WO2014097507A1 - 固体撮像素子 - Google Patents

固体撮像素子 Download PDF

Info

Publication number
WO2014097507A1
WO2014097507A1 PCT/JP2013/004938 JP2013004938W WO2014097507A1 WO 2014097507 A1 WO2014097507 A1 WO 2014097507A1 JP 2013004938 W JP2013004938 W JP 2013004938W WO 2014097507 A1 WO2014097507 A1 WO 2014097507A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
solid
unit pixel
state image
axis
Prior art date
Application number
PCT/JP2013/004938
Other languages
English (en)
French (fr)
Inventor
モハメド サヒム コルコス
小野澤 和利
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2014097507A1 publication Critical patent/WO2014097507A1/ja

Links

Images

Classifications

    • H01L27/14685
    • H01L27/14625

Definitions

  • the present invention relates to a solid-state image sensor used for a digital camera or the like, and more particularly to a solid-state image sensor that easily causes aliasing due to regularity in pixel arrangement.
  • a solid-state imaging device such as a CCD or a CMOS image sensor
  • a plurality of unit pixels having a condensing element and a light receiving element are two-dimensionally arranged. Then, the optical signal from the subject imaged by the light condensing element is taken into the light receiving element and photoelectrically converted into an electric signal. Even if the images formed by the light condensing elements are continuous (analog signal), the unit pixels are not arrayed continuously, but are arrayed at a certain period. Therefore, the optical signal sampled at every fixed period is output as an image by the solid-state imaging device.
  • the optical signal is sampled at regular intervals.
  • this is a case where an optical image (for example, a fiber cloth) having a bright / dark pattern is incident on a solid-state imaging device.
  • the finest period that can be accurately obtained by sampling the optical signal by the unit pixels arranged at a constant period is the period of the optical image in which the distance of the two unit pixels is one period of the light-dark pattern. That is, the half frequency of the sampling frequency (pixel sampling frequency) of the unit pixel is the maximum frequency at which the solid-state imaging device can acquire accurate information. This frequency is referred to as a Nyquist frequency.
  • FIG. 1 shows a layout in which light collecting elements are regularly arranged in all unit pixels.
  • FIG. 2 shows sampling and output signals when incident light having a pattern frequency 1 / T (T: wavelength) is incident on a solid-state imaging device whose unit pixel sampling frequency is 1 / P (P: pixel pitch). Show.
  • T wavelength
  • P pixel pitch
  • ⁇ Moire can be reduced by increasing the sampling frequency, that is, by reducing the pixel pitch, regardless of the size of the solid-state imaging device or the sharpness of the imaging lens.
  • moire occurs when light having a pattern frequency higher than the Nyquist frequency is incident.
  • an optical low-pass filter that serves to limit the pattern frequency of the optical image (the fineness of the subject image) input to the solid-state imaging device to a level within a range where a false signal can be tolerated.
  • the optical low-pass filter reduces the moire by blurring the image, that is, by reducing the input pattern frequency.
  • an anisotropic crystal plate 20 is generally used for the optical low-pass filter.
  • the quartz plate 20 branches one incident ray 21 into an ordinary ray 22 and an extraordinary ray 23. This phenomenon is called a birefringence phenomenon. Since the separation width of the ordinary ray 22 and the extraordinary ray 23 is related to the thickness of the crystal, the pattern frequency larger than the Nyquist frequency can be selected by selecting the thickness of the crystal so that the separation width is approximately equal to the arrangement period of each unit pixel. The striped light having a scatter is dispersed in each unit pixel. Therefore, the response of each unit pixel is suppressed, and aliasing distortion due to aliasing can be reduced.
  • Patent Document 1 is known as prior art document information related to the invention of this application.
  • the optical low-pass filter suppresses the response of each unit pixel, the image is blurred. Therefore, instead of reducing moire, image quality and light sensitivity are reduced.
  • the cost increases.
  • the aliasing distortion occurs in the row direction, the column direction, and the oblique direction. Since light can be separated only in one direction with only one quartz plate, it is necessary to bond a plurality of quartz crystals in order to reduce moire in other directions. That becomes a factor of cost increase.
  • the separation angle is 0.236 ° at the maximum, and the separation width of the ordinary ray and the extraordinary ray is effectively adjusted only by the thickness of the quartz plate, which causes a problem in the lens system product design or assembly. There is a case.
  • an object of the present invention is to provide a solid-state imaging device that can reduce moire without using an optical low-pass filter.
  • a solid-state imaging device includes a semiconductor substrate and a plurality of units that are two-dimensionally arranged on the semiconductor substrate, each having a light receiving element and a light collecting element.
  • the light collecting element includes a plurality of light transmissive films arranged in a concentric structure, and the light collecting element has an effective refractive index distribution due to the plurality of light transmissive films, and includes a plurality of unit pixels.
