WO2014096495A1 - Procedimiento de diseño y de mecanizado de una lente oftálmica, procedimiento de fabricación de una lente biselada y lentes correspondientes - Google Patents

Procedimiento de diseño y de mecanizado de una lente oftálmica, procedimiento de fabricación de una lente biselada y lentes correspondientes Download PDF

Info

Publication number
WO2014096495A1
WO2014096495A1 PCT/ES2013/070896 ES2013070896W WO2014096495A1 WO 2014096495 A1 WO2014096495 A1 WO 2014096495A1 ES 2013070896 W ES2013070896 W ES 2013070896W WO 2014096495 A1 WO2014096495 A1 WO 2014096495A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
zone
perimeter
central
area
Prior art date
Application number
PCT/ES2013/070896
Other languages
English (en)
French (fr)
Inventor
Manuel ESPÍNOLA ESTEPA
Alberto LARA RODRÍGUEZ
Sara Chamadoira Hermida
Glòria CASANELLAS PEÑALVER
Pau ARTUS COLOMER del VALLÈS
Javier Vegas Caballero
Original Assignee
Indo Internacional S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Indo Internacional S.A. filed Critical Indo Internacional S.A.
Priority to CA2894956A priority Critical patent/CA2894956A1/en
Publication of WO2014096495A1 publication Critical patent/WO2014096495A1/es

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/024Methods of designing ophthalmic lenses
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/04Contact lenses for the eyes
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/024Methods of designing ophthalmic lenses
    • G02C7/027Methods of designing ophthalmic lenses considering wearer's parameters
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/022Ophthalmic lenses having special refractive features achieved by special materials or material structures
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • G02C7/06Lenses; Lens systems ; Methods of designing lenses bifocal; multifocal ; progressive
    • G02C7/061Spectacle lenses with progressively varying focal power

