8、 一种薄片类介质厚度鉴别方法, 包括:
步骤 01 , 校准基准数据 VmO;
步骤 02 , 校准薄片类介质标准厚度数据 Hstd;
步骤 03 , 传感器采集薄片类介质通过时的信号数据 Vm2;
步骤 04 , 计算 Vr, 首先修正采集数据 Vm2去除零值基准数据 VmO 得 到 修 正 数 据 ^2re(t) = Vm2(0 - VmO(t) , 然 后 计 算
Vr(t) = Vm2re(t) - Hstd + ATh2 , 其中 Δ7¾2为按照设备特性设定的一阈值; 步骤 05 , 统计 Vr数据中存在大于零的数据个数 Vrplus; 以及 步骤 06 , 判断 Vrplus是否大于按照设备特性设定的另一阈值 Th3 , 如 果是, 则薄片类介质厚度异常, 如果否, 则薄片类介质厚度正常。
9、 如权利要求 8所述的薄片类介质厚度鉴别方法, 其特征在于, 该步 骤 01进一步包括:
步骤 011 , 传感器采集无介质通过时的信号基准数据 VmO;
步骤 012 , 对信号基准数据 VmO进行平滑滤波; 以及
步骤 013 , 存储信号基准数据 VmO。
10、 如权利要求 8所述的薄片类介质厚度鉴别方法, 其特征在于, 该 步骤 02进一步包括:
步骤 021 , 传感器采集有正常介质通过时的信号数据 Vml ;
步骤 022 , 对信号数据 Vml进行平滑滤波;
步骤 023 , 读取信号基准数据 VmO; 以及
步 骤 24 , 计 算 薄 片 类 介质 标 准 厚 度 Hstd , 其 中 Hstd = J (Vm\(t) - VmO(t ) 1
n代表一次采集数据的长度 (
PCT/CN2013/078628 2012-12-24 2013-07-02 薄片类介质厚度鉴别装置及其鉴别方法 WO2014101381A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AU2013370765A AU2013370765B2 (en) 2012-12-24 2013-07-02 Sheet type medium thickness identification device and identification method thereof
EP13867896.6A EP2937841B1 (en) 2012-12-24 2013-07-02 Sheet type medium thickness identification device and identification method thereof
US14/650,917 US9589408B2 (en) 2012-12-24 2013-07-02 Sheet type medium thickness identification device and identification method thereof
ZA2015/04615A ZA201504615B (en) 2012-12-24 2015-06-25 Sheet type medium thickness identification device and identification method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210571601.9 2012-12-24
CN201210571601.9A CN103106729B (zh) 2012-12-24 2012-12-24 薄片类介质厚度鉴别装置及其鉴别方法

Publications (1)

Publication Number Publication Date
WO2014101381A1 true WO2014101381A1 (zh) 2014-07-03

Family

ID=48314553

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/078628 WO2014101381A1 (zh) 2012-12-24 2013-07-02 薄片类介质厚度鉴别装置及其鉴别方法

Country Status (8)

