WO2014095388A1 - Transparente scheibe mit elektrisch leitfähiger beschichtung - Google Patents

Transparente scheibe mit elektrisch leitfähiger beschichtung Download PDF

Info

Publication number
WO2014095388A1
WO2014095388A1 PCT/EP2013/075641 EP2013075641W WO2014095388A1 WO 2014095388 A1 WO2014095388 A1 WO 2014095388A1 EP 2013075641 W EP2013075641 W EP 2013075641W WO 2014095388 A1 WO2014095388 A1 WO 2014095388A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
electrically conductive
transparent
refractive index
matching layer
Prior art date
Application number
PCT/EP2013/075641
Other languages
English (en)
French (fr)
Inventor
Klaus Fischer
Sebastian Janzyk
Ariane WEISSLER
Original Assignee
Saint-Gobain Glass France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to BR112015011786-4A priority Critical patent/BR112015011786B1/pt
Application filed by Saint-Gobain Glass France filed Critical Saint-Gobain Glass France
Priority to EA201591163A priority patent/EA029914B1/ru
Priority to CA2893624A priority patent/CA2893624C/en
Priority to JP2015548345A priority patent/JP6253663B2/ja
Priority to EP13799580.9A priority patent/EP2931673B1/de
Priority to US14/652,105 priority patent/US9855726B2/en
Priority to ES13799580T priority patent/ES2813499T3/es
Priority to MX2015007732A priority patent/MX2015007732A/es
Priority to PL13799580T priority patent/PL2931673T3/pl
Priority to CN201380066127.7A priority patent/CN104870392B/zh
Priority to KR1020157018869A priority patent/KR101767796B1/ko
Publication of WO2014095388A1 publication Critical patent/WO2014095388A1/de
Priority to US15/820,300 priority patent/US10464292B2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10009Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
    • B32B17/10036Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets comprising two outer glass sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10165Functional features of the laminated safety glass or glazing
    • B32B17/10174Coatings of a metallic or dielectric material on a constituent layer of glass or polymer
    • B32B17/10183Coatings of a metallic or dielectric material on a constituent layer of glass or polymer being not continuous, e.g. in edge regions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10165Functional features of the laminated safety glass or glazing
    • B32B17/10174Coatings of a metallic or dielectric material on a constituent layer of glass or polymer
    • B32B17/1022Metallic coatings
    • B32B17/10229Metallic layers sandwiched by dielectric layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10761Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing vinyl acetal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3618Coatings of type glass/inorganic compound/other inorganic layers, at least one layer being metallic
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3626Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer one layer at least containing a nitride, oxynitride, boronitride or carbonitride
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3636Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer one layer at least containing silicon, hydrogenated silicon or a silicide
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3639Multilayers containing at least two functional metal layers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3644Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the metal being silver
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3652Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the coating stack containing at least one sacrificial layer to protect the metal from oxidation
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3668Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating having electrical properties
    • C03C17/3673Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating having electrical properties specially adapted for use in heating devices for rear window of vehicles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/66Units comprising two or more parallel glass or like panes permanently secured together
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/84Heating arrangements specially adapted for transparent or reflecting areas, e.g. for demisting or de-icing windows, mirrors or vehicle windshields
    • H05B3/86Heating arrangements specially adapted for transparent or reflecting areas, e.g. for demisting or de-icing windows, mirrors or vehicle windshields the heating conductors being embedded in the transparent or reflecting material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0274Optical details, e.g. printed circuits comprising integral optical means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/013Heaters using resistive films or coatings