Definitions

  • the invention relates to a design procedure for an ophthalmic lens having a concave face and a convex face and an outer perimeter, where the outer perimeter has a thickness within a preset range.
  • the invention also relates to a method of machining an ophthalmic lens as well as to a method of manufacturing a beveled lens.
  • the invention also relates to finished ophthalmic lenses.
  • this finished lens may be beveled (to adjust its perimeter to a certain mount) or not.
  • finished lens always refers to the lens without beveling.
  • finished bevel lens is specifically used for the beveled lens.
  • document ES P200900849 describes a procedure for the optimization of ophthalmic lenses taking into account the frame selected by the user.
  • Document ES P201031037 describes procedures for optimizing the distribution of aberrations in progressive ophthalmic lenses, also taking into account the frame selected by the user.
  • the object of the invention is to overcome these drawbacks.
  • This purpose is achieved through a design procedure of an ophthalmic lens of the type indicated at the beginning characterized in that it comprises the steps of:
  • this unused part can be the cause of high thicknesses, either in the temporal zone itself, especially at the lens edge itself (in the case of negative lenses) or in the center of the lens (in the case of positive lenses).
  • the procedure described in ES P200900849 uses the mount as a reference, so that, in the case of very enveloping frames, the optimization performed may not be sufficient to obtain satisfactory results.
  • the frame is not simply used as a reference, but it is taken into account that in the lenses there is usually an area not used by the user, and that this area is particularly large in the frames very enveloping Therefore, the central zone (which is the one that will be included within the mount) is divided into a nasal area and a temporal zone by means of a time line. This division is made taking into account that the part of the lens that is actually used by the user is in the nasal area. To do this, the convex face of the lens is intercepted with a cone with an opening angle of at least 30 e , whose vertex is at the center of rotation of the user's eye and whose axis corresponds to the optical axis.
  • the time zone must include at least this field of vision.
  • the thickness of the lens can be optimized taking into account this fact, that is, by optimizing the thickness of the lens taking into account that, although all points of the central perimeter must meet certain specific thickness requirements, those corresponding to the time zone are part of a surface that does not have to comply with requirements derived from a specific prescription.
  • This transition surface must simply be a continuation of the surface to be machined, it must be continuous and continuous derivative at all points, including the line of junction between the transition surface and the surface to be machined, and must comply with the permissible thickness values of the previous stage [e] at the points of the temporal part of the central perimeter.
  • the timeline can have, in general, any form. However, it is preferable that it has a circumferential arc shape or that it is parallel to the temporal edge of the central zone, which is defined by the mount.
  • the cone has an opening angle greater than 40 e , preferably greater than 50 e .
  • the opening angle of 30 e is the one that guarantees that the field of vision normally used by the user remains inside, however, greater angles also allow the field corresponding to peripheral vision to be included, which will result in the comfort of the user.
  • step [g] it is analyzed whether it is possible to move the time line in a temporal sense while still complying with the permissible thickness values and, if so, the time line is moved in a temporal sense.
  • two quite different criteria are followed depending on whether the lens is a positive or negative lens (following the "mixed" strategies in the case of progressive lenses in which positive zones and negative zones coexist) :
  • the greater thickness of the lens is usually at the center of it.
  • the problem is that at the edge of the lens the thickness may be too small or even negative.
  • the thickness of the useful perimeter is within the allowable thickness values.
  • the most critical point is usually the point of the furthest useful perimeter of the optical center. If this point is in the nasal part of the central perimeter it means that we can extend the radius of the useful vision cone (that is, we can move the temporal line in a temporal sense) without penalizing the thickness of the lens, since this thickness has come bound by a point of the nasal part of the central perimeter.
  • the greatest thickness usually occurs in the contour of the lens. In the optical center of the lens the thickness is usually minimal and should not be less than a minimum value basically for mechanical reasons. In this case we will have two maximum thicknesses at the points of the useful perimeter furthest from the optical point.
  • the negative lens has a high power, then it is possible that the maximum desired thickness is reached before leaving the useful vision cone.
  • the greater thicknesses within the useful vision zone should be tolerated if it is not desired to limit the useful vision zone (it should be noted that in cases of large negative power lenses a smaller useful vision radius is permissible, since the user's real viewing angle is enlarged when passing through the lens). If, on the contrary, the negative lens has a low power, then the maximum permissible thicknesses are probably reached outside the useful vision cone. This allows the useful vision cone to be enlarged without affecting the aesthetics of the beveled lens in a marked way.
  • the transition zone between the time line and the central perimeter is calculated by requiring it to be continuous and with continuous derivatives, and to have a thickness in all its points within a pre-established range.
  • the method comprises an optimization step of said lens comprising the following sub-stages: [i] calculation of the target power values and prescription astigmatism for the far vision zone, the near vision zone and the corridor, depending on the physiological and prescription data of the user and, optionally, the positioning data, [ii] generation or selection of a pre-designed lens, where the pre-designed lens has certain values of lateral aberrations, preferably astigmatism associated with the progression of lens power, in the upper and lower areas,
  • a pre-designed lens is understood as a lens that is taken as the starting point for the optimization stage according to the invention. It is a lens that has been calculated by any method other than that of the present invention, preferably without taking into account the mount chosen by the user, and most preferably without taking into account the perimeter of the mount.
  • the pre-designed lens may have been calculated in advance, so that the optician may have a plurality of pre-designed lenses from which he can choose the most suitable one at the time of optimization according to the invention, or it may be a lens that be generated (calculated) at the time of optimization according to the invention.
  • optimization may include the treatment of one of the lateral aberrations (preferably astigmatism associated with the progression of lens power) or more than one. Therefore, when making reference in this description and claims of the chosen lateral aberration, it should be understood that it also includes the case in which more than one has been chosen.
  • the object of the invention is also a machining process of an ophthalmic lens characterized in that it includes a design process according to the invention and a machining step of the surface to be machined and the transition surface.
  • the machining process comprises a stage of concealment of aberrations in the area between the time line and the time part of the central perimeter.
  • this zone must be outside even the peripheral vision zone, it is better to modify its transparency properties, in order to avoid possible discomfort derived from the balances and / or deformations of the image that the user can appreciate. It is desirable that the user perceives this optically distorted area as not useful. It is particularly interesting that, on the internal side of the lens, the user perceives this area as unusable (as part of the frame) while on the external side of the lens the aesthetic impression of a large, apparently useful surround lens is still given. in all its surface.
  • the area between the time line and the temporary part of the central perimeter could even be free (or almost free) of aberrations but, in any case, it is not suitable for the user. Therefore, it is advantageous to include a stage of total or partial disabling of the imaging in the area between the time line and the temporary part of the central perimeter. That is, whether this part of the lens has aberrations or not, what is advantageous is to apply a treatment that prevents the formation of optically correct images.
  • the aberration concealment stage is a non-polishing, a tinting, a coating, a grinding or a combination of the above applied to either of the two faces of the lens.
  • grinding is done by modifying the surface of the lens or the surface of a lens coating by an action mechanical such as mechanical abrasion, and advantageously abrasive particle blasting, milling, drilling or punching.
  • An advantageous alternative for the concealment of aberrations is obtained by performing the superficial ablation of the lens by means of pulses generated with a source of collimated energy, such as a laser. It is also possible to modify the internal optical properties of the lens by pulses generated with a collimated energy source. Preferably, cavities are generated inside the lens by pulses generated with a laser.
  • a subject of the invention is also a method of manufacturing a beveled lens, characterized in that it comprises a method of manufacturing an ophthalmic lens according to the invention and a beveling stage according to the central perimeter.
