WO2014098346A1 - 초전도 자석의 초기냉각 예측 시스템 및 방법 - Google Patents

초전도 자석의 초기냉각 예측 시스템 및 방법 Download PDF

Info

Publication number
WO2014098346A1
WO2014098346A1 PCT/KR2013/007542 KR2013007542W WO2014098346A1 WO 2014098346 A1 WO2014098346 A1 WO 2014098346A1 KR 2013007542 W KR2013007542 W KR 2013007542W WO 2014098346 A1 WO2014098346 A1 WO 2014098346A1
Authority
WO
WIPO (PCT)
Prior art keywords
factor
superconducting magnet
cooling
initial cooling
predicting
Prior art date
Application number
PCT/KR2013/007542
Other languages
English (en)
French (fr)
Inventor
최연석
김동락
Original Assignee
한국기초과학지원연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국기초과학지원연구원 filed Critical 한국기초과학지원연구원
Publication of WO2014098346A1 publication Critical patent/WO2014098346A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/04Cooling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/42Circuits effecting compensation of thermal inertia; Circuits for predicting the stationary value of a temperature
    • G01K7/425Thermal management of integrated systems
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/20Cooling means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/20Cooling means
    • G06F1/206Cooling means comprising thermal management

Definitions

  • the present invention relates to an initial cooling prediction system and method for a superconducting magnet, and more particularly, to cool the superconducting magnet by using a cryogenic freezer, and to predict the change in the initial cooling temperature for the superconducting magnet.
  • the present invention classifies the influence factors related to the cooling of the superconducting magnet into a plurality of control volumes, and induces a governing equation for each inspection volume, so that the initial temperature of the superconducting magnet can accurately predict the change in the cooling temperature of the superconducting magnet.
  • a cooling prediction system and method are disclosed.
  • measuring devices for measuring the magnetic properties of the measurement object by applying a high magnetic field in the cryogenic environment the operating characteristics and magnetic field characteristics of the superconducting magnet in the cryogenic environment is one of the important factors to increase the reliability of the measurement results.
  • the prediction of temperature change characteristics in the process of cooling the superconducting magnet at room temperature to cryogenic temperature at the start of the measuring device may ensure the reliability of the measuring device. It can be said to be an important factor.
  • the prior art is to predict the temperature change by measuring the heat generated from the various electronic devices composed of electronic devices operating at room temperature
  • the temperature change prediction at room temperature is one of the techniques widely applied in everyday life, commercialization It is a technology for smoothly using the electronic device.
  • an object of the present invention is to provide an initial cooling prediction system and method of the superconducting magnet that can accurately predict the temperature change during the cooling of the superconducting magnet operating in the cryogenic environment.
  • the present invention for the design of a high magnetic field measuring device to form a cryogenic environment using a freezer, to accurately predict the temperature change of the superconducting magnet at the initial startup of the measuring device, and to design and manufacture a measuring device with improved reliability It is an object of the present invention to provide an early cooling prediction system and method for a superconducting magnet.
  • a method for predicting initial cooling of a superconducting magnet is based on an electronic device including a superconducting magnet and a cooling device for cooling the superconducting magnet, and setting influence factors for setting influence factors for predicting initial cooling of the superconducting magnet. step; An inspection volume setting step of setting at least one inspection volume based on the configuration of each device involved in the cooling of the superconducting magnet; Identifying an influence factor for each test volume and deriving a governing equation for each test volume using the identified influence factors; And an initial cooling prediction step of predicting initial cooling of the superconducting magnet using the governing equation.
  • the influence factor setting step may include: an area factor set to be spatially divided; And an influence factor including a configuration factor set by dividing components affecting each area.
  • the area factor, the high temperature area factor according to the heat energy transferred from the vacuum vessel of the cooling device to the radiation shield inside; And a low temperature region factor according to heat energy transferred from the radiation shield to a heat conduction connection part including a superconducting magnet therein, and the constituent factors may be set separately by conduction heat factor and radiant heat factor according to a heat transfer method.
  • a formula for each component factor may be determined by applying at least one of an intrinsic constant value and a number for each component to a heat transfer equation defined according to the heat transfer method of the component factor.
  • the equation for each region factor may be determined based on the sum of the equations for each component for the configuration affecting each region.
  • the derivation of the governing equation may identify the influence factors for each test volume, and may derive the governing equation for each test volume with at least one of a sum and a difference of equations for each region factor in response to the inflow or outflow of the test volume.
  • the governing equation for each test volume may be derived by setting at least one of the sum and the difference of the equations for each region factor as a differential equation.
  • the influence factors for predicting the initial cooling of the superconducting magnet including the area factor and the constituent factors are set, the constituent factors in accordance with the heat transfer method and the conduction heat factor and radiant heat
  • An influence factor setting unit for setting by dividing by a factor
  • An inspection volume setting unit for setting at least one inspection volume based on the device-specific configurations involved in cooling the superconducting magnet
  • a governing equation induction unit for identifying the influence factors for each test volume and inducing the governing equation for each test volume with a formula for each region factor determined based on the formulas for each component of the heat transfer method
  • an initial cooling predicting unit predicting initial cooling of the superconducting magnet by using the governing equation.
  • the conductive heat factor a support factor for the heat energy conducted through the support for holding the heat conduction connection portion including the vacuum vessel, the radiation shield and the superconducting magnet of the cooling device; And a current introduction wire factor for thermal energy conducted through a wire connected from the electronic device to the superconducting magnet.
  • the radiant heat factor a vacuum radiation factor for the heat energy transferred from the vacuum vessel to the superconducting magnet through the radiation shield; And it may include a residual gas factor for the thermal energy delivered to the superconducting magnet by the residual gas in the vacuum vessel.
  • the present invention has the advantage of accurately predicting the change in the initial cooling temperature for the superconducting magnet in cooling the superconducting magnet using a cryogenic freezer.
  • cryogenic high-magnetic field measurement apparatus can be manufactured and manufactured by using the initial cooling prediction result of the superconducting magnet according to the present invention to obtain more accurate measurement results.
  • FIG. 1 is a flowchart illustrating a method for predicting initial cooling of a superconducting magnet according to the present invention.
  • FIG. 2 is a block diagram illustrating an initial cooling prediction system of a superconducting magnet according to the present invention.
  • FIG. 3 is a view for explaining an embodiment of a superconducting magnet cooling device to which the method of FIG. 1 is applied.
  • FIG. 4 is a diagram illustrating a process of moving heat energy by setting the cooling device of FIG. 2 to four inspection volumes.
  • FIG. 5 is a diagram illustrating influence factors constituting a governing equation for the cooling device of FIG. 2.
  • FIG. 6 is a graph comparing analysis data and experimental data predicted by applying the method of FIG. 1 to the cooling device of FIG. 2.
  • FIG. 1 is a flowchart illustrating a method for predicting initial cooling of a superconducting magnet according to the present invention
  • FIG. 2 is a block diagram illustrating a system for predicting initial cooling of a superconducting magnet according to the present invention.
  • the zero factor setting unit 10 sets influence factors for predicting initial cooling of the superconducting magnet based on the electronic device including the superconducting magnet and the cooling device for cooling the superconducting magnet.
  • the influence factor may include a space region and components associated with the transmission of the cold air in the process of supplying the cool air supplied from the cooling device to the superconducting magnet.