  • the central axis of the concentric structure of the condensing elements in the same unit pixel is randomly arranged for each unit pixel with respect to the first axis passing through each center and orthogonal to the light receiving surface.
  • the occurrence of moire can be prevented without using an optical low-pass filter even for a subject having a periodic luminance change.
  • FIG. 1 is a diagram showing a layout of condensing elements of a conventional solid-state imaging element.
  • FIG. 2 is a diagram showing sampling of incident light and an output signal by a conventional solid-state imaging device.
  • FIG. 3 is a diagram showing a birefringence phenomenon by an optical low-pass filter.
  • FIG. 4 is a diagram illustrating an example of the layout of the condensing elements of the solid-state imaging device according to the embodiment.
  • FIG. 5A is a diagram illustrating an example of a cross-sectional view of a unit pixel of the solid-state imaging device according to the embodiment.
  • FIG. 5B is a diagram illustrating an example of a plan view of the light collecting element according to the embodiment.
  • FIG. 5C is a diagram illustrating an example of an effective refractive index distribution of the light collecting element according to the embodiment.
  • FIG. 6A is a diagram illustrating a state in which incident light is incident on a unit pixel according to the embodiment.
  • FIG. 6B is a diagram illustrating a region where the unit pixel according to the embodiment images a subject.
  • FIG. 7 is a diagram illustrating sampling of incident light and an output signal by the solid-state imaging device according to the embodiment.
  • FIG. 8 is a schematic diagram of a solid-state imaging device according to the embodiment.
  • FIG. 9A is a diagram illustrating an image obtained by capturing a CZP (Circular Zone Plate) chart using a conventional solid-state imaging device.
  • FIG. 9B is a diagram illustrating an image obtained by capturing a CZP chart using the solid-state imaging device according to the embodiment.
  • FIG. 4 is a diagram illustrating an example of the layout of the light collecting elements according to the present embodiment. In FIG. 4, only a part of the light collecting element is displayed. The number of unit pixels is arbitrary. FIG. 4 shows a condensing element array for 49 pixels as an example. P is a pixel pitch. As shown in FIG. 4, the condensing elements are randomly arranged in each unit pixel.
  • FIG. 5A to 5C show detailed structures of the unit pixel A, the unit pixel B, and the unit pixel C shown in FIG. 5A is a cross-sectional view of the unit pixel, FIG. 5B is a plan view of the unit pixel, and FIG. 5C shows the effective refractive index distribution of the light collecting element 1.
  • each of the unit pixel A, the unit pixel B, or the unit pixel C includes a light collecting element 1, a color filter 2, a wiring 3, a light receiving element 4, and a semiconductor substrate 5 of a distributed refractive index lens.
  • a semiconductor substrate for example, a silicon substrate can be used.
  • the thickness of the light collecting element 1 is 1.2 [ ⁇ m]
  • the size of each unit pixel is 3.75 [ ⁇ m] ⁇ 3.75 [ ⁇ m].
  • the outer peripheral radius difference 35 between the adjacent light transmission films 33 is configured to vary in the range of about 100 [nm] to about 200 [nm] according to the distance from the central axis of the concentric structure.
  • variety of an outer periphery radius difference is called zone area.
  • the light transmission film 33 of the light collecting element 1 has a concentric circular structure, but is not limited to a concentric circle, and may be a concentric structure of a polygon such as a quadrangle and a hexagon.
  • the line width of the light transmission film 33 is the largest at the central portion, and gradually decreases as the distance from the center of the concentric structure increases.
  • the effective refractive index felt by the light is the volume of SiO 2 that is the light transmission film 33 and the air 34. It can be calculated by the ratio. That is, the effective refractive index distribution can be freely controlled simply by changing the volume ratio between the light transmission film 33 and the air 34.
  • the “incident light wavelength” here may be, for example, the wavelength of infrared light.
  • the central axis of the concentric structure of the condensing elements in the same unit pixel is randomly arranged with respect to the first axis passing through the center of each unit pixel and orthogonal to the light receiving surface. That is, the first axis may be separated from the central axis of the concentric structure, or there may be a unit pixel in which the first axis and the central axis of the concentric structure coincide.
  • FIG. 5C is a graph showing the effective refractive index distribution of the condensing element on the x-axis in FIG. 5B.
  • the vertical axis ⁇ n is the effective refractive index
  • the horizontal axis x [ ⁇ m] is a value on the x-axis of FIG. 5B.
  • the effective refractive index distribution is expressed by equation (1).
  • r is the distance from the center of the unit pixel, and is expressed by equation (2).
  • A, B, and C are constants, and ⁇ n max is the difference in refractive index between the material SiO 2 of the light transmission film 33 and air (this time 0.45).