  • a subject of the invention is also a finished ophthalmic lens having a concave face and a convex face and an external perimeter, where the external perimeter has a thickness within a pre-established range, characterized in that: [a] it has a useful area in which The concave face and the convex face are such that they meet a predetermined preset ophthalmic prescription and where one of the concave and convex faces defines a mechanized surface, where the useful area has a useful perimeter that is formed by combining a nasal part of a central perimeter, which coincides with the perimeter of a certain preset mount and that defines a central zone, and a time line, which divides the central zone into a nasal zone and a temporal zone where the time line is outside the intersection of the convex face with a cone of 30 e of opening, whose vertex is in the center of rotation of the user's eye and whose axis corresponds with the optical axis, and
  • [b] has an outer transition zone that joins the useful perimeter of the useful zone with the outer perimeter, where the transition zone comprises a transition surface that extends as a continuation of the machined surface and is extends to the outer perimeter, and where the transition surface is continuous and its derivative is continuous at all points, including the line of junction between the transition surface and the machined surface.
  • the lens has, in addition, said area between said time line and the time part of said central perimeter with the hidden aberrations, so that the user does not use this part of the lens to look through it, nor negatively affect its peripheric vision.
  • the area with the hidden aberrations is a non-polished, tinted, coated, frosted area or a combination of the above.
  • the lens is a progressive lens, comprising: - a far vision zone, a near vision zone and a corridor that extends between the far vision zone and the near vision zone, where between the far vision zone and the upper edge of the lens extends an upper area and a lower area extends between the near vision area and the lower edge of the lens,
  • an area to be optimized defined from the central perimeter, and preferably consisting of the useful area, and an outer zone outside the central perimeter, where the central perimeter divides the upper zone into an upper outer zone and an inner upper zone and the lower zone in a lower outer zone and a lower inner zone, where in at least one of the upper outer and lower outer zones has an astigmatism associated with the power progression of the lens greater than 0.25 Dp.
  • the usual procedures try to make the lateral aberrations as small as possible in the upper and lower areas, so that the target values are usually 0.
  • the upper zones are not divided and lower depending on the mount (which, when defining a useful area, divides them into upper outer, upper inner, lower outer and lower inner), so that a differentiated treatment of these subzones is not done.
  • these 4 zones have zero or very small lateral aberration values.
  • target values such as astigmatism associated with the progression of lens power greater than 0.25 Dp
  • target values such as astigmatism associated with the progression of lens power greater than 0.25 Dp
  • FIG. 1 and 2 a schematic view of a cross section of a positive lens and a negative lens, respectively.
  • Fig. 3 a schematic view of a semi-finished or finished lens with the perimeter of a mount superimposed on its surface.
  • Fig. 4 a scheme showing the superposition of contours between the central perimeter (the original mount) and the useful vision cone.
  • Fig. 5 a scheme showing the central perimeter and the useful perimeter.
  • Fig. 6 a diagram of a case of a large power negative lens.
  • Fig. 7 a diagram of a case of a low power negative lens.
  • Figs. 8 and 9 a schematic view of a cross section of a positive lens and a negative lens according to the invention.
  • Figs. 10 and 1 1, progressive ophthalmic lens schemes with the various areas mentioned in the stage of optimization of progressive lenses.
  • FIGs. 12, 13 and 14 schematic views of astigmatism distribution maps associated with progression, as examples of lateral aberrations, in which the displacement of astigmatism associated with progression according to the method of the invention is shown.
  • FIG. 3 shows a lens 1 (semi-finished or finished) on which the perimeter of a mount chosen by a user has been superimposed, which defines the so-called central perimeter 3 and the central zone 5.
  • the central perimeter is shown 3 defined by a specific mount, and the user's useful vision cone 7.
  • This useful vision cone 7 is centered in the optical center 9 of the lens 1 (strictly speaking, what is centered in the optical center 9 is the intersection of the useful vision cone 7 with the surface of the lens, which forms the circumference shown in Fig. 4).
  • the useful vision cone 7 will have, in each case, a preset value that may be exactly the value really corresponding to the user's useful field of vision or may be a greater value, as already mentioned above.
  • Fig. 5 it is shown how, from the central perimeter 3 and the useful vision cone 7, the time line 1 1 can be defined (which, in this particular case, is directly the section of the useful vision cone 7 that remains inside of the central zone 5, with the ends properly rounded so that they are continuously connected with the nasal part 13 of the central perimeter 3).
  • the assembly formed by the nasal part 13 of the central perimeter 3 and the time line 1 1 forms the so-called useful perimeter 15 inside which is the useful zone 17.
  • the temporal part 19 of the central perimeter 3 is in the transition zone 21, if well it continues defining part of the perimeter of the mount.
  • Fig. 6 shows the case of a large power negative lens.
  • reference 25 an isoline corresponding to a desired maximum thickness has been indicated. It is observed that the useful vision cone 7 is further away in a temporal sense. Therefore, the desired maximum thickness value is reached within the lens within the useful area 17. However, in Fig. 7, in which the case of a low power negative lens is shown, the isoline 25 is more temporarily away from the useful vision cone 7. This allows the temporal line 1 1 (or the useful vision cone 7) to be moved temporarily so that the useful area 17 is enlarged without damaging the aesthetics (or the weight) of the lens
  • Figs. 8 and 9 show schematic views of a cross section of a positive lens and a negative lens according to the invention in which the useful area 17, the time line 1 1 (which is part of the useful perimeter 15), the transition zone within the central zone 22 (that is, the part of the transition zone 21 between the time line 1 1 and the central perimeter 3), the central perimeter 3 (which, in this section, is the temporary part 19 thereof), and the transition zone outside the central zone 23 that extends to the outer perimeter 27 of the lens 1.
  • the surface has been positioned machining 29 (which in these examples is the concave surface) optimizing the thickness of the useful perimeter 15 in the case of Fig. 8 or the center in the case of Fig. 9.
  • machining 29 which in these examples is the concave surface
  • the thickness it must be such that it allows an adequate evolution of the transition surface 31 to the required thickness in the central perimeter 3 (the perimeter of the lens 1) without at any time the thickness of the transition zone within the central zone 22 being out of a preset range.
  • the transition zone within the central zone 22 although optically not valid, must have minimal mechanical characteristics, since it will physically be part of the beveled lens that will remain inside the frame. Therefore, it must comply with mechanical requirements that, for example, will not be demanded from the transition zone outside the central zone 23, since this is a part that will be eliminated during the bevelling.
  • the "original" concave surface for example, a surface calculated by any conventional method), that is, without having been modified with the method according to the invention, has also been represented by a dashed line.
  • Fig. 10 shows the far vision zones 101, near vision 103 and corridor or corridor 105, which are the conventional zones of the state of the art progressive lenses.
  • the upper zone 107 extends above the far vision zone 101, and the lower zone 109 extends below the near vision zone 103.
  • the perimeter 1 1 1 of a mount is included in Fig. 1 1 which, once properly positioned on the lens, defines a zone to be optimized 1 13 and an outer zone 1 15, which is the zone that will be eliminated during the beveling stage.
  • the part of the upper zone 107 comprised in the optimized zone 1 13 is the upper inner zone 1 17, while the part of the upper zone 107 comprised in the outer zone 1 15 is the upper outer zone 1 19.
  • nasal 129 and temporal 131 of the area to be optimized 1 13 are shown in broken lines. nasal 129 and temporal 131 of the area to be optimized 1 13.
  • the shape of the area to be optimized 1 13 is coincident with the surface delimited by the perimeter 1 1 1 of the mount (that is, the central zone 5), but this does not have to be so.
  • the zone to be optimized 1 13 may have other geometries that, although defined by the perimeter 1 1 1 of the frame, are not exactly coincident.
  • the area delimited by the rectangle formed by the upper 125, lower 127, nasal 129 and temporal 131 dimensions can be defined as the zone to be optimized.
  • zone to be optimized 1 13 some other simple geometric shape that approximates the area of the perimeter 1 1 1 (inscribed rectangles, inscribed ellipses, etc.). These simple geometries may be of interest in various cases, such as to simplify and accelerate optimization calculations or to perform optimization in those cases where complete data on the perimeter of the mount are not available. It is particularly advantageous that the area to be optimized 1 13 is the useful area 17. As already mentioned above, the basic objective of the invention is to take advantage of the area that will be outside the frame (that is, the outer zone 1 15) a Once the lens has been beveled.
  • Figs. 12, 13 and 14 show some cases in which the lateral aberration chosen is the astigmatism associated with the progression. However, the results and conclusions are generalizable to any other lateral aberration.
  • the astigmatism associated with the progression of a standard design is shown in Fig. 12.
  • the process of the present invention provides the improvement of distinguishing between the zone to be optimized 1 13 and the outer zone 1 15.
  • astigmatisms associated with progression are redistributed during the process according to the invention as shown in Fig. 13.
  • the upper outer zone 1 19 and the lower outer zone 123 are invaded with astigmatism which results in a reduction of the maximum astigmatism values present in the area to be optimized 1 13
  • the central zone 5 which includes the zone to be optimized 1 13 the overall result is a beveled lens with lower astigmatic aberrations derived from the progression. This is shown in Figure 14.

Landscapes

  • Health & Medical Sciences (AREA)
  • Ophthalmology & Optometry (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Eyeglasses (AREA)
  • Prostheses (AREA)

Abstract

Procedimiento de diseño y de mecanizado de una lente oftálmica, procedimiento de fabricación de una lente biselada y lentes correspondientes. Procedimiento de diseño de una lente oftálmica en el que se define una zona central (5) con un perímetro central (3) coincidente con el perímetro de una montura, se define una línea temporal (11) que divide la zona central en unas zonas nasal, con un perímetro útil (15), y temporal, y se determina una prescripción para un usuario. La línea temporal está fuera de un cono (7) de 30º de apertura, cuyo vértice está en el centro de rotación del ojo del usuario y cuyo eje es el eje óptico. El espesor de la lente se optimiza en función del espesor del perímetro de la zona nasal. Posteriormente se define una zona de transición (21) que se extiende entre el perímetro útil y el perímetro externo (27) de la lente.

Description

PROCEDIMIENTO DE DISEÑO Y DE MECANIZADO DE UNA LENTE OFTÁLMICA, PROCEDIMIENTO DE FABRICACIÓN DE UNA LENTE BISELADA Y
LENTES CORRESPONDIENTES
DESCRIPCION
Campo de la invención La invención se refiere a un procedimiento de diseño de una lente oftálmica que tiene una cara cóncava y una cara convexa y un perímetro externo, donde el perímetro externo tiene un espesor dentro de un rango preestablecido. La invención también se refiere a un procedimiento de mecanizado de una lente oftálmica así como a un procedimiento de fabricación de una lente biselada.
La invención también se refiere a unas lentes oftálmicas acabadas.
En la presente descripción y reivindicaciones se ha empleado la nomenclatura de la norma ISO 13666, en la que se establecen las siguientes definiciones:
- lente semiterminada (en inglés: semifinished lens blank): pieza de material preformado que sólo tiene una superficie óptica acabada,
- lente acabada (en inglés: finished lens): lente cuyos dos lados tienen las superficies ópticas finales, esta lente acabada puede estar biselada (para ajustar su perímetro a una determinada montura) o no.
En la presente descripción y reivindicaciones se considera que la expresión "lente acabada" se refiere siempre a la lente sin biselar. Para la lente biselada se emplea específicamente la expresión "lente acabada biselada". Estado de la técnica
Son conocidas diversas técnicas que permiten optimizar el espesor de las lentes oftálmicas. Así por ejemplo, en el documento ES P200900849 se describe un procedimiento para la optimización de lentes oftálmicas teniendo en cuenta la montura seleccionada por el usuario. En el documento ES P201031037 se describen unos procedimientos para la optimización de la distribución de aberraciones en lentes oftálmicas progresivas, teniendo también en cuenta la montura seleccionada por el usuario.
Sin embargo sigue existiendo la necesidad de técnicas que permitan la fabricación de lentes destinadas a ser montadas en monturas muy envolventes, en particular en el caso de lentes oftálmicas correctoras, es decir, que deban cumplir con alguna prescripción.
Sumario de la invención
La invención tiene por objeto superar estos inconvenientes. Esta finalidad se consigue mediante un procedimiento de diseño de una lente oftálmica del tipo indicado al principio caracterizado porque comprende las etapas de:
[a.i] toma de datos fisiológicos y de prescripción de la corrección óptica de un usuario,
[a.ii] selección de una montura, toma de datos de dicha montura, incluyendo los datos del perímetro de dicha montura, y toma de datos de posicionamiento de la lente respecto del ojo de usuario, teniendo en cuenta la montura seleccionada, [b] definición de una zona central que tiene un perímetro central que coincide con el perímetro de una montura determinada preestablecida, [c] definición de una línea temporal que divide la zona central en una zona nasal y una zona temporal, donde la línea temporal está fuera de la intersección de la cara convexa con un cono con un ángulo de apertura de por lo menos 30e, cuyo vértice está en el centro de rotación del ojo del usuario y cuyo eje se corresponde con el eje óptico,
[d] definición de un perímetro útil formado mediante la combinación de la parte nasal del perímetro central y la línea temporal, y de una zona útil delimitada por el perímetro útil,
[e] establecimiento de unos valores de espesores admisibles para el perímetro central,
[f] definición de una superficie a mecanizar en una de las caras cóncava y convexa, de manera que la cara cóncava y la cara convexa, conjuntamente, sean tales que cumplan con una prescripción oftálmica determinada preestablecida en la zona útil,
[g] posicionado de la superficie a mecanizar, dispuesta en una de las caras cóncava y convexa, respecto de la otra de las caras cóncava y convexa, de manera que la superficie a mecanizar y su posicionado respecto de la otra de las caras cóncava y convexa determina el espesor de la lente a lo largo del perímetro útil de la zona útil, donde todos y cada uno de los puntos de la parte nasal del perímetro central tienen un espesor que cumple con los valores de espesores admisibles, [h] definición de una zona de transición con una superficie de transición que se extiende entre el perímetro útil de la zona útil y el perímetro externo, donde la superficie de transición se extiende como una continuación de la superficie a mecanizar y se extiende hasta el perímetro externo, y donde la superficie de transición es continua y su derivada es continua en todos sus puntos, incluyendo la línea de unión entre la superficie de transición y la superficie a mecanizar, y donde la superficie de transición cumple con los valores de espesores admisibles de la etapa [e] anterior en los puntos de la parte temporal del perímetro central. Efectivamente, en una lente muy envolvente hay una parte de la misma, en la zona temporal, que realmente no es usada por el usuario. Sin embargo, con las técnicas de diseño conocidas, esta parte no utilizada puede ser la causante de espesores elevados, bien en la propia zona temporal, especialmente en el propio borde de la lente (en el caso de lentes negativas) o bien en el centro de la lente (en el caso de lentes positivas). Efectivamente, el procedimiento descrito en ES P200900849 emplea la montura como referencia, por lo que, en el caso de monturas muy envolventes, la optimización realizada puede no ser suficiente como para obtener resultados satisfactorios. Sin embargo, con el procedimiento de acuerdo con la invención no se emplea simplemente la montura como referencia sino que se tiene en cuenta el que en las lentes suele haber una zona no empleada por el usuario, y que esta zona es particularmente grande en las monturas muy envolventes. Por ello, se divide la zona central (que es la que quedará comprendida dentro de la montura) en una zona nasal y una zona temporal mediante una línea temporal. Esta división se hace teniendo en cuenta que la parte de la lente que es realmente empleada por el usuario esté en la zona nasal. Para ello se intercepta la cara convexa de la lente con un cono con un ángulo de apertura de por lo menos 30e, cuyo vértice está en el centro de rotación del ojo del usuario y cuyo eje se corresponde con el eje óptico. Efectivamente, usualmente un usuario gira la cabeza si debe desviar la mirada más de 30e, o, dicho de otro modo, usualmente emplea un campo de visión de 30e o menos. Por ello, la zona temporal debe incluir por lo menos este campo de visión. Una vez delimitada la zona útil, se observa que el resto de la lente, incluso la parte de la lente que queda dentro de la montura, pero en la zona temporal, es una parte de la lente cuyas propiedades ópticas (en el sentido de cumplir con una determinada prescripción) ya no son relevantes. Por lo tanto, se puede optimizar el grosor de la lente teniendo en cuenta este hecho, o sea, optimizando el espesor de la lente teniendo en cuenta que, si bien todos los puntos del perímetro central deben cumplir con unos determinados requisitos de espesor determinados, los correspondientes a la zona temporal son parte de una superficie que no tiene por qué cumplir con unos requisitos derivados de una determinada prescripción. Esta superficie de transición debe ser simplemente una continuación de la superficie a mecanizar, debe ser continua y de derivada continua en todos sus puntos, incluyendo la línea de unión entre la superficie de transición y la superficie a mecanizar, y debe cumplir con los valores de espesores admisibles de la etapa [e] anterior en los puntos de la parte temporal del perímetro central.
La línea temporal puede tener, en general, cualquier forma. Sin embargo, es preferible que tenga una forma de arco de circunferencia o que sea paralela al borde temporal de la zona central, que queda definido por la montura.
Preferentemente el cono tiene un ángulo de apertura mayor de 40e, preferentemente mayor de 50e. Efectivamente, si bien el ángulo de apertura de 30e es el que garantiza que queda en su interior el campo de visión normalmente utilizado por el usuario, sin embargo, unos ángulos mayores permiten incluir también el campo correspondiente a la visión periférica, lo que redundará en el confort del usuario. Ventajosamente tras la etapa [g] se analiza si es posible desplazar la línea temporal en sentido temporal sin dejar de cumplir con los valores de espesores admisibles y, en caso afirmativo, se desplaza la línea temporal en sentido temporal. De hecho, en la etapa [g] se siguen dos criterios bastante diferentes en función de si la lente es una lente positiva o negativa (siguiéndose las estrategias "mixtas" en el caso de lentes progresivas en las que coexistan zonas positivas y zonas negativas):
- En el caso de lentes positivas el mayor espesor de la lente suele estar en el centro de la misma. Al intentar reducir el espesor de la lente a un mínimo, el problema es que en el borde de la lente el espesor puede ser demasiado pequeño o incluso negativo. En estos casos se debe vigilar que el espesor del perímetro útil esté dentro de los valores de espesores admisibles. En estos casos el punto más crítico suele ser el punto del perímetro útil más lejano del centro óptico. Si este punto está en la parte nasal del perímetro central ello quiere decir que podemos ampliar el radio del cono de visión útil (es decir podemos desplazar la línea temporal en sentido temporal) sin penalizar el espesor de la lente, ya que este espesor ha venido obligado por un punto de la parte nasal del perímetro central. De esta manera podemos maximizar la zona útil de la lente sin afectar al espesor mínimo obtenido. - En el caso de lentes negativas el mayor espesor suele darse en el contorno de la lente. En el centro óptico de la lente el espesor suele ser mínimo y no debe ser menor que un valor mínimo básicamente por motivos mecánicos. En este caso tendremos dos espesores máximos en los puntos del perímetro útil más alejados del punto óptico. Cuando la lente negativa tiene una potencia alta, entonces es posible que se alcance el espesor máximo deseado antes de salir del cono de visión útil. En este caso, se deben tolerar los espesores mayores dentro de la zona de visión útil si no se desea limitar la zona de visión útil (debe tenerse en cuenta que en casos de lentes de gran potencia negativa es admisible un radio de visión útil menor, ya que el ángulo de visión real del usuario se ve agrandado al pasar por la lente). Si, por el contrario, la lente negativa tiene una potencia baja, entonces probablemente los espesores máximos admisibles se alcancen fuera del cono de visión útil. Esto permite agrandar el cono de visión útil sin afectar de una forma acusada a la estética de la lente biselada.
Preferentemente la zona de transición comprendida entre la línea temporal y el perímetro central es calculada exigiéndosele que sea continua y con derivadas continuas, y que tenga en todos sus puntos un espesor dentro de un rango preestablecido.
Ventajosamente, en el caso específico de lentes oftálmicas progresivas, donde la lente comprende una zona de visión lejana, una zona de visión cercana y un corredor que se extiende entre ambas, donde entre la zona de visión lejana y el borde superior de la lente se extiende una zona superior y entre la zona de visión cercana y el borde inferior de la lente se extiende una zona inferior, el procedimiento comprende una etapa de optimización de dicha lente que comprende las siguientes subetapas: [i] cálculo de los valores objetivo de potencia y astigmatismo de prescripción para la zona de visión lejana, la zona de visión cercana y el corredor, en función de los datos fisiológicos y de prescripción del usuario y, opcionalmente, de los datos de posicionamiento, [ii] generación o selección de una lente prediseñada, donde la lente prediseñada tiene unos determinados valores de aberraciones laterales, preferentemente astigmatismo asociado a la progresión de potencia de la lente, en las zonas superior e inferior,
[iii] definición de una zona a optimizar, definida a partir del perímetro central, y preferentemente consistente en la zona útil, y una zona exterior fuera del perímetro central, y ubicación de la zona a optimizar en la lente, donde el perímetro central divide la zona superior en una zona superior exterior y una zona superior interior y la zona inferior en una zona inferior exterior y una zona inferior interior,
[iv] redistribución de por lo menos una de las aberraciones laterales de la lente, preferentemente del astigmatismo asociado a la progresión de potencia, donde durante la redistribución se reparte la aberración lateral de la lente alrededor de la zona exterior permitiendo que, en por lo menos una de las zonas superior exterior e inferior exterior, adopte unos valores superiores a los que tenía en la lente prediseñada. Efectivamente, usualmente las lentes progresivas convencionales (y las lentes prediseñadas que usualmente se emplean en el diseño de las lentes progresivas convencionales) han sido calculadas sin tener en cuenta la montura que será empleada por el usuario. Ello tiene como consecuencia que se desconoce la ubicación exacta de la zona útil. En consecuencia, las lentes convencionales (y las lentes prediseñadas convencionales) intentan mantener las zonas superior e inferior con unos valores de aberraciones laterales, en particular de astigmatismo asociado a la progresión, los más bajos posibles ya que toda aquella parte de dichas zonas superior e inferior que finalmente quede dentro de la zona útil será una zona empleada con frecuencia por el usuario y no se conoce de antemano qué tamaño tendría, por lo que hay que prolongarlas hasta el diámetro total de la lente para cubrir cualquier forma de montura posible. Por ello, la existencia de aberraciones laterales en valores no despreciables en estas zonas sería una fuente de incomodidad para el usuario si finalmente quedasen dentro del perímetro de la montura del usuario. Sin embargo, en la presente invención se tiene en cuenta que, mientras que en las zonas superior interior e inferior interior la presencia de aberraciones laterales es altamente desaconsejable (y debe ser reducida a un mínimo), en cambio en las zonas superior exterior e inferior exterior puede haber cualquier valor de aberraciones laterales (y, de hecho, de cualquier aberración) ya que estas zonas serán finalmente eliminadas durante el biselado, por lo que sus propiedades ópticas son totalmente irrelevantes. En cambio, al redistribuir las aberraciones laterales (preferentemente la distribución del astigmatismo asociado a la progresión) permitiendo que en las zonas superior exterior e inferior exterior adopte valores superiores a los que tenía la lente prediseñada se puede conseguir que en otras partes de la lente, concretamente dentro de la zona central y, en especial, dentro de la zona útil, los valores de las aberraciones laterales se vean reducidos y/o suavizados, lo que mejora el confort del usuario. En la presente descripción y reivindicaciones se entenderá por lente prediseñada una lente que se toma como punto de partida para la etapa de optimización de acuerdo con la invención. Es una lente que ha sido calculada por cualquier método diferente al de la presente invención, preferentemente sin tener en cuenta la montura escogida por el usuario, y muy preferentemente sin tener en cuenta el perímetro de la montura. La lente prediseñada puede haber sido calculada de antemano, de manera que el óptico pueda disponer de una pluralidad de lentes prediseñadas de las que puede escoger la más adecuada en el momento de hacer la optimización de acuerdo con la invención, o puede ser una lente que sea generada (calculada) en el momento de hacer la optimización de acuerdo con la invención.
No es necesario que el proceso de optimización afecte simultáneamente a ambas zonas (la superior exterior y la inferior exterior), ya que puede hacerse una optimización que afecte únicamente a una de ellas.
En general, la optimización puede incluir el tratamiento de una de las aberraciones laterales (preferentemente el astigmatismo asociado a la progresión de potencia de la lente) o de más de una. Por ello, al hacer referencia en la presente descripción y reivindicaciones de la aberración lateral escogida, deberá entenderse que también incluye el caso en el que se haya escogido más de una.
La invención también tiene por objeto un procedimiento de mecanizado de una lente oftálmica caracterizado porque incluye un procedimiento de diseño de acuerdo con la invención y una etapa de mecanizado de la superficie a mecanizar y de la superficie de transición.
Preferentemente el procedimiento de mecanizado comprende una etapa de ocultado de aberraciones en la zona comprendida entre la línea temporal y la parte temporal del perímetro central. Si bien esta zona debe estar fuera incluso de la zona de visión periférica, es mejor modificar sus propiedades de transparencia, a fin de evitar posibles molestias derivadas de los balanceos y/o deformaciones de la imagen que puede apreciar el usuario. Es deseable que el usuario perciba esta área ópticamente distorsionada como no útil. Es particularmente interesante que, por el lado interno de la lente el usuario perciba esta área como no útil (como parte de la montura) mientras que por el lado externo de la lente se siga dando la impresión estética de una lente envolvente grande, aparentemente útil en toda su superficie. De hecho, la zona comprendida entre la línea temporal y la parte temporal del perímetro central podría incluso estar libre (o casi libre) de aberraciones pero, en cualquier caso, no es adecuada para el usuario. Por ello es ventajoso incluir una etapa de inhabilitado total o parcial de la formación de imágenes en la zona comprendida entre la línea temporal y la parte temporal del perímetro central. Es decir, tanto si esta parte de la lente tiene aberraciones como si no, lo que es ventajoso es que se le aplique un tratamiento que evite la formación de imágenes ópticamente correctas.
Ello se consigue ventajosamente cuando la etapa de ocultado de aberraciones es un no-pulido, un tintado, un recubrimiento, un esmerilado o una combinación de los anteriores aplicado en cualquiera de las dos caras de la lente.
Preferentemente el esmerilado se realiza mediante la modificación de la superficie de la lente o de la superficie de un recubrimiento de la lente mediante una acción mecánica como por ejemplo una abrasión mecánica, y ventajosamente un chorreado de partículas abrasivas, un fresado, un taladrado o un punzonado.
Una alternativa ventajosa para el ocultado de aberraciones se obtiene realizándolo mediante la ablación superficial de la lente mediante impulsos generados con una fuente de energía colimada, como por ejemplo un láser. También es posible modificar las propiedades ópticas internas de la lente mediante impulsos generados con una fuente de energía colimada. Preferentemente se generan cavidades en el interior de la lente mediante impulsos generados con un láser.
La invención también tiene por objeto un procedimiento de fabricación de una lente biselada, caracterizado porque comprende un procedimiento de fabricación de una lente oftálmica de acuerdo con la invención y una etapa de biselado según el perímetro central.
La invención tiene asimismo por objeto una lente oftálmica acabada que tiene una cara cóncava y una cara convexa y un perímetro externo, donde el perímetro externo tiene un espesor dentro de un rango preestablecido, caracterizada porque: [a] tiene una zona útil en la que la cara cóncava y la cara convexa son tales que cumplen con una prescripción oftálmica determinada preestablecida y donde una de las caras cóncava y convexa define una superficie mecanizada, donde la zona útil tiene un perímetro útil que está formado mediante la combinación de una parte nasal de un perímetro central, que coincide con el perímetro de una montura determinada preestablecida y que define una zona central, y una línea temporal, que divide la zona central en una zona nasal y una zona temporal donde la línea temporal está fuera de la intersección de la cara convexa con un cono de 30e de apertura, cuyo vértice está en el centro de rotación del ojo del usuario y cuyo eje se corresponde con el eje óptico, y
[b] tiene una zona exterior de transición que une el perímetro útil de la zona útil con el perímetro externo, donde la zona de transición comprende una superficie de transición que se extiende como una continuación de la superficie mecanizada y se extiende hasta el perímetro externo, y donde la superficie de transición es continua y su derivada es continua en todos sus puntos, incluyendo la línea de unión entre la superficie de transición y la superficie mecanizada. Preferentemente la lente tiene, adicionalmente, dicha zona comprendida entre dicha línea temporal y la parte temporal de dicho perímetro central con las aberraciones ocultadas, de manera que el usuario no use esta parte de la lente para mirar a su través, ni afecte negativamente a su visión periférica. Ventajosamente la zona con las aberraciones ocultas es una zona no pulida, tintada, recubierta, esmerilada o una combinación de las anteriores.
Preferentemente la lente es una lente progresiva, que comprende: - una zona de visión lejana, una zona de visión cercana y un corredor que se extiende entre la zona de visión lejana y la zona de visión cercana, donde entre la zona de visión lejana y el borde superior de la lente se extiende una zona superior y entre la zona de visión cercana y el borde inferior de la lente se extiende una zona inferior,
- una zona a optimizar, definida a partir del perímetro central, y preferentemente consistente en la zona útil, y una zona exterior fuera del perímetro central, donde el perímetro central divide la zona superior en una zona superior exterior y una zona superior interior y la zona inferior en una zona inferior exterior y una zona inferior interior, donde en por lo menos una de las zonas superior exterior e inferior exterior tiene un astigmatismo asociado a la progresión de potencia de la lente superior a 0,25 Dp.
Efectivamente, como ya se ha comentado anteriormente, los procedimientos usuales intentan que las aberraciones laterales sean las menores posibles en las zonas superior e inferior, por lo que los valores objetivo suelen ser 0. Además, en los procedimientos convencionales no se dividen las zonas superior e inferior en función de la montura (que, al definir una zona útil, las divide en superior exterior, superior interior, inferior exterior e inferior interior), por lo que no se hace un tratamiento diferenciado de estas subzonas. Cuando se selecciona una lente prediseñada, estas 4 zonas tienen unos valores de aberraciones laterales nulos o muy pequeños. Cuando se le fijan unos valores objetivo no nulos (o incluso claramente elevados, como por ejemplo un astigmatismo asociado a la progresión de potencia de la lente superior a 0,25 Dp) a las zonas exteriores (superior exterior y/o inferior exterior) se fuerza una redistribución de las aberraciones laterales alrededor de toda la lente, consiguiéndose una reducción y suavizado de las aberraciones laterales presentes en la zona útil, en particular en las zonas temporal y nasal.