  • the influence factor setting unit 10 may include a conductive heat factor setting module 11 and a radiant heat factor setting module 12 for distinguishing influence factors according to a heat transfer method. 11) and the radiant heat factor setting module 12 may set each influence factor by dividing it into a high temperature region factor and a low temperature region factor.
  • the influence factor may include an area factor that is spatially set and a configuration factor that is set by dividing the components affecting each area.
  • the influence factor can be simplified to the space and configurations formed inside the vacuum vessel and the vacuum vessel.
  • the test volume setting unit 20 sets at least one test volume (Control volume) based on the device-specific configurations involved in the cooling of the superconducting magnet (step S200).
  • the inspection volume refers to a certain area in space, and may be set to easily interpret that heat energy flows into or out of the space.
  • the inspection volume can be varied in size and shape according to the needs of those skilled in the art, but preferably by setting the solid boundary surface as a part of the inspection volume and other portions perpendicular to the moving direction of the thermal energy, Can be simplified.
  • the governing equation induction unit 30 confirms the influence factors for each test volume, and induces the governing equation for each test volume using the identified influence factors (step S300).
  • the governing equation may be represented as a differential equation so as to know the temperature change per unit time in order to accurately predict the temperature change.
  • the initial cooling prediction unit 40 may predict the initial cooling of the superconducting magnet by using the derived governing equation (step S400), and use the result as basic data necessary for designing and manufacturing the cryogenic high magnetic field measuring device. .
  • FIG. 3 is a view for explaining an embodiment of a superconducting magnet cooling device to which the method of FIG. 1 is applied.
  • the superconducting magnet cooling device includes a vacuum container 210 in which a cryogenic freezer 100 and a superconducting magnet 300 are fixed therein to supply cold air to cool the superconducting megnet 300. ) May be included.
  • the cryogenic freezer 100 may be composed of two stages, the first cooling stage 110 and the second cooling stage 120.
  • first cooling stage 110 may be connected to the radiation shield 220 by a first thermal anchor (111), the second cooling stage 120 by the second thermal anchor (121). It may be connected to the heat conduction connector 230.
  • the current introduction line 310 for supplying current to the superconducting magnet 300 may be connected to the superconducting magnet 300 through the vacuum vessel 210 and the radiation shield 220.
  • the area factor is a high temperature area factor (radiation of the radiation shield) transferred from the vacuum vessel 210 of the cooling device to the radiation shield 220 inside.
  • Low temperature region factor inner space portion of the radiation shield according to the heat energy transferred from the outer space portion and the heat shield connecting portion 230 including the superconducting magnet 300 therein from the radiation shield 220.
  • constituent factors may be classified into conduction heat factors and radiant heat factors according to heat transfer methods.
  • the conduction heat factor may include a support factor for heat energy conducted through the support 240 and a current introduction line factor for heat energy conducted through the wire 310 connected from the electronic device (not shown) to the superconducting magnet 300. Can be.
  • the radiant heat factor is the heat radiation transferred to the superconducting magnet 300 by the vacuum radiation factor for the heat energy transferred from the vacuum vessel 210 to the superconducting magnet 300 through the radiation shield 220 and the residual gas in the vacuum vessel 210. It may include a residual gas factor for.
  • FIG. 4 is a diagram illustrating a process of moving heat energy by setting the cooling device of FIG. 3 to four inspection volumes
  • FIG. 5 is a diagram illustrating an influence factor constituting a governing equation for the cooling device of FIG. 3.
  • the inspection volume may be set to a heat shielding area, which is a radiation shield, a magnet area, which is a superconducting magnet, and two thermal anchor areas that supply cold air, and the governing equation of each area is shown in FIG. 4.
  • the temperature change per unit time can be defined as a differential equation.
  • Equation 1 the temperature change per unit time of the heat shield region is shown in Equation 1.
  • the subscript S means Shield
  • Q H is the amount of heat energy introduced into the radiation shield from the outside
  • Q A1 is the amount of heat energy transferred from the radiation shield to the first thermal anchor
  • Q L is the superconducting magnet in the radiation shield
  • is the density
  • V is the volume
  • C P is the heat capacity factor
  • T is the absolute temperature.
  • Equation 2 the temperature change per unit time of the first thermal anchor region is expressed by Equation 2.
  • the subscript A1 means the first thermal anchor
  • Q C1 refers to the amount of heat energy that is heat-exchanged in the first thermal anchor and discharged to the cryogenic freezer.
  • Equation 3 the temperature change per unit time of the magnet region is shown in Equation 3.
  • the subscript M refers to Magnet
  • Q A2 refers to the amount of thermal energy transferred from the superconducting magnet to the second thermal anchor.
  • Equation 4 the temperature change per unit time of the second thermal anchor region is expressed by Equation 4.
  • the subscript A2 refers to the second thermal anchor
  • Q C2 refers to the amount of heat energy that is heat-exchanged in the second thermal anchor is discharged to the cryogenic freezer.
  • Q H is the amount of thermal energy introduced into the radiation shield from the outside, the total inflow is as shown in Equation 5.
  • Q k1 is the amount of conduction heat energy introduced into the radiation shield from the outside through the support
  • Q r1 is the amount of radiant heat energy flowing into the radiation shield from the outside
  • Q l1 is the conduction introduced from the outside into the radiation shield through the current inlet
  • the amount of thermal energy, Q g1 is the amount of radiant energy delivered to the radiant shield by the residual gas present between the vacuum vessel and the radiant shield.
  • Q L is the amount of thermal energy flowing into the superconducting magnet from the radiation shield, and the total inflow is as shown in Equation 6.
  • Q k2 is the amount of conductive heat energy flowing into the superconducting magnet from the radiation shield through the support
  • Q r2 is the amount of radiant heat energy flowing into the superconducting magnet from the radiation shield
  • Q l2 is the superconducting magnet from the radiation shield through the current inlet.
  • the amount of conduction heat energy introduced, Q g2, is the amount of radiant energy transferred to the radiation shield by residual gas present in the radiation shield.
  • Equation 7 Q k1 and Q k2 in Equations 5 and 6 are the same as in Equation 7.
  • N is the number of supports
  • A is the cross-sectional area of the support
  • L is the length of the support
  • k is the thermal conductivity of the support
  • T H is the temperature of the hot zone
  • T L is the temperature of the cold zone
  • subscripts 1 and 2 are radiated The outer and inner sides of the shield are shown.
  • Equation 8 Q r1 and Q r2 of Equations 5 and 6 are the same as Equation 8.
  • is the Boltzmann constant
  • is the emissivity of the radiation shield
  • A is the surface area of the radiation shield
  • N is the number of radiation shields (Layer number)
  • subscript H is the high temperature side
  • subscript L is the low temperature side.
  • Equation (5) Q Q Q l1 and l2 in Equation (5) and equation (6) is equal to the equation (9).
  • A is the cross-sectional area of the current lead wire
  • L is the length of the current lead wire
  • k is the thermal conductivity of the current lead wire
  • the constant 2 of the equation (9) means that there are two current lead wires.
  • Equation 10 Q g1 and Q g2 of Equations 5 and 6 are the same as Equation 10.
  • P is the residual gas pressure
  • A is the radiant area
  • is the thermal characteristic rate of the residual gas
  • R is the caloric constant of the residual gas
  • M is the molecular weight of the residual gas.
  • Equation 10 A 0 in Equation 10 is equal to Equation 11.
  • a 1 and A 2 are inlet and outlet areas of thermal energy transferred by the residual gas
  • a 1 and a 2 are adaptation coefficients of the residual gas with respect to A 1 and A 2 .
  • Equation 12 If A 1 and A 2 are the same or nearly the same, a 0 is represented by Equation 12.
  • Equation 13 a 0 is represented by Equation 13.
  • FIG. 6 is a graph comparing analysis data and experimental data predicted by applying the method of FIG. 1 to the cooling device of FIG. 3.
  • the present invention can improve the reliability and competitiveness in the field of cryogenic high magnetic field measurement device, in particular in the field of design of the measurement device as well as related or similar fields.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • Power Engineering (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