  • the constants A, B, and C are the refractive index of the incident side medium is n 0 , the refractive index of the output side medium is n 1 , the focal length is f, the incident angle of incident light is ⁇ , and the wavelength of light is ⁇ . It is expressed by the following formula.
  • Equation (1) the condensing component is represented by a quadratic function of the distance r, and the deflection component is represented by the product of the distance r and a trigonometric function.
  • FIG. 6A and FIG. 6B are schematic diagrams showing how incident light is collected when a camera lens is attached to a single-lens reflex camera equipped with the solid-state imaging device according to the present embodiment.
  • incident light incident from a direction perpendicular to the light receiving surface is collected.
  • incident light 6 from the left side of the drawing is condensed.
  • incident light 7 from the right side of the drawing is condensed.
  • FIG. 6B shows the imaging region 11 of the subject by the unit pixel A, the unit pixel B, and the unit pixel C, respectively. Since the angle of the incident light condensed on each unit pixel is different, even a neighboring unit pixel captures a distant place in the subject.
  • FIG. 7 illustrates sampling when incident light having a pattern frequency 1 / T (T: wavelength) is incident on the solid-state imaging device according to the present embodiment in which the sampling frequency of the unit pixel is 1 / (P ⁇ ⁇ P). The output signal is shown.
  • the pixel pitch changes substantially by ⁇ ⁇ P, which is a random value. It depends on each unit pixel.
  • ⁇ ⁇ P which is a random value. It depends on each unit pixel.
  • moire is reduced.
  • featureless noise is generated. This noise is more acceptable to the human eye than moire, so it feels like the image quality has improved. Note that there may be a plurality of unit pixels having the same sampling frequency of the unit pixel.
  • the condensing element array according to this embodiment can be applied to both a CMOS image sensor and a CCD image sensor.
  • CMOS image sensor a case where the present invention is applied to a CMOS image sensor will be described with reference to FIG.
  • the solid-state imaging device 101 includes a pixel unit 102 in which unit pixels 110 are two-dimensionally arranged, row signal drive circuits 103a and 103b, a noise cancellation circuit 104 arranged in each column, and horizontal drive. Circuit 105.
  • the optical signal sampled by the condensing element array according to the present embodiment is photoelectrically converted into a signal charge by the unit pixel 110 and amplified as a signal voltage.
  • the row signal drive circuits 103a and 103b output the signal voltage to the noise cancellation circuit 104 for each column.
  • noise cancellation circuit 104 for example, noise suppression processing and AD conversion by correlated double sampling are performed.
  • the horizontal drive circuit 105 sequentially outputs digital signals to the horizontal output terminal 106 to form an image.
  • FIG. 9A and 9B are actual images obtained by photographing a CZP (Circular Zone Plate) chart.
  • FIG. 9A shows an image captured by the solid-state image sensor in which the light condensing elements are regularly arranged as shown in FIG.
  • FIG. 9B shows an image captured by the present embodiment, that is, a solid-state image sensor in which light condensing elements are randomly arranged.
  • moire has occurred, whereas in FIG. 9B, moire has been reduced.
  • the solid-state imaging device does not use an optical low-pass filter and does not require special signal processing or the like. Moire can be reduced just by applying to the.
  • the response of each unit pixel is not suppressed by the optical low-pass filter, image quality and light sensitivity are not sacrificed.
  • a low-cost solid-state imaging device can be provided. Furthermore, there is no problem in the product design or assembly of the lens system due to the application of the optical low-pass filter.
  • the maximum shift amount is 0.6 [ ⁇ m] and the minimum shift amount is 0 [ ⁇ m].
  • the value of the ratio of the shift amount with respect to the length of one side of the unit pixel is 0 or more and 0.16 or less.
  • the maximum shift amount and the minimum shift amount can be obtained according to the ratio of the shift amounts.
  • the minimum shift amount is 0 [ ⁇ m] in the case of a unit pixel in which the first axis coincides with the central axis of the concentric structure as described above.
  • the shift amount in each unit pixel can be determined by creating a random number sequence.
  • calculation software is used to determine the arrangement of light collecting elements in all unit pixels.
  • any method may be used as long as it can obtain a random number sequence such as a dice.
  • the random number sequence obtained by the calculation software is not a true random number sequence but a pseudo-random number sequence, but this is not a problem in the present embodiment.
  • 5A to 5C can be formed, for example, by applying a resist on a SiO 2 film and performing patterning by light exposure. Therefore, it is possible to easily manufacture a solid-state imaging element in which light collecting elements are arranged at random.
  • the solid-state imaging device achieves improved performance and lower price of image sensor-related products including digital video cameras, digital still cameras, camera-equipped mobile phones, surveillance cameras, in-vehicle cameras, and broadcast cameras. It is possible and industrially useful.