Definitions

  • the invention relates to a transparent pane with an electrically conductive coating, to a process for the production thereof and to the use thereof.
  • the field of vision of a vehicle window in particular a windshield, must be kept free of ice and fogging.
  • a heated by means of engine heat air flow can be directed to the discs.
  • the disc may have an electrical heating function.
  • a laminated glass pane is known in which electrically heatable wires are inserted between two glass panes.
  • the specific heating power P for example about 600 W / m 2 , can be adjusted by the ohmic resistance of the wires. Due to design and safety aspects, the number and diameter of the wires must be kept as small as possible. The wires should be visually imperceptible or barely perceptible in daylight and at night under headlights.
  • Transparent, electrically conductive coatings in particular based on silver, are also known.
  • WO 03/024155 A2 discloses an electrically conductive coating with two silver layers. Such coatings typically have surface resistivities in the range of 3 ohms / square to 5 ohms / square.
  • the distance h between two bus bars is about 0.8 m for typical passenger car windshields, which roughly corresponds to the wheel height.
  • an operating voltage U of approximately 40 V is necessary. Since the on-board voltage of motor vehicles is usually 14 V, a power supply unit or a voltage converter is necessary to produce an operating voltage of 40 V.
  • the silver layers are to be dimensioned so that the conductivity is high enough for sufficient heating with at the same time sufficient transmission, whereby the conductivity of the layers depends above all on the crystallinity of the deposited silver.
  • EP 2444381 A1 solves this problem by applying a blocker layer adjacent to the silver-containing layer.
  • This blocking layer serves in particular to stabilize the silver-containing layer during the heat treatment and improves the optical quality of the electrically heatable coating.
  • EP 2444381 A1 discloses a blocking layer containing niobium, titanium, nickel, chromium or alloys thereof, more preferably nickel-chromium alloys. A disadvantage of this solution, however, is that the blocking layer has an undesirable negative influence on the crystallinity of the silver-containing layer.
  • the object of the present invention is to provide a transparent pane with an electrically conductive coating having an improved compared to the prior art crystallinity and a lower sheet resistance R d Qu a rat, as well as an economical method for their preparation.
  • the disc should be one have high transmission and high color neutrality and be inexpensive to produce.
  • the transparent pane according to the invention comprises at least one transparent substrate and at least one electrically conductive coating on at least one surface of the transparent substrate, wherein
  • the electrically conductive coating has at least two superimposed functional layers and each functional layer at least
  • a smoothing layer containing at least one non-crystalline oxide containing at least one non-crystalline oxide
  • the bottom matching layer and / or the top matching layer contains a getter material homogeneously distributed throughout the layer cross section from the group consisting of niobium, titanium, barium, magnesium, tantalum, zirconium, thorium, palladium, platinum and alloys thereof, and
  • At least one of the getter material-containing lower matching layer and / or upper matching layer is in direct contact with each electrically conductive layer.
  • the getter material of the matching layers protects the adjacent electrically conductive layers from oxidation.
  • the layer structure according to the invention thus protects all electrically conductive layers of the transparent pane against oxidation. Since the matching layers according to the invention are directly adjacent to the electrically conductive layers, the crystallinity of the matching layers is optimally transferred to the conductive layers.
  • first layer is arranged above a second layer, this means in the sense of the invention that the first layer is arranged further from the transparent substrate than the second layer. If a first layer is arranged below a second layer In the sense of the invention, this means that the second layer is located further from the transparent substrate than the first layer.
  • the uppermost functional layer is the functional layer that has the greatest distance from the transparent substrate. The lowest functional layer is the functional layer which has the smallest distance to the transparent substrate.
  • a layer in the sense of the invention may consist of a material. However, a layer may also comprise two or more individual layers of different material.
  • a functional layer according to the invention comprises, for example, at least one layer of optically high-refractive index material, a smoothing layer, a lower and an upper matching layer and an electrically conductive layer.
  • first layer is arranged above or below a second layer, this does not necessarily mean within the meaning of the invention that the first and the second layer are in direct contact with one another.
  • One or more further layers may be arranged between the first and the second layer, unless this is explicitly excluded.
  • the electrically conductive coating is applied according to the invention at least on one surface of the transparent substrate. Both surfaces of the transparent substrate may also be provided with an electrically conductive coating according to the invention.
  • the electrically conductive coating may extend over the entire surface of the transparent substrate. Alternatively, however, the electrically conductive coating may also extend only over part of the surface of the transparent substrate. The electrically conductive coating preferably extends over at least 50%, more preferably over at least 70% and most preferably over at least 90% of the surface of the transparent substrate.
  • the electrically conductive coating may be applied directly to the surface of the transparent substrate.
  • the electrically conductive coating may alternatively be applied to a carrier foil which is adhesively bonded to the transparent substrate.
  • optically high refractive index material is referred to in the context of the invention, a material whose refractive index is greater than or equal to 2.1.
  • layer sequences are known in which the electrically conductive layers between two dielectric layers are arranged. These dielectric layers usually contain silicon nitride.
  • the layers of optically high-refractive index material according to the invention lead to a reduction in the sheet resistance of the electrically conductive layers while at the same time providing good optical properties of the transparent pane, in particular high transmission and neutral color effect. Together with the smoothing layers according to the invention, low values for sheet resistance and thus high specific heating powers can advantageously be achieved by the layers of optically high-index material.
  • the indicated values for refractive indices are measured at a wavelength of 550 nm.
  • the transparent pane according to the invention with an electrically conductive coating preferably has a total transmission of greater than 70%.
  • the term total transmission refers to the procedure defined by ECE-R 43, Annex 3, ⁇ 9.1 for testing the light transmission of vehicle windows.
  • the electrically conductive coating preferably has a sheet resistance of less than 1 ohm / square.
  • the sheet resistance of the electrically conductive coating is more preferably from 0.4 ohms / square to 0.9 ohms / square. In this area for sheet resistance advantageously high specific heat outputs P can be achieved.
  • the lower adaptation layer and / or the upper adaptation layer comprises a getter material homogeneously distributed throughout the layer cross section.
  • the getter material comes from the group consisting of niobium, titanium, barium, magnesium, tantalum, zirconium, thorium, palladium, platinum.
  • the getter material binds oxygen so that adjacent conductive layers are protected from oxidation.
  • the application of an additional blocking layer containing such a getter material is not necessary.
  • the blocking layers known in the art hinder the continuation of the crystallinity of the underlying matching layer on the conductive layer. An omission of the blocking layer thus improves the crystallinity of the conductive layer, and thereby also their conductivity. As a result, the specific heating power can be increased by the particularly advantageous combination according to the invention of the matching layer and the getter material.
  • the getter material of the adaptation layer according to the invention is homogeneously distributed in this and, in contrast to the blocker layers known from the prior art, is not attached only to the surface of the matching layer, but contained in this.
  • the getter material can also show local accumulations, but averaged results in a homogeneous distribution of the getter material over the entire cross-sectional area.
  • just as much getter material is available on the surface of the matching layer facing the smoothing layer as on the surface facing the conductive layer. Due to this uniform distribution of the getter material in the matching layer, sufficient getter material for absorbing oxygen is present.
  • the crystallinity of the matching layer is optimally transferred to the conductive layer since the surface of the matching layer is not obscured by a blocking layer.
  • the electrically conductive coating according to the invention thus has, in comparison with the prior art, an increased conductivity with the same oxidation stability.
  • the getter material may further contain nickel, chromium, aluminum and / or alloys thereof.
  • the transparent pane with an electrically conductive coating can be subjected to a temperature treatment, for example at a temperature of 500 ° C. to 700 ° C.
  • the electrically conductive coating according to the invention can be subjected to such a temperature treatment without the coating being damaged by oxidation.
  • the transparent pane according to the invention can be bent in a convex or concave manner without the coating being damaged by oxidation.
  • the lower matching layer and / or the upper matching layer contains the getter material in a concentration of 1 wt .-% to 10 wt .-%, preferably 2 wt .-% to 10 wt .-%, particularly preferably 3 wt .-% to 10 wt .-%, most preferably 3 wt .-% to 7 wt .-%, in particular 4 wt .-% to 6 wt .-%.
  • concentration range above 3% by weight a particularly good protection of the electrically conductive layers from oxidation is observed.
  • the getter material preferably contains titanium.
  • the electrically conductive coating has two to five functional layers.
  • the electrically conductive coating has three functional layers.
  • the production of an electrically conductive coating with four or more electrically conductive layers is technically complicated and cost-intensive. Due to the improved conductivity of the functional layer structure according to the invention, however, a sufficiently high heat output is achieved even with three functional layers.
  • the electrically conductive coating has four functional layers. Since, in the method according to the invention, the matching layer and the getter material are deposited from a common target which contains both components, a free cathode space results in the coating system. This cathode site accommodates in a plant according to the prior art, the target for the deposition of the blocking layer. When this cathode space becomes free, a further target for depositing a fourth electrically conductive layer can be applied there. As a result, the production of an electrically conductive coating with four functional layers for the same size of the system is significantly simplified and much more economical.
  • the layer of optically high-index material preferably has a refractive index n of 2.1 to 2.5, more preferably of 2.1 to 2.3.
  • the layer of optically high-index material preferably contains at least one silicon-metal mixed nitride, particularly preferably silicon-zirconium mixed nitride. This is particularly advantageous with regard to the sheet resistance of the electrically conductive coating.
  • the silicon-zirconium mixed nitride preferably has dopants.
  • the layer of optically high refractive index material may, for example, contain an aluminum-doped mixed silicon-zirconium mixed nitride (SiZrN x : Al).
  • the silicon-zirconium mixed nitride is preferably deposited by means of magnetic field-assisted cathode sputtering with a target which comprises from 40% by weight to 70% by weight of silicon, from 30% by weight to 60% by weight of zirconium and by 0% by weight. contains up to 10 wt .-% aluminum and production-related admixtures.
  • the target particularly preferably contains from 45% by weight to 60% by weight of silicon, from 35% by weight to 55% by weight of zirconium and from 3% by weight to 8% by weight of aluminum, as well as by production-related admixtures.
  • the Separation of the silicon-zirconium mixed nitride is preferably carried out with the addition of nitrogen as the reaction gas during cathode sputtering.
  • the layer of optically high-refractive index material may also contain, for example, at least silicon-aluminum mixed nitride, mixed silicon-hafnium nitride or mixed silicon-titanium nitride.
  • the layer of optically high refractive index material may alternatively contain, for example, MnO, W0 3 , Nb 2 0 5 , Bi 2 0 3 , Ti0 2 , Zr 3 N 4 and / or AIN.
  • each layer of optically high-index material which is arranged between two electrically conductive layers, is preferably from 35 nm to 70 nm, more preferably from 45 nm to 60 nm. In this range for the layer thickness are particularly advantageous surface resistances of the electrically conductive coating and achieved particularly good optical properties of the transparent pane.
  • a layer of optically high refractive index material is arranged in the sense of the invention between two electrically conductive layers, if at least one electrically conductive layer is arranged above the layer of optically high refractive index material and if at least one electrically conductive layer is arranged beneath the layer of optically high refractive index material.
  • the layer of optically high refractive index material is not in direct contact with the adjacent electrically conductive layers.
  • the layer thickness of the lowermost layer of optically high-index material is preferably from 20 nm to 40 nm. This results in particularly good results.
  • a covering layer is arranged above the uppermost functional layer.
  • the cover protects the underlying layers from corrosion.
  • the cover layer is preferably dielectric.
  • the cover layer may contain, for example, silicon nitride and / or tin oxide.
  • the cover layer preferably contains at least one optically high refractive index material having a refractive index greater than or equal to 2.1.
  • the cover layer particularly preferably comprises at least one mixed silicon-metal nitride, in particular mixed silicon-zirconium mixed nitride, such as aluminum-doped mixed silicon-zirconium nitride. This is particularly advantageous with regard to the optical properties of the transparent pane according to the invention.
  • the cover layer can also contain other silicon-metal mixed nitrides, for example silicon-aluminum mixed nitride, silicon-hafnium mixed nitride or silicon-titanium mixed nitride.
  • the cover layer may alternatively also contain, for example, MnO, W0 3 , Nb 2 0 5 , Bi 2 0 3 , Ti0 2 , Zr 3 N 4 and / or AIN.
  • the layer thickness of the cover layer is preferably from 20 nm to 40 nm. This results in particularly good results.
  • Each functional layer of the electrically conductive coating comprises according to the invention at least one smoothing layer.
  • the smoothing layer is arranged below the first matching layer, preferably between the layer of optically high-refractive index material and the first matching layer.
  • the smoothing layer is preferably in direct contact with the first matching layer.
  • the smoothing layer effects an optimization, in particular smoothing of the surface for a subsequently applied electrically conductive layer.
  • An electrically conductive layer deposited on a smoother surface has a higher transmittance with a simultaneously lower surface resistance.
  • the smoothing layer contains at least one non-crystalline oxide.
  • the oxide may be amorphous or partially amorphous (and thus partially crystalline) but is not completely crystalline.
  • the non-crystalline smoothing layer has a low roughness and thus forms an advantageously smooth surface for the layers to be applied above the smoothing layer.
  • the non-crystalline smoothing layer further effects an improved surface structure of the layer deposited directly above the smoothing layer, which is preferably the first matching layer.
  • the smoothing layer may contain, for example, at least one oxide of one or more of the elements tin, silicon, titanium, zirconium, hafnium, zinc, gallium and indium.
  • the smoothing layer preferably contains a non-crystalline mixed oxide.
  • the smoothing layer very particularly preferably contains a tin-zinc mixed oxide.
  • the mixed oxide may have dopants.
  • the smoothing layer may contain, for example, an antimony-doped tin-zinc mixed oxide (SnZnO x : Sb).
  • the mixed oxide preferably has a substoichiometric oxygen content.
  • a process for producing tin-zinc mixed oxide layers by reactive cathode sputtering is known, for example, from DE 198 48 751 C1.
  • the tin-zinc mixed oxide is preferably deposited with a target which comprises from 25% by weight to 80% by weight of zinc, from 20% by weight to 75% by weight of tin and from 0% by weight to 10% by weight of antimony, and contains production-related admixtures.
  • the target contains particularly preferably from 45% by weight to 75% by weight of zinc, from 25% by weight to 55% by weight of tin and from 1% by weight to 5% by weight of antimony and also as a result of additions of other metals.
  • the deposition of the tin-zinc mixed oxide takes place with the addition of oxygen as the reaction gas during sputtering.
  • the layer thickness of a smoothing layer is preferably from 3 nm to 20 nm, particularly preferably from 4 nm to 12 nm.
  • the smoothing layer preferably has a refractive index of less than 2.2.
  • the electrically conductive layer preferably contains at least one metal, for example gold or copper, or an alloy, particularly preferably silver or a silver-containing alloy.
  • the electrically conductive layer may also contain other electrically conductive materials known to those skilled in the art.
  • the electrically conductive layer contains at least 90% by weight of silver, preferably at least 99.9% by weight of silver.
  • the electrically conductive layer is preferably applied using conventional methods for the layer deposition of metals, for example by vacuum methods such as magnetic field-assisted sputtering.
  • the electrically conductive layer preferably has a layer thickness of 8 nm to 25 nm, particularly preferably from 10 nm to 20 nm. This is particularly advantageous with regard to the transparency and the sheet resistance of the electrically conductive layer.
  • the total layer thickness of all electrically conductive layers is from 32 nm to 75 nm.
  • this range for the total thickness of all electrically conductive layers at distances h between two bus bars and an operating voltage U in the range from 12 V to 15 V typical for vehicle windows, in particular windshields advantageously achieves a sufficiently high specific heating power P and at the same time a sufficiently high transmission.
  • To lower total layer thicknesses of all electrically conductive layers result in too high sheet resistance R Qua d rat and thus too low specific heating power P. Too large total layer thicknesses of all electrically conductive layers reduce the transmission through the disc too strong, so that the requirements for the transmission of Vehicle windows to ECE R 43 are not met.
  • the lower matching layer and / or the upper matching layer preferably contains zinc oxide ZnCv g with 0 ⁇ ⁇ 0.01.
  • the zinc oxide is preferably substoichiometric with respect of the oxygen deposited to avoid a reaction of excess oxygen with the silver-containing conductive layer and with the getter material.
  • other ceramic constituents may also be contained in the matching layers. Preference is given to adding further oxides, for example aluminum oxide.
  • the zinc oxide layer is preferably deposited by magnetic field assisted sputtering.
  • the lower conformance layer and / or the upper conformance layer contains the getter material. At least one matching layer within each functional layer comprises the getter material.
  • the second matching layer of the functional layer may optionally include a getter material.
  • the target for depositing a matching layer with getter material contains 90% to 99% by weight of zinc oxide based ceramic and 1% to 10% by weight of the getter material, preferably 90% to 98% by weight of zinc oxide based Ceramic and 2% to 10% by weight of the getter material, more preferably 90% to 97% by weight of zinc oxide based ceramic and 3% to 10% by weight of the getter material, most preferably 93% Wt .-% to 97 wt .-% zinc oxide-based ceramic and 3 wt .-% to 7 wt .-% of the getter, in particular 94 wt .-% to 96 wt .-% zinc oxide-based ceramic and 4 wt .-% to 6 wt .-% of the getter material.
  • this zinc oxide-based ceramic may in turn contain other oxidic constituents, for example aluminum oxide.
  • the zinc oxide-based ceramic contains 85% by weight to 100% by weight of zinc oxide, more preferably 95% by weight to 99% by weight of zinc oxide and 1% by weight to 5% by weight of aluminum oxide.
  • production-related admixtures may be included. Titanium is preferably used as the getter material. When depositing an adaptation layer without getter material, preference is given to using a target containing 85% by weight to 100% by weight of zinc oxide as well as admixtures resulting in production.
  • the target contains 85% by weight to 99% by weight of zinc oxide and 1% by weight to 15% by weight of aluminum oxide, in particular 95% by weight to 99% by weight of zinc oxide and 1% by weight. to 5 wt .-% alumina and each production-related admixtures.
  • the deposition of the upper matching layer and the lower matching layer is preferably carried out by magnetic field-assisted sputtering using an inert gas, for example argon or krypton.
  • Adaptation layers containing no getter material can alternatively also be deposited by means of metallic targets with the addition of oxygen as the reaction gas, as is well known in the prior art and disclosed, for example, in EP 2444381 A1.
  • the layer thicknesses of the lower matching layer and the upper matching layer are preferably from 3 nm to 20 nm, more preferably from 4 nm to 12 nm.
  • Both the top matching layer and the bottom matching layer may include a getter material, and preferably at least the bottom matching layer comprises a getter material.
  • the lower matching layer with getter material is located immediately below the electrically conductive layer and serves in particular to stabilize the electrically conductive layer against oxidation. This improves the optical quality of the electrically conductive coating.
  • the upper matching layer is applied immediately above the electrically conductive layer.
  • the transparent substrate preferably contains glass, particularly preferably flat glass, float glass, quartz glass, borosilicate glass, soda-lime glass or clear plastics, preferably rigid clear plastics, in particular polyethylene, polypropylene, polycarbonate, polymethyl methacrylate, polystyrene, polyamide, polyester, polyvinyl chloride and / or Mixtures thereof.
  • suitable glasses are known from DE 697 31 268 T2, page 8, paragraph [0053].
  • the thickness of the transparent substrate can vary widely and thus be perfectly adapted to the requirements in individual cases. It is preferred to use discs with the standard thicknesses of 1.0 mm to 25 mm and preferably of 1.4 mm to 2.6 mm.
  • the size of the transparent substrate can vary widely and depends on the use according to the invention.
  • the transparent substrate has, for example, in vehicle construction and architecture area common areas of 200 cm 2 to 4 m 2 .
  • the transparent substrate may have any three-dimensional shape. Preferably, the three-dimensional shape has no shadow zones, so that it can be coated, for example, by sputtering.
  • the transparent substrate is preferably planar or slightly curved in one direction or in several directions of the space.
  • the transparent substrate may be colorless or colored.
  • the transparent substrate is connected via at least one laminating film to a second pane to form a composite pane.
  • the electrically conductive coating according to the invention is preferably applied to the surface of the transparent substrate facing the laminating film. As a result, the electrically conductive coating is advantageously protected against damage and corrosion.
  • the composite disk preferably has a total transmission of greater than 70%.
  • the laminating film preferably contains thermoplastic materials, for example polyvinyl butyral (PVB), ethylene vinyl acetate (EVA), polyurethane (PU), polyethylene terephthalate (PET) or several layers thereof, preferably with thicknesses of 0.3 mm to 0.9 mm.
  • PVB polyvinyl butyral
  • EVA ethylene vinyl acetate
  • PU polyurethane
  • PET polyethylene terephthalate
  • the second pane preferably contains glass, particularly preferably flat glass, float glass, quartz glass, borosilicate glass, soda-lime glass or clear plastics, preferably rigid clear plastics, in particular polyethylene, polypropylene, polycarbonate, polymethyl methacrylate, polystyrene, polyamide, polyester, polyvinyl chloride and / or Mixtures thereof.
  • the second pane preferably has a thickness of 1.0 mm to 25 mm and particularly preferably 1.4 mm to 2.6 mm.
  • the electrically conductive coating preferably extends over the entire surface of the transparent substrate, minus a circumferential frame-shaped coating-free region having a width of 2 mm to 20 mm, preferably of 5 mm to 10 mm.
  • the coating-free area is preferably hermetically sealed by the laminating film or an acrylate adhesive as a vapor diffusion barrier.
  • the vapor diffusion barrier protects the corrosion-sensitive, electrically conductive coating from moisture and atmospheric oxygen. If the composite pane is provided as a vehicle pane, for example as a windscreen, then the circulating coating-free area additionally effects an electrical insulation between the live coating and the vehicle body.
  • the transparent substrate can be coating-free in at least one further area, which serves, for example, as a data transmission window or communication window.
  • the transparent pane is transparent in the further coating-free area for electromagnetic and in particular infrared radiation.
  • the electrically conductive coating may be applied directly to the surface of the transparent substrate.
  • the electrically conductive coating may be applied to a carrier film which is embedded between two laminating films.
  • the carrier film preferably contains a thermoplastic polymer, in particular polyvinyl butyral (PVB), ethylene vinyl acetate (EVA), polyurethane (PU), polyethylene terephthalate (PET) or combinations thereof.
  • the transparent substrate may for example also be connected to a second pane via spacers to form an insulating glazing.
  • the transparent substrate can also be connected to more than one other disc on laminating and / or spacers. If the transparent substrate is connected to one or more further disks, then one or more of these further disks may also have an electrically conductive coating.
  • the electrically conductive coating is provided with suitable means for applying a voltage and thereby heatable.
  • the electrically conductive coating can also be used unheated, for example, to shield IR radiation, whereby the heating of the vehicle interior is reduced by direct sunlight.
  • the electrically conductive coating is connected via bus bars to a voltage source and a voltage applied to the electrically conductive coating has a value of 12 V to 15 V.
  • the busbars are used to transfer electrical power. Examples of suitable bus bars are known from DE 103 33 618 B3 and EP 0 025 755 B1.
  • the bus bars are advantageously produced by printing a conductive paste. If the transparent substrate is bent after application of the electrically conductive coating, the conductive paste is preferably baked before bending and / or during bending of the transparent substrate.
  • the conductive paste preferably contains silver particles and glass frits.
  • the layer thickness of the baked conductive paste is preferably from 5 ⁇ to 20 ⁇ .
  • thin and narrow metal foil strips or metal wires are used as bus bars, which preferably contain copper and / or aluminum, in particular copper foil strips with a thickness of preferably 10 ⁇ to 200 ⁇ , for example, about 50 ⁇ used.
  • the width of the copper foil strips is preferably 1 mm to 10 mm.
  • the electrical contact between the electrically conductive coating and bus bar can be produced for example by soldering or gluing with an electrically conductive adhesive. If the transparent substrate is part of a laminated glass, the metal foil strips or metal wires can be laid on the electrically conductive coating when the composite layers are folded together. In the later autoclave process, a reliable electrical contact between the bus bars and the coating is achieved by the action of heat and pressure.
  • foil conductors are usually used in the vehicle sector. Examples of film conductors are described in DE 42 35 063 A1, DE 20 2004 019 286 U1 and DE 93 13 394 U1.
  • Flexible foil conductors sometimes called flat conductors or ribbon conductors, preferably consist of a tinned copper tape with a thickness of 0.03 mm to 0.1 mm and a width of 2 mm to 16 mm. Copper has been proven for such traces, as it has a good electrical conductivity and good processability to films. At the same time, the material costs are low. Other electrically conductive materials can also be used which can be processed into films. Examples of these are aluminum, gold, silver or tin and alloys thereof.
  • the tinned copper tape is applied for electrical insulation and stabilization on a substrate made of plastic or laminated on both sides with this.
  • the insulation material typically contains a 0.025 mm to 0.05 mm thick polyimide-based film. Other plastics or materials with the required insulating properties may also be used.
  • a foil conductor band may contain a plurality of electrically insulated, conductive layers.
  • Foil conductors which are suitable for contacting electrically conductive layers in composite disks only have a total thickness of 0.3 mm. Such thin film conductors can be embedded between the individual discs in the laminating without difficulty.
  • thin metal wires can be used as a supply line.
  • the metal wires contain in particular copper, tungsten, gold, silver or aluminum or alloys of at least two of these metals.
  • the alloys may also contain molybdenum, rhenium, osmium, iridium, palladium or platinum.
  • the invention further comprises a method for producing a transparent pane according to the invention with an electrically conductive coating, wherein at least two functional layers are applied successively to a transparent substrate and at least one after the other for applying each functional layer
  • a smoothing layer containing at least one non-crystalline oxide b) a smoothing layer containing at least one non-crystalline oxide, c) a lower matching layer, d) an electrically conductive layer and
  • the individual layers are deposited by methods known per se, for example by magnetic field-assisted sputtering.
  • the sputtering takes place in a protective gas atmosphere, for example of argon or krypton, or in a reactive gas atmosphere, for example by adding oxygen or nitrogen.
  • the top matching layer and / or the bottom matching layer are deposited by magnetic field assisted sputtering using an inert gas.
  • Ceramic targets are used as the target.
  • a zinc oxide-based ceramic target doped with a getter material preferably titanium.
  • Metallic targets can not be used in the method according to the invention for depositing adaptation layers with getter material, since they must be deposited in the presence of oxygen to produce a ceramic layer, such as zinc oxide, and a getter material contained in the target would be oxidized.
  • a ceramic target zinc is already present in the oxidized form, as zinc oxide, so that it can be deposited with argon or krypton as an inert gas.
  • the getter material contained in the target for example titanium, is not oxidized in the process.
  • the top matching layer and / or the top matching layer are preferably by cathode jet sputtering of a ceramic target containing from 1 wt% to 10 wt%, preferably from 2 wt% to 8 wt%, most preferably 3 wt% to 7 wt .-% of the getter material deposited.
  • the ceramic target is preferably zinkoxid- based.
  • the zinc oxide-based ceramic contains 95 wt .-% to 99 wt .-% ZnO and 1 wt .-% to 5 wt .-% Al 2 0 3 .
  • This zinc oxide-based ceramic forms, with a proportion of 90% by weight to 100% by weight, the main constituent of the target for depositing the matching layers.
  • the target used for its deposition contains 90% by weight to 99% by weight of the zinc oxide-based ceramic and 1% by weight to 10% by weight of the getter material, preferably 92% by weight.
  • % to 98 wt% of the zinc oxide based ceramic and 2 wt% to 8 wt% of the getter material especially preferably from 93% to 97% by weight of the zinc oxide based ceramic and from 3% to 7% by weight of the getter material.
  • the adaptation layers according to the invention are preferably deposited with getter material at a pressure of 0.5 ⁇ bar to 5 ⁇ bar using a pulsed DC voltage source with argon as the inert gas. More preferably, the deposition is by multi-frequency sputtering at 25 kHz to 50 kHz using two targets that have an opposite periodically changing charge during the sputtering process.
  • the layer thicknesses of the individual layers with the desired properties in terms of transmission, sheet resistance and color values are readily apparent to the person skilled in the art by simulations in the range of the above-specified layer thicknesses.
  • the electrically conductive coating is connected to at least two bus conductors, heating the transparent substrate and a second disk to a temperature of 500 ° C to 700 ⁇ and the transparent substrate and the second disk with a laminating film coverage connected.
  • the heating of the disc can be done in the context of a bending process.
  • the electrically conductive coating must in particular be suitable for withstanding the bending process and / or the bonding process without damage.
  • the properties, in particular the sheet resistance of the electrically conductive coating described above, improve regularly by the heating.
  • the invention further comprises the use of the transparent pane according to the invention as a pane or as a component of a pane, in particular as a component of insulating glazing or a composite pane, in buildings or in means of transportation for traffic on land, in the air or on water, in particular in motor vehicles, for example as a windshield, rear window, side window and / or roof glass or as part of a windshield, rear window, side window and / or roof glass.
  • Show it: 1 shows a cross section through an embodiment of the transparent pane according to the invention with an electrically conductive coating.
  • Figure 2 is a plan view of a transparent pane according to the invention as part of a composite pane.
  • FIG. 3 shows a section A-A 'through the composite pane according to FIG. 2.
  • FIG. 4 shows a flow diagram of the method according to the invention.
  • the substrate (1) contains float glass and has a thickness of 2.1 mm.
  • the electrically conductive coating (2) contains three functional layers (3), comprising a first functional layer (3.1), a second functional layer (3.2) and a third functional layer (3.3), which are arranged on top of each other.
  • Each functional layer (3) comprises
  • a layer of optically high refractive index material (4) in each case as a first layer of optically high refractive index material (4.1), second layer of optically high refractive index material
  • an electrically conductive layer (7) in each case as a first electrically conductive layer (7.1), second electrically conductive layer (7.2) and third electrically conductive layer (7.3),
  • an upper matching layer (8) respectively designated as first upper matching layer (8.1), second upper matching layer (8.2) and third upper matching layer (8.3).
  • the layers are arranged in the order given with increasing distance to the transparent substrate (1).
  • a cover layer (9) is arranged above the third functional layer (3.3) above the third functional layer (3.3).
  • the exact layer sequence of the functional layers (3.1, 3.2, 3.3) with suitable materials and exemplary layer thicknesses corresponds from bottom to top to glass with a thickness of 2.1 mm as a transparent substrate (1):
  • titanium-doped zinc-aluminum oxide ZnO: Al 2 O 3 : Ti
  • ZnO Al 2 O 3
  • getter material 10
  • Silver layer with a thickness of 18 nm as electrically conductive layers (7), zinc-aluminum oxide (ZnO: Al 2 0 3 ) with a thickness of 5 nm as top matching layers (8).
  • the first functional layer (3.1) is applied directly on the transparent substrate (1), while the second functional layer (3.2) is arranged on the first functional layer and the third functional layer (3.3) on the second functional layer (3.2) ,
  • the uppermost layer of the electrically conductive coating (2) forms a covering layer (9), which is applied to the third functional layer (3.3).
  • the cover layer (9) consists of aluminum-doped silicon-zirconium mixed nitride (SiZrN x : Al) with a layer thickness of 40 nm.
  • the individual layers of the electrically conductive coating (2) were deposited by cathode jet sputtering.
  • the target for depositing the lower matching layers (6) contained 95% by weight of a zinc oxide-based ceramic and 5% by weight of titanium.
  • the zinc oxide-based ceramic contained 98% by weight of ZnO and 2% by weight of Al 2 O 3 .
  • the target for depositing the upper matching layers (8) consisted of this zinc oxide-based ceramic containing 98% by weight of ZnO and 2% by weight of Al 2 O 3 .
  • the deposition of the matching layers (6, 8) was carried out by sputtering in the presence of argon.
  • the target for depositing the smoothing layers (5) contained 68% by weight of tin, 30% by weight of zinc and 2% by weight of antimony.
  • the deposition took place with the addition of oxygen as the reaction gas during cathode sputtering.
  • the target for depositing the layers of optically high-index material (4) and the cover layer (9) contained 52.9% by weight of silicon, 43.8% by weight of zirconium and 3.3% by weight of aluminum.
  • the deposition was carried out with the addition of nitrogen as the reaction gas during sputtering.
  • the embodiment according to the invention of the electrically conductive coating (2) with lower matching layers (6) containing a getter material (10) advantageously achieves a reduced surface resistance and thus an improved specific heating power compared to the prior art.
  • the combination of lower matching layer (6) and getter material (10) renders obsolete the use of an additional blocking layer to protect the electrically conductive layer from oxygen.
  • the lower matching layer (6) is in direct contact with the silver-containing electrically conductive layer (7), whereby a crystalline growth of the silver is ensured.
  • This improved crystallinity of the silver leads to the desired reduction of the sheet resistance of the electrically conductive coating according to the invention.
  • the optical properties of the transparent pane according to the invention with an electrically conductive coating satisfy the legal requirements for glazing in vehicle construction.
  • FIG. 2 and FIG. 3 each show a detail of a transparent pane according to the invention with an electrically conductive coating (2) as part of a composite pane.
  • the composite pane is provided as a windshield of a passenger car.
  • FIG. 2 shows a plan view of the surface of the transparent substrate (1) facing away from the laminating film (16).
  • the transparent substrate (1) is the disk facing the interior of the passenger car.
  • the transparent substrate (1) and the second disc (11) contain float glass and each have a thickness of 2.1 mm.
  • the laminating film (16) contains polyvinyl butyral (PVB) and has a thickness of 0.76 mm.
  • An electrically conductive coating (2) is applied to the surface of the transparent substrate (1) facing the laminating film (16).
  • the coating-free area is used for electrical insulation between the live electrically conductive coating (2) and the vehicle body.
  • the coating-free area is hermetically sealed by adhering to the laminating film (16) to protect the electrically conductive coating (2) from damage and corrosion.
  • At the outer upper and lower edge of the transparent substrate (1) each have a bus bar (12) is arranged.
  • the bus bars (12) were printed on the electrically conductive coating (2) by means of a conductive silver paste and baked.
  • the layer thickness of the baked-silver paste is 15 ⁇ .
  • the bus bars (12) are electrically conductively connected to the underlying areas of the electrically conductive coating (2).
  • the leads (15) consist of tinned copper foils with a width of 10 mm and a thickness of 0.3 mm.
  • Each supply line (15) is soldered to one of the bus bars (12).
  • the electrically conductive coating (2) is connected via the bus bars (12) and the leads (15) to a voltage source (13).
  • the voltage source (13) is the on-board voltage of 14 V of a motor vehicle.
  • an opaque color layer with a width a of 20 mm as the cover printing (14) is applied frame-shaped at the edge of the laminating film (16) facing surface.
  • the cover pressure (14) obscures the view of the adhesive strand, with which the composite pane is glued into the vehicle body.
  • the covering pressure (14) serves at the same time as protection of the adhesive from UV radiation and thus as protection against premature aging of the adhesive. Furthermore, the bus bars (12) and the leads (15) are covered by the covering pressure (14).
  • FIG. 3 shows a section along A-A 'through the composite pane according to FIG. 2 in the region of the lower edge.
  • the transparent substrate (1) with the electrically conductive coating (2), the second pane (11), the laminating film (16), a bus bar (12), a feed line (15) and the covering pressure (14) can be seen.
  • FIG. 4 shows a flow chart of the method according to the invention.
  • a layer of optically high refractive index material is deposited on a transparent substrate and then a smoothing layer is applied thereto.
  • a lower matching layer with getter material is deposited, wherein the getter material is homogeneously distributed in the matching layer and applied in one step with this.
  • An electrically conductive layer is applied to the lower matching layer and an upper matching layer is applied thereon.
  • At least one second functional layer is applied to this first functional layer functional layers, applied.
  • the layer system is completed by depositing a cover layer on the uppermost functional layer. Subsequently, the layer system is electrically contacted by attaching a bus bar with supply line.
  • the assembly is overlaid with a laminating film and a second disc and the assembly is laminated to produce a laminated glass sheet.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Laminated Bodies (AREA)
  • Joining Of Glass To Other Materials (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