본 발명은 초전도 자석의 초기냉각 예측 시스템 및 방법에 관한 것으로, 보다 상세하게는 극저온 냉동기를 이용하여 초전도자석을 냉각함에 있어, 초전도자석에 대한 초기 냉각온도의 변화를 예측할 수 있도록 한 것이다. 이를 위하여, 본 발명은 초전도자석의 냉각에 관련된 영향인자들을 다수의 검사체적(Control volume)으로 분류하고, 검사체적별 지배방정식을 유도함으로써, 초전도자석의 냉각온도 변화를 정확히 예측할 수 있다. 이를 토대로, 냉동기를 이용하여 극저온 환경을 형성하는 고자기장 계측장치의 설계에 필요한 기초자료의 신뢰성을 크게 향상시킬 수 킬 수 있다. 결과적으로, 본 발명에 의한 초전도자석의 초기냉각 예측결과를 이용하여 보다 향상된 정확도의 계측결과를 얻을 수 있는 극저온 고자기장 계측장치를 설게 및 제작할 수 있다. 따라서, 극저온 고자기장 계측장치 분야, 특히 계측장치의 설계 분야는 물론 이와 연관 내지 유사한 분야에서 신뢰성 및 경쟁력을 향상시킬 수 있다.

Description

초전도 자석의 초기냉각 예측 시스템 및 방법
본 발명은 초전도 자석의 초기냉각 예측 시스템 및 방법에 관한 것으로서, 보다 상세하게는 극저온 냉동기를 이용하여 초전도자석을 냉각함에 있어, 초전도자석에 대한 초기 냉각온도의 변화를 예측할 수 있도록 한 것이다.
특히, 본 발명은 초전도자석의 냉각에 관련된 영향인자들을 다수의 검사체적(Control volume)으로 분류하고, 검사체적별 지배방정식을 유도함으로써, 초전도자석의 냉각온도 변화를 정확히 예측할 수 있는 초전도 자석의 초기냉각 예측 시스템 및 방법에 관한 것이다.
일반적으로, 극저온 환경에서 고자기장을 인가하여 측정대상물의 자기적 특성을 측정하는 계측장치들은, 극저온 환경에서 초전도자석의 동작특성 및 자기장특성이 계측결과의 신뢰성을 높이는 중요한 요소 중 하나로 작용한다.
특히, 고자기장을 인가하는 초전도자석은 극저온 상태에서 전류가 공급되어야만 신뢰성 높은 측정결과를 얻을 수 있기 때문에, 계측장치의 초기 시동시 초전도자석의 냉각에 따른 온도변화를 예측하는 것이 매우 중요하다고 할 수 있다.
따라서, 다양한 형태와 기능을 갖는 극저온 고자기장 계측장치들을 설계함에 있어, 계측장치의 시동시 상온의 초전도자석을 극저온으로 냉각하는 과정에서의 온도변화 특성의 예측은, 해당 계측장치의 신뢰성을 보장할 수 있는 중요한 요소라고 할 수 있다.
특히, 지금까지는 극저온 환경에서 고자기장을 인가하는 장치들은 대부분 액체헬륨이나 액체질소를 이용하여 극저온 환경을 형성하였는바, 냉동기를 이용하여 극저온 환경을 형성하는 장치에서, 초기 극저온 환경을 형성하는 과정에서의 초전도 자석에 대한 온도변화를 예측하고 이를 계측장치에 대한 설계자료로 활용하는 방법에 대해서는 알려진 바가 없다.
물론, 특정 구성에 대한 온도를 예측하고 제어하는 기술로는 대한민국 등록특허공보 제10-0755166호 '전자 디바이스의 온도를 예측해서 냉각하는 전자 디바이스 냉각장치, 냉각방법, 시스템 및 냉각 프로그램을 저장한 기록매체'(이하, 선행기술이라 함) 등의 기술들이 알려져 있다.
그러나, 선행기술은 상온에서 동작되는 전자기기에 구성된 각종 전자 디바이스에서 발생되는 열을 측정하여 온도변화를 예측하는 것으로, 상온에서의 온도변화예측은 일상생활에서 널리 적용되고 있는 기술 중 하나이며, 제품화된 전자기기를 원활하게 사용할 수 있도록 하기 위한 기술이다.
결과적으로, 극저온 고자기장을 이용한 계측장치, 특히 냉동기를 이용하여 극저온 환경을 형성하는 장치들의 설계에서 요구되는 초전도자석의 초기냉각 예측 방법에 대해서는 알려진 바가 없다.
상기와 같은 문제점을 해결하기 위해서, 본 발명은 극저온 환경에서 동작되는 초전도 자석의 냉각시 온도변화를 정확하게 예측할 수 있는 초전도 자석의 초기냉각 예측 시스템 및 방법을 제공하는데 목적이 있다.
특히, 본 발명은 냉동기를 이용하여 극저온 환경을 형성하는 고자기장 계측장치의 설계를 위하여, 계측장치의 초기 시동시 초전도자석의 온도변화를 정확히 예측하고, 이를 통해 신뢰성이 향상된 계측장치를 설계 및 제작할 수 있는 초전도 자석의 초기냉각 예측 시스템 및 방법을 제공하는데 목적이 있다.
본 발명에 따른 초전도자석의 초기냉각 예측 방법은, 초전도자석을 포함하는 전자장치 및 상기 초전도자석을 냉각하는 냉각장치에 기초하여 상기 초전도자석의 초기 냉각을 예측하기 위한 영향인자들을 설정하는 영향인자 설정단계; 상기 초전도자석의 냉각에 관여하는 각 장치별 구성들에 기초하여 적어도 하나의 검사체적(Control volume)을 설정하는 검사체적 설정단계; 상기 검사체적별 영향인자들을 확인하고, 확인된 상기 영향인자들을 이용하여 상기 검사체적별 지배방정식을 유도하는 지배방정식 유도단계; 및 상기 지배방정식을 이용하여 상기 초전도자석의 초기 냉각을 예측하는 초기냉각 예측단계를 포함한다.
또한, 상기 영향인자 설정단계는, 공간적으로 구분하여 설정되는 영역인자; 및 각 영역에 영향을 미치는 구성들을 구분하여 설정되는 구성인자를 포함하는 영향인자를 확인할 수 있다.
