WO2014095073A1 - Hämodiafiltrationsverfahren - Google Patents

Hämodiafiltrationsverfahren Download PDF

Info

Publication number
WO2014095073A1
WO2014095073A1 PCT/EP2013/003870 EP2013003870W WO2014095073A1 WO 2014095073 A1 WO2014095073 A1 WO 2014095073A1 EP 2013003870 W EP2013003870 W EP 2013003870W WO 2014095073 A1 WO2014095073 A1 WO 2014095073A1
Authority
WO
WIPO (PCT)
Prior art keywords
blood
frequency
hemofilter
hemodialyzer
post
Prior art date
Application number
PCT/EP2013/003870
Other languages
English (en)
French (fr)
Inventor
Ulrich TSCHULENA
Joachim Jankowski
Anselm Fabig
Carsten Müller
Original Assignee
Fresenius Medical Care Deutschland Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fresenius Medical Care Deutschland Gmbh filed Critical Fresenius Medical Care Deutschland Gmbh
Priority to BR112015014618-0A priority Critical patent/BR112015014618B1/pt
Priority to CN201380067631.9A priority patent/CN104902940B/zh
Priority to JP2015548287A priority patent/JP6514109B2/ja
Priority to EA201591149A priority patent/EA029566B1/ru
Priority to CA2895350A priority patent/CA2895350C/en
Priority to AU2013362119A priority patent/AU2013362119B2/en
Priority to US14/654,711 priority patent/US10172994B2/en
Priority to EP13818983.2A priority patent/EP2934620B1/de
Priority to KR1020157019764A priority patent/KR102211104B1/ko
Publication of WO2014095073A1 publication Critical patent/WO2014095073A1/de

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • A61M1/3621Extra-corporeal blood circuits
    • A61M1/3639Blood pressure control, pressure transducers specially adapted therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/14Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis
    • A61M1/16Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis with membranes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/34Filtering material out of the blood by passing it through a membrane, i.e. hemofiltration or diafiltration
    • A61M1/3403Regulation parameters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/34Filtering material out of the blood by passing it through a membrane, i.e. hemofiltration or diafiltration
    • A61M1/342Adding solutions to the blood, e.g. substitution solutions
    • A61M1/3424Substitution fluid path
    • A61M1/3431Substitution fluid path upstream of the filter
    • A61M1/3434Substitution fluid path upstream of the filter with pre-dilution and post-dilution
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • A61M1/3607Regulation parameters
    • A61M1/3609Physical characteristics of the blood, e.g. haematocrit, urea
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • A61M1/3607Regulation parameters
    • A61M1/3609Physical characteristics of the blood, e.g. haematocrit, urea
    • A61M1/361Physical characteristics of the blood, e.g. haematocrit, urea before treatment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • A61M1/3607Regulation parameters
    • A61M1/3609Physical characteristics of the blood, e.g. haematocrit, urea
    • A61M1/3612Physical characteristics of the blood, e.g. haematocrit, urea after treatment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • A61M1/3681Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits by irradiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2202/00Special media to be introduced, removed or treated
    • A61M2202/04Liquids
    • A61M2202/0413Blood
    • A61M2202/0445Proteins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2202/00Special media to be introduced, removed or treated
    • A61M2202/04Liquids
    • A61M2202/0496Urine
    • A61M2202/0498Urea
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/05General characteristics of the apparatus combined with other kinds of therapy
    • A61M2205/054General characteristics of the apparatus combined with other kinds of therapy with electrotherapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • A61M2205/3331Pressure; Flow
    • A61M2205/3344Measuring or controlling pressure at the body treatment site
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2230/00Measuring parameters of the user
    • A61M2230/20Blood composition characteristics
    • A61M2230/207Blood composition characteristics hematocrit

Definitions

  • the present invention relates to a device for performing a hemodiafiltration treatment under the action of an electromagnetic alternating field and / or a DC electric field.