Landscapes

  • Transforming Light Signals Into Electric Signals (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

光学ローパスフィルタを用いることなく、モワレを低減できる固体撮像素子を提供する。半導体基板と、半導体基板上に2次元状に配置され、それぞれが受光素子と集光素子とを有する複数の単位画素とを備え、集光素子は、同心構造に配置された複数の光透過膜を備え、集光素子は、複数の光透過膜に起因する実効屈折率分布を有し、複数の単位画素のそれぞれの中心を通り、受光面に直交する第1の軸に対して、同一の単位画素内における集光素子の同心構造の中心軸が、単位画素ごとにランダムに配置されていることを特徴とする。

Description

固体撮像素子
 本発明は、デジタルカメラ等に使用される固体撮像素子に関し、特に画素配列における規則性を主原因としたエイリアシングを起こしやすい固体撮像素子に関する。
 CCDやCMOSイメージセンサ等の固体撮像素子では、集光素子及び受光素子を有する複数の単位画素が2次元的に配列されている。そして、集光素子で結像された被写体からの光信号を受光素子に取り込んで、電気信号に光電変換する。集光素子によって結像された画像は連続していても(アナログ信号)、各単位画素は連続して配列されているのではなく、ある一定周期で配列されている。そのため、その一定周期ごとにサンプリングされた光信号が、固体撮像素子によって画像として出力される。
 また、一定周期ごとに光信号がサンプリングされることによって問題が起きる場合がある。例えば、明暗パターンを持った光学像(例えば、繊維布)が固体撮像素子に入射された場合である。この場合、一定周期で配列された各単位画素による光信号のサンプリングで正確に得られる最も細かい周期は、2つの単位画素分の距離が明暗パターンの1周期になる光学像の周期である。つまり、単位画素のサンプリング周波数(pixel sampling frequency)の半分の周波数が、その固体撮像素子が正確な情報を取得できる最大周波数となる。この周波数をナイキスト周波数(Nyquist frequency)という。
 図1は、全ての単位画素内において、集光素子が規則的に配列されたレイアウトを示している。なお、図1では、集光素子の一部のみが表示されている。単位画素のサンプリング周波数が1/P(P:画素ピッチ)である固体撮像素子に、パターン周波数1/T(T:波長)を有する入射光が入射した場合のサンプリング及び出力信号を、図2は示している。ナイキスト周波数(1/2P)より大きなパターン周波数を持つ光学像を固体撮像素子で撮像するとエイリアシングが起こってしまい、折り返しノイズが発生する。この現象をモワレ(Moire)と呼ぶ。光学像のパターン周波数が単位画素のサンプリング周波数と同じとき、モワレが最も悪化する。
 サンプリング周波数を増大する、つまり、画素ピッチを小さくすることによって、固体撮像素子のサイズや撮像レンズの鋭さによらず、モワレを低減できる。しかし、多数の単位画素を有するデジタル中判カメラであっても、ナイキスト周波数より大きなパターン周波数を持つ光が入射する場合は、モワレが発生する。
 また、モワレを低減する別の手段として、固体撮像素子に入力される光学像のパターン周波数(被写体像のきめ細かさ)を、偽信号が許容できる範囲のレベルまで制限する役割を持つ光学ローパスフィルタを使用することもある。光学ローパスフィルタは画像をぼかす、つまり、入力されるパターン周波数を減らすことによって、モワレを低減する。
 光学ローパスフィルタの動作原理を説明する。図3で示すように、光学ローパスフィルタには、一般的に、異方性を持つ水晶板20が用いられる。水晶板20は、ひとつの入射光線21を常光線22と異常光線23に分岐する。この現象を複屈折現象と呼ぶ。常光線22と異常光線23の分離幅は水晶の厚さと関係するため、分離幅が各単位画素の配列周期と同程度になるように水晶の厚さを選ぶことで、ナイキスト周波数より大きなパターン周波数を有する縞模様の光が各単位画素に分散される。そのため、各単位画素の応答が抑圧され、エイリアシングによる折り返しひずみが低減できる。