Country Link
US (1) US9589408B2 (zh)
EP (1) EP2937841B1 (zh)
CN (1) CN103106729B (zh)
AU (1) AU2013370765B2 (zh)
CL (1) CL2015001719A1 (zh)
TR (1) TR201907005T4 (zh)
WO (1) WO2014101381A1 (zh)
ZA (1) ZA201504615B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103106729B (zh) * 2012-12-24 2015-05-13 广州广电运通金融电子股份有限公司 薄片类介质厚度鉴别装置及其鉴别方法
CN103824375B (zh) * 2014-02-10 2016-09-07 深圳怡化电脑股份有限公司 可防止卡钞的存取款模块以及存取款机
CN104574637B (zh) * 2015-02-05 2017-04-26 广州广电运通金融电子股份有限公司 一种薄片介质的厚度检测装置
CN106067213B (zh) * 2016-05-25 2019-02-01 深圳怡化电脑股份有限公司 一种介质厚度检测装置及方法
CN107730712B (zh) * 2017-11-08 2020-03-27 深圳怡化电脑股份有限公司 一种干扰定位方法及装置
CN107680244B (zh) * 2017-11-22 2024-06-14 深圳怡化电脑股份有限公司 一种介质的厚度检测装置及介质鉴别终端
CN113053020A (zh) * 2019-12-27 2021-06-29 深圳怡化电脑股份有限公司 票据厚度的检测方法、装置、计算机设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0241513B2 (en) * 1985-10-01 1994-03-16 Diebold, Incorporated Multiple sheet indicator apparatus and method
CN201081689Y (zh) * 2007-09-29 2008-07-02 鞍山聚龙金融设备有限公司 一种模块化纸币测厚装置
CN101996433A (zh) * 2010-09-21 2011-03-30 广州广电运通金融电子股份有限公司 薄片类介质厚度鉴别装置及其鉴别方法
CN103106729A (zh) * 2012-12-24 2013-05-15 广州广电运通金融电子股份有限公司 薄片类介质厚度鉴别装置及其鉴别方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6031464A (ja) * 1983-07-27 1985-02-18 Fuji Xerox Co Ltd 用紙のカ−ル補正装置
JPS6040373A (ja) * 1983-08-12 1985-03-02 Fuji Xerox Co Ltd 用紙搬送装置
JPS61171377A (ja) * 1985-01-25 1986-08-02 Nec Corp 印字装置の自動紙厚検出機構
JP2567279B2 (ja) * 1988-04-26 1996-12-25 ローレルバンクマシン株式会社 シートの厚み検出装置
JP2817309B2 (ja) * 1990-01-31 1998-10-30 ブラザー工業株式会社 印字装置
JPH04251772A (ja) * 1991-01-29 1992-09-08 Seiko Epson Corp インパクトプリンタの紙厚検出機構
JP3352189B2 (ja) * 1993-11-10 2002-12-03 キヤノン株式会社 画像形成装置における紙厚検出装置
US5876027A (en) * 1995-06-15 1999-03-02 Canon Aptex Inc. Sheet bundle folding apparatus
JP3413148B2 (ja) * 2000-03-14 2003-06-03 キヤノン株式会社 シート搬送装置及び画像形成装置
CN2650247Y (zh) * 2003-08-27 2004-10-20 余立群 纸币厚度动态检测装置
DE102004030618A1 (de) 2004-06-24 2006-01-26 Giesecke & Devrient Gmbh Vorrichtung zur Messung der Dicke von blattförmigem Material
CN201066518Y (zh) * 2007-01-26 2008-05-28 上海古鳌电子机械有限公司 卧式纸币点钞机测厚装置
JP4821655B2 (ja) * 2007-02-28 2011-11-24 マックス株式会社 線材カートリッジ及び用紙処理装置
CN201081688Y (zh) * 2007-09-29 2008-07-02 鞍山聚龙金融设备有限公司 一种模块化纸币测厚装置
JP4623436B2 (ja) * 2008-04-02 2011-02-02 富士ゼロックス株式会社 記録媒体の厚さ計測装置、記録媒体の重送検知装置及び画像形成装置
CN101451818B (zh) * 2009-01-07 2012-01-11 北京兆维电子(集团)有限责任公司 纸钞厚度检测装置
CN101580183B (zh) * 2009-06-05 2011-02-09 广州广电运通金融电子股份有限公司 薄片材料分离机构
ES2453191T3 (es) * 2009-10-01 2014-04-04 De La Rue International Limited Aparato y método para detectar el espesor de un documento de papel
CN102176262B (zh) * 2011-01-17 2013-01-02 广州广电运通金融电子股份有限公司 薄片类介质厚度检测方法及检测装置
JP5450512B2 (ja) * 2011-05-27 2014-03-26 日立オムロンターミナルソリューションズ株式会社 厚み検出装置および検知ローラ
CN102722933B (zh) * 2012-06-11 2014-08-20 广州广电运通金融电子股份有限公司 一种薄片类介质厚度检测装置及其方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0241513B2 (en) * 1985-10-01 1994-03-16 Diebold, Incorporated Multiple sheet indicator apparatus and method
CN201081689Y (zh) * 2007-09-29 2008-07-02 鞍山聚龙金融设备有限公司 一种模块化纸币测厚装置
CN101996433A (zh) * 2010-09-21 2011-03-30 广州广电运通金融电子股份有限公司 薄片类介质厚度鉴别装置及其鉴别方法
CN103106729A (zh) * 2012-12-24 2013-05-15 广州广电运通金融电子股份有限公司 薄片类介质厚度鉴别装置及其鉴别方法

Also Published As

Publication number Publication date
CN103106729A (zh) 2013-05-15
AU2013370765A1 (en) 2015-07-09
AU2013370765B2 (en) 2016-12-22
CN103106729B (zh) 2015-05-13
EP2937841A1 (en) 2015-10-28
TR201907005T4 (tr) 2019-06-21
ZA201504615B (en) 2016-08-31
US9589408B2 (en) 2017-03-07
US20160203666A1 (en) 2016-07-14
CL2015001719A1 (es) 2015-08-14
EP2937841A4 (en) 2015-12-09
EP2937841B1 (en) 2019-05-08

Similar Documents

Publication Publication Date Title
WO2014101381A1 (zh) 薄片类介质厚度鉴别装置及其鉴别方法
WO2014117473A1 (zh) 一种薄片类介质测厚装置
CN101996433B (zh) 薄片类介质厚度鉴别装置及其鉴别方法
WO2014044032A1 (zh) 一种薄片类介质厚度检测装置
JP2008220152A5 (zh)
WO2013185501A1 (zh) 一种薄片类介质厚度检测装置及其方法
JP2013053004A5 (zh)
JP5395859B2 (ja) 紙葉類の厚さ検出装置及び紙幣取扱装置
JPH02112701A (ja) 長さまたは間隔変化の測定検出器
JP5879287B2 (ja) 紙葉類の厚さ検出装置、紙幣判定装置及び紙幣取扱装置
EP3255618B1 (en) Thickness detection device for sheet medium
CN101875458A (zh) 电梯测速定位方法及装置
WO2013120374A1 (zh) 一种多圈旋转编码器
CN105705951B (zh) 用于减少转子速度测量中误差的方法
CN104567775A (zh) 卷钞带长度测量设备及方法
CN105261107A (zh) 一种纸张厚度检测及传输装置和方法
CN108348930A (zh) 离心分离机
CN202770732U (zh) 一种旋转粘度测量系统
CN103913589A (zh) 转速传感器
JP4955316B2 (ja) エスカレーター診断装置
CN114894471B (zh) 齿轮副动态传递误差预估方法及系统
CN112414336A (zh) 一种敲击式墙体保温板连续性检测装置的检测方法
CN204439051U (zh) 卷钞带长度测量设备
CN214065884U (zh) 一种立定跳远测距用自动读数卷尺
CN116626330A (zh) 一种医用离心机的校准装置及校准方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13867896

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14650917

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2013867896

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2013370765

Country of ref document: AU

Date of ref document: 20130702

Kind code of ref document: A