  • the task of the healthy kidney is the elimination of end products of the metabolism (urinary substances) and toxins (uraemia toxins) from the body through the formation of urine.
  • the kidneys remove a wide range of substances of different molecular weight.
  • a review of uremic toxins has been reviewed by R. Vanholder et al. released. (Vanholder, R., et al., Kidney International, 63 (2003) 1934-1943)
  • the uremic toxins are classified into three classes based on their molecular weight. Toxins with a molecular weight below 500 daltons form the low molecular weight group.
  • the middle molecules lie in a middle range with a molecular weight between 500 and 12 000 D.
  • the middle molecules belongs for example ß 2 -Microglobulin (11800 D).
  • the third class of uremic toxins form molecules with a molecular weight of over 12,000 D.
  • a distinction is made according to the water solubility of the uremic toxins.
  • Examples of low water-soluble uremic toxins are urea, creatinine, oxalates, guanidines and uric acid.
  • uremic toxins examples include p-cresol, indoxyl sulfate, phenol, hippuric acid and homocysteine. These uremic toxins are predominantly bound to proteins in serum.
  • the uremic toxins are excreted into the urine via the kidney. However, in chronic renal failure, the uremic toxins remain in the patient's blood and must be removed by hemodialysis or peritoneal dialysis.
  • albumin acts as a binding partner of the hydrophobic uremic toxins.
  • Albumin is retained by dialysis membranes due to its molecular weight. Albumin is therefore not removed by hemodialysis.
  • the adjustment of the balance under the dialysis becomes the rate-determining step. It is too For example, after removal of the dissolved toxins from the blood, the equilibrium between free and protein-bound toxins may be re-established and a significant portion of the toxins removed if the dialysis time is long enough, but this time is not available in hemodialysis treatments.
  • dialysis procedures that also remove the protein-bound uremic toxins from the patient's blood.
  • the present invention relates to a device for hemodiafiltration with an extracorporeal circuit for receiving blood to be purified and with a hemodialyzer and / or hemofilter, which is in communication with the bloodstream, wherein the bloodstream upstream and downstream of the hemodialyzer and / or hemofilter at least having a supply line for the supply of a substitution liquid. Furthermore, the device has a means for generating a high-frequency alternating electromagnetic field and / or a device for generating a DC electric field, wherein the blood to be purified before and / or during contact with the dialyzer the high-frequency alternating electromagnetic field and / or the DC electric field is suspended.
  • the present invention thus provides a method which shifts the position of the balance between free and protein-bound toxins and accelerates the adjustment of the equilibrium during the dialysis treatment.
  • the blood After passing through the pump, the blood gets through the Passed blood chamber of the dialyzer and finally returned through a venous drip chamber and a venous blood line connected to the patient.
  • a venous pressure monitor is connected to the venous drip chamber as a protection system for immediate detection of blood loss to the environment.
  • two needles required for the arterial and venous cannula can be replaced by a single needle.
  • the extracorporeal circuit consists of a needle needle with attached Y-piece. From the dialyzer, the venous line leads back to the Y-piece. The arterial and venous lines are alternately closed by clamping.
  • One or more blood pumps are running to provide alternate flow to and from the Y-piece.
  • the dialysate cycle is replaced by a liquid equalization and warming system.
  • substitution liquid is added to the blood upstream of the dialyzer, and the filtrate is generated by the corresponding transmembrane pressure.
  • a very large amount of substitution fluid is required. Because of the high cost of the commercially available substitution fluid, this method has not yet prevailed, more common is the Nachvernikmbismodus, because less substitution fluid is required.
  • the substitution fluid is added to the blood downstream of a dialyzer.
  • the post-dilution mode good cleaning coefficients are achieved. During a 4 hour treatment, normally about 20 to 24 liters of substitution fluid are added. However, the efficacy of the method is limited by a critical transmembrane pressure above which blood damage will occur.