Breve descripción de los dibujos Otras ventajas y características de la invención se aprecian a partir de la siguiente descripción, en la que, sin ningún carácter limitativo, se relatan unos modos preferentes de realización de la invención, haciendo mención de los dibujos que se acompañan. Las figuras muestran: Figs. 1 y 2, una vista esquemática de una sección transversal de una lente positiva y una lente negativa, respectivamente.
Fig. 3, una vista esquemática de una lente semiterminada o acabada con el perímetro de una montura superpuesto sobre su superficie.
Fig. 4, un esquema que muestra la superposición de contornos entre el perímetro central (la montura original) y el cono de visión útil.
Fig. 5, un esquema que muestra el perímetro central y el perímetro útil.
Fig. 6, un esquema de un caso de una lente negativa de gran potencia.
Fig. 7, un esquema de un caso de una lente negativa de baja potencia. Figs. 8 y 9, una vista esquemática de una sección transversal de una lente positiva y una lente negativa de acuerdo con la invención. Figs. 10 y 1 1 , unos esquemas de lentes oftálmicas progresivas con las diversas zonas que se mencionan en la etapa de optimización de las lentes progresivas.
Figs. 12, 13 y 14, unas vistas esquemáticas de unos mapas de distribución de astigmatismo asociado a la progresión, como ejemplos de aberraciones laterales, en las que se muestra el desplazamiento del astigmatismo asociado a la progresión de acuerdo con el procedimiento de la invención.
Descripción detallada de unas formas de realización de la invención
En las figs. 1 y 2 se muestra esquemáticamente la problemática de los grosores de las lentes, tanto en el caso de lentes positivas, en el que el grosor máximo está en el centro óptico 9 de la lente, y en los bordes de la misma el problema es de falta de material, como en el caso de las lentes negativas, en los que el grosor en el centro de la lente no puede estar por debajo de un valor mínimo, mientras que el espesor en los bordes crece conforme nos alejamos del centro de la lente. En las lentes progresivas la situación real es más compleja, ya que pueden coexistir ambos efectos, y pueden ser diferentes en diferentes zonas del perímetro, pero conceptualmente el problema es el mismo, y la forma de resolverlo propuesta en la presente invención también. Por su parte, en la fig. 3 se muestra una lente 1 (semiterminada o acabada) sobre la que se ha superpuesto el perímetro de una montura escogida por un usuario, que define el denominado perímetro central 3 y la zona central 5. En la Fig. 4 se muestra el perímetro central 3 definido por una montura concreta, y el cono de visión útil 7 del usuario. Este cono de visión útil 7 está centrado en el centro óptico 9 de la lente 1 (estrictamente hablando, lo que está centrado en el centro óptico 9 es la intersección del cono de visión útil 7 con la superficie de la lente, que forma la circunferencia mostrada en la Fig. 4). El cono de visión útil 7 tendrá, en cada caso, un valor preestablecido que podrá ser exactamente el valor realmente correspondiente al campo de visión útil del usuario o podrá ser un valor mayor, tal como ya se ha comentado anteriormente. En el ejemplo de la Fig. 4, la zona nasal estaría a la derecha de la figura, mientras que la zona temporal estaría a la izquierda de la figura. En la Fig. 5 se muestra cómo, a partir del perímetro central 3 y del cono de visión útil 7 se puede definir la línea temporal 1 1 (que, en este caso concreto es directamente el tramo del cono de visión útil 7 que queda dentro de la zona central 5, con los extremos adecuadamente redondeados para que se enlacen con continuidad con la parte nasal 13 del perímetro central 3). El conjunto formado por la parte nasal 13 del perímetro central 3 y la línea temporal 1 1 forma el denominado perímetro útil 15 en cuyo interior está la zona útil 17. La parte temporal 19 del perímetro central 3 queda en la zona de transición 21 , si bien sigue definiendo parte del perímetro de la montura.
La Fig. 6 muestra el caso de una lente negativa de gran potencia. Con la referencia 25 se ha indicado una isolínea correspondiente a un espesor máximo deseado. Se observa que el cono de visión útil 7 está más alejado en sentido temporal. Por ello, en la lente se alcanza el valor de espesor máximo deseado dentro de la zona útil 17. Sin embargo, en la Fig. 7, en el que se muestra el caso de una lente negativa de baja potencia, la isolínea 25 está más alejada en sentido temporal que el cono de visión útil 7. Ello permite desplazar en sentido temporal la línea temporal 1 1 (o el cono de visión útil 7) de manera que se agranda la zona útil 17 sin perjudicar la estética (ni el peso) de la lente.
Las Figs. 8 y 9 muestran unas vistas esquemática de una sección transversal de una lente positiva y una lente negativa de acuerdo con la invención en las que se aprecian la zona útil 17, la línea temporal 1 1 (que es parte del perímetro útil 15), la zona de transición dentro de la zona central 22 (es decir, la parte de la zona de transición 21 comprendida entre la línea temporal 1 1 y el perímetro central 3), el perímetro central 3 (que, en este tramo, es la parte temporal 19 del mismo), y la zona de transición fuera de la zona central 23 que se extiende hasta el perímetro externo 27 de la lente 1 . En ambos casos se ha posicionado la superficie a mecanizar 29 (que en estos ejemplos es la superficie cóncava) optimizando el espesor del perímetro útil 15 en el caso de la Fig. 8 o del centro en el caso de la Fig. 9. En el caso de la Fig. 8, el espesor debe ser tal que permita una evolución adecuada de la superficie de transición 31 hasta el espesor requerido en el perímetro central 3 (el perímetro de la lente 1 ) sin que en ningún momento el espesor de la zona de transición dentro de la zona central 22 esté fuera de un rango preestablecido. Debe tenerse en cuenta que la zona de transición dentro de la zona central 22, aunque ópticamente no sea válida, debe tener unas características mecánicas mínimas, ya que físicamente formará parte de la lente biselada que quedará dentro de la montura. Por lo tanto, debe cumplir con unos requisitos mecánicos que, por ejemplo, no se exigirán a la zona de transición fuera de la zona central 23, ya que ésta es una parte que será eliminada durante ele biselado. En ambas figuras se ha representado también, mediante un trazo discontinuo, la superficie cóncava "original" (por ejemplo una superficie calculada por cualquier procedimiento convencional), es decir, sin haber sido modificada con el procedimiento de acuerdo con la invención.
En la Fig. 10 se muestran las zonas de visión lejana 101 , visión cercana 103 y corredor o pasillo 105, que son las zonas convencionales de las lentes progresivas del estado de la técnica. Por encima de la zona de visión lejana 101 se extiende la zona superior 107, y por debajo de la zona de visión cercana 103 se extiende la zona inferior 109. En la Fig. 1 1 se ha incluido el perímetro 1 1 1 de una montura el cual, una vez posicionado adecuadamente sobre la lente, define una zona a optimizar 1 13 y una zona exterior 1 15, que es la zona que será eliminada durante la etapa de biselado. La parte de la zona superior 107 comprendida en la zona optimizar 1 13 es la zona superior interior 1 17, mientras la parte de la zona superior 107 comprendida en la zona exterior 1 15 es la zona superior exterior 1 19. Análogamente se pueden definir la zona inferior interior 121 y la zona inferior exterior 123. Adicionalmente, en la Fig. 1 1 se muestran, con trazo discontinuo, las líneas que determinan los máximos superior, inferior, nasal y temporal, o sea las cotas superior 125, inferior 127, nasal 129 y temporal 131 de la zona a optimizar 1 13. En general la forma de la zona a optimizar 1 13 es coincidente con la superficie delimitada por el perímetro 1 1 1 de la montura (es decir, la zona central 5), pero ello no tiene porqué ser así. La zona a optimizar 1 13 puede tener otras geometrías que, aunque vengan definidas por el perímetro 1 1 1 de la montura no sean exactamente coincidentes. Así, por ejemplo, se puede definir como zona a optimizar 1 13 la delimitada por el rectángulo formado por las cotas superior 125, inferior 127, nasal 129 y temporal 131 . O se puede definir como zona a optimizar 1 13 alguna otra forma geométrica sencilla que aproxime la zona del perímetro 1 1 1 (rectángulos inscritos, elipses inscritas, etc.). Estas geometrías sencillas pueden ser de interés en diversos casos, como por ejemplo para simplificar y acelerar los cálculos de optimización o para realizar la optimización en aquellos casos en los que no se dispone de los datos completos del perímetro de la montura. Es particularmente ventajoso que la zona a optimizar 1 13 sea la zona útil 17. Como ya se ha comentado anteriormente, el objetivo básico de la invención es aprovechar la zona que quedará fuera de la montura (es decir, la zona exterior 1 15) una vez que la lente ha sido biselada. De esta manera se pueden conseguir lentes con menores aberraciones laterales (y, en particular, con menor astigmatismo asociado a la progresión), que las hace más cómodas para los usuarios independientemente del tipo de diseño de progresivo escogido, el cual no variará en las zonas importantes para la visión (zona de visión lejana 101 , zona de visión cercana 103 y corredor 105). En los ejemplos de las Figs. 12, 13 y 14 se muestran unos casos en los que la aberración lateral escogida es el astigmatismo asociado a la progresión. Sin embargo, los resultados y conclusiones son generalizables a cualquier otra aberración lateral. En la Fig. 12 se muestra el astigmatismo asociado a la progresión de un diseño estándar. Sobre la lente acabada se ha marcado el perímetro 1 1 1 de la montura escogida por el usuario, representado esquemáticamente mediante un rectángulo. Se puede ver que hay grandes zonas con un astigmatismo nulo o casi nulo que finalmente serán eliminadas durante la operación de biselado. Dado que en el momento de diseñar la lente progresiva no se conoce la montura que finalmente escogerá el usuario y dado que las zonas por encima de la zona de visión lejana 101 y por debajo de la zona de visión cercana 103 pueden ser muy importantes ópticamente (ya que, si quedan dentro del perímetro 1 1 1 de la montura serán unas zonas de uso frecuente por el usuario), las técnicas convencionales de diseño de lentes progresivas tiende a mantener la zona superior 107 y la zona inferior 109 con el menor astigmatismo posible y, en general, con las menores aberraciones posibles. Sin embargo la realidad es que una parte importante de estas zonas superior 107 y inferior 109 será eliminada durante el biselado, concretamente las zonas superior exterior 1 19 e inferior exterior 123. En consecuencia, las técnicas convencionales de diseño de lentes progresivas vienen condicionadas por el hecho de intentar optimizar las propiedades ópticas de unas zonas que posteriormente serán eliminadas. El procedimiento de la presente invención aporta la mejora de distinguir entre la zona a optimizar 1 13 y la zona exterior 1 15. De esta manera, en el presente ejemplo, durante el procedimiento de acuerdo con la invención se redistribuyen los astigmatismos asociados a la progresión tal como se muestra en la Fig. 13. Es decir se "invade" la zona superior exterior 1 19 y la zona inferior exterior 123 con astigmatismo lo que redunda en una reducción de los valores máximos de astigmatismos presentes en la zona a optimizar 1 13. Dado que finalmente solamente quedará la zona central 5, que incluye la zona a optimizar 1 13 el resultado global es una lente biselada con menores aberraciones astigmáticas derivadas de la progresión. Esto se muestra en la figura 14.

Claims

REIVINDICACIONES
1 - Procedimiento de diseño de una lente oftálmica, que tiene una cara cóncava y una cara convexa y un perímetro externo (27), donde dicho perímetro externo (27) tiene un espesor dentro de un rango preestablecido, caracterizado porque comprende las etapas de:
[a.i] toma de datos fisiológicos y de prescripción de la corrección óptica de un usuario,
[a.ii] selección de una montura, toma de datos de dicha montura, incluyendo los datos del perímetro de dicha montura, y toma de datos de posicionamiento de la lente respecto del ojo de usuario, teniendo en cuenta la montura seleccionada, [b] definición de una zona central (5) que tiene un perímetro central (3) que coincide con el perímetro de una montura determinada preestablecida,
[c] definición de una línea temporal (1 1 ) que divide dicha zona central (5) en una zona nasal y una zona temporal, donde dicha línea temporal (1 1 ) está fuera de la intersección de dicha cara convexa con un cono (7) con un ángulo de apertura de por lo menos 30e, cuyo vértice está en el centro de rotación del ojo del usuario y cuyo eje se corresponde con el eje óptico,
[d] definición de un perímetro útil (15) formado mediante la combinación de la parte nasal (13) de dicho perímetro central (3) y dicha línea temporal (1 1 ), y de una zona útil (17) delimitada por dicho perímetro útil (15),
[e] establecimiento de unos valores de espesores admisibles para dicho perímetro central (3),
[f] definición de una superficie a mecanizar (29) en una de dichas caras cóncava y convexa, de manera que dicha cara cóncava y dicha cara convexa, conjuntamente, sean tales que cumplan con una prescripción oftálmica determinada preestablecida en dicha zona útil (17),
[g] posicionado de dicha superficie a mecanizar (29), dispuesta en una de dichas caras cóncava y convexa, respecto de la otra de dichas caras cóncava y convexa, de manera que dicha superficie a mecanizar (29) y su posicionado respecto de la otra de dichas caras cóncava y convexa determina el espesor de la lente (1 ) a lo largo de dicho perímetro útil (15) de dicha zona útil (17), donde todos y cada uno de los puntos de la parte nasal (13) de dicho perímetro central (3) tienen un espesor que cumple con dichos valores de espesores admisibles,
[h] definición de una zona de transición (21 ) con una superficie de transición (31 ) que se extiende entre dicho perímetro útil (15) de dicha zona útil (17) y dicho perímetro externo (27), donde dicha superficie de transición (31 ) se extiende como una continuación de dicha superficie a mecanizar (29) y se extiende hasta dicho perímetro externo (27), y donde dicha superficie de transición (31 ) es continua y su derivada es continua en todos sus puntos, incluyendo la línea de unión entre dicha superficie de transición (31 ) y dicha superficie a mecanizar (29), y donde dicha superficie de transición (31 ) cumple con los valores de espesores admisibles de la etapa [e] anterior en los puntos de la parte temporal (19) de dicho perímetro central (3).
2 - Procedimiento según la reivindicación 1 , caracterizado porque dicho cono (7) tiene un ángulo de apertura mayor de 40e, preferentemente mayor de 50e.
3 - Procedimiento según una de las reivindicaciones 1 ó 2, caracterizado porque tras dicha etapa [g] se analiza si es posible desplazar dicha línea temporal (1 1 ) en sentido temporal sin dejar de cumplir con dichos valores de espesores admisibles y, en caso afirmativo, se desplaza dicha línea temporal (1 1 ) en dicho sentido temporal.
4 - Procedimiento según cualquiera de las reivindicaciones 1 a 3, caracterizado porque la zona de transición (22) comprendida entre dicha línea temporal (1 1 ) y dicho perímetro central (3) es calculada exigiéndosele que sea continua y con derivadas continuas, y que tenga en todos sus puntos un espesor dentro de un rango preestablecido.
5 - Procedimiento según cualquiera de las reivindicaciones 1 a 4, donde dicha lente (1 ) es una lente oftálmica progresiva, donde dicha lente comprende una zona de visión lejana (101 ), una zona de visión lejana (103) y un corredor (105) que se extiende entre dicha zona de visión lejana (101 ) y dicha zona de visión lejana (103), donde entre dicha zona de visión lejana (101 ) y el borde superior de dicha lente se extiende una zona superior (107) y entre dicha zona de visión lejana (103) y el borde inferior de dicha lente se extiende una zona inferior (109), caracterizado porque comprende una etapa de optimización de dicha lente que comprende las siguientes subetapas:
[i] cálculo de los valores objetivo de potencia y astigmatismo de prescripción para dicha zona de visión lejana (101 ), dicha zona de visión lejana (103) y dicho corredor
(105), en función de dichos datos fisiológicos y de prescripción del usuario y, opcionalmente, de dichos datos de posicionamiento,
[ii] generación o selección de una lente prediseñada, donde dicha lente prediseñada tiene unos determinados valores de aberraciones laterales, preferentemente astigmatismo asociado a la progresión de potencia de la lente, en dichas zonas superior e inferior,
[iii] definición de una zona a optimizar (1 13), definida a partir de dicho perímetro central (3), y preferentemente consistente en dicha zona útil (17), y una zona exterior (1 15) fuera de dicho perímetro central (3), y ubicación de dicha zona a optimizar (1 13) en dicha lente, donde dicho perímetro central (3) divide dicha zona superior (107) en una zona superior exterior (1 19) y una zona superior interior (1 17) y dicha zona inferior (109) en una zona inferior exterior (123) y una zona inferior interior (121 ),
[iv] redistribución de por lo menos una de las aberraciones laterales de la lente, preferentemente de dicho astigmatismo asociado a la progresión de potencia, donde durante dicha redistribución se reparte dicha aberración lateral de la lente alrededor de dicha zona exterior (1 15) permitiendo que, en por lo menos una de dichas zonas superior exterior e inferior exterior, adopte unos valores superiores a los que tenía en dicha lente prediseñada.
6 - Procedimiento de mecanizado de una lente oftálmica caracterizado porque incluye un procedimiento de diseño según cualquiera de las reivindicaciones 1 a 5, y una etapa de mecanizado de dicha superficie a mecanizar (29) y de dicha superficie de transición (31 ).
7 - Procedimiento según la reivindicación 6, caracterizado porque comprende una etapa de ocultado total o parcial de aberraciones en la zona comprendida entre dicha línea temporal (1 1 ) y la parte temporal (19) de dicho perímetro central (3). 8 - Procedimiento según la reivindicación 6, caracterizado porque comprende una etapa de inhabilitado total o parcial de la formación de imágenes en la zona comprendida entre dicha línea temporal (1 1 ) y la parte temporal (19) de dicho perímetro central (3). 9 - Procedimiento según una de las reivindicaciones 7 u 8, caracterizado porque dicha etapa de ocultado de aberraciones o de inhabilitado de formación de imágenes es un no-pulido, un tintado, un recubrimiento, un esmerilado o una combinación de los anteriores aplicado en cualquiera de las dos caras de la lente (1 )-
10 - Procedimiento según la reivindicación 9, caracterizado porque dicho esmerilado se realiza mediante la modificación de la superficie de la lente o de la superficie de un recubrimiento de dicha lente mediante una acción mecánica. 1 1 - Procedimiento según una de las reivindicaciones 7 u 8, caracterizado porque dicho ocultado de aberraciones o inhabilitado de formación de imágenes se realiza con la ablación superficial de dicha lente mediante impulsos generados con una fuente de energía colimada. 12— Procedimiento según una de las reivindicaciones 7 u 8, caracterizado porque dicho ocultado de aberraciones o inhabilitado de formación de imágenes se realiza con una modificación de las propiedades ópticas internas de dicha lente mediante impulsos generados con una fuente de energía colimada.
13 - Procedimiento según una de las reivindicaciones 7 u 8, caracterizado porque dicho ocultado de aberraciones o inhabilitado de formación de imágenes se realiza con la generación de cavidades en el interior de dicha lente mediante impulsos generados con un láser.
14 - Procedimiento de fabricación de una lente biselada, caracterizado porque comprende un procedimiento de fabricación de una lente oftálmica según cualquiera de las reivindicaciones 6 a 13, y una etapa de biselado según dicho perímetro central (3).
15 - Lente oftálmica acabada que tiene una cara cóncava y una cara convexa y un perímetro externo (27), donde dicho perímetro externo (27) tiene un espesor dentro de un rango preestablecido, caracterizada porque:
[a] tiene una zona útil (17) en la que dicha cara cóncava y dicha cara convexa son tales que cumplen con una prescripción oftálmica determinada preestablecida y donde una de dichas caras cóncava y convexa define una superficie mecanizada, donde dicha zona útil (17) tiene un perímetro útil (15) que está formado mediante la combinación de una parte nasal (13) de un perímetro central (3), que coincide con el perímetro de una montura determinada preestablecida y que define una zona central (5), y una línea temporal (1 1 ), que divide dicha zona central (5) en una zona nasal y una zona temporal donde dicha línea temporal (1 1 ) está fuera de la intersección de dicha cara convexa con un cono (7) de 30e de apertura, cuyo vértice está en el centro de rotación del ojo del usuario y cuyo eje se corresponde con el eje óptico, y [b] tiene una zona exterior (1 15) de transición (21 ) que une dicho perímetro útil (15) de dicha zona útil (17) con dicho perímetro externo (27), donde dicha zona de transición (21 ) comprende una superficie de transición (31 ) que se extiende como una continuación de dicha superficie mecanizada y se extiende hasta dicho perímetro externo (27), y donde dicha superficie de transición (31 ) es continua y su derivada es continua en todos sus puntos, incluyendo la línea de unión entre dicha superficie de transición (31 ) y dicha superficie mecanizada.
16 - Lente según la reivindicación 15, caracterizada porque tiene, adicionalmente, dicha zona comprendida entre dicha línea temporal (1 1 ) y la parte temporal (19) de dicho perímetro central (3) con las aberraciones ocultadas.
17 - Lente según la reivindicación 16, caracterizada porque dicha zona con las aberraciones ocultas es una zona no pulida, tintada, recubierta, esmerilada o una combinación de las anteriores.
18 - Lente según cualquiera de las reivindicaciones 15 a 17, caracterizada porque es una lente progresiva, que comprende: - una zona de visión lejana (101 ), una zona de visión lejana (103) y un corredor (105) que se extiende entre dicha zona de visión lejana (101 ) y dicha zona de visión lejana (103), donde entre dicha zona de visión lejana (101 ) y el borde superior de dicha lente se extiende una zona superior (107) y entre dicha zona de visión lejana (103) y el borde inferior de dicha lente se extiende una zona inferior (109),
- una zona a optimizar (1 13), definida a partir de dicho perímetro central (3), y preferentemente consistente en dicha zona útil (17), y una zona exterior (1 15) fuera de dicho perímetro central (3), donde dicho perímetro central (3) divide dicha zona superior (107) en una zona superior exterior (1 19) y una zona superior interior (1 17) y dicha zona inferior (109) en una zona inferior exterior (123) y una zona inferior interior (121 ), donde en por lo menos una de dichas zonas superior exterior e inferior exterior tiene un astigmatismo asociado a la progresión de potencia de la lente superior a 0,25 Dp.
PCT/ES2013/070896 2012-12-20 2013-12-18 Procedimiento de diseño y de mecanizado de una lente oftálmica, procedimiento de fabricación de una lente biselada y lentes correspondientes WO2014096495A1 (es)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CA2894956A CA2894956A1 (en) 2012-12-20 2013-12-18 Method for designing and machining an ophthalmic lens, method for manufacturing a bevelled lens and corresponding lenses