 なお、この出願の発明に関連する先行技術文献情報としては、例えば、特許文献1が知られている。
特開2011-97288号公報
 しかし、光学ローパスフィルタは各単位画素の応答を抑圧しているため、画像がぼかされてしまう。そのため、モワレが低減される代わりに、画質や光感度が低下している。
 また、光学ローパスフィルタを用いる場合、コストが増加する。固体撮像素子は複数の単位画素が2次元的に配列されているため、折り返しひずみは行方向、列方向や斜め方向に発生する。一枚の水晶板だけでは一方向にしか光線分離できないため、他の方向のモワレを低減するためには複数枚の水晶の貼り合わせが必要となる。それがコスト増加の要因となる。また、分離角は最大で0.236°であり、且つ、常光線と異常光線の分離幅は事実上水晶板の厚みのみで調整するため、レンズ系の製品デザイン上あるいは組み立て上の問題が生じる場合がある。
 本発明は、上記課題に鑑み、光学ローパスフィルタを用いることなく、モワレを低減できる固体撮像素子を提供することを目的とする。
 上記目的を達成するために、本発明の一実施形態に係る固体撮像素子は、半導体基板と、半導体基板上に2次元状に配置され、それぞれが受光素子と集光素子とを有する複数の単位画素とを備え、集光素子は、同心構造に配置された複数の光透過膜を備え、集光素子は、複数の光透過膜に起因する実効屈折率分布を有し、複数の単位画素のそれぞれの中心を通り、受光面に直交する第1の軸に対して、同一の単位画素内における集光素子の同心構造の中心軸が、単位画素ごとにランダムに配置されている。
 本発明に係る固体撮像素子によれば、周期的な輝度変化をもつ被写体でも光学ローパスフィルタを使用せずに、モワレの発生を防止できる。
図1は、従来の固体撮像素子の集光素子のレイアウトを示す図である。 図2は、従来の固体撮像素子による入射光のサンプリングと出力信号を示す図である。 図3は、光学ローパスフィルタによる複屈折現象を示す図である。 図4は、実施形態に係る固体撮像素子の集光素子のレイアウトの一例を示す図である。 図5Aは、実施形態に係る固体撮像素子の単位画素の断面図の例を示す図である。 図5Bは、実施形態に係る集光素子の平面図の例を示す図である。 図5Cは、実施形態に係る集光素子の実効屈折率分布の例を示す図である。 図6Aは、実施形態に係る単位画素に入射光が入射した様子を示す図である。 図6Bは、実施形態に係る単位画素が被写体を撮像する領域を示す図である。 図7は、実施形態に係る固体撮像素子による入射光のサンプリングと出力信号を示す図である。 図8は、実施形態に係る固体撮像素子の概略図である。 図9Aは、従来の固体撮像素子によってCZP(Circular Zone Plate)チャートを撮影した画像を示す図である。 図9Bは、実施形態に係る固体撮像素子によってCZPチャートを撮影した画像を示す図である。
 本発明に係る実施形態について、図面を参照しながら具体的に説明する。実質的に同一の構成に対して同一の符号を付して、説明を省略することがある。なお、本発明は以下の実施形態に限定されない。
 図4は、本実施形態に係る集光素子のレイアウトの一例を示す図である。なお、図4は、集光素子の一部のみが表示されている。単位画素数は任意である。図4では、一例として、49画素に対する集光素子配列を示している。Pは画素ピッチである。図4に示すように、各単位画素内において集光素子がランダムに配置されている。
 図5A~図5Cは、図4に示された単位画素A、単位画素B及び単位画素Cの詳細な構造を表している。図5Aは単位画素の断面図、図5Bは単位画素の平面図、図5Cは集光素子1の実効屈折率分布を示す。
 図5Aに示すように、単位画素A、単位画素B又は単位画素Cのそれぞれは、分布屈折率型レンズの集光素子1、カラーフィルタ2、配線3、受光素子4と、半導体基板5とを備える。半導体基板として、例えば、シリコン基板を用いることが出来る。本実施形態においては、集光素子1の膜厚は1.2[μm]であり、各単位画素のサイズは3.75[μm]×3.75[μm]である。