  • ultrafiltrate can be withdrawn through the ultrafiltrate pump into a bag or container that hangs or stands on a leveling platform.
  • Substitution fluid from a bag or container on the same platform is pumped by another pump to the venous drip chamber.
  • a net fluid removal is achieved either by an additional ultrafiltration pump or by a programmer that controls the substitution pump to deliver less fluid than was removed by the filtration pump.
  • Hemodiafiltration a combination of hemodialysis and hemofiltration, can be performed by combining the extracorporeal circuits of a hemofiltration and a hemodialysis machine.
  • Hemodialysis machines with volumetrically controlled ultrafiltration can be easily adapted for hemodiafiltration which is cheaper. This is particularly cost effective if the substitution fluid is prepared online from the dialysis fluid.
  • Treatment parameters such as dialysate content (sodium concentration), ultrafiltration rate, blood and dialysate throughput are changed during dialysis to increase or maintain efficacy and / or reduce symptoms occurring during dialysis.
  • the change follows either a kinetic model or, more commonly, a "clinical judgment”.
  • symptoms especially low blood pressure, are closely related to ultrafiltration.
  • a profiling takes place by changing the ultrafiltration rate.
  • the blood of the patient is purified by diffusing the substances to be removed of the blood due to a concentration gradient across the membrane of the dialyzer through the membrane and thereby reach the dialysis fluid.
  • the driving force behind hemofiltration is essentially a difference in pressure across the membrane, which causes convective transport of substances through the membrane, thereby purifying the blood, especially of higher molecular weight substances.
  • fluid is removed from the patient's blood which, except for a small differential, must be substituted to control fluid equalization.
  • the pre-dilution is preferably used for patients who have a higher risk of blood coagulation or blood coagulation. This risk is reduced by diluting the blood before blood treatment.
  • the cleaning effect of medium and high molecular weight substances in the predilution mode may be higher than in the post-dilution mode.
  • the ratio of the infusion rates (Qspre, Qspost) of the substitution fluid is controlled so that Qspre is always greater than or equal to Qspost.
  • the ratio of the infusion rates Qspre / Qspost is at least 1.2.
  • the document WO 98/50091 relates to a method for controlling a blood purification device comprising upstream and downstream of the filter at least one supply line to the blood circulation for supplying a substitution liquid.
  • a control unit is provided for monitoring a blood pump, an ultrafiltrate pump and the substitution fluid pumps as well as monitoring means for weighing the corresponding amount of fluid.
  • the control unit monitors the pumps at predetermined intervals to adjust the instantaneous flow rates of the blood stream, ultrafiltrate, and substitution products, respectively.
  • the document WO 00/09182 relates to a fluid driving device which is adapted to withdraw certain blood elements and / or blood constituents by diffusion through a semipermeable membrane.
  • the device is equipped with a blood pump, a pump for feeding pre-dilution substitution fluid, a pump for feeding post-dilution Substituting fluid and an ultrafiltration pump provided.
  • Valves are arranged so that the liquid is passed through a container which can be brought into fluid communication with each of the pumps to control the operation of the pumps and, consequently, the flow rates of the respective liquids.
  • a further disadvantage of the post-dilution mode is that a limiting membrane builds up on the membrane of the hemodialyzer and / or hemofilter during blood purification.
  • the thickness of this membrane increases with increasing duration of treatment, which reduces the permeability of the membrane.
  • the cleaning effect is worsened while the transmembrane pressure remains constant. If a constant cleaning effect is to be achieved, an increasing transmembrane pressure would be required, which can lead to damage to the membrane.
  • U.S. Patent 5,578,223 discloses an artificial kidney that operates in a post-dilution mode and is suitable for use in hemofiltration, hemodialysis and hemodiafiltration treatment.
  • the apparatus comprises means for perfusing a bicarbonate-containing fluid into the extracorporeal blood circuit after passing through the replacement and dosing means for adjusting the bicarbonate concentration in the blood of a patient to a desired level.