Transparente Scheibe, umfassend mindestens ein transparentes Substrat (1) und auf mindestens einer Oberfläche des transparenten Substrats (1) mindestens eine elektrisch leitfähige Beschichtung (2), wobei die elektrisch leitfähige Beschichtung (2) mindestens zwei übereinander angeordnete funktionelle Schichten (3) aufweist und jede funktionelle Schicht (3) mindestens, eine Schicht optisch hochbrechenden Materials (4) mit einem Brechungsindex größer oder gleich 2,1, oberhalb der Schicht optisch hochbrechenden Materials (4) eine Glättungsschicht (5), die zumindest ein nichtkristallines Oxid enthält, oberhalb der Glättungsschicht (5) eine untere Anpassungsschicht (6), oberhalb der unteren Anpassungsschicht (6) eine elektrisch leitfähige Schicht (7) und oberhalb der elektrisch leitfähigen Schicht (7) eine obere Anpassungsschicht (8) umfasst, die untere Anpassungsschicht (6) und/oder die obere Anpassungsschicht (8) ein im gesamten Schichtquerschnitt homogen verteiltes Gettermaterial (10) aus der Gruppe bestehend aus Niob, Titan, Barium, Magnesium, Tantal, Zirconium, Thorium, Palladium, Platin und Legierungen davon enthält und mindestens eine das Gettermaterial (10) enthaltende untere Anpassungsschicht (6) und/oder obere Anpassungsschicht (8) in direktem Kontakt zur elektrisch leitfähigen Schicht (7) steht.