또한, 상기 영역인자는, 상기 냉각장치의 진공용기로부터 내부의 복사쉴드로 전달되는 열에너지에 따른 고온영역인자; 및 상기 복사쉴드로부터 내부의 초전도자석을 포함하는 열전도연결부로 전달되는 열에너지에 따른 저온영역인자를 포함하고, 상기 구성인자는, 열전달방식에 따라 전도열인자 및 복사열인자로 구분하여 설정하는 할 수 있다.
또한, 상기 지배방정식 유도단계는, 상기 구성인자의 열전달방식에 따라 정의된 열전달수식에, 구성별 고유상수값 및 개수 중 적어도 하나를 적용하여 구성인자별 수식을 결정할 수 있다.
또한, 상기 지배방정식 유도단계는, 각 영역에 영향을 미치는 구성에 대한 구성인자별 수식들의 합으로 영역인자별 수식을 결정할 수 있다.
또한, 상기 지배방정식 유도단계는, 상기 검사체적별 영향인자를 확인하고, 검사체적으로의 유입 또는 유출에 대응하여 영역인자별 수식들의 합 및 차 중 적어도 하나로 검사체적별 지배방정식을 유도할 수 있다.
또한, 상기 지배방정식 유도단계는, 상기 영역인자별 수식들의 합 및 차 중 적어도 하나를 미분방정식으로 설정하여 검사체적별 지배방정식을 유도할 수 있다.
또한, 본 발명에 따른 초전도 자석의 초기냉각 예측 시스템은, 초전도자석의 초기 냉각을 예측하기 위한 영향인자들을 영역인자 및 구성인자를 포함하여 설정하며, 상기 구성인자를 열전달방식에 따라 전도열인자 및 복사열인자로 구분하여 설정하는 영향인자 설정부; 상기 초전도자석의 냉각에 관여하는 각 장치별 구성들에 기초하여 적어도 하나의 검사체적(Control volume)을 설정하는 검사체적 설정부; 상기 검사체적별 영향인자들을 확인하고, 열전달방식에 따른 구성인자별 수식들에 기초하여 결정된 영역인자별 수식으로 상기 검사체적별 지배방정식을 유도하는 지배방정식 유도부; 및 상기 지배방정식을 이용하여 상기 초전도자석의 초기 냉각을 예측하는 초기냉각 예측부를 포함한다.
또한, 상기 전도열인자는, 상기 냉각장치의 진공용기, 복사쉴드 및 초전도자석을 포함하는 열전도연결부를 고정지지하는 지지대를 통해 전도되는 열에너지에 대한 지지대인자; 및 상기 전자장치로부터 상기 초전도자석으로 연결되는 전선을 통해 전도되는 열에너지에 대한 전류도입선인자 중 적어도 하나를 포함할 수 있다.
또한, 상기 복사열인자는, 상기 복사쉴드를 통해 상기 진공용기로부터 상기 초전도자석으로 전달되는 열에너지에 대한 진공복사인자; 및 상기 진공용기 내의 잔류가스에 의해 초전도자석으로 전달되는 열에너지에 대한 잔류가스인자를 포함할 수 있다.
상기와 같은 해결수단에 의해, 본 발명은 극저온 냉동기를 이용하여 초전도자석을 냉각함에 있어, 초전도자석에 대한 초기 냉각온도의 변화를 정확하게 예측할 수 있는 장점이 있다.
이를 토대로, 냉동기를 이용하여 극저온 환경을 형성하는 고자기장 계측장치의 설계에 필요한 기초자료의 신뢰성을 크게 향상시킬 수 있는 효과가 있다.
결과적으로, 본 발명에 의한 초전도자석의 초기냉각 예측결과를 이용하여 보다 향상된 정확도의 계측결과를 얻을 수 있는 극저온 고자기장 계측장치를 설게 및 제작할 수 있는 효과가 있다.
따라서, 극저온 고자기장 계측장치 분야, 특히 계측장치의 설계 분야는 물론 이와 연관 내지 유사한 분야에서 신뢰성 및 경쟁력을 향상시킬 수 있다.
도 1은 본 발명에 의한 초전도자석의 초기냉각 예측 방법을 설명하는 흐름도이다.
도 2는 본 발명에 의한 초전도 자석의 초기냉각 예측 시스템을 설명하는 블록도이다.
도 3은 도 1의 방법을 적용하는 초전도자석 냉각장치의 일 실시예를 설명하는 도면이다.
도 4는 도 2의 냉각장치를 4개의 검사체적으로 설정하고 열에너지의 이동과정을 설명하는 도면이다.
도 5는 도 2의 냉각장치에 대한 지배방정식을 구성하는 영향인자를 설명하는 도면이다.
도 6은 도 1의 방법을 도 2의 냉각장치에 적용하여 예측된 분석데이터와 실험데이터를 비교한 그래프이다.
본 발명에 따른 초전도 자석의 초기냉각 예측 시스템 및 방법에 대한 예는 다양하게 적용할 수 있으며, 이하에서는 첨부된 도면을 참조하여 가장 바람직한 실시 예에 대해 설명하기로 한다.
도 1은 본 발명에 의한 초전도자석의 초기냉각 예측 방법을 설명하는 흐름도이고, 도 2는 본 발명에 의한 초전도 자석의 초기냉각 예측 시스템을 설명하는 블록도이다.
도 1 및 도 2를 참조하면, 영항인자 설정부(10)는 초전도자석을 포함하는 전자장치 및 초전도자석을 냉각하는 냉각장치에 기초하여, 초전도자석의 초기 냉각을 예측하기 위한 영향인자들을 설정한다(단계 S100). 여기서, 영향인자는 냉각장치에서 공급되는 냉기가 초전도자석으로 공급되는 과정에서, 냉기를 전달에 연관되는 공간영역 및 구성들을 포함할 수 있다.
영향인자 설정부(10)는 도 2에 나타난 바와 같이, 열전달방식에 따라 영향인자를 구분하는 전도열인자 설정모듈(11) 및 복사열인자 설정모듈(12)을 포함할 수 있으며, 전도열인자 설정모듈(11) 및 복사열인자 설정모듈(12)은 각 영향인자를 고온영역인자 및 저온영역인자로 구분하여 설정할 수 있다. 또한, 영향인자는 공간적으로 구분하여 설정되는 영역인자와 각 영역에 영향을 미치는 구성들을 구분하여 설정되는 구성인자를 포함할 수 있다. 이러한 영향인자는 하기에서 구체적인 실시예를 통해 보다 상세히 살펴보기로 한다.
특히, 초전도자석을 밀폐된 진공용기 내부에 구성하여 냉각하는 경우, 영향인자는 진공용기와 진공용기 내부에 형성되는 공간 및 구성들로 단순화할 수 있다.