  • An extraction pump connected to the outlet of the exchanger is controlled by a control unit to obtain a desired amount of weight loss during the duration of the treatment.
  • the flow rate of the bicarbonate solution is controlled by the control unit depending on the flow rate of the extraction pump, the desired bicarbonate concentration in a patient's blood and the concentration of the bicarbonate solution before perfusion into the extracorporeal circuit.
  • the object of the present invention is to provide a device for hemodialysis and / or haemofiltration for blood purification, with which the advantages of the predilution mode and the post-dilution mode can be combined and at the same time the purification action of the protein-bound hemodialyzer and / or protein-bound hemofilter is improved.
  • the device further comprises measuring devices for recording the transmembrane pressure and / or hematocrit and / or the blood density, wherein the measuring devices with a control unit (100) for controlling a or are connected by a plurality of transmembrane pressure and / or hematocrit and / or blood density, wherein the control unit is constructed so that the control is performed using at least one of the infusion rates of the substitution fluid and that the blood to be purified before and / or during contact with the Dialyzer is exposed to a high-frequency electromagnetic field and / or DC electric field.
  • the device according to the invention according to the preamble of claim 1 additionally comprises means for generating a high-frequency electromagnetic field and / or a DC electric field.
  • the invention is based on the finding that the adjustment of the equilibrium between protein-bound and free toxins can be accelerated with the aid of a high-frequency electromagnetic field and / or a DC electric field. The skilled person is aware of such means.
  • the device according to the invention can have, for example, a high-frequency capacitor, a high-frequency coil and / or a high-frequency electrode for generating a high-frequency electromagnetic field.
  • the high-frequency electromagnetic field has a frequency of 100 kHz to 2 GHz, preferably 1 MHz to 1 GHz.
  • the device according to the invention may comprise means for generating a DC electric field.
  • the skilled person is aware of such means.
  • the device according to the invention can for example consist of a Plate capacitor constructed with two, four or more plates.
  • the DC electric field has a field strength of up to 1500 V / m.
  • the DC electric field has a field strength of 10 V / m to 400 V / m, particularly preferably 100 V / m to 250 V / m.
  • the means for generating a high-frequency electromagnetic field and / or a DC electric field can be configured and arranged in or on the bloodstream that the blood to be purified can be exposed to the high-frequency electromagnetic field before, during or both before and during Contact of the blood to be purified with the dialyzer or with the semipermeable membrane of the dialyzer.
  • the infusion rates of one or both upstream and downstream substitution fluids are used to control operational and / or blood parameters.
  • the infusion rate of the substitution solution added upstream of the dialyzer can be increased until the desired values for the values to be controlled are reached or the values fall below given limits. Accordingly, in the case of a low transmembrane pressure or a low hematocrit value, the infusion rate of the substitution fluid supplied downstream of the dialyzer can be increased, which leads to an improvement of the membrane due to the then resulting greater concentration gradient across the membrane diffusive transport of substances, ie leads to an improved cleaning effect for low molecular weight substances.
  • the infusion rate of the substitution solutions supplied upstream of the hemodialyzer and / or hemofilter preferably increases with respect to the rate of infusion supplied downstream of the hemodialyzer and / or hemofilter with increasing transmembrane pressure and / or increasing blood density and / or blood hematocrit.
  • the transmembrane pressure and / or hematocrit and / or the blood density can be detected continuously.
  • the infusion rates of the substitution solutions are selected such that a substantially fixed boundary membrane is formed on the side of the membrane of the hemodialyzer and / or hemofilter opposite the chamber through which the blood flows. This results in the advantage that the efficiency and the spectrum of the sieving coefficient of the hemodialyzer and / or hemofilter remain constant during the time of treatment.
  • the ratio of the infusion rates (Qspre, Qspost) of the substitution fluid be controlled so that Qspre is always greater than or equal to Qspost.