Description

Transparente Scheibe mit elektrisch leitfähiger Beschichtung
Die Erfindung betrifft eine transparente Scheibe mit elektrisch leitfähiger Beschichtung, ein Verfahren zu deren Herstellung und deren Verwendung.
Das Sichtfeld einer Fahrzeugscheibe, insbesondere einer Windschutzscheibe muss frei von Eis und Beschlag gehalten werden. Bei Kraftfahrzeugen mit Verbrennungsmotor kann beispielsweise ein mittels Motorwärme erwärmter Luftstrom auf die Scheiben gelenkt werden.
Alternativ kann die Scheibe eine elektrische Heizfunktion aufweisen. Aus DE 103 52 464 A1 ist beispielsweise eine Verbundglasscheibe bekannt, bei der zwischen zwei Glasscheiben elektrisch beheizbare Drähte eingelegt sind. Die spezifische Heizleistung P, beispielsweise etwa 600 W/m2, kann dabei durch den ohmschen Widerstand der Drähte eingestellt werden. Aufgrund von Design- und Sicherheitsaspekten muss die Anzahl sowie der Durchmesser der Drähte möglichst klein gehalten werden. Die Drähte dürfen bei Tageslicht und nachts bei Scheinwerferlicht visuell nicht oder kaum wahrnehmbar sein.
Es sind auch transparente, elektrisch leitfähige Beschichtungen insbesondere auf Silberbasis bekannt. WO 03/024155 A2 offenbart beispielsweise eine elektrisch leitfähige Beschichtung mit zwei Silberlagen. Solche Beschichtungen weisen in der Regel Flächenwiderstände im Bereich von 3 Ohm/Quadrat bis 5 Ohm/Quadrat auf.
Die spezifische Heizleistung P einer elektrisch beheizbaren Beschichtung mit einem Flächenwiderstand RQuadrat, einer Betriebsspannung U und einem Abstand h zwischen zwei Sammelleitern lässt sich mit der Formel P = U2/(RQuadrat*h2) berechnen. Der Abstand h zwischen zwei Sammelleitern beträgt bei typischen Windschutzscheiben von Personenkraftwagen etwa 0,8 m, was ungefähr der Scheibenhöhe entspricht. Um bei einem Flächenwiderstand von 4 Ohm/Quadrat eine gewünschte spezifische Heizleistung P von 600 W/m2 zu erzielen, ist eine Betriebsspannung U von etwa 40 V notwendig. Da die Bordspannung von Kraftfahrzeugen üblicherweise 14 V beträgt, ist ein Netzteil oder ein Spannungswandler notwendig, um eine Betriebsspannung von 40 V zu erzeugen. Eine Spannungserhöhung von 14 V auf 40 V ist immer mit elektrischen Leitungsverlusten und zusätzlichen Kosten für zusätzliche Bauelemente verbunden. US 2007/0082219 A1 und US 2007/0020465 A1 offenbaren transparente, elektrisch leitfähige Beschichtungen mit mindestens drei Silberlagen. Für Beschichtungen auf Basis dreier Silberlagen sind in US 2007/0082219 A1 Flächenwiderstände um 1 Ohm/Quadrat angegeben. Für eine Betriebsspannung U = 14 V, einen Flächenwiderstand RQuadrat = 1 Ohm/Quadrat und einen Abstand h = 0,8 m ergibt sich eine spezifische Heizleistung P von etwa 300 W/m2.
Zur Bereitstellung einer ausreichenden spezifischen Heizleistung P, beispielsweise etwa 500 W/m2, insbesondere zur Beheizung größerer Scheiben ist eine weitere Reduzierung des Flächenwiderstands der elektrisch beheizbaren Beschichtung erforderlich. Dies kann bei einer elektrisch beheizbaren Beschichtung mit typischerweise drei Silberlagen durch eine Erhöhung der Dicke der einzelnen Silberschichten erreicht werden. Eine zu große Schichtdicke der Silberschichten führt jedoch zu mangelhaften optischen Eigenschaften der Scheibe, insbesondere im Hinblick auf Transmission und Farbwirkung, so dass gesetzliche Vorschriften, wie sie beispielsweise in ECE R 43 („Einheitliche Vorschriften für die Genehmigung des Sicherheitsglases und der Verbundglaswerkstoffe") festgelegt sind, nicht eingehalten werden können. Die Silberschichten sind demnach so zu bemessen, dass die Leitfähigkeit hoch genug für eine ausreichende Beheizung bei gleichzeitig genügender Transmission ist. Die Leitfähigkeit der Schichten hängt dabei vor allem von der Kristallinität des abgeschiedenen Silbers ab.
Im Allgemeinen erfolgt die Abscheidung des Schichtsystems auf eine Glasscheibe vor dem Biegen und der Lamination der Windschutzscheibe. Somit muss die Beschichtung eine ausreichende thermische Belastbarkeit aufweisen. Die Erwärmung der beschichteten Scheibe im Biegeprozess führt jedoch zu einer Oxidation der Silberschicht. EP 2444381 A1 löst diese Problemstellung durch Aufbringen einer Blockerschicht benachbart zur silberhaltigen Schicht. Diese Blockerschicht dient insbesondere zur Stabilisierung der silberhaltigen Schicht während der Wärmebehandlung und verbessert die optische Qualität der elektrisch beheizbaren Beschichtung. EP 2444381 A1 offenbart eine Blockerschicht enthaltend Niob, Titan, Nickel, Chrom oder Legierungen davon, besonders bevorzugt Nickel- Chrom-Legierungen. Ein Nachteil dieser Lösung ist jedoch, dass die Blockerschicht einen unerwünschten negativen Einfluss auf die Kristallinität der silberhaltigen Schicht hat.
Die Aufgabe der vorliegenden Erfindung besteht darin, eine transparente Scheibe mit elektrisch leitfähiger Beschichtung, die eine im Vergleich zum Stand der Technik verbesserte Kristallinität und einen geringeren Flächenwiderstand RQuadrat aufweist, sowie ein wirtschaftliches Verfahren zu deren Herstellung bereitzustellen. Die Scheibe soll dabei eine hohe Transmission und eine hohe Farbneutralität aufweisen und kostengünstig herstellbar sein.
Die Aufgabe der vorliegenden Erfindung wird erfindungsgemäß durch eine transparente Scheibe mit leitfähiger Beschichtung, ein Verfahren zu deren Herstellung und deren Verwendung gemäß den unabhängigen Ansprüchen 1 , 12 und 15 gelöst. Bevorzugte Ausführungsformen gehen aus den Unteransprüchen hervor.
Die erfindungsgemäße transparente Scheibe umfasst mindestens ein transparentes Substrat und mindestens eine elektrisch leitfähige Beschichtung auf mindestens einer Oberfläche des transparenten Substrats, wobei
- die elektrisch leitfähige Beschichtung mindestens zwei übereinander angeordnete funktionelle Schichten aufweist und jede funktionelle Schicht mindestens
- eine Schicht optisch hochbrechenden Materials mit einem Brechungsindex größer oder gleich 2,1 ,
- oberhalb der Schicht optisch hochbrechenden Materials eine Glättungsschicht, die zumindest ein nichtkristallines Oxid enthält,
- oberhalb der Glättungsschicht eine untere Anpassungsschicht,
- oberhalb der unteren Anpassungsschicht eine elektrisch leitfähige Schicht und
- oberhalb der elektrisch leitfähigen Schicht eine obere Anpassungsschicht umfasst,
- die untere Anpassungsschicht und/oder die obere Anpassungsschicht ein im gesamten Schichtquerschnitt homogen verteiltes Gettermaterial aus der Gruppe bestehend aus Niob, Titan, Barium, Magnesium, Tantal, Zirconium, Thorium, Palladium, Platin und Legierungen davon enthält und
mindestens eine das Gettermaterial enthaltende untere Anpassungsschicht und/oder obere Anpassungsschicht in direktem Kontakt zu jeder elektrisch leitfähigen Schicht steht.
Das Gettermaterial der Anpassungsschichten schützt dabei die benachbarten elektrisch leitfähigen Schichten vor Oxidation. Durch den erfindungsgemäßen Schichtaufbau sind somit alle elektrisch leitfähigen Schichten der transparenten Scheibe gegen Oxidation geschützt. Da die erfindungsgemäßen Anpassungsschichten den elektrisch leitfähigen Schichten direkt benachbart sind wird die Kristallinität der Anpassungsschichten optimal auf die leitfähigen Schichten übertragen.
Ist eine erste Schicht oberhalb einer zweiten Schicht angeordnet, so bedeutet dies im Sinne der Erfindung, dass die erste Schicht weiter vom transparenten Substrat entfernt angeordnet ist als die zweite Schicht. Ist eine erste Schicht unterhalb einer zweiten Schicht angeordnet ist, so bedeutet dies im Sinne der Erfindung, dass die zweite Schicht weiter vom transparenten Substrat entfernt angeordnet ist als die erste Schicht. Die oberste funktionelle Schicht ist diejenige funktionelle Schicht, die den größten Abstand zum transparenten Substrat aufweist. Die unterste funktionelle Schicht ist diejenige funktionelle Schicht, die den geringsten Abstand zum transparenten Substrat aufweist.
Eine Schicht im Sinne der Erfindung kann aus einem Material bestehen. Eine Schicht kann aber auch zwei oder mehrere Einzelschichten unterschiedlichen Materials umfassen. Eine erfindungsgemäße funktionelle Schicht umfasst beispielsweise zumindest eine Schicht optisch hochbrechenden Materials, eine Glättungsschicht, eine untere und eine obere Anpassungsschicht und eine elektrisch leitfähige Schicht.
Ist eine erste Schicht oberhalb oder unterhalb einer zweiten Schicht angeordnet, so bedeutet dies im Sinne der Erfindung nicht notwendigerweise, dass sich die erste und die zweite Schicht in direktem Kontakt miteinander befinden. Es können eine oder mehrere weitere Schichten zwischen der ersten und der zweiten Schicht angeordnet sein, sofern dies nicht explizit ausgeschlossen wird.
Die elektrisch leitfähige Beschichtung ist erfindungsgemäß zumindest auf einer Oberfläche des transparenten Substrats aufgebracht. Es können auch beide Oberflächen des transparenten Substrats mit einer erfindungsgemäßen elektrisch leitfähigen Beschichtung versehen sein.
Die elektrisch leitfähige Beschichtung kann sich über die gesamte Oberfläche des transparenten Substrats erstrecken. Die elektrisch leitfähige Beschichtung kann sich alternativ aber auch nur über einen Teil der Oberfläche des transparenten Substrats erstrecken. Die elektrisch leitfähige Beschichtung erstreckt sich bevorzugt über mindestens 50%, besonders bevorzugt über mindestens 70% und ganz besonders bevorzugt über mindestens 90% der Oberfläche des transparenten Substrats.
Die elektrisch leitfähige Beschichtung kann direkt auf der Oberfläche des transparenten Substrats aufgebracht sein. Die elektrisch leitfähige Beschichtung kann alternativ auf einer Trägerfolie aufgebracht sein, die mit dem transparenten Substrat verklebt ist.
Mit optisch hochbrechendem Material wird im Sinne der Erfindung ein Material bezeichnet, dessen Brechungsindex größer oder gleich 2,1 beträgt. Nach dem Stand der Technik sind Schichtfolgen bekannt, bei denen die elektrisch leitfähigen Schichten zwischen jeweils zwei dielektrischen Schichten angeordnet sind. Diese dielektrischen Schichten enthalten üblicherweise Siliziumnitrid. Die erfindungsgemäßen Schichten optisch hochbrechenden Materials führen zu einer Verringerung des Flächenwiderstands der elektrisch leitfähigen Schichten bei gleichzeitig guten optischen Eigenschaften der transparenten Scheibe, insbesondere hoher Transmission und neutraler Farbwirkung. Zusammen mit den erfindungsgemäßen Glättungsschichten lassen sich durch die Schichten optisch hochbrechenden Materials vorteilhaft geringe Werte für den Flächenwiderstand und damit hohe spezifische Heizleistungen erreichen.
Die angegebenen Werte für Brechungsindizes sind bei einer Wellenlänge von 550 nm gemessen.
Die erfindungsgemäße transparente Scheibe mit elektrisch leitfähiger Beschichtung weist bevorzugt eine Gesamttransmission von größer 70 % auf. Der Begriff Gesamttransmission bezieht sich auf das durch ECE-R 43, Anhang 3, § 9.1 festgelegte Verfahren zur Prüfung der Lichtdurchlässigkeit von Kraftfahrzeugscheiben.
Die elektrisch leitfähige Beschichtung weist bevorzugt einen Flächenwiderstand von kleiner 1 Ohm/Quadrat auf. Der Flächenwiderstand der elektrisch leitfähigen Beschichtung beträgt besonders bevorzugt von 0,4 Ohm/Quadrat bis 0,9 Ohm/Quadrat. In diesem Bereich für den Flächenwiderstand werden vorteilhaft hohe spezifische Heizleistungen P erreicht.
Die untere Anpassungsschicht und/oder die obere Anpassungsschicht umfasst ein im gesamten Schichtquerschnitt homogen verteiltes Gettermaterial. Das Gettermaterial entstammt der Gruppe bestehend aus Niob, Titan, Barium, Magnesium, Tantal, Zirconium, Thorium, Palladium, Platin. Das Gettermaterial bindet Sauerstoff, so dass benachbarte leitfähige Schichten vor einer Oxidation geschützt sind. Die Aufbringung einer zusätzlichen Blockerschicht enthaltend ein solches Gettermaterial ist dabei nicht notwendig. Die nach dem Stand der Technik bekannten Blockerschichten behindern die Fortsetzung der Kristallinität der darunter liegenden Anpassungsschicht auf die leitfähige Schicht. Ein Wegfall der Blockerschicht verbessert somit die Kristallinität der leitfähigen Schicht und dadurch bedingt auch deren Leitfähigkeit. Dadurch kann die spezifische Heizleistung durch die besonders vorteilhafte erfindungsgemäße Kombination der Anpassungsschicht und des Gettermaterials erhöht werden.
Das Gettermaterial der erfindungsgemäßen Anpassungsschicht ist homogen in dieser verteilt und im Gegensatz zu den nach dem Stand der Technik bekannten Blockerschichten nicht nur an der Oberfläche der Anpassungsschicht angebracht, sondern in dieser enthalten. Im Querschnitt der Anpassungsschicht kann das Gettermaterial auch lokale Akkumulationen zeigen, gemittelt ergibt sich jedoch eine homogene Verteilung des Gettermaterials über die gesamte Querschnittsfläche. An der der Glättungsschicht zugewandten Fläche der Anpassungsschicht ist somit genau so viel Gettermaterial verfügbar wie an der der leitfähigen Schicht zugewandten Oberfläche. Durch diese gleichmäßige Verteilung des Gettermaterials in der Anpassungsschicht ist genügend Gettermaterial zur Aufnahme von Sauerstoff vorhanden. Zusätzlich wird die Kristallinität der Anpassungsschicht optimal auf die leitfähige Schicht übertragen, da die Oberfläche der Anpassungsschicht nicht von einer Blockerschicht verdeckt ist. Die erfindungsgemäße elektrisch leitfähige Beschichtung besitzt somit im Vergleich zum Stand der Technik eine bei gleicher Oxidationsstabilität erhöhte Leitfähigkeit.
Das Gettermaterial kann des Weiteren Nickel, Chrom, Aluminium und/oder Legierungen davon enthalten.
Zur Erhöhung der Gesamttransmission und/oder zur Verringerung des Flächenwiderstands kann die transparente Scheibe mit elektrisch leitfähiger Beschichtung einer Temperaturbehandlung, beispielsweise bei einer Temperatur von 500 °C bis 700 °C, unterzogen werden.
Es hat sich gezeigt, dass die erfindungsgemäße elektrisch leitfähige Beschichtung einer solchen Temperaturbehandlung unterzogen werden kann, ohne dass die Beschichtung durch Oxidation beschädigt wird. Die erfindungsgemäße transparente Scheibe kann zudem konvex oder konkav gebogen werden, ohne dass die Beschichtung durch Oxidation beschädigt wird. Das sind große Vorteile der erfindungsgemäßen elektrisch leitfähigen Beschichtung.
Bevorzugt enthält die untere Anpassungsschicht und/oder die obere Anpassungsschicht das Gettermaterial in einer Konzentration von 1 Gew.-% bis 10 Gew.-%, bevorzugt 2 Gew.-% bis 10 Gew.-%, besonders bevorzugt 3 Gew.-% bis 10 Gew.-%, ganz besonders bevorzugt 3 Gew.-% bis 7 Gew.-%, insbesondere 4 Gew.-% bis 6 Gew.-%. Im Konzentrationsbereich oberhalb von 3 Gew.-% ist dabei ein besonders guter Schutz der elektrisch leitfähigen Schichten vor Oxidation zu beobachten.
Bevorzugt enthält das Gettermaterial Titan. Die elektrisch leitfähige Beschichtung weist zwei bis fünf funktionelle Schichten auf.
In einer bevorzugten Ausführung der Erfindung weist die elektrisch leitfähige Beschichtung drei funktionelle Schichten auf. Die Herstellung einer elektrisch leitfähigen Beschichtung mit vier oder mehr elektrisch leitfähigen Schichten ist technisch aufwendig und kostenintensiv. Aufgrund der verbesserten Leitfähigkeit des erfindungsgemäßen funktionellen Schichtaufbaus wird jedoch auch mit drei funktionellen Schichten eine ausreichend hohe Heizleistung erzielt.
In einer weiteren bevorzugten Ausführungsform weist die elektrisch leitfähige Beschichtung vier funktionelle Schichten auf. Da im erfindungsgemäßen Verfahren die Anpassungsschicht und das Gettermaterial aus einem gemeinsamen Target, das beide Komponenten enthält, abgeschieden werden, ergibt sich in der Beschichtungsanlage ein freier Kathodenplatz. Dieser Kathodenplatz beherbergt in einer Anlage nach dem Stand der Technik das Target zur Abscheidung der Blockerschicht. Bei Freiwerden dieses Kathodenplatzes kann dort ein weiteres Target zur Abscheidung einer vierten elektrisch leitfähigen Schicht angebracht werden. Dadurch wird die Herstellung einer elektrisch leitfähigen Beschichtung mit vier funktionellen Schichten bei gleicher Anlagengröße wesentlich vereinfacht und wesentlich wirtschaftlicher.
Die Schicht optisch hochbrechenden Materials weist bevorzugt einen Brechungsindex n von 2,1 bis 2,5 auf, besonders bevorzugt von 2,1 bis 2,3.
Die Schicht optisch hochbrechenden Materials enthält bevorzugt zumindest ein Silizium- Metall-Mischnitrid, besonders bevorzugt Silizium-Zirkonium-Mischnitrid. Das ist besonders vorteilhaft im Hinblick auf den Flächenwiderstand der elektrisch leitfähigen Beschichtung. Das Silizium-Zirkonium-Mischnitrid weist bevorzugt Dotierungen auf. Die Schicht optisch hochbrechenden Materials kann beispielsweise ein aluminium-dotiertes Silizium-Zirkonium- Mischnitrid (SiZrNx:AI) enthalten.
Das Silizium-Zirkonium-Mischnitrid wird bevorzugt mittels magnetfeldunterstützter Kathodenzerstäubung mit einem Target abgeschieden, welches von 40 Gew.-% bis 70 Gew.-% Silizium, von 30Gew.-% bis 60 Gew.-% Zirkonium und von 0 Gew.-% bis 10 Gew.-% Aluminium sowie herstellungsbedingte Beimengungen enthält. Das Target enthält besonders bevorzugt von 45 Gew.-% bis 60 Gew.-% Silizium, von 35 Gew.-% bis 55 Gew.-% Zirkonium und von 3 Gew.-% bis 8 Gew.-% Aluminium sowie herstellungsbedingte Beimengungen. Die Abscheidung des Silizium-Zirkonium-Mischnitrids erfolgt bevorzugt unter Zugabe von Stickstoff als Reaktionsgas während der Kathodenzerstäubung.
Die Schicht optisch hochbrechenden Materials kann aber auch beispielsweise zumindest Silizium-Aluminium-Mischnitrid, Silizium-Hafnium-Mischnitrid oder Silizium-Titan-Mischnitrid enthalten. Die Schicht optisch hochbrechenden Materials kann alternativ beispielsweise MnO, W03, Nb205, Bi203, Ti02, Zr3N4 und/oder AIN enthalten.
Die Schichtdicke jeder Schicht optisch hochbrechenden Materials, die zwischen zwei elektrisch leitfähigen Schichten angeordnet ist, beträgt bevorzugt von 35 nm bis 70 nm, besonders bevorzugt von 45 nm bis 60 nm. In diesem Bereich für die Schichtdicke werden besonders vorteilhafte Flächenwiderstände der elektrisch leitfähigen Beschichtung und besonders gute optische Eigenschaften der transparenten Scheibe erreicht. Eine Schicht optisch hochbrechenden Materials ist im Sinne der Erfindung zwischen zwei elektrisch leitfähigen Schichten angeordnet, wenn zumindest eine elektrisch leitfähige Schicht oberhalb der Schicht optisch hochbrechenden Materials und wenn zumindest eine elektrisch leitfähige Schicht unterhalb der Schicht optisch hochbrechenden Materials angeordnet ist. Die Schicht optisch hochbrechenden Materials steht aber erfindungsgemäß nicht in direktem Kontakt zu den benachbarten elektrisch leitfähigen Schichten.
Die Schichtdicke der untersten Schicht optisch hochbrechenden Materials beträgt bevorzugt von 20 nm bis 40 nm. Damit werden besonders gute Ergebnisse erzielt.
In einer vorteilhaften Ausgestaltung der Erfindung ist oberhalb der obersten funktionellen Schicht eine Abdeckschicht angeordnet. Die Abdeckschicht schützt die darunter angeordneten Schichten vor Korrosion. Die Abdeckschicht ist bevorzugt dielektrisch. Die Abdeckschicht kann beispielsweise Siliziumnitrid und/oder Zinnoxid enthalten.
Die Abdeckschicht enthält bevorzugt zumindest ein optisch hochbrechendes Material mit einem Brechungsindex größer oder gleich 2,1 . Die Abdeckschicht enthält besonders bevorzugt zumindest ein Silizium-Metall-Mischnitrid, insbesondere Silizium-Zirkonium- Mischnitrid, wie Aluminium-dotiertes Silizium-Zirkonium-Mischnitrid. Das ist besonders vorteilhaft im Hinblick auf die optischen Eigenschaften der erfindungsgemäßen transparenten Scheibe. Die Abdeckschicht kann aber auch andere Silizium-Metall- Mischnitride enthalten, beispielsweise Silizium-Aluminium-Mischnitrid, Silizium-Hafnium- Mischnitrid oder Silizium-Titan-Mischnitrid. Die Abdeckschicht kann alternativ auch beispielsweise MnO, W03, Nb205, Bi203, Ti02, Zr3N4 und/oder AIN enthalten. Die Schichtdicke der Abdeckschicht beträgt bevorzugt von 20 nm bis 40 nm. Damit werden besonders gute Ergebnisse erzielt.
Jede funktionelle Schicht der elektrisch leitfähigen Beschichtung umfasst erfindungsgemäß zumindest eine Glättungsschicht. Die Glättungsschicht ist unterhalb der ersten Anpassungsschicht angeordnet, bevorzugt zwischen der Schicht optisch hochbrechenden Materials und der ersten Anpassungsschicht. Die Glättungsschicht steht bevorzugt in direktem Kontakt zur ersten Anpassungsschicht. Die Glättungsschicht bewirkt eine Optimierung, insbesondere Glättung der Oberfläche für eine anschließend oberhalb aufgebrachte elektrisch leitfähige Schicht. Eine auf eine glattere Oberfläche abgeschiedene elektrisch leitfähige Schicht weist einen höheren Transmissionsgrad bei einem gleichzeitig niedrigeren Flächenwiderstand auf.
Die Glättungsschicht enthält zumindest ein nichtkristallines Oxid. Das Oxid kann amorph oder teilamorph (und damit teilkristallin) sein, ist aber nicht vollständig kristallin. Die nichtkristalline Glättungsschicht weist eine geringe Rauheit auf und bildet somit eine vorteilhaft glatte Oberfläche für die oberhalb der Glättungsschicht aufzubringenden Schichten. Die nichtkristalline Glättungsschicht bewirkt weiter eine verbesserte Oberflächenstruktur der direkt oberhalb der Glättungsschicht abgeschiedenen Schicht, welche bevorzugt die erste Anpassungsschicht ist. Die Glättungsschicht kann beispielsweise zumindest ein Oxid eines oder mehrerer der Elemente Zinn, Silizium, Titan, Zirkonium, Hafnium, Zink, Gallium und Indium enthalten.
Die Glättungsschicht enthält bevorzugt ein nichtkristallines Mischoxid. Die Glättungsschicht enthält ganz besonders bevorzugt ein Zinn-Zink-Mischoxid. Das Mischoxid kann Dotierungen aufweisen. Die Glättungsschicht kann beispielsweise ein Antimon-dotiertes Zinn-Zink- Mischoxid (SnZnOx:Sb) enthalten. Das Mischoxid weist bevorzugt einen unterstöchiometrischen Sauerstoffgehalt auf. Ein Verfahren zur Herstellung von Zinn-Zink- Mischoxid-Schichten durch reaktive Kathodenzerstäubung ist beispielsweise aus DE 198 48 751 C1 bekannt. Das Zinn-Zink-Mischoxid wird bevorzugt mit einem Target abgeschieden, welches von 25 Gew. % bis 80 Gew. % Zink, von 20 Gew. % bis 75 Gew. % Zinn und von 0 Gew. % bis 10 Gew. % Antimon sowie herstellungsbedingte Beimengungen enthält. Das Target enthält besonders bevorzugt von 45 Gew. % bis 75 Gew. % Zink, von 25 Gew. % bis 55 Gew. % Zinn und von 1 Gew. % bis 5 Gew. % Antimon sowie herstellungsbedingte Beimengungen anderer Metalle. Die Abscheidung des Zinn-Zink-Mischoxids erfolgt unter Zugabe von Sauerstoff als Reaktionsgas während der Kathodenzerstäubung. Die Schichtdicke einer Glättungsschicht beträgt bevorzugt von 3 nm bis 20 nm besonders bevorzugt von 4 nm bis 12 nm. Die Glättungsschicht weist bevorzugt einen Brechungsindex von kleiner als 2,2 auf.
Die elektrisch leitfähige Schicht enthält bevorzugt zumindest ein Metall, beispielsweise Gold oder Kupfer, oder eine Legierung, besonders bevorzugt Silber oder eine silberhaltige Legierung. Die elektrisch leitfähige Schicht kann aber auch andere, dem Fachmann bekannte elektrisch leitfähige Materialen enthalten.
In einer vorteilhaften Ausgestaltung der Erfindung enthält die elektrisch leitfähige Schicht mindestens 90 Gew.-% Silber, bevorzugt mindestens 99,9 Gew.-% Silber. Die elektrisch leitfähige Schicht wird bevorzugt mit gängigen Verfahren zur Schichtabscheidung von Metallen, beispielsweise durch Vakuumverfahren wie die magnetfeldunterstützte Kathodenzerstäubung aufgebracht.
Die elektrisch leitfähige Schicht weist bevorzugt eine Schichtdicke von 8 nm bis 25 nm, besonders bevorzugt von 10 nm bis 20 nm auf. Das ist besonders vorteilhaft im Hinblick auf die Transparenz und den Flächenwiderstand der elektrisch leitfähigen Schicht.
Die Gesamtschichtdicke aller elektrisch leitfähigen Schichten beträgt erfindungsgemäß von 32 nm bis 75 nm. In diesem Bereich für die Gesamtdicke aller elektrisch leitfähigen Schichten wird bei für Fahrzeugscheiben, insbesondere Windschutzscheiben typischen Abständen h zwischen zwei Sammelleitern und einer Betriebsspannung U im Bereich von 12 V bis 15 V vorteilhaft eine ausreichend hohe spezifische Heizleistung P und gleichzeitig eine ausreichend hohe Transmission erreicht. Zu geringere Gesamtschichtdicken aller elektrisch leitfähigen Schichten ergeben einen zu hohen Flächenwiderstand RQuadrat und damit eine zu geringe spezifische Heizleistung P. Zu große Gesamtschichtdicken aller elektrisch leitfähigen Schichten verringern die Transmission durch die Scheibe zu stark, so dass die Erfordernisse an die Transmission von Fahrzeugscheiben nach ECE R 43 nicht erfüllt werden. Es hat sich gezeigt, dass besonders gute Ergebnisse mit einer Gesamtschichtdicke aller elektrisch leitfähigen Schichten von 50 nm bis 60 nm, insbesondere von 51 nm bis 58 nm erzielt werden. Das ist besonders vorteilhaft im Hinblick auf den Flächenwiderstand der elektrisch leitfähigen Beschichtung und die Transmission der transparenten Scheibe.
Die untere Anpassungsschicht und/oder die obere Anpassungsschicht enthält bevorzugt Zinkoxid ZnCvg mit 0 < δ < 0,01 . Das Zinkoxid wird bevorzugt unterstöchiometrisch bezüglich des Sauerstoffs abgeschieden um eine Reaktion von überschüssigem Sauerstoff mit der silberhaltigen leitfähigen Schicht sowie mit dem Gettermaterial zu vermeiden. Neben Zinkoxid können auch weitere keramische Bestandteile in den Anpassungsschichten enthalten sein. Bevorzugt werden weitere Oxide, beispielsweise Aluminiumoxid, zugefügt. Die Zinkoxid-Schicht wird bevorzugt durch magnetfeldunterstützte Kathodenzerstäubung abgeschieden. Die untere Anpassungsschicht und/oder die obere Anpassungsschicht enthält das Gettermaterial. Mindestens eine Anpassungsschicht innerhalb jeder funktionellen Schicht umfasst das Gettermaterial. Die zweite Anpassungsschicht der funktionellen Schicht kann optional ein Gettermaterial enthalten.
Das Target zur Abscheidung einer Anpassungsschicht mit Gettermaterial enthält 90 Gew.-% bis 99 Gew.-% zinkoxidbasierte Keramik und 1 Gew.-% bis 10 Gew.-% des Gettermaterials, bevorzugt 90 Gew.-% bis 98 Gew.-% zinkoxidbasierte Keramik und 2 Gew.-% bis 10 Gew.-% des Gettermaterials, besonders bevorzugt 90 Gew.-% bis 97 Gew.-% zinkoxidbasierte Keramik und 3 Gew.-% bis 10 Gew.-% des Gettermaterials, ganz besonders bevorzugt 93 Gew.-% bis 97 Gew.-% zinkoxidbasierte Keramik und 3 Gew.-% bis 7 Gew.-% des Gettermaterials, insbesondere 94 Gew.-% bis 96 Gew.-% zinkoxidbasierte Keramik und 4 Gew.-% bis 6 Gew.-% des Gettermaterials. Diese zinkoxidbasierte Keramik kann ihrerseits wiederum weitere oxidische Bestandteile, beispielsweise Aluminiumoxid, enthalten. In einer bevorzugten Ausführungsform enthält die zinkoxidbasierte Keramik 85 Gew.-% bis 100 Gew.-% Zinkoxid, besonders bevorzugt 95 Gew.-% bis 99 Gew.-% Zinkoxid sowie 1 Gew.-% bis 5 Gew.-% Aluminiumoxid. Ferner können herstellungsbedingte Beimengungen enthalten sein. Bevorzugt wird Titan als Gettermaterial verwendet. Bei Abscheidung einer Anpassungsschicht ohne Gettermaterial wird bevorzugt ein Target enthaltend 85 Gew.-% bis 100 Gew.-% Zinkoxid sowie herstellungsbedingte Beimengungen eingesetzt. Besonders bevorzugt enthält das Target 85 Gew.-% bis 99 Gew.-% Zinkoxid und 1 Gew.-% bis 15 Gew.-% Aluminiumoxid, insbesondere 95 Gew.-% bis 99 Gew.-% Zinkoxid und 1 Gew.-% bis 5 Gew.-% Aluminiumoxid sowie jeweils herstellungsbedingte Beimengungen. Die Abscheidung der oberen Anpassungsschicht und der unteren Anpassungsschicht erfolgt bevorzugt durch magnetfeldunterstützte Kathodenzerstäubung unter Verwendung eines Inertgases, beispielsweise Argon oder Krypton. Anpassungsschichten, die kein Gettermaterial enthalten können alternativ auch mittels metallischer Targets unter Zugabe von Sauerstoff als Reaktionsgas abgeschieden werden, wie nach dem Stand der Technik hinlänglich bekannt und beispielsweise in EP 2444381 A1 offenbart.
Die Schichtdicken der unteren Anpassungsschicht und der oberen Anpassungsschicht betragen bevorzugt von 3 nm bis 20 nm besonders bevorzugt von 4 nm bis 12 nm. Sowohl die obere Anpassungsschicht als auch die untere Anpassungsschicht können ein Gettermaterial enthalten, wobei bevorzugt mindestens die untere Anpassungsschicht ein Gettermaterial umfasst. Die untere Anpassungsschicht mit Gettermaterial befindet sich unmittelbar unterhalb der elektrisch leitfähigen Schicht und dient insbesondere zur Stabilisierung der elektrisch leitfähigen Schicht gegen Oxidation. Dadurch verbessert sich die optische Qualität der elektrisch leitfähigen Beschichtung. Die obere Anpassungsschicht ist unmittelbar oberhalb der elektrisch leitfähigen Schicht aufgebracht.
Das transparente Substrat enthält bevorzugt Glas, besonders bevorzugt Flachglas, Floatglas, Quarzglas, Borosilikatglas, Kalk-Natron-Glas oder klare Kunststoffe, vorzugsweise starre klare Kunststoffe, insbesondere Polyethylen, Polypropylen, Polycarbonat, Polymethylmethacrylat, Polystyrol, Polyamid, Polyester, Polyvinylchlorid und/oder Gemische davon. Beispiele geeigneter Gläser sind aus DE 697 31 268 T2, Seite 8, Absatz [0053], bekannt.
Die Dicke des transparenten Substrats kann breit variieren und so hervorragend den Erfordernissen im Einzelfall angepasst werden. Vorzugsweise werden Scheiben mit den Standardstärken von 1 ,0 mm bis 25 mm und bevorzugt von 1 ,4 mm bis 2,6 mm verwendet. Die Größe des transparenten Substrats kann breit variieren und richtet sich nach der erfindungsgemäßen Verwendung. Das transparente Substrat weist beispielsweise im Fahrzeugbau und Architekturbereich übliche Flächen von 200 cm2 bis zu 4 m2 auf.
Das transparente Substrat kann eine beliebige dreidimensionale Form aufweisen. Vorzugsweise hat die dreidimensionale Form keine Schattenzonen, so dass sie beispielsweise durch Kathodenzerstäubung beschichtet werden kann. Das transparente Substrat ist bevorzugt plan oder leicht oder stark in einer Richtung oder in mehreren Richtungen des Raumes gebogen. Das transparente Substrat kann farblos oder gefärbt sein.
In einer vorteilhaften Ausgestaltung der Erfindung ist das transparente Substrat über zumindest eine Laminierfolie mit einer zweiten Scheibe zu einer Verbundscheibe verbunden. Die erfindungsgemäße elektrisch leitfähige Beschichtung ist bevorzugt auf die der Laminierfolie zugewandten Oberfläche des transparenten Substrats aufgebracht. Dadurch wird die elektrisch leitfähige Beschichtung vorteilhaft vor Beschädigungen und Korrosion geschützt.
Die Verbundscheibe weist bevorzugt eine Gesamttransmission von größer 70 % auf. Die Laminierfolie enthält bevorzugt thermoplastische Kunststoffe, beispielsweise Polyvinylbutyral (PVB), Ethylenvinylacetat (EVA), Polyurethan (PU), Polyethylenterephthalat (PET) oder mehrere Schichten davon, bevorzugt mit Dicken von 0,3 mm bis 0,9 mm.
Die zweite Scheibe enthält bevorzugt Glas, besonders bevorzugt Flachglas, Floatglas, Quarzglas, Borosilikatglas, Kalk-Natron-Glas oder klare Kunststoffe, vorzugsweise starre klare Kunststoffe, insbesondere Polyethylen, Polypropylen, Polycarbonat, Polymethylmethacrylat, Polystyrol, Polyamid, Polyester, Polyvinylchlorid und/oder Gemische davon. Die zweite Scheibe weist bevorzugt eine Dicke von 1 ,0 mm bis 25 mm und besonders bevorzugt von 1 ,4 mm bis 2,6 mm auf.
Die elektrisch leitfähige Beschichtung erstreckt sich bevorzugt über die gesamte Oberfläche des transparenten Substrats, abzüglich eines umlaufenden rahmenförmigen beschichtungsfreien Bereichs mit einer Breite von 2 mm bis 20 mm, bevorzugt von 5 mm bis 10 mm. Der beschichtungsfreie Bereich wird bevorzugt durch die Laminierfolie oder einen Acrylatkleber als Dampfdiffusionssperre hermetisch versiegelt. Durch die Dampfdiffusionssperre wird die korrosionsempfindliche elektrisch leitfähige Beschichtung vor Feuchtigkeit und Luftsauerstoff geschützt. Ist die Verbundscheibe als Fahrzeugscheibe, beispielsweise als Windschutzscheibe vorgesehen, so bewirkt der umlaufende beschichtungsfreie Bereich zudem eine elektrische Isolierung zwischen der spannungsführenden Beschichtung und der Fahrzeugkarosserie.
Das transparente Substrat kann in zumindest einem weiteren Bereich beschichtungsfrei sein, der beispielsweise als Datenübertragungsfenster oder Kommunikationsfenster dient. Die transparente Scheibe ist in dem weiteren beschichtungsfreien Bereich für elektromagnetische und insbesondere infrarote Strahlung durchlässig.
Die elektrisch leitfähige Beschichtung kann direkt auf der Oberfläche des transparenten Substrats aufgebracht sein. Alternativ kann die elektrisch leitfähige Beschichtung auf eine Trägerfolie aufgebracht sein, die zwischen zwei Laminierfolien eingebettet ist. Die Trägerfolie enthält bevorzugt ein thermoplastisches Polymer, insbesondere Polyvinylbutyral (PVB), Ethylenvinylacetat (EVA), Polyurethan (PU), Polyethylenterephthalat (PET) oder Kombinationen davon.
Das transparente Substrat kann beispielsweise auch mit einer zweiten Scheibe über Abstandshalter zu einer Isolierverglasung verbunden sein. Das transparente Substrat kann auch mit mehr als einer weiteren Scheibe über Laminierfolien und/oder Abstandshalter verbunden sein. Ist das transparente Substrat mit einer oder mit mehreren weiteren Scheiben verbunden, so kann eine oder mehrere dieser weiteren Scheiben ebenfalls eine elektrisch leitfähige Beschichtung aufweisen.
In einer besonders vorteilhaften Ausführungsform ist die elektrisch leitfähige Beschichtung mit geeigneten Mitteln zum Anlegen einer Spannung ausgestattet und dadurch beheizbar. Alternativ kann die elektrisch leitfähige Beschichtung auch unbeheizt eingesetzt werden, beispielsweise zur Abschirmung von IR-Strahlung, wodurch die Erwärmung des Fahrzeuginnenraums durch direkte Sonneneinstrahlung verringert wird.
Bevorzugt ist die elektrisch leitfähige Beschichtung über Sammelleiter mit einer Spannungsquelle verbunden und eine an die elektrisch leitfähige Beschichtung angelegte Spannung weist einen Wert von 12 V bis 15 V auf. Die Sammelleiter, sogenannte bus bars, dienen der Übertragung elektrischer Leistung. Beispiele geeigneter Sammelleiter sind aus DE 103 33 618 B3 und EP 0 025 755 B1 bekannt.
Die Sammelleiter werden vorteilhaft durch Aufdrucken einer leitfähigen Paste hergestellt. Wird das transparente Substrat nach Aufbringen der elektrisch leitfähigen Beschichtung gebogen, so wird die leitfähige Paste bevorzugt vor dem Biegen und/oder beim Biegen des transparenten Substrats eingebrannt. Die leitfähige Paste enthält bevorzugt Silber-Partikel und Glasfritten. Die Schichtdicke der eingebrannten leitfähigen Paste beträgt bevorzugt von 5 μηι bis 20 μηι.
In einer alternativen Ausgestaltung werden dünne und schmale Metallfolienstreifen oder Metalldrähte als Sammelleiter verwendet, die bevorzugt Kupfer und/oder Aluminium enthalten, insbesondere werden Kupferfolienstreifen mit einer Dicke von bevorzugt 10 μηι bis 200 μηι, beispielsweise etwa 50 μηι verwendet. Die Breite der Kupferfolienstreifen beträgt bevorzugt 1 mm bis 10 mm. Der elektrische Kontakt zwischen elektrisch leitfähiger Beschichtung und Sammelleiter kann beispielsweise durch Auflöten oder Kleben mit einem elektrisch leitfähigen Kleber hergestellt werden. Ist das transparente Substrat Teil eines Verbundglases, so können die Metallfolienstreifen oder Metalldrähte beim Zusammenlegen der Verbundschichten auf die elektrisch leitfähige Beschichtung aufgelegt werden. Im späteren Autoklavprozess wird durch Einwirkung von Wärme und Druck ein sicherer elektrischer Kontakt zwischen den Sammelleitern und der Beschichtung erreicht. Als Zuleitung zur Kontaktierung von Sammelleitern im Innern von Verbundscheiben werden im Fahrzeugbereich üblicherweise Folienleiter verwendet. Beispiele für Folienleiter werden in DE 42 35 063 A1 , DE 20 2004 019 286 U1 und DE 93 13 394 U1 beschrieben.
Flexible Folienleiter, mitunter auch Flachleiter oder Flachbandleiter genannt, bestehen bevorzugt aus einem verzinnten Kupferband mit einer Dicke von 0,03 mm bis 0,1 mm und einer Breite von 2 mm bis 16 mm. Kupfer hat sich für solche Leiterbahnen bewährt, da es eine gute elektrische Leitfähigkeit sowie eine gute Verarbeitbarkeit zu Folien besitzt. Gleichzeitig sind die Materialkosten niedrig. Es können auch andere elektrisch leitende Materialien verwendet werden, die sich zu Folien verarbeiten lassen. Beispiele hierfür sind Aluminium, Gold, Silber oder Zinn und Legierungen davon.