 図5Bに示すように、各単位画素における集光素子1の構造は、光透過膜33であるSiO(n=1.45)と空気34(n=1.0)とからなる同心構造である。隣り合う光透過膜33の外周半径差35は、同心構造の中心軸からの距離に応じて、約100[nm]から約200[nm]の範囲で変化する構成としている。ここで、集光素子1を外周半径差の幅でドーナツ状に分割した領域をゾーン領域という。なお、図5A~図5Cにおいては、集光素子1の光透過膜33の構造を同心円構造としたが、同心円に限らず、四角形及び六角形などの多角形の同心構造でもよい。
 また、光透過膜33の線幅は、その中心部分が最も大きく、同心構造の中心から離れるに従って順に小さくなっていく。この場合、ゾーン領域の幅が、固体撮像素子に入射する入射光の波長と同程度かそれより小さいときには、光が感じる実効屈折率は、光透過膜33であるSiOと空気34との体積比によって算出できる。つまり、光透過膜33と空気34との体積比を変えるだけで、実効屈折率分布を自由自在に制御できる。ここでいう「入射光の波長」は、例えば、赤外光の波長であってもよい。
 各単位画素の中心を通り、受光面に直交する第1の軸に対して、同じ単位画素における集光素子の同心構造の中心軸がランダムに配置されている。つまり、第1の軸と同心構造の中心軸とが離れていてもよいし、第1の軸と同心構造の中心軸とが一致する単位画素があってもよい。
 図5Cは、図5Bのx軸上の集光素子の実効屈折率分布を示すグラフである。縦軸Δnは実効屈折率、横軸x[μm]は図5Bのx軸上の値である。そして実効屈折率分布は式(1)で表される。
Figure JPOXMLDOC01-appb-M000001
 rは単位画素の中心からの距離であり、式(2)で表される。またA、B、Cは定数であり、Δnmaxは、光透過膜33の材料SiOと空気の屈折率差(今回は0.45)である。また、定数A、B、Cは、入射側媒質の屈折率をn、出射側媒質の屈折率をn、焦点距離をf、入射光の入射角度をθ、光の波長をλとして、以下の式で表される。
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
 これにより、目的とする焦点距離及び対象とする入射光の入射角度、波長毎に、レンズを最適化することが可能となる。なお、式(1)において、集光成分は距離rの2次関数によって表し、偏向成分は距離rと三角関数との積によって表している。
 図6Aおよび図6Bは、本実施形態に係る固体撮像素子を搭載した一眼レフ用カメラに、カメラレンズを装着した場合における、入射光の集光の様子を示した模式図である。
 図6Aに示すように、例えば、単位画素Aでは、受光面に垂直な方向から入射する入射光が集光される。単位画素Bでは図面左側からの入射光6が集光される。単位画素Cでは図面右側からの入射光7が集光される。
 図6Bでは単位画素A、単位画素Bおよび単位画素Cによる被写体の撮像領域11をそれぞれ表している。各単位画素に集光される入射光の角度が異なるため、隣接する単位画素であっても、被写体内の離れた箇所を撮像することになる。
 図7は、パターン周波数1/T(T:波長)を有する入射光が、単位画素のサンプリング周波数が1/(P±ΔP)である本実施形態に係る固体撮像素子に入射した場合のサンプリング及び出力信号を示している。
 集光素子を規則的に配置した場合と比較して、集光素子をランダムに配置した場合は、画素ピッチがランダムな値である±ΔPだけ実質的に変化するため、単位画素のサンプリング周波数が各単位画素によって異なる。その結果、集光素子を規則的に配置した場合よりも、入射光の光信号に忠実な出力信号が得られるため、モワレが低減される。そして、モワレの代わりに、特徴のないノイズ(featureless noise)が生じる。このノイズは、人間の目にとってモワレより受け入れやすいため、画質が向上したように感じる。なお、単位画素のサンプリング周波数が同じである複数の単位画素があってもよい。
 本実施形態に係る集光素子配列はCMOSイメージセンサ及びCCDイメージセンサのどちらにも適用可能である。例えば、CMOSイメージセンサに適用した場合について、図8を用いて説明する。