  • the ratio of the infusion rates Qspre / Qspost is at least 1.2.
  • the ratio of the infusion rates Qspre / Qspost is at least 1.5.
  • the ratio of the infusion rates of the substitution solutions Qspre / Qspost in the bloodstream may be changed after completion of the treatment to dissolve the limiting membrane. As a result, much of the Boundary membrane-forming proteins are returned to the patient after completion of the blood treatment.
  • the measuring devices may comprise pressure sensors arranged respectively in the extracorporeal circuit and / or in the dialysis fluid circuit upstream and / or downstream of the hemodialyzer and / or hemofilter.
  • the measuring devices comprise sensors in the extracorporeal circuit upstream and / or downstream of the hemodialyzer and / or hemofilter for detecting the hematocrit value.
  • means for controlling the at least one of the infusion rates are pumps in the supply lines.
  • means for controlling the at least one of the infusion rates are valves in the leads.
  • Figure 1 a schematic representation of a part of the extracorporeal
  • FIG. 2 experimental results relating to the influence of radiofrequency electromagnetic fields on the protein-bound portion of the uremic toxins
  • FIG. 3 experimental results as proof of the lack of damage to the membrane by the high-frequency fields
  • FIG. 4 shows experimental results relating to the effects of an HF field in the frequency range 1 to 170 MHz on the protein-bound portion of the uremic toxins
  • FIG. 5 shows experimental results regarding the effects of an HF field in the frequency range 110 to 115 MHz on the protein-bound portion of the uremic toxins
  • FIG. 6 shows experimental results regarding the influences of an H-field in the frequency ranges 1 to 6 MHz and 9 to 13 MHz on the protein-bound portion of the uremic toxins.
  • FIG. 7 experimental results relating to the influences of the field strength on the protein-bound portion of the uremic toxins.
  • FIG. 1 shows a part of the extracorporeal circuit 10 through which blood with the flow rate QB is circulated through a blood pump 11 in the direction of the arrow.
  • a pressure sensor 40 and a sensor 50 for detecting the arterial blood pressure Part and the hematocrit value HKTin prior to the blood purification are arranged upstream of the hemodialyzer or hemofilter 20.
  • corresponding measuring devices 40, 50 Downstream from the hemodialyzer and / or hemofilter 20 are corresponding measuring devices 40, 50 for detecting the corresponding values Pven and HKTout after the blood purification.
  • dialysis fluid flows in the direction of the arrow at the flow rate QD through the hemodialyzer or hemofilter 20.
  • the dialysis fluid line 30 has pressure sensors 40 upstream and downstream downstream of the hemodialyzer or hemofilter for the respective pressure PDin and PDout of the dialysis fluid.
  • the circulation of the dialysis fluid is controlled by pumping and / or balancing means 31 and 32.
  • the hemodialyzer and / or hemofilter is subdivided by a semipermeable membrane 21 into a blood chamber 22 and a dialysis fluid chamber 23.
  • the hemodialyzer and / or hemofilter 20 is surrounded by a means for generating a high-frequency electromagnetic field and / or a DC electric field 70.
  • a part of the extracorporeal blood circuit 10 lying upstream of it is also surrounded by a means for generating a high-frequency electromagnetic field and / or a DC electric field 70.
  • a means for generating a high-frequency electromagnetic field and / or a DC electric field 70 Upstream and downstream of the hemodialyzer and / or hemofilter 20 are provided feed lines 12, 14 with liquid pumps 13 and 15, respectively, which supply substitution fluid to the blood flowing in the extracorporeal circuit 10 during the treatment.
  • the respective flow rates are marked Q s pre and Q s post.
  • the two infusion rates Q s pre and Q s post of the substitution fluid can be changed according to the invention by means of a control unit 100.
  • the control unit 100 is connected to all illustrated actuators and sensors by means not shown.