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP201231983 2012-12-20
ES201231983A ES2427859B1 (es) 2012-12-20 2012-12-20 Procedimiento de diseño y de mecanizado de una lente oftálmica, procedimiento de fabricación de una lente biselada y lentes correspondientes

Publications (1)

Publication Number Publication Date
WO2014096495A1 true WO2014096495A1 (es) 2014-06-26

Family

ID=49357612

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2013/070896 WO2014096495A1 (es) 2012-12-20 2013-12-18 Procedimiento de diseño y de mecanizado de una lente oftálmica, procedimiento de fabricación de una lente biselada y lentes correspondientes

Country Status (4)

Country Link
US (1) US9459467B2 (es)
CA (1) CA2894956A1 (es)
ES (1) ES2427859B1 (es)
WO (1) WO2014096495A1 (es)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11725139B2 (en) 2021-12-13 2023-08-15 Saudi Arabian Oil Company Manipulating hydrophilicity of conventional dye molecules for water tracer applications
US12000278B2 (en) 2021-12-16 2024-06-04 Saudi Arabian Oil Company Determining oil and water production rates in multiple production zones from a single production well

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3241064A1 (en) * 2014-12-31 2017-11-08 Essilor International (Compagnie Générale D'Optique) A spectacle ophthalmic lens intended to be mounted on a spectacle frame
US10782541B2 (en) 2015-11-23 2020-09-22 Carl Zeiss Vision International Gmbh Method for designing a lens shape and spectacle lens
WO2019106399A1 (en) 2017-11-29 2019-06-06 Carl Zeiss Vision International Gmbh Manufacturing method for manufacturing a spectacle lens, spectacle lens, and lens design method
JP7127661B2 (ja) * 2020-03-24 2022-08-30 トヨタ自動車株式会社 開眼度算出装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1942400A (en) * 1929-08-23 1934-01-09 American Optical Corp Ophthalmic lens
EP0101972A2 (de) * 1982-08-07 1984-03-07 Firma Carl Zeiss Brillenlinse für stark Fehlsichtige
WO2005085937A1 (de) * 2004-03-03 2005-09-15 Rodenstock Gmbh Brillenglas mit einem tragrand
EP2236244A1 (en) * 2009-03-30 2010-10-06 Indo Internacional, S.A. Finished ophthalmic lens and corresponding methods

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10020576B8 (de) * 2000-04-28 2007-05-03 Rodenstock Gmbh Verfahren zur Herstellung einer Brille
WO2001084215A1 (de) * 2000-04-28 2001-11-08 Optische Werke G. Rodenstock Verfahren zur herstellung einer brille
US7188950B2 (en) * 2003-11-14 2007-03-13 Ophthonix, Inc. Eyeglass dispensing method
PT1855838E (pt) * 2005-02-14 2008-11-28 Essilor Int Processo para fabricação de lentes para óculos
FR2898193B1 (fr) * 2006-03-01 2008-05-09 Essilor Int Procede de determination d'une lentille ophtalmique progressive.
FR2924824B1 (fr) * 2007-12-05 2010-03-26 Essilor Int Lentille progressive de lunettes ophtalmiques ayant une zone supplementaire de vision intermediaire
ES2350557B1 (es) * 2010-07-07 2011-10-20 Indo Internacional S.A. Procedimiento de diseño de una lente oftálmica progresiva y lente correspondiente.
US8770748B2 (en) 2011-11-09 2014-07-08 Indo Internacional S.A. Procedure for designing a progressive ophthalmic lens and corresponding lens

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1942400A (en) * 1929-08-23 1934-01-09 American Optical Corp Ophthalmic lens
EP0101972A2 (de) * 1982-08-07 1984-03-07 Firma Carl Zeiss Brillenlinse für stark Fehlsichtige
WO2005085937A1 (de) * 2004-03-03 2005-09-15 Rodenstock Gmbh Brillenglas mit einem tragrand
EP2236244A1 (en) * 2009-03-30 2010-10-06 Indo Internacional, S.A. Finished ophthalmic lens and corresponding methods

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11725139B2 (en) 2021-12-13 2023-08-15 Saudi Arabian Oil Company Manipulating hydrophilicity of conventional dye molecules for water tracer applications
US11999855B2 (en) 2021-12-13 2024-06-04 Saudi Arabian Oil Company Fluorescent dye molecules having hydrophilicity and hydrophobicity for tracer applications
US12000278B2 (en) 2021-12-16 2024-06-04 Saudi Arabian Oil Company Determining oil and water production rates in multiple production zones from a single production well

Also Published As

Publication number Publication date
ES2427859B1 (es) 2014-11-18
ES2427859A1 (es) 2013-11-04
US9459467B2 (en) 2016-10-04
CA2894956A1 (en) 2014-06-26
US20140176901A1 (en) 2014-06-26

Similar Documents

Publication Publication Date Title
ES2582452T3 (es) Lente con gradación de potencia continua
WO2014096495A1 (es) Procedimiento de diseño y de mecanizado de una lente oftálmica, procedimiento de fabricación de una lente biselada y lentes correspondientes
JP2695056B2 (ja) 乱視矯正用コンタクトレンズ
ES2610998T3 (es) Procedimiento para la fabricación de un cristal para gafas con lado anterior esférico y lado posterior progresivo
ES2629515T3 (es) Procedimiento de determinación de una cara de un cristal oftálmico que incluye una portadora y una capa de fresnel
ES2401456T3 (es) Método para seleccionar curvas de base para una lente oftálmica y método de fabricación de lentes de gafas relacionadas
ES2709443T3 (es) Método para reducir el grosor de una forma de lente y pieza elemental de lente sin tallar
ES2829678T3 (es) Método para calcular un sistema óptico según una montura para gafas dada
AU2015213612B2 (en) Quasi progressive lenses for eyewear
ES2323935A1 (es) Lente oftalmica acabada y procedimiento correspondientes.
ES2874659T3 (es) Procedimiento de fabricación para fabricar una lente para gafas, la lente para gafas y el procedimiento de diseño de la lente
ES2728331T3 (es) Método de producción de lente precursora para lente globular
ES2720523T3 (es) Gafas con protección de una sola pieza y procedimiento para diseñar dicha protección
US9585791B2 (en) Lens for protection of one or more eyes of a user, method of designing eyewear, and method of manufacturing eyewear
US11726350B2 (en) Progressive addition lens and method for manufacturing thereof
ES2751750T3 (es) Método para diseñar una forma de lente y lente para gafas
ES2755817T3 (es) Lente progresiva para gafas, método de fabricación de una lente progresiva para gafas y método de diseño de una lente progresiva para gafas
JP4949967B2 (ja) 左右一体形の一対の眼鏡レンズ及び左右一体形眼鏡
ES2350557B1 (es) Procedimiento de diseño de una lente oftálmica progresiva y lente correspondiente.
ES2509465T3 (es) Lente de potencia negativa innovadora y métodos de procesamiento de la misma
ES2955675T3 (es) Método de fabricación de una lente de gafas, lente de gafas acabada sin cortar y primordio de lente semiacabado
JP2016057324A (ja) レンズ用材料ブロックの加工方法
JPWO2020161878A1 (ja) マイナス強度の眼鏡用の前駆体レンズ、眼鏡用レンズ及びマイナス強度の眼鏡用の前駆体レンズの加工方法
EP3690520B1 (en) Finished uncut spectacle lens, semi-finished lens blank and method of manufacturing a spectacle lens
TWI390269B (zh) 處方鏡片及其製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13824500

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2894956

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13824500

Country of ref document: EP

Kind code of ref document: A1