Das verzinnte Kupferband ist zur elektrischen Isolation und zur Stabilisierung auf ein Trägermaterial aus Kunststoff aufgebracht oder beidseitig mit diesem laminiert. Das Isolationsmaterial enthält in der Regel eine 0,025 mm bis 0,05 mm dicken Folie auf Polyimid- Basis. Andere Kunststoffe oder Materialien mit den erforderlichen isolierenden Eigenschaften können ebenfalls verwendet werden. In einem Folienleiterband können sich mehrere voneinander elektrisch isolierte, leitfähige Schichten befinden.
Folienleiter, die sich zur Kontaktierung von elektrisch leitfähigen Schichten in Verbundscheiben eignen, weisen lediglich eine Gesamtdicke von 0,3 mm auf. Derart dünne Folienleiter können ohne Schwierigkeiten zwischen den einzelnen Scheiben in der Laminierfolie eingebettet werden.
Alternativ können auch dünne Metalldrähte als Zuleitung verwendet werden. Die Metalldrähte enthalten insbesondere Kupfer, Wolfram, Gold, Silber oder Aluminium oder Legierungen mindestens zweier dieser Metalle. Die Legierungen können auch Molybdän, Rhenium, Osmium, Iridium, Palladium oder Platin enthalten.
Die Erfindung umfasst weiter ein Verfahren zur Herstellung einer erfindungsgemäßen transparenten Scheibe mit elektrisch leitfähiger Beschichtung, wobei mindestens zwei funktionelle Schichten nacheinander auf ein transparentes Substrat aufgebracht werden und zum Aufbringen jeder funktionellen Schicht nacheinander zumindest
a) eine Schicht optisch hochbrechenden Materials mit einem Brechungsindex größer oder gleich 2,1 ,
b) eine Glättungsschicht, die zumindest ein nichtkristallines Oxid enthält, c) eine untere Anpassungsschicht, d) eine elektrisch leitfähige Schicht und
e) eine obere Anpassungsschicht
aufgebracht werden und wobei die untere Anpassungsschicht und/oder die obere Anpassungsschicht gleichzeitig mit einem darin enthaltenen Gettermaterial aufgebracht wird.
Die einzelnen Schichten werden durch an sich bekannte Verfahren, beispielsweise durch magnetfeldunterstützte Kathodenzerstäubung abgeschieden. Die Kathodenzerstäubung erfolgt in einer Schutzgasatmosphäre, beispielsweise aus Argon oder Krypton, beziehungsweise in einer Reaktivgasatmosphäre, beispielsweise durch Zugabe von Sauerstoff oder Stickstoff.
Die obere Anpassungsschicht und/oder die untere Anpassungsschicht werden sofern sie ein Gettermaterial enthalten durch magnetfeldunterstützte Kathodenzerstäubung unter Verwendung eines Inertgases abgeschieden. Als Target werden dabei keramische Targets verwendet. In einer bevorzugten Ausführungsform wird ein zinkoxidbasiertes keramisches Target verwendet, das mit einem Gettermaterial, bevorzugt mit Titan, dotiert ist. Metallische Targets sind im erfindungsgemäßen Verfahren zur Abscheidung von Anpassungsschichten mit Gettermaterial nicht verwendbar, da diese zur Erzeugung einer keramischen Schicht, wie beispielsweise Zinkoxid, in Gegenwart von Sauerstoff abgeschieden werden müssen und ein im Target enthaltenes Gettermaterial dabei oxidiert würde. Bei Einsatz eines keramischen Targets liegt Zink bereits in der oxidierten Form, als Zinkoxid vor, so dass dieses mit Argon oder Krypton als Inertgas abgeschieden werden kann. Das im Target enthaltende Gettermaterial, beispielsweise Titan, wird dabei nicht oxidiert.
Die obere Anpassungsschicht und/oder die obere Anpassungsschicht werden bevorzugt durch Kathodenstrahlzerstäubung eines keramischen Targets enthaltend 1 Gew.-% bis 10 Gew.-%, bevorzugt 2 Gew.-% bis 8 Gew.-%, besonders bevorzugt 3 Gew.-% bis 7 Gew.-% des Gettermaterials abgeschieden. Das keramische Target ist dabei vorzugsweise zinkoxid- basiert. In einer besonders bevorzugten Ausführungsform enthält die zinkoxidbasierte Keramik dabei 95 Gew.-% bis 99 Gew.-% ZnO und 1 Gew.-% bis 5 Gew.-% Al203. Diese zinkoxidbasierte Keramik bildet mit einem Anteil von 90 Gew.-% bis 100 Gew.-% den Hauptbestandteil des Targets zur Abscheidung der Anpassungsschichten. Soll die resultierende Anpassungsschicht ein Gettermaterial enthalten, so enthält das zu ihrer Abscheidung verwendete Target 90 Gew.-% bis 99 Gew.-% der zinkoxidbasierten Keramik sowie 1 Gew.-% bis 10 Gew.-% des Gettermaterials, bevorzugt 92 Gew.-% bis 98 Gew.-% der zinkoxidbasierten Keramik und 2 Gew.-% bis 8 Gew.-% des Gettermaterials, besonders bevorzugt 93 Gew.-% bis 97 Gew.-% der zinkoxidbasierten Keramik und 3 Gew.-% bis 7 Gew.-% des Gettermaterials.
Bevorzugt werden die erfindungsgemäßen Anpassungsschichten mit Gettermaterial bei einem Druck von 0,5 μbar bis 5 μbar unter Verwendung einer gepulsten Gleichspannungsquelle mit Argon als Inertgas abgeschieden. Besonders bevorzugt erfolgt die Abscheidung durch Multifrequenz-Kathodenzerstäubung bei 25 kHz bis 50 kHz unter Verwendung von zwei Targets, die während des Sputtervorgangs über eine entgegengesetzte periodisch wechselnde Ladung verfügen.
Die Schichtdicken der einzelnen Schichten mit den gewünschten Eigenschaften hinsichtlich Transmission, Flächenwiderstand und Farbwerten ergeben sich für den Fachmann in einfacher Weise durch Simulationen im Bereich der oben angegebenen Schichtdicken.
In einer vorteilhaften Ausführung der Erfindung wird die elektrisch leitfähige Beschichtung mit mindestens zwei Sammelleitern verbunden, das transparente Substrat und eine zweite Scheibe auf eine Temperatur von 500 °C bis 700 <Ό erhitzt und das transparente Substrat und die zweite Scheibe mit einer Laminierfolie flächendeckend verbunden. Das Erhitzen der Scheibe kann im Rahmen eines Biegeprozesses erfolgen. Die elektrisch leitfähige Beschichtung muss insbesondere geeignet sein, den Biegeprozess und/oder den Verbundprozess ohne Beschädigungen zu überstehen. Die Eigenschaften, insbesondere der Flächenwiderstand der oben beschriebenen elektrisch leitfähigen Beschichtung verbessern sich regelmäßig durch die Erhitzung.
Die Erfindung umfasst weiter die Verwendung der erfindungsgemäßen transparenten Scheibe als Scheibe oder als Bestandteil einer Scheibe, insbesondere als Bestandteil einer Isolierverglasung oder einer Verbundscheibe, in Gebäuden oder in Fortbewegungsmitteln für den Verkehr auf dem Lande, in der Luft oder zu Wasser, insbesondere in Kraftfahrzeugen beispielsweise als Windschutzscheibe, Heckscheibe, Seitenscheibe und/oder Dachscheibe oder als Bestandteil einer Windschutzscheibe, Heckscheibe, Seitenscheibe und/oder Dachscheibe.
Im Folgenden wird die Erfindung anhand einer Zeichnung und Ausführungsbeispielen näher erläutert. Die Zeichnung ist eine schematische Darstellung und nicht maßstabsgetreu. Die Zeichnung schränkt die Erfindung in keiner Weise ein.
Es zeigen: Figur 1 einen Querschnitt durch eine Ausgestaltung der erfindungsgemäßen transparenten Scheibe mit elektrisch leitfähiger Beschichtung.
Figur 2 eine Draufsicht auf eine erfindungsgemäße transparente Scheibe als Teil einer Verbundscheibe.
Figur 3 einen Schnitt A-A' durch die Verbundscheibe gemäß Figur 2. Figur 4 ein Fließdiagramm des erfindungsgemäßen Verfahrens.
Fig. 1 zeigt einen Querschnitt durch eine Ausgestaltung der erfindungsgemäßen transparenten Scheibe mit elektrisch leitfähiger Beschichtung mit dem transparenten Substrat (1 ) und der elektrisch leitfähigen Beschichtung (2). Das Substrat (1 ) enthält Floatglas und weist eine Dicke von 2,1 mm auf. Die elektrisch leitfähige Beschichtung (2) enthält drei funktionelle Schichten (3), umfassend eine erste funktionelle Schicht (3.1 ), eine zweite funktionelle Schicht (3.2) und eine dritte funktionelle Schicht (3.3), die flächendeckend übereinander angeordnet sind. Jede funktionelle Schicht (3) umfasst
eine Schicht optisch hochbrechenden Materials (4), jeweils als erste Schicht optisch hochbrechenden Materials (4.1 ), zweite Schicht optisch hochbrechenden Materials
(4.2) und dritte Schicht optisch hochbrechenden Materials (4.3) bezeichnet, eine Glättungsschicht (5), jeweils als erste Glättungsschicht (5.1 ), zweite
Glättungsschicht (5.2) und dritte Glättungsschicht (5.3) bezeichnet,
eine untere Anpassungsschicht (6), jeweils als erste untere Anpassungsschicht (6.1 ), zweite untere Anpassungsschicht (6.2) und dritte untere Anpassungsschicht (6.3) bezeichnet,
ein Gettermaterial (10) enthalten in der ersten unteren Anpassungsschicht (6.1 ), zweiten unteren Anpassungsschicht (6.2) und dritten unteren Anpassungsschicht
(6.3) ,
eine elektrisch leitfähige Schicht (7), jeweils als erste elektrisch leitfähige Schicht (7.1 ), zweite elektrisch leitfähige Schicht (7.2) und dritte elektrisch leitfähige Schicht (7.3) bezeichnet,
eine obere Anpassungsschicht (8), jeweils als erste obere Anpassungsschicht (8.1 ), zweite obere Anpassungsschicht (8.2) und dritte obere Anpassungsschicht (8.3) bezeichnet. Die Schichten sind in der angegebenen Reihenfolge mit wachsendem Abstand zum transparenten Substrat (1 ) angeordnet. Oberhalb der dritten funktionellen Schicht (3.3) ist eine Abdeckschicht (9) angeordnet. Die genaue Schichtfolge der funktionellen Schichten (3.1 , 3.2, 3.3) mit geeigneten Materialien und beispielhaften Schichtdicken entspricht von unten nach oben auf Glas mit einer Dicke von 2,1 mm als transparentes Substrat (1 ):
aluminiumdotiertes Silizium-Zirkonium-Mischnitrid (SiZrNx:AI) als Schicht optisch hochbrechenden Materials (4) mit einer Dicke von 28 nm (4.1 ), 59 nm (4.2) oder 60 nm (4.3),
antimondotiertes Zinn-Zink-Mischoxid (SnZnOx:Sb) mit einer Dicke von 6 nm als Glättungsschichten (5),
titandotiertes Zink-Aluminium-Oxid (ZnO:AI203:Ti) mit einer Dicke von 10 nm als untere Anpassungsschichten (6) mit Gettermaterial (10),
Silberschicht mit einer Dicke von 18 nm als elektrisch leitfähige Schichten (7), Zink-Aluminium-Oxid (ZnO:AI203) mit einer Dicke von 5 nm als obere Anpassungsschichten (8).
Dabei ist die erste funktionelle Schicht (3.1 ) direkt auf dem transparenten Substrat (1 ) aufgebracht, während die zweite funktionelle Schicht (3.2) auf der ersten funktionellen Schicht und die dritte funktionelle Schicht (3.3) auf der zweiten funktionellen Schicht (3.2) angeordnet ist.
Die oberste Schicht der elektrisch leitfähigen Beschichtung (2) bildet eine Abdeckschicht (9), die auf der dritten funktionellen Schicht (3.3) aufgetragen ist. Die Abdeckschicht (9) besteht aus aluminiumdotiertem Silizium-Zirkonium-Mischnitrid (SiZrNx:AI) mit einer Schichtdicke von 40 nm.
Die einzelnen Schichten der elektrisch leitfähigen Beschichtung (2) wurden durch Kathodenstrahlzerstäubung abgeschieden. Das Target zur Abscheidung der unteren Anpassungsschichten (6) enthielt 95 Gew.-% einer zinkoxidbasierten Keramik und 5 Gew.-% Titan. Die zinkoxidbasierte Keramik enthielt dabei 98 Gew.-% ZnO und 2 Gew.-% Al203. Das Target zur Abscheidung der oberen Anpassungsschichten (8) bestand aus dieser zinkoxidbasierten Keramik enthaltend 98 Gew.-% ZnO und 2 Gew.-% Al203. Die Abscheidung der Anpassungsschichten (6, 8) erfolgte mittels Kathodenzerstäubung in Gegenwart von Argon. Das Target zur Abscheidung der Glättungsschichten (5) enthielt 68 Gew.-% Zinn, 30 Gew.-% Zink und 2 Gew.-% Antimon. Die Abscheidung erfolgte unter Zugabe von Sauerstoff als Reaktionsgas während der Kathodenzerstäubung. Das Target zur Abscheidung der Schichten optisch hochbrechenden Materials (4) sowie der Abdeckschicht (9) enthielt 52,9 Gew.-% Silizium, 43,8 Gew.-% Zirkonium und 3,3 Gew.-% Aluminium. Die Abscheidung erfolgte unter Zugabe von Stickstoff als Reaktionsgas während der Kathodenzerstäubung.
Durch die erfindungsgemäße Ausgestaltung der elektrisch leitfähigen Beschichtung (2) mit unteren Anpassungsschichten (6) enthaltend ein Gettermaterial (10) wird vorteilhaft ein im Vergleich zum Stand der Technik verringerter Flächenwiderstand und damit eine verbesserte spezifische Heizleistung erreicht. Die Kombination von unterer Anpassungsschicht (6) und Gettermaterial (10) macht die Verwendung einer zusätzlichen Blockerschicht zum Schutz der elektrisch leitfähigen Schicht vor Sauerstoff obsolet. Somit steht die untere Anpassungsschicht (6) in direktem Kontakt zur silberhaltigen elektrisch leitfähigen Schicht (7), wodurch ein kristallines Aufwachsen des Silbers gewährleistet ist. Diese verbesserte Kristallinität des Silbers führt zu der gewünschten Reduzierung des Flächenwiderstands der erfindungsgemäßen elektrisch leitfähigen Beschichtung. Die optischen Eigenschaften der erfindungsgemäßen transparenten Scheibe mit elektrisch leitfähiger Beschichtung genügen dabei den gesetzlichen Anforderungen an Verglasungen im Fahrzeugbau.
Figur 2 und Figur 3 zeigen je ein Detail einer erfindungsgemäßen transparenten Scheibe mit elektrisch leitfähiger Beschichtung (2) als Teil einer Verbundscheibe. Die Verbundscheibe ist als Windschutzscheibe eines Personenkraftwagens vorgesehen. Das transparente Substrat
(1 ) ist über eine Laminierfolie (16) mit einer zweiten Scheibe (1 1 ) verbunden. Figur 2 zeigt eine Draufsicht auf die von der Laminierfolie (16) abgewandte Oberfläche des transparenten Substrats (1 ). Das transparente Substrat (1 ) ist die dem Innenraum des Personenkraftwagens zugewandte Scheibe. Das transparente Substrat (1 ) und die zweite Scheibe (1 1 ) enthalten Floatglas und weisen eine Dicke von jeweils 2,1 mm auf. Die Laminierfolie (16) enthält Polyvinylbutyral (PVB) und weist eine Dicke von 0,76 mm auf.
Auf die zur Laminierfolie (16) hingewandte Oberfläche des transparenten Substrats (1 ) ist eine elektrisch leitfähige Beschichtung (2) aufgebracht. Die elektrisch leitfähige Beschichtung
(2) erstreckt sich über die gesamte Oberfläche des transparenten Substrats (1 ) abzüglich eines umlaufenden rahmenförmigen beschichtungsfreien Bereichs mit einer Breite b von 8 mm. Der beschichtungsfreie Bereich dient der elektrischen Isolierung zwischen der spannungsführenden elektrisch leitfähigen Beschichtung (2) und der Fahrzeugkarosserie. Der beschichtungsfreie Bereich ist durch Verkleben mit der Laminierfolie (16) hermetisch versiegelt, um die elektrisch leitfähige Beschichtung (2) vor Beschädigungen und Korrosion zu schützen. Am äußeren oberen und unteren Rand des transparenten Substrats (1 ) ist jeweils ein Sammelleiter (12) angeordnet. Die Sammelleiter (12) wurden mittels einer leitfähigen Silberpaste auf die elektrisch leitfähige Beschichtung (2) aufgedruckt und eingebrannt. Die Schichtdicke der eingebrannten Silber-Paste beträgt 15 μηι. Die Sammelleiter (12) sind elektrisch leitend mit den darunterliegenden Bereichen der elektrisch leitfähigen Beschichtung (2) verbunden.
Die Zuleitungen (15) bestehen aus verzinnten Kupferfolien mit einer Breite von 10 mm und einer Dicke von 0,3 mm. Jede Zuleitung (15) ist jeweils mit einem der Sammelleiter (12) verlötet. Die elektrisch leitfähige Beschichtung (2) ist über die Sammelleiter (12) und die Zuleitungen (15) mit einer Spannungsquelle (13) verbunden. Die Spannungsquelle (13) ist die Bordspannung von 14 V eines Kraftfahrzeugs.
Auf der zweiten Scheibe (1 1 ) ist am Rand der zur Laminierfolie (16) hingewandten Oberfläche eine opake Farbschicht mit einer Breite a von 20 mm als Abdeckdruck (14) rahmenförmig aufgebracht. Der Abdeckdruck (14) verdeckt die Sicht auf den Klebestrang, mit dem die Verbundscheibe in die Fahrzeugkarosserie eingeklebt wird. Der Abdeckdruck (14) dient gleichzeitig als Schutz des Klebers vor UV-Strahlung und damit als Schutz vor vorzeitiger Alterung des Klebers. Des Weiteren werden die Sammelleiter (12) und die Zuleitungen (15) durch den Abdeckdruck (14) verdeckt.
Figur 3 zeigt einen Schnitt entlang A-A' durch die Verbundscheibe gemäß Figur 2 im Bereich der unteren Kante. Zu sehen ist das transparente Substrat (1 ) mit der elektrisch leitfähigen Beschichtung (2), die zweite Scheibe (1 1 ), die Laminierfolie (16), ein Sammelleiter (12), eine Zuleitung (15) sowie der Abdeckdruck (14).
Figur 4 zeigt ein Fließdiagramm des erfindungsgemäßen Verfahrens. In einem ersten Schritt wird eine Schicht optisch hochbrechenden Materials auf einem transparenten Substrat abgeschieden und danach eine Glättungsschicht auf dieser aufgebracht. Auf der Glättungsschicht wird eine untere Anpassungsschicht mit Gettermaterial abgeschieden, wobei das Gettermaterial homogen in der Anpassungsschicht verteilt ist und in einem Schritt mit dieser aufgetragen wird. Auf der unteren Anpassungsschicht wird eine elektrisch leitfähige Schicht aufgebracht und darauf eine obere Anpassungsschicht. Somit ergibt sich eine erste funktionelle Schicht bestehend aus einer Schicht optisch hochbrechenden Materials, einer Glättungsschicht, einer unteren Anpassungsschicht mit Gettermaterial, einer elektrisch leitfähigen Schicht und einer oberen Anpassungsschicht. Auf diese erste funktionelle Schicht wird mindestens eine zweite funktionelle Schicht, höchstens vier weitere funktionelle Schichten, aufgetragen. Das Schichtsystem wird durch Abscheidung einer Abdeckschicht auf die oberste funktionelle Schicht abgeschlossen. Im Anschluss wird das Schichtsystem durch Anbringen eines Sammelleiters mit Zuleitung elektrisch kontaktiert. Auf die Anordnung werden eine Laminierfolie und eine zweiten Scheibe mit Abdeckdruck gelegt und die Anordnung wird zur Herstellung einer Verbundglasscheibe laminiert.
Bezugszeichenliste
1 transparentes Substrat
2 elektrisch leitfähige Beschichtung
3 funktionelle Schicht
3.1 erste funktionelle Schicht
3.2 zweite funktionelle Schicht
3.3 dritte funktionelle Schicht
4 Schicht optisch hochbrechenden Materials
4.1 erste Schicht optisch hochbrechenden Materials
4.2 zweite Schicht optisch hochbrechenden Materials
4.3 dritte Schicht optisch hochbrechenden Materials
5 Glättungsschicht
5.1 erste Glättungsschicht
5.2 zweite Glättungsschicht
5.3 dritte Glättungsschicht
6 untere Anpassungsschicht
6.1 erste untere Anpassungsschicht
6.2 zweite untere Anpassungsschicht
6.3 dritte untere Anpassungsschicht
7 elektrisch leitfähige Schicht
7.1 erste elektrisch leitfähige Schicht
7.2 zweite elektrisch leitfähige Schicht
7.3 dritte elektrisch leitfähige Schicht
8 obere Anpassungsschicht
8.1 erste obere Anpassungsschicht
8.2 zweite obere Anpassungsschicht
8.3 dritte obere Anpassungsschicht
9 Abdeckschicht
10 Gettermaterial
1 1 zweite Scheibe
12 Sammelleiter
13 Spannungsquelle
14 Abdeckdruck
15 Zuleitung
16 Laminierfolie Breite des durch den Abdeckdruck (14) abgedeckten Bereichs Breite des beschichtungsfreien Bereichs
Schnittlinie

Claims

Patentansprüche
1 . Transparente Scheibe, umfassend mindestens ein transparentes Substrat (1 ) und auf mindestens einer Oberfläche des transparenten Substrats (1 ) mindestens eine elektrisch leitfähige Beschichtung (2), wobei
die elektrisch leitfähige Beschichtung (2) mindestens zwei übereinander angeordnete funktionelle Schichten (3) aufweist und jede funktionelle Schicht (3) mindestens
eine Schicht optisch hochbrechenden Materials (4) mit einem Brechungsindex größer oder gleich 2,1 ,
oberhalb der Schicht optisch hochbrechenden Materials (4) eine Glättungsschicht (5), die zumindest ein nichtkristallines Oxid enthält, oberhalb der Glättungsschicht (5) eine untere Anpassungsschicht (6), oberhalb der unteren Anpassungsschicht (6) eine elektrisch leitfähige Schicht (7) und
oberhalb der elektrisch leitfähigen Schicht (7) eine obere
Anpassungsschicht (8) umfasst,
die untere Anpassungsschicht (6) und/oder die obere Anpassungsschicht (8) ein im gesamten Schichtquerschnitt homogen verteiltes Gettermaterial (10) aus der Gruppe bestehend aus Niob, Titan, Barium, Magnesium, Tantal, Zirconium, Thorium, Palladium, Platin und Legierungen davon enthält und
mindestens eine das Gettermaterial (10) enthaltende untere Anpassungsschicht (6) und/oder obere Anpassungsschicht (8) in direktem Kontakt zur elektrisch leitfähigen Schicht (7) steht.
2. Transparente Scheibe nach Anspruch 1 , wobei die untere Anpassungsschicht (6) und/oder die obere Anpassungsschicht (8) das Gettermaterial (10) in einer Konzentration von 1 Gew.-% bis 10 Gew.-%, bevorzugt 2 Gew.-% bis 10 Gew.-%, besonders bevorzugt 3 Gew.-% bis 10 Gew.-%, ganz besonders bevorzugt 3 Gew.-% bis 7 Gew.-%, insbesondere 4 Gew.-% bis 6 Gew.-% enthält.
3. Transparente Scheibe nach Anspruch 1 oder 2, wobei das Gettermaterial (10) Titan enthält.
4. Transparente Scheibe nach einem der Ansprüche 1 bis 3, wobei die Gesamtschichtdicke aller elektrisch leitfähigen Schichten (7) von 32 nm bis 75 nm, bevorzugt von 50 nm bis 60 nm, beträgt.
5. Transparente Scheibe nach einem der Ansprüche 1 bis 4, wobei die Schicht optisch hochbrechenden Materials (4) zumindest ein Silizium-Metall-Mischnitrid, bevorzugt ein Silizium-Zirkonium-Mischnitrid, wie aluminium-dotiertes Silizium-Zirkonium- Mischnitrid enthält und jede zwischen zwei elektrisch leitfähigen Schichten (7) angeordnete Schicht optisch hochbrechenden Materials (4) eine Dicke von 35 nm bis 70 nm, bevorzugt von 45 nm bis 60 nm aufweist.
6. Transparente Scheibe nach einem der Ansprüche 1 bis 5, wobei die Glättungsschicht (5) zumindest ein nichtkristallines Mischoxid, bevorzugt ein Zinn-Zink-Mischoxid, wie Antimon-dotiertes Zinn-Zink-Mischoxid enthält und bevorzugt eine Dicke von 3 nm bis 20 nm, besonders bevorzugt von 4 nm bis 12 nm aufweist.
7. Transparente Scheibe nach einem der Ansprüche 1 bis 6, wobei die elektrisch leitfähige Schicht (7) zumindest Silber oder eine silberhaltige Legierung enthält und bevorzugt eine Schichtdicke von 8 nm bis 25 nm, besonders bevorzugt von 10 nm bis 20 nm aufweist.
8. Transparente Scheibe nach einem der Ansprüche 1 bis 7, wobei die untere Anpassungsschicht (6) und/oder die obere Anpassungsschicht (8) Zinkoxid ZnOi-g mit 0 < δ < 0,01 enthält und bevorzugt eine Dicke von 3 nm bis 20 nm, besonders bevorzugt von 4 nm bis 12 nm aufweist.
9. Transparente Scheibe nach einem der Ansprüche 1 bis 8, wobei oberhalb der obersten funktionellen Schicht (3) eine Abdeckschicht (9) angeordnet ist und wobei die Abdeckschicht (9) bevorzugt zumindest ein optisch hochbrechendes Material mit einem Brechungsindex größer oder gleich 2,1 enthält, besonders bevorzugt ein Silizium-Metall-Mischnitrid, insbesondere Silizium-Zirkonium-Mischnitrid, wie aluminium-dotiertes Silizium-Zirkonium-Mischnitrid.
10. Transparente Scheibe nach einem der Ansprüche 1 bis 9, wobei das transparente Substrat (1 ) über zumindest eine Laminierfolie (16) mit einer zweiten Scheibe (1 1 ) zu einer Verbundscheibe verbunden ist und wobei die Gesamttransmission der Verbundscheibe bevorzugt größer 70 % beträgt.
1 1 . Verfahren zur Herstellung einer transparenten Scheibe mit elektrisch leitfähiger Beschichtung (2) nach einem der Ansprüche 1 bis 10, wobei mindestens zwei funktionelle Schichten (3) nacheinander auf ein transparentes Substrat (1 ) aufgebracht werden und zum Aufbringen jeder funktionellen Schicht (3) nacheinander zumindest
a) eine Schicht optisch hochbrechenden Materials (4) mit einem Brechungsindex größer oder gleich 2,1 ,
b) eine Glättungsschicht (5), die zumindest ein nichtkristallines Oxid enthält, c) eine untere Anpassungsschicht (6),
d) eine elektrisch leitfähige Schicht (7) und
e) eine obere Anpassungsschicht (8)
aufgebracht werden und wobei die untere Anpassungsschicht (6) und/oder die obere Anpassungsschicht (8) gleichzeitig mit einem darin enthaltenen Gettermaterial (10) aufgebracht wird.
12. Verfahren nach Anspruch 1 1 , wobei die untere Anpassungsschicht (6) und/oder die obere Anpassungsschicht (8) durch Kathodenstrahlzerstäubung eines keramischen Targets enthaltend 1 Gew.-% bis 10 Gew.-%, bevorzugt 2 Gew.-% bis 10 Gew.-%, besonders bevorzugt 3 Gew.-% bis 10 Gew.-%, ganz besonders bevorzugt 3 Gew.-% bis 7 Gew.-%, insbesondere 4 Gew.-% bis 6 Gew.-% des Gettermaterials (10) abgeschieden werden.
13. Verfahren nach Anspruch 1 1 oder 12, wobei die elektrisch leitfähige Beschichtung (2) mit mindestens zwei Sammelleitern (12) verbunden wird, das transparente Substrat (1 ) und eine zweite Scheibe (1 1 ) auf eine Temperatur von δΟΟ'Ό bis 700°C erhitzt werden und das transparente Substrat (1 ) und die zweite Scheibe (1 1 ) mit einer Laminierfolie (16) flächendeckend verbunden werden.
14. Verwendung der transparenten Scheibe nach einem der Ansprüche 1 bis 10 als Scheibe oder als Bestandteil einer Scheibe, insbesondere als Bestandteil einer Isolierverglasung oder einer Verbundscheibe, in Gebäuden oder in Fortbewegungsmitteln für den Verkehr auf dem Lande, in der Luft oder zu Wasser, insbesondere in Kraftfahrzeugen beispielsweise als Windschutzscheibe, Heckscheibe, Seitenscheibe und/oder Dachscheibe.
PCT/EP2013/075641 2012-12-17 2013-12-05 Transparente scheibe mit elektrisch leitfähiger beschichtung WO2014095388A1 (de)

Priority Applications (12)

Application Number Priority Date Filing Date Title
US14/652,105 US9855726B2 (en) 2012-12-17 2013-12-05 Transparent pane with electrically conductive coating
EA201591163A EA029914B1 (ru) 2012-12-17 2013-12-05 Прозрачное стекло с электропроводящим покрытием
CA2893624A CA2893624C (en) 2012-12-17 2013-12-05 Transparent pane with an electrically conductive coating
JP2015548345A JP6253663B2 (ja) 2012-12-17 2013-12-05 導電性コーティングを備える透明な板ガラス及びその製造方法
EP13799580.9A EP2931673B1 (de) 2012-12-17 2013-12-05 Transparente scheibe mit elektrisch leitfähiger beschichtung
BR112015011786-4A BR112015011786B1 (pt) 2012-12-17 2013-12-05 Vidraça transparente, método para produzir a vidraça transparente e uso da vidraça transparente
ES13799580T ES2813499T3 (es) 2012-12-17 2013-12-05 Cristal transparente con revestimiento eléctricamente conductor
CN201380066127.7A CN104870392B (zh) 2012-12-17 2013-12-05 具有导电涂层的透明玻璃板
PL13799580T PL2931673T3 (pl) 2012-12-17 2013-12-05 Przezroczysta szyba z powłoką przewodzącą elektrycznie
MX2015007732A MX2015007732A (es) 2012-12-17 2013-12-05 Cristal transparente con un recubrimiento electricamente conductor.
KR1020157018869A KR101767796B1 (ko) 2012-12-17 2013-12-05 전기 전도성 코팅을 갖는 투명 판유리
US15/820,300 US10464292B2 (en) 2012-12-17 2017-11-21 Transparent pane with electrically conductive coating

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP12197445.5 2012-12-17
EP12197445 2012-12-17

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US14/652,105 A-371-Of-International US9855726B2 (en) 2012-12-17 2013-12-05 Transparent pane with electrically conductive coating
US15/820,300 Continuation US10464292B2 (en) 2012-12-17 2017-11-21 Transparent pane with electrically conductive coating

Publications (1)

Publication Number Publication Date
WO2014095388A1 true WO2014095388A1 (de) 2014-06-26

Family

ID=47561134

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/075641 WO2014095388A1 (de) 2012-12-17 2013-12-05 Transparente scheibe mit elektrisch leitfähiger beschichtung

Country Status (13)

Country Link
US (2) US9855726B2 (de)
EP (1) EP2931673B1 (de)
JP (1) JP6253663B2 (de)
KR (1) KR101767796B1 (de)
CN (1) CN104870392B (de)
BR (1) BR112015011786B1 (de)
CA (1) CA2893624C (de)
EA (1) EA029914B1 (de)
ES (1) ES2813499T3 (de)
MX (1) MX2015007732A (de)
PL (1) PL2931673T3 (de)
PT (1) PT2931673T (de)
WO (1) WO2014095388A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017006029A1 (fr) * 2015-07-08 2017-01-12 Saint-Gobain Glass France Materiau muni d'un empilement a proprietes thermiques
WO2018017304A3 (en) * 2016-07-20 2018-03-01 Guardian Glass, LLC Coated article supporting high-entropy nitride and/or oxide thin film inclusive coating, and/or method of making the same
RU2755127C2 (ru) * 2016-10-28 2021-09-13 Сэн-Гобэн Гласс Франс Сдвигаемое многослойное устройство для остекления с внутренним выступом

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PT2803246T (pt) * 2012-01-10 2017-06-23 Saint Gobain Placa de vidro transparente com revestimento condutor de eletricidade
EA029914B1 (ru) * 2012-12-17 2018-05-31 Сэн-Гобэн Гласс Франс Прозрачное стекло с электропроводящим покрытием
JP6282142B2 (ja) * 2014-03-03 2018-02-21 日東電工株式会社 赤外線反射基板およびその製造方法
CN104754788B (zh) * 2015-03-25 2016-05-25 国网山东省电力公司胶州市供电公司 节能电热玻璃板
KR20190028529A (ko) * 2016-07-18 2019-03-18 쌩-고벵 글래스 프랑스 관찰자용 이미지 정보 표시를 위한 헤드업 디스플레이 시스템
US10138158B2 (en) * 2017-03-10 2018-11-27 Guardian Glass, LLC Coated article having low-E coating with IR reflecting layer(s) and high index nitrided dielectric layers
GB201714590D0 (en) 2017-09-11 2017-10-25 Pilkington Automotive Finland Oy Glazing with electrically operable light source
WO2019121522A1 (en) 2017-12-22 2019-06-27 Agc Glass Europe Coated substrates
CN108538905B (zh) * 2018-05-31 2021-03-16 武汉华星光电半导体显示技术有限公司 Oled发光器件及oled显示装置
JP7303873B2 (ja) * 2018-11-09 2023-07-05 サン-ゴバン グラス フランス p-偏光放射を用いるヘッドアップディスプレイ(HUD)のための投影設備
WO2020234594A1 (en) * 2019-05-20 2020-11-26 Pilkington Group Limited Method of reducing the emissivity of a coated glass article

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0025755B1 (de) 1979-09-08 1984-07-11 Saint Gobain Vitrage International Beheizte Scheibe mit dünner Widerstandsschicht
DE9313394U1 (de) 1992-10-17 1993-10-28 Vegla Vereinigte Glaswerke Gmbh, 52066 Aachen Autoglasscheibe aus Verbundglas mit in der Zwischenschicht eingebetteten Drähten und einem Anschlußkabel
DE4235063A1 (de) 1992-10-17 1994-04-21 Ver Glaswerke Gmbh Autoglasscheibe aus Verbundglas mit in der Zwischenschicht eingebetteten Drähten und einem Anschlußkabel
EP0803481A2 (de) * 1996-04-25 1997-10-29 Ppg Industries, Inc. Beschichtete Gegenstände mit hoher Durchlässigkeit und geringer Emission
DE19848751C1 (de) 1998-10-22 1999-12-16 Ver Glaswerke Gmbh Schichtsystem für transparente Substrate
WO2000037383A1 (en) * 1998-12-18 2000-06-29 Glaverbel Glazing panel
US6398925B1 (en) * 1998-12-18 2002-06-04 Ppg Industries Ohio, Inc. Methods and apparatus for producing silver based low emissivity coatings without the use of metal primer layers and articles produced thereby
WO2003024155A2 (en) 2001-09-07 2003-03-20 Centre Luxembourgeois De Recherches Pour Le Verre Et La Ceramique S.A. (C.R.V.C.) Heatable vehicle window with different voltages in different heatable zones
US6540884B1 (en) * 1998-08-04 2003-04-01 Pilkington Plc Coating glass
DE10333618B3 (de) 2003-07-24 2005-03-24 Saint-Gobain Sekurit Deutschland Gmbh & Co. Kg Substrat mit einer elektrisch leitfähigen Beschichtung und einem Kommunikationsfenster
DE10352464A1 (de) 2003-11-07 2005-06-23 Saint-Gobain Sekurit Deutschland Gmbh & Co. Kg Heizbare Verbundscheibe
DE202004019286U1 (de) 2004-12-14 2006-04-20 Saint-Gobain Sekurit Deutschland Gmbh & Co. Kg Flachleiter-Anschlusselement für Fensterscheiben
DE69731268T2 (de) 1996-12-12 2006-09-28 Saint-Gobain Glass France Für den Sonnenschutz und/oder zur Wärmeisolierung dienende Verglasung bestehend aus einem mit dünnen Lagen mehrfach beschichtetem Substrat
US20070020465A1 (en) 2005-07-20 2007-01-25 Thiel James P Heatable windshield
US20070082219A1 (en) 2003-11-28 2007-04-12 Saint-Gobain Glass France Transparent substrate which can be used alternatively or cumulatively for thermal control, electromagnetic armour and heated glazing
EP1849594A1 (de) * 2005-02-17 2007-10-31 Asahi Glass Company, Limited Leitfähiger laminierter körper, folie zur abschirmung von elektromagnetischen wellen für plasmaanzeige und schutzplatte für plasmaanzeige
FR2936510A1 (fr) * 2008-09-30 2010-04-02 Saint Gobain Substrat muni d'un empilement a proprietes thermiques, en particulier pour realiser un vitrage chauffant.
EP2444381A1 (de) 2010-10-19 2012-04-25 Saint-Gobain Glass France Transparente Scheibe

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5514476A (en) * 1994-12-15 1996-05-07 Guardian Industries Corp. Low-E glass coating system and insulating glass units made therefrom
JP3724936B2 (ja) * 1997-09-18 2005-12-07 セントラル硝子株式会社 低放射ガラス積層体
BE1016553A3 (fr) * 2005-03-17 2007-01-09 Glaverbel Vitrage a faible emissivite.
US7173750B2 (en) * 2005-07-01 2007-02-06 Ppg Industries Ohio, Inc. Electrochromic vision panel having a plurality of connectors
FR2893023B1 (fr) 2005-11-08 2007-12-21 Saint Gobain Substrat muni d'un empilement a proprietes thermiques
FR2925981B1 (fr) 2007-12-27 2010-02-19 Saint Gobain Substrat porteur d'une electrode, dispositif electroluminescent organique l'incorporant.
US8617716B2 (en) 2008-03-20 2013-12-31 Agc Glass Europe Film-coated glazing having a protective layer of mixed titanium oxide
JP2009242128A (ja) 2008-03-28 2009-10-22 Asahi Glass Co Ltd 透明導電ガラス基板およびその製造方法
KR20110083622A (ko) 2008-11-11 2011-07-20 아사히 가라스 가부시키가이샤 도전성 적층체 및 플라즈마 디스플레이용 보호판
BE1019905A3 (fr) * 2011-04-12 2013-02-05 Agc Glass Europe Vitrage chauffant.
PT2803246T (pt) * 2012-01-10 2017-06-23 Saint Gobain Placa de vidro transparente com revestimento condutor de eletricidade
PT2803245T (pt) * 2012-01-10 2017-05-22 Saint Gobain Placa de vidro transparente com revestimento condutor de eletricidade
EA029914B1 (ru) * 2012-12-17 2018-05-31 Сэн-Гобэн Гласс Франс Прозрачное стекло с электропроводящим покрытием

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0025755B1 (de) 1979-09-08 1984-07-11 Saint Gobain Vitrage International Beheizte Scheibe mit dünner Widerstandsschicht
DE9313394U1 (de) 1992-10-17 1993-10-28 Vegla Vereinigte Glaswerke Gmbh, 52066 Aachen Autoglasscheibe aus Verbundglas mit in der Zwischenschicht eingebetteten Drähten und einem Anschlußkabel
DE4235063A1 (de) 1992-10-17 1994-04-21 Ver Glaswerke Gmbh Autoglasscheibe aus Verbundglas mit in der Zwischenschicht eingebetteten Drähten und einem Anschlußkabel
EP0803481A2 (de) * 1996-04-25 1997-10-29 Ppg Industries, Inc. Beschichtete Gegenstände mit hoher Durchlässigkeit und geringer Emission
DE69731268T2 (de) 1996-12-12 2006-09-28 Saint-Gobain Glass France Für den Sonnenschutz und/oder zur Wärmeisolierung dienende Verglasung bestehend aus einem mit dünnen Lagen mehrfach beschichtetem Substrat
US6540884B1 (en) * 1998-08-04 2003-04-01 Pilkington Plc Coating glass
DE19848751C1 (de) 1998-10-22 1999-12-16 Ver Glaswerke Gmbh Schichtsystem für transparente Substrate
US6398925B1 (en) * 1998-12-18 2002-06-04 Ppg Industries Ohio, Inc. Methods and apparatus for producing silver based low emissivity coatings without the use of metal primer layers and articles produced thereby
WO2000037383A1 (en) * 1998-12-18 2000-06-29 Glaverbel Glazing panel
WO2003024155A2 (en) 2001-09-07 2003-03-20 Centre Luxembourgeois De Recherches Pour Le Verre Et La Ceramique S.A. (C.R.V.C.) Heatable vehicle window with different voltages in different heatable zones
DE10333618B3 (de) 2003-07-24 2005-03-24 Saint-Gobain Sekurit Deutschland Gmbh & Co. Kg Substrat mit einer elektrisch leitfähigen Beschichtung und einem Kommunikationsfenster
DE10352464A1 (de) 2003-11-07 2005-06-23 Saint-Gobain Sekurit Deutschland Gmbh & Co. Kg Heizbare Verbundscheibe
US20070082219A1 (en) 2003-11-28 2007-04-12 Saint-Gobain Glass France Transparent substrate which can be used alternatively or cumulatively for thermal control, electromagnetic armour and heated glazing
DE202004019286U1 (de) 2004-12-14 2006-04-20 Saint-Gobain Sekurit Deutschland Gmbh & Co. Kg Flachleiter-Anschlusselement für Fensterscheiben
EP1849594A1 (de) * 2005-02-17 2007-10-31 Asahi Glass Company, Limited Leitfähiger laminierter körper, folie zur abschirmung von elektromagnetischen wellen für plasmaanzeige und schutzplatte für plasmaanzeige
US20070020465A1 (en) 2005-07-20 2007-01-25 Thiel James P Heatable windshield
FR2936510A1 (fr) * 2008-09-30 2010-04-02 Saint Gobain Substrat muni d'un empilement a proprietes thermiques, en particulier pour realiser un vitrage chauffant.
EP2444381A1 (de) 2010-10-19 2012-04-25 Saint-Gobain Glass France Transparente Scheibe

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017006029A1 (fr) * 2015-07-08 2017-01-12 Saint-Gobain Glass France Materiau muni d'un empilement a proprietes thermiques
FR3038597A1 (fr) * 2015-07-08 2017-01-13 Saint Gobain Materiau muni d'un empilement a proprietes thermiques
CN107709265A (zh) * 2015-07-08 2018-02-16 法国圣戈班玻璃厂 提供有具有热性质的堆叠体的材料
US10745318B2 (en) 2015-07-08 2020-08-18 Saint-Gobain Glass France Material provided with a stack having thermal properties
CN107709265B (zh) * 2015-07-08 2021-02-09 法国圣戈班玻璃厂 提供有具有热性质的堆叠体的材料
WO2018017304A3 (en) * 2016-07-20 2018-03-01 Guardian Glass, LLC Coated article supporting high-entropy nitride and/or oxide thin film inclusive coating, and/or method of making the same
CN109715577A (zh) * 2016-07-20 2019-05-03 佳殿玻璃有限公司 支持包括高熵氮化物和/或氧化物薄膜的涂层的涂覆制品,和/或其制备方法
US10280312B2 (en) 2016-07-20 2019-05-07 Guardian Glass, LLC Coated article supporting high-entropy nitride and/or oxide thin film inclusive coating, and/or method of making the same
RU2755127C2 (ru) * 2016-10-28 2021-09-13 Сэн-Гобэн Гласс Франс Сдвигаемое многослойное устройство для остекления с внутренним выступом
US11273624B2 (en) 2016-10-28 2022-03-15 Saint-Gobain Glass France Sliding laminated glazing unit with interior projection

Also Published As

Publication number Publication date
EP2931673A1 (de) 2015-10-21
CA2893624C (en) 2017-12-19
PT2931673T (pt) 2020-09-01
ES2813499T3 (es) 2021-03-24
EA029914B1 (ru) 2018-05-31
US9855726B2 (en) 2018-01-02
BR112015011786A2 (pt) 2017-07-11
CN104870392A (zh) 2015-08-26
EA201591163A1 (ru) 2015-10-30
KR20150095865A (ko) 2015-08-21
MX2015007732A (es) 2015-09-07
EP2931673B1 (de) 2020-05-27
KR101767796B1 (ko) 2017-08-11
PL2931673T3 (pl) 2020-11-16
US20150321950A1 (en) 2015-11-12
JP6253663B2 (ja) 2017-12-27
US20180099485A1 (en) 2018-04-12
CA2893624A1 (en) 2014-06-26
US10464292B2 (en) 2019-11-05
CN104870392B (zh) 2018-07-10
JP2016508109A (ja) 2016-03-17
BR112015011786B1 (pt) 2021-09-14

Similar Documents

Publication Publication Date Title
EP2803245B1 (de) Transparente scheibe mit elektrisch leitfähiger beschichtung
EP2803246B1 (de) Transparente scheibe mit elektrisch leitfähiger beschichtung
EP2931673B1 (de) Transparente scheibe mit elektrisch leitfähiger beschichtung
EP2630098B1 (de) Transparente scheibe
EP3720701B1 (de) Verbundscheibe mit sonnenschutzbeschichtung und wärmestrahlen reflektierender beschichtung
EP3877176B1 (de) Projektionsanordnung für ein head-up-display (hud) mit p-polarisierter strahlung
DE60026157T2 (de) Verglasung
EP2591638B1 (de) Verbundscheibe mit einer elektrisch beheizbaren beschichtung
DE68917549T2 (de) Glas für Automobilscheibe.
EP3365174B1 (de) Verfahren zur herstellung einer verbundscheibe mit infrarotreflektierender beschichtung auf einer trägerfolie
EP3338367B1 (de) Scheibenanordnung mit scheibe mit low-e-beschichtung und kapazitivem schaltbereich
WO2014095152A1 (de) Scheibe mit elektrischer heizschicht
WO2017198362A1 (de) Transparente scheibe
WO2016119950A1 (de) Beheizbare laminierte seitenscheibe
EP4251417A1 (de) Verbundscheibe mit sonnenschutzbeschichtung
WO2022017707A1 (de) Projektionsanordnung für ein head-up-display (hud) mit p-polarisierter strahlung
DE202019104357U1 (de) Verbesserte Widerstandsfähigkeit von PDLC-Folien gegen Strahlung durch IR- und UV-reflektierende Beschichtungen auf Seite II einer Verbundscheibe
DE202012012625U1 (de) Scheibe mit elektrischer Kontaktierung
EP4353050A1 (de) Scheibe mit muster-förmiger funktionsbeschichtung
WO2022112242A1 (de) Verbundscheibe mit sonnenschutzbeschichtung
WO2022253584A1 (de) Verbundscheibe mit einer elektrisch leitfähigen beschichtung und mindestens einer schicht umfassend selektiv absorbierende nanopartikel
WO2023072501A1 (de) Verbundscheibe mit heizwiderstandsschicht
WO2023016757A1 (de) Beheizbare fahrzeugverglasung
WO2022136102A1 (de) Verglasung mit elektrisch beheizbarem kommunikationsfenster für sensoren und kamerasysteme
EP4370326A1 (de) Verbundscheibe mit opaken maskierungsbereich und teiltransparenter reflektierender beschichtung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13799580

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013799580

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015011786

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2893624

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 14652105

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: IDP00201503589

Country of ref document: ID

WWE Wipo information: entry into national phase

Ref document number: MX/A/2015/007732

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2015548345

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157018869

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 201591163

Country of ref document: EA

ENP Entry into the national phase

Ref document number: 112015011786

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20150521