  • the change in the infusion rates takes place in accordance with the measured values of the control values to be controlled.
  • the measured values are the arterial and venous blood pressure P ar t. Pven and the pressure of the dialysis fluid P D in and Poout before and after passage through the hemodialyzer and hemofilter 20.
  • the determined therefrom transmembrane pressure TMP is according to the invention by a suitable modification of Flow rates Qspre and Qspost are set to the desired target value or maintained at this value.
  • the hematocrit values HKT in , HKT 0U t can be used as control values. TMP can also be approached by less than the four pressure sensors shown. In the currently used dialysis machines pressure sensors are normally used only for P ve n and PDout.
  • the boundary membrane which builds up on the opposite side of the membrane of the hemodialyzer or hemofilter on the chamber in which the blood is present, can be kept in a stationary state, resulting in a constant cleaning spectrum as well results in a constant degree of cleaning during treatment.
  • the transmembrane pressure can be kept constant during the treatment, since the pressure loss caused by the membrane and the limiting membrane also remains constant.
  • transmembrane pressure By limiting the transmembrane pressure to a predeterminable value, the risk of extensive loss of albumin through the membrane due to large convective forces can be avoided. When using high flow membranes limiting the transmembrane pressure is particularly important.
  • the combination of pre- and post-dilution reduces the consumption of heparin, which is normally infused into the blood to prevent extracorporeal blood clotting. If the blood is diluted upstream of the hemodialyzer and / or hemofilter, less anticoagulant fluid is required to reduce the risk of blood clotting in the hemodialyzer and / or hemofilter, since the latter presents the most significant potential for blood clotting in the extracorporeal blood circuit.
  • a good cleaning performance for protein-bound uremic toxins can be achieved by the combination of predilution and redilution and by the action of a high-frequency electromagnetic field and / or a DC electric field.
  • test results serve as experimental proof of the effect of an electric field on the separation of protein-bound toxins during dialysis.
  • Embodiment 1 describes the effect of an RF field in the frequency range of 1 to 20 MHz.
  • Embodiment 2 shows the effect of the RF field in the frequency range of 1 to 170 MHz on the separation of phenylacetic acid. Under the influence of the HF field, the removal rate for phenylacetic acid was increased by at least 45.3%. In the subband from 110 to 120 MHz, the effect was particularly pronounced at 54.6%. In Embodiment 3, the subband is examined more closely from 110 to 120 MHz.
  • Embodiment 4 shows the influence of an H field in the ranges 1-6 MHz and 9-13 MHz.
  • Embodiment 5 shows the influence of the field strength on the separation of phenylacetic acid.
  • the temperature was kept constant in all embodiments 1 to 5, so that the observed changes are based on the properties of the electric field and not on a heating.
  • a dialysis module was created by conventional hemofiltration capillaries using silicone as loops in a syringe receiving socket were poured.
  • an aqueous albumin solution was introduced in the presence of the uremic toxins phenylacetic acid, p-hydroxyhippuric acid and indoxyl sulfate.
  • this solution was filtered with the dialysis module for 10 min.
  • a high frequency (RF) electrode a high frequency electromagnetic field was induced in the solution.
  • the electromagnetic field is incremented by means of a high frequency power source over a period of 10 minutes from 1 to 20 MHz in 1 MHz increments.
  • the concentration of the previously given to the artificial plasma uremic toxins phenylacetic acid, p-hydroxyhippuric acid and indoxyl sulfate were determined.
  • the effect of the RF field on the binding between proteins and uremia toxins could be evaluated.
  • Example 1 In the dialysis module of Example 1, an aqueous solution of bovine serum albumin (BSA, 60 mg / ml) in the presence of the uremic toxin phenylacetic acid (1 mmol / l in 0.9% NaCl solution) was introduced.
  • the RF field was varied in the frequency range 1-170 MHz in sub-bands of 10 MHz and compared with a control experiment without HF field.