영향인자가 설정되면, 검사체적 설정부(20)는 초전도자석의 냉각에 관여하는 각 장치별 구성들에 기초하여 적어도 하나의 검사체적(Control volume)을 설정한다(단계 S200). 여기서, 검사체적은 공간상의 일정한 영역을 말하는 것으로, 열에너지가 해당 공간으로 유입되거나 해당 공간으로부터 유출되는 것을 용이하게 해석하기 위하여 설정될 수 있다. 특히, 검사체적은 당업자의 요구에 따라 크기와 형태가 다양하게 변경될 수 있으나, 바람직하게는 고체경계면을 검사체적의 일부분으로 설정하고 다른 부분을 열에너지의 이동방향에 직각으로 설정함으로써, 해석과정을 단순화할 수 있다.
검사체적이 설정되면, 지배방정식 유도부(30)는 검사체적별 영향인자들을 확인하고, 확인된 영향인자들을 이용하여 검사체적별 지배방정식을 유도한다(단계 S300). 여기서, 지배방정식은 온도변화를 정확히 예측하기 위하여 단위시간당 온도변화를 알 수 있도록 미분방정식으로 나타낼 수 있다.
이후, 초기냉각 예측부(40)는 유도된 지배방정식을 이용하여 초전도자석의 초기 냉각을 예측하고 (단계 S400), 그 결과를 극저온 고자기장 계측장치를 설게 및 제작에 필요한 기초자료로 활용할 수 있다.
도 3은 도 1의 방법을 적용하는 초전도자석 냉각장치의 일 실시예를 설명하는 도면이다.
도 3을 참조하면, 초전도자석 냉각장치는, 초전도자석(Superconducting megnet)(300)을 냉각하기 위하여 냉기를 공급하는 극저온 냉동기(100)와 초전도자석(300)이 내부에 고정설치되는 진공용기(210)를 포함할 수 있다.
또한, 진공용기(210)의 내부에는 열차단을 위한 복사쉴드(Radiation shield)(220)와 초전도자석(300)을 고정하고 냉기를 공급하는 열전도연결부(Conduction link)(230)가, 지지대(240)에 의해 고정설치될 수 있다.
극저온 냉동기(100)는 제1 냉각스테이지(110) 및 제2 냉각스테이지(120)의 2단으로 구성될 수 있다.
또한, 제1 냉각스테이지(110)는 제1 서멀앵커(Thermal anchor)(111)에 의해 복사쉴드(220)와 연결될 수 있고, 제2 냉각스테이지(120)는 제2 서멀앵커(121)에 의해 열전도연결부(230)와 연결될 수 있다.
그리고, 초전도자석(300)에 전류를 공급하는 전류도입선(310)은 진공용기(210) 및 복사쉴드(220)를 관통하여 초전도자석(300)에 연결될 수 있다.
도 3의 초전도자석 냉각장치에 대하여 도 1의 방법을 다시 살펴보면, 영역인자는, 냉각장치의 진공용기(210)로부터 내부의 복사쉴드(220)로 전달되는 열에너지에 따른 고온영역인자(복사쉴드의 외측공간부) 및 복사쉴드(220)로부터 내부의 초전도자석(300)을 포함하는 열전도연결부(230)로 전달되는 열에너지에 따른 저온영역인자(복사쉴드의 내측공간부)를 할 수 있다.
또한, 구성인자는 열전달방식에 따라 전도열인자 및 복사열인자로 구분할 수 있다.
전도열인자는 지지대(240)를 통해 전도되는 열에너지에 대한 지지대인자 및 전자장치(도시하지 않음)로부터 초전도자석(300)으로 연결되는 전선(310)을 통해 전도되는 열에너지에 대한 전류도입선인자를 포함할 수 있다.
복사열인자는 복사쉴드(220)를 통해 진공용기(210)로부터 초전도자석(300)으로 전달되는 열에너지에 대한 진공복사인자 및 진공용기(210) 내의 잔류가스에 의해 초전도자석(300)으로 전달되는 열에너지에 대한 잔류가스인자를 포함할 수 있다.
이하에서는, 도 4 및 도 5를 참조하여, 초전도자석의 초기냉각 예측을 위한 지배방정식의 유도과정을 살펴보기로 한다.
도 4은 도 3의 냉각장치를 4개의 검사체적으로 설정하고 열에너지의 이동과정을 설명하는 도면이고, 도 5는 도 3의 냉각장치에 대한 지배방정식을 구성하는 영향인자를 설명하는 도면이다.
먼저, 도 4에 나타난 바와 같이, 검사체적은 복사쉴드인 열차폐영역과, 초전도자석인 마그네트영역, 그리고 냉기를 공급하는 두 개의 서멀앵커영역으로 설정할 수 있으며, 각 영역별 지배방정식은 도 4에 나타난 열에너지의 유입 및 유출 방향에 기초하여, 단위시간당 온도변화를 알 수 있는 미분방성식의 형태로 정의될 수 있다.
먼저, 열차폐영역의 단위시간당 온도변화는 수학식 1과 같다.
(수학식 1)
Figure PCTKR2013007542-appb-I000001
여기서, 아래첨자 S는 Shield를 뜻하고, QH는 외부에서 복사쉴드로 유입되는 열에너지의 양, QA1은 복사쉴드에서 제1 서멀앵커로 이동되는 열에너지의 양, QL은 복사쉴드에서 초전도자석으로 이동되는 열에너지의 양을 말하며, ρ는 밀도, V는 부피, CP는 열용량계수, T는 절대온도이다.
또한, 제1 서멀앵커영역의 단위시간당 온도변화는 수학식 2와 같다.
(수학식 2)
Figure PCTKR2013007542-appb-I000002
여기서, 아래첨자 A1은 제1 서멀앵커를 뜻하고, QC1은 제1 서멀앵커에서 열교환되어 극저온 냉동기로 배출되는 열에너지의 양을 말한다.
또한, 마그네트영역의 단위시간당 온도변화는 수학식 3과 같다.
(수학식 3)
Figure PCTKR2013007542-appb-I000003
여기서, 아래첨자 M은 Magnet를 뜻하고, QA2는 초전도자석에서 제2 서멀앵커로 이동되는 열에너지의 양을 말한다.
마지막으로, 제2 서멀앵커영역의 단위시간당 온도변화는 수학식 4와 같다.
(수학식 4)
Figure PCTKR2013007542-appb-I000004
여기서, 아래첨자 A2은 제2 서멀앵커를 뜻하고, QC2는 제2 서멀앵커에서 열교환되어 극저온 냉동기로 배출되는 열에너지의 양을 말한다.
이상에서 살펴본 수학식 1 내지 수학식 4에 나타난 열에너지(Q)에 대하여 살펴보면 하기와 같다.
QH는 외부에서 복사쉴드로 유입되는 열에너지의 양으로, 총 유입량은 수학식 5와 같다.
(수학식 5)
Figure PCTKR2013007542-appb-I000005
여기서, Qk1은 지지대를 통해 외부에서 복사쉴드로 유입되는 전도열에너지의 양, Qr1은 외부에서 복사쉴드로 유입되는 복사열에너지의 양, Ql1은 전류도입선을 통해 외부에서 복사쉴드로 유입되는 전도열에너지의 양, Qg1은 진공용기와 복사쉴드 사이에 존재하는 잔류기체에 의해 복사쉴드로 전달되는 복사에너지의 양을 말한다.
QL은 복사쉴드에서 초전도자석으로 유입되는 열에너지의 양으로, 총 유입량은 수학식 6과 같다.
(수학식 6)
Figure PCTKR2013007542-appb-I000006
여기서, Qk2는 지지대를 통해 복사쉴드에서 초전도자석으로 유입되는 전도열에너지의 양, Qr2는 복사쉴드에서 초전도자석으로 유입되는 복사열에너지의 양, Ql2는 전류도입선을 통해 복사쉴드에서 초전도자석으로 유입되는 전도열에너지의 양, Qg2는 복사쉴드 내부에 존재하는 잔류기체에 의해 복사쉴드로 전달되는 복사에너지의 양을 말한다.
수학식 5 및 수학식 6의 Qk1 및 Qk2는 수학식 7과 같다.
(수학식 7)
Figure PCTKR2013007542-appb-I000007
여기서, N은 지지대의 개수, A는 지지대의 단면적, L은 지지대의 길이, k는 지지대의 열전도도, TH는 고온부의 온도, TL은 저온부의 온도이며, 아래첨자 1 및 2는 각각 복사쉴드의 외측 및 내측을 나타낸다.
수학식 5 및 수학식 6의 Qr1 및 Qr2는 수학식 8과 같다.
(수학식 8)
Figure PCTKR2013007542-appb-I000008
여기서, σ는 볼츠만 상수, ε은 복사쉴드의 방사율, A는 복사쉴드의 표면적, N은 복사쉴드의 개수(Layer 수)이며, 아래첨자 H는 고온영역측을 말하고, 아래첨자 L은 저온영역측을 말한다.
수학식 5 및 수학식 6의 Ql1 및 Ql2는 수학식 9와 같다.
(수학식 9)
Figure PCTKR2013007542-appb-I000009
여기서, A는 전류도입선의 단면적, L은 전류도입선의 길이, k는 전류도입선의 열전도도이며, 수학식 9의 상수 2는 전류도입선이 2개임을 뜻한다.
수학식 5 및 수학식 6의 Qg1 및 Qg2는 수학식 10과 같다.
(수학식 10)
Figure PCTKR2013007542-appb-I000010
여기서, P는 잔류기체압력, A는 복사면적, τ는 잔류가스의 열특성률, R은 잔류가스의 열량상수, M은 잔류기체의 분자량이다.
수학식 10의 a0는 수학식 11과 같다.
(수학식 11)
Figure PCTKR2013007542-appb-I000011
여기서, A1 및 A2는 잔류가스에 의해 전달되는 열에너지의 유입면적 및 유출면적, a1 및 a2는 A1 및 A2에 대한 잔류가스의 적응계수이다.
만약, A1과 A2가 동일하거나 거의 같은 경우, a0는 수학식 12와 같다.
(수학식 12)
Figure PCTKR2013007542-appb-I000012
또한, a1 및 a2가 a로 동일한 경우, a0는 수학식 13과 같다.
(수학식 13)
Figure PCTKR2013007542-appb-I000013
이상에서 살펴본 바와 같이 유도된 지배방정식에 의해 초전도자석이 상온에서부터 극저온으로 냉각되는 온도변화를 정확히 예측할 수 있다.
도 6은 도 1의 방법을 도 3의 냉각장치에 적용하여 예측된 분석데이터와 실험데이터를 비교한 그래프이다.
도 6을 참조하면, 본 발명에 의해 유도된 지배방정식을 통해 예측된 온도변화가, 실제 측정에 의한 온도변화와 매우 유사함을 알 수 있다.
따라서, 본 발명에 의한 초전도자석의 초기냉각 예측 방법을 통해 매우 향상된 신뢰성을 갖는 예측 데이터의 제공이 가능해지는 것이다.
이상에서 본 발명에 의한 초전도 자석의 초기냉각 예측 시스템 및 방법에 대하여 설명하였다. 이러한 본 발명의 기술적 구성은 본 발명이 속하는 기술분야의 당업자가 본 발명의 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다.
그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며, 한정적인 것이 아닌 것으로서 이해되어야 하고, 본 발명의 범위는 전술한 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지는 것이므로, 특허청구범위의 의미 및 범위 그리고 그 등가개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.
본 발명은 극저온 고자기장 계측장치 분야, 특히 계측장치의 설계 분야는 물론 이와 연관 내지 유사한 분야에서 신뢰성 및 경쟁력을 향상시킬 수 있다.

Claims (10)

  1. 초전도자석을 포함하는 전자장치 및 상기 초전도자석을 냉각하는 냉각장치에 기초하여 상기 초전도자석의 초기 냉각을 예측하기 위한 영향인자들을 설정하는 영향인자 설정단계;
    상기 초전도자석의 냉각에 관여하는 각 장치별 구성들에 기초하여 적어도 하나의 검사체적(Control volume)을 설정하는 검사체적 설정단계;
    상기 검사체적별 영향인자들을 확인하고, 확인된 상기 영향인자들을 이용하여 상기 검사체적별 지배방정식을 유도하는 지배방정식 유도단계; 및
    상기 지배방정식을 이용하여 상기 초전도자석의 초기 냉각을 예측하는 초기냉각 예측단계를 포함하는 초전도 자석의 초기냉각 예측 방법.
  2. 제 1항에 있어서,
    상기 영향인자 설정단계는,
    공간적으로 구분하여 설정되는 영역인자; 및
    각 영역에 영향을 미치는 구성들을 구분하여 설정되는 구성인자를 포함하는 영향인자를 확인하는 것을 특징으로 하는 초전도 자석의 초기냉각 예측 방법.
  3. 제 2항에 있어서,
    상기 영역인자는,
    상기 냉각장치의 진공용기로부터 내부의 복사쉴드로 전달되는 열에너지에 따른 고온영역인자; 및 상기 복사쉴드로부터 내부의 초전도자석을 포함하는 열전도연결부로 전달되는 열에너지에 따른 저온영역인자를 포함하고,
    상기 구성인자는,
    열전달방식에 따라 전도열인자 및 복사열인자로 구분하여 설정하는 것을 특징으로 하는 초전도 자석의 초기냉각 예측 방법.
  4. 제 2항에 있어서,
    상기 지배방정식 유도단계는,
    상기 구성인자의 열전달방식에 따라 정의된 열전달수식에, 구성별 고유상수값 및 개수 중 적어도 하나를 적용하여 구성인자별 수식을 결정하는 것을 특징으로 하는 초전도 자석의 초기냉각 예측 방법.
  5. 제 4항에 있어서,
    상기 지배방정식 유도단계는,
    각 영역에 영향을 미치는 구성에 대한 구성인자별 수식들의 합으로 영역인자별 수식을 결정하는 것을 특징으로 하는 초전도 자석의 초기냉각 예측 방법.
  6. 제 5항에 있어서,
    상기 지배방정식 유도단계는,
    상기 검사체적별 영향인자를 확인하고, 검사체적으로의 유입 또는 유출에 대응하여 영역인자별 수식들의 합 및 차 중 적어도 하나로 검사체적별 지배방정식을 유도하는 것을 특징으로 하는 초전도 자석의 초기냉각 예측 방법.
  7. 제 6항에 있어서,
    상기 지배방정식 유도단계는,
    상기 영역인자별 수식들의 합 및 차 중 적어도 하나를 미분방정식으로 설정하여 검사체적별 지배방정식을 유도하는 것을 특징으로 하는 초전도 자석의 초기냉각 예측 방법.
  8. 초전도자석의 초기 냉각을 예측하기 위한 영향인자들을 영역인자 및 구성인자를 포함하여 설정하며, 상기 구성인자를 열전달방식에 따라 전도열인자 및 복사열인자로 구분하여 설정하는 영향인자 설정부;
    상기 초전도자석의 냉각에 관여하는 각 장치별 구성들에 기초하여 적어도 하나의 검사체적(Control volume)을 설정하는 검사체적 설정부;
    상기 검사체적별 영향인자들을 확인하고, 열전달방식에 따른 구성인자별 수식들에 기초하여 결정된 영역인자별 수식으로 상기 검사체적별 지배방정식을 유도하는 지배방정식 유도부; 및
    상기 지배방정식을 이용하여 상기 초전도자석의 초기 냉각을 예측하는 초기냉각 예측부를 포함하는 초전도 자석의 초기냉각 예측 시스템.
  9. 제 8항에 있어서,
    상기 전도열인자는,
    상기 냉각장치의 진공용기, 복사쉴드 및 초전도자석을 포함하는 열전도연결부를 고정지지하는 지지대를 통해 전도되는 열에너지에 대한 지지대인자; 및
    상기 전자장치로부터 상기 초전도자석으로 연결되는 전선을 통해 전도되는 열에너지에 대한 전류도입선인자 중 적어도 하나를 포함하는 것을 특징으로 하는 초전도 자석의 초기냉각 예측 시스템.
  10. 제 8항에 있어서
    상기 복사열인자는,
    상기 복사쉴드를 통해 상기 진공용기로부터 상기 초전도자석으로 전달되는 열에너지에 대한 진공복사인자; 및
    상기 진공용기 내의 잔류가스에 의해 초전도자석으로 전달되는 열에너지에 대한 잔류가스인자를 포함하는 것을 특징으로 하는 초전도 자석의 초기냉각 예측 시스템.
PCT/KR2013/007542 2012-12-20 2013-08-22 초전도 자석의 초기냉각 예측 시스템 및 방법 WO2014098346A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020120149861A KR101345776B1 (ko) 2012-12-20 2012-12-20 초전도 자석의 초기냉각 예측 시스템 및 방법
KR10-2012-0149861 2012-12-20

Publications (1)

Publication Number Publication Date
WO2014098346A1 true WO2014098346A1 (ko) 2014-06-26

Family

ID=49989287

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/007542 WO2014098346A1 (ko) 2012-12-20 2013-08-22 초전도 자석의 초기냉각 예측 시스템 및 방법

Country Status (3)

Country Link
US (1) US9672303B2 (ko)
KR (1) KR101345776B1 (ko)
WO (1) WO2014098346A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114114104B (zh) * 2021-11-19 2023-03-10 中车长春轨道客车股份有限公司 确定超导磁体功能完整程度的方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020005262A (ko) * 2000-07-07 2002-01-17 최동환 차량용 냉각장치
JP2002208512A (ja) * 2001-01-09 2002-07-26 Sumitomo Electric Ind Ltd 高温超電導コイルの冷却方法および冷却構造物
JP2011054500A (ja) * 2009-09-03 2011-03-17 Mayekawa Mfg Co Ltd 超電導ケーブルの冷却装置及び方法
JP4821047B2 (ja) * 2001-02-02 2011-11-24 住友電気工業株式会社 高温超電導コイルの冷却装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4152348B2 (ja) 2004-06-03 2008-09-17 株式会社ソニー・コンピュータエンタテインメント 電子デバイス冷却装置、電子デバイスシステムおよび電子デバイス冷却方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020005262A (ko) * 2000-07-07 2002-01-17 최동환 차량용 냉각장치
JP2002208512A (ja) * 2001-01-09 2002-07-26 Sumitomo Electric Ind Ltd 高温超電導コイルの冷却方法および冷却構造物
JP4821047B2 (ja) * 2001-02-02 2011-11-24 住友電気工業株式会社 高温超電導コイルの冷却装置
JP2011054500A (ja) * 2009-09-03 2011-03-17 Mayekawa Mfg Co Ltd 超電導ケーブルの冷却装置及び方法

Also Published As

Publication number Publication date
US9672303B2 (en) 2017-06-06
US20140180625A1 (en) 2014-06-26
KR101345776B1 (ko) 2013-12-27

Similar Documents

Publication Publication Date Title
WO2012141460A2 (ko) 다단식 진공단열재의 진공도 측정 장치 및 이를 이용한 측정방법
JP2018195820A (ja) 半導体試験装置
US20110241711A1 (en) Method for verifying a test substrate in a prober under defined thermal conditions
WO2017131432A1 (ko) 배터리 모듈 및 그를 구비하는 에너지 저장장치
WO2016186302A1 (ko) 급속 열처리 장치
WO2014098346A1 (ko) 초전도 자석의 초기냉각 예측 시스템 및 방법
KR20130028470A (ko) 열전소자의 열전성능지수 평가 방법
US20110128988A1 (en) Temperature control of conduction-cooled devices during testing at high temperatures
WO2011052831A1 (ko) 화학기상증착장치의 온도제어방법
WO2018117297A1 (ko) 연속 소둔라인의 강판 온도 패턴 제어 시스템 및 방법
WO2019228538A1 (zh) Rfid标签在高低温条件下的性能测试系统和测试方法
WO2014069726A1 (ko) 극저온 스테이지를 포함하는 고자기장 측정 시스템 및 그 제어 방법
WO2020218690A1 (ko) 저온 초정밀 열수송 측정용 프로브 시스템 및 이를 포함하는 측정장치
WO2023163283A1 (ko) 딥러닝 기반 반도체 약액의 정밀 온도 제어 시스템
CN115728344A (zh) 低热导率材料隔热性能考核用试验件及试验装置
CN111982046A (zh) 一种判定墙体结构传热状态的方法
US6215323B1 (en) Method and apparatus for temperature-controlled testing of integrated circuits
WO2021045587A1 (ko) 급속 열처리 설비의 냉각시스템
WO2023017951A1 (ko) 온도 측정 센서모듈 및 이를 포함하는 온도 측정 시스템
WO2016085135A1 (ko) 전자부품 테스트용 핸들러
WO2024053832A1 (ko) 기판 처리 장치 및 기판 처리 방법
WO2020231034A1 (ko) 냉각 장치를 포함하는 무선 충전 장치 및 그의 동작 방법
WO2018084346A1 (ko) 초전도코일 상변화 시 온도예측 시뮬레이션 장치 및 그 방법
WO2024106734A1 (ko) 자성체의 큐리 온도를 측정하기 위한 장치 및 방법
WO2018199601A1 (ko) 센서 탑재 웨이퍼

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13864847

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13864847

Country of ref document: EP

Kind code of ref document: A1