 本実施形態に係る固体撮像素子101は、単位画素110が2次元状に配列された画素部102と、行信号駆動回路103aおよび103bと、各列に配置されたノイズキャンセル回路104と、水平駆動回路105とを備える。
 本実施形態に係る集光素子配列によりサンプリングされた光信号は、単位画素110にて信号電荷に光電変換され、信号電圧として増幅される。そして、行信号駆動回路103aおよび103bにより当該信号電圧が列毎にノイズキャンセル回路104に出力される。ノイズキャンセル回路104では、例えば、相関二重サンプリングによるノイズ抑圧処理及びAD変換等が行われる。そして、水平駆動回路105によって順次、デジタル信号が水平出力端子106へと出力され、画像が形成される。
 図9Aおよび図9Bは、CZP(Circular Zone Plate)チャートを撮影した実際の画像である。図9Aは、図1に示す規則的に集光素子が配列された固体撮像素子により撮像された画像を表している。図9Bは本実施形態、つまり、ランダムに集光素子が配列された固体撮像素子により撮像された画像を表している。図9Aでは、モワレが発生しているのに対して、図9Bではモワレが低減されている。
 以上のように、本実施形態に係る固体撮像素子では、光学ローパスフィルタを用いることなく、且つ、特別な信号処理等も必要とせず、本実施形態に係る集光素子配列を従来の固体撮像素子に適用するだけでモワレが低減できる。また、光学ローパスフィルタによって各単位画素の応答が抑圧されないため、画質や光感度が犠牲にならない。また、光学ローパスフィルタを用いることによるコスト増加がないため、低価格の固体撮像素子を提供できる。さらに、光学ローパスフィルタを適用することによるレンズ系の製品デザイン上あるいは組み立て上の問題も起きない。
 次に、ランダムに集光素子が配列されたレイアウトを得るための手順について説明する。各集光素子が各単位画素の中心からシフトをする距離、つまり各単位画素内における第1の軸と同心構造の中心軸との距離(以下、この距離をシフト量と呼ぶ)を決定するためには、まず、最小シフト量(Minimum Shift)及び、最大シフト量(Maximum Shift)を決める必要がある。
 例えば、各単位画素のサイズが3.75[μm]×3.75[μm]である場合は、最大シフト量は0.6[μm]であり、最小シフト量は0[μm]であることが好ましい。つまり、単位画素の一辺の長さに対するシフト量の比の値が、0以上、0.16以下であることを意味している。最大シフト量がこの値を超えると、ケラレが悪化するため集光率が低下する。
 また、各単位画素のサイズが変化したときであっても、当該シフト量の比に応じて、最大シフト量及び最小シフト量を求められる。なお、最小シフト量が0[μm]となるのは、前述のように、第1の軸と同心構造の中心軸とが一致する単位画素の場合である。
 各単位画素におけるシフト量はそれぞれ、ランダム数列を作成することによって決定できる。例えば、計算ソフトウェアを使用して、全単位画素における集光素子の配列を決定する。もちろん、サイコロなど、ランダム数列が得られる手法であればどんな手法で決定してもよい。なお、計算ソフトウェアによって得られるランダム数列は、真のランダム数列ではなく擬似乱数数列となるが、本実施形態においては問題とはならない。
 また、図5A~図5Cに示す分布屈折率型の集光素子は、例えば、SiO膜の上にレジストを塗布し、光露光によるパターニングを行うことで形成できる。そのため、ランダムに集光素子が配列された固体撮像素子を容易に製造できる。
 本発明に係る固体撮像素子は、デジタルビデオカメラ、デジタルスチルカメラ、カメラ付携帯電話機、監視用カメラ、車載用カメラ、放送用カメラをはじめとするイメージセンサ関連製品の性能向上及び低価格化が実現可能であり、産業上有用である。
 1 集光素子
 2 カラーフィルタ
 3 配線
 4 受光素子
 5 半導体基板
 6,7 入射光
 11 撮像領域
 20 水晶板
 21 入射光線
 22 常光線
 23 異常光線
 33 光透過膜
 34 空気
 35 隣り合う光透過膜33の外周半径差
 101 固体撮像素子
 102 画素部
 103a,103b 行信号駆動回路
 104 ノイズキャンセル回路
 105 水平駆動回路
 106 水平出力端子

Claims (3)

  1.  半導体基板と、
     前記半導体基板上に2次元状に配置され、それぞれが受光素子と集光素子とを有する複数の単位画素とを備え、
     前記集光素子は、同心構造に配置された複数の光透過膜を備え、
     前記集光素子は、前記複数の光透過膜に起因する実効屈折率分布を有し、
     前記複数の単位画素のそれぞれの中心を通り、受光面に直交する第1の軸に対して、同一の単位画素内における前記集光素子の前記同心構造の中心軸が、単位画素ごとにランダムに配置されている
     固体撮像素子。
  2.  前記複数の単位画素は、前記第1の軸と前記中心軸とが一致する第1の単位画素を含む
     請求項1に記載の固体撮像素子。
  3.  前記複数の単位画素のそれぞれの一辺の長さに対する、同じ単位画素における前記第1の軸と前記中心軸との距離の比の値が、0以上、0.16以下である
     請求項1又は2に記載の固体撮像素子。
PCT/JP2013/004938 2012-12-21 2013-08-21 固体撮像素子 WO2014097507A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012278989 2012-12-21
JP2012-278989 2012-12-21

Publications (1)

Publication Number Publication Date
WO2014097507A1 true WO2014097507A1 (ja) 2014-06-26

Family

ID=50977877

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/004938 WO2014097507A1 (ja) 2012-12-21 2013-08-21 固体撮像素子

Country Status (1)

Country Link
WO (1) WO2014097507A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107808887A (zh) * 2016-09-06 2018-03-16 日月光半导体制造股份有限公司 光学装置及其制造方法
WO2023013149A1 (ja) * 2021-08-06 2023-02-09 ソニーグループ株式会社 固体撮像装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1090789A (ja) * 1996-08-19 1998-04-10 Eastman Kodak Co コンパクト撮像装置
JPH10229181A (ja) * 1997-02-18 1998-08-25 Sharp Corp 固体撮像装置とその製造方法
JP2006351972A (ja) * 2005-06-17 2006-12-28 Matsushita Electric Ind Co Ltd 固体撮像素子、固体撮像装置およびその製造方法
JP2007325202A (ja) * 2006-06-05 2007-12-13 Kanazawa Univ 映像装置
JP2009206922A (ja) * 2008-02-28 2009-09-10 Funai Electric Co Ltd 複眼撮像装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1090789A (ja) * 1996-08-19 1998-04-10 Eastman Kodak Co コンパクト撮像装置
JPH10229181A (ja) * 1997-02-18 1998-08-25 Sharp Corp 固体撮像装置とその製造方法
JP2006351972A (ja) * 2005-06-17 2006-12-28 Matsushita Electric Ind Co Ltd 固体撮像素子、固体撮像装置およびその製造方法
JP2007325202A (ja) * 2006-06-05 2007-12-13 Kanazawa Univ 映像装置
JP2009206922A (ja) * 2008-02-28 2009-09-10 Funai Electric Co Ltd 複眼撮像装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107808887A (zh) * 2016-09-06 2018-03-16 日月光半导体制造股份有限公司 光学装置及其制造方法
CN107808887B (zh) * 2016-09-06 2022-01-11 日月光半导体制造股份有限公司 光学装置及其制造方法
WO2023013149A1 (ja) * 2021-08-06 2023-02-09 ソニーグループ株式会社 固体撮像装置

Similar Documents

Publication Publication Date Title
JP7528998B2 (ja) 固体撮像素子、および電子機器
JP7218399B2 (ja) 固体撮像装置およびその製造方法、並びに電子機器
JP4483951B2 (ja) 撮像装置
JP5490309B2 (ja) 撮像装置および測距装置
KR20170024599A (ko) 이면 조사형 촬상 소자, 그 제조 방법 및 촬상 장치
US20230207603A1 (en) Solid-state imaging device and manufacturing method of the same, and electronic apparatus
CN104517984B (zh) 固体摄像装置、固体摄像装置制造方法和电子设备
JP2011176715A (ja) 裏面照射型撮像素子および撮像装置
WO2011043051A1 (ja) 撮像装置および固体撮像素子
JP2009135236A (ja) 固体撮像素子
JP2015169708A (ja) 撮像装置、その制御方法、および制御プログラム
JPWO2019078340A1 (ja) 撮像装置および方法、並びに、画像処理装置および方法
JPWO2019078335A1 (ja) 撮像装置および方法、並びに、画像処理装置および方法
US20170257583A1 (en) Image processing device and control method thereof
WO2014097507A1 (ja) 固体撮像素子
JP2015115527A (ja) 固体撮像装置及びカメラシステム
WO2017130725A1 (ja) 焦点検出装置、撮像装置
JP2010186942A (ja) 撮像素子
JP2015095879A (ja) 撮像装置及び偏光フィルタ
WO2022190638A1 (ja) 固体撮像素子および電子機器
WO2016002274A1 (ja) 撮像装置、画像処理方法、及び画像処理プログラム
JP2016178341A (ja) 撮像素子及び撮像装置
JP5363966B2 (ja) 撮像装置
JP2012004437A (ja) 固体撮像装置
JP2017005509A (ja) 固体撮像素子、撮像装置、および測距装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13864897

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13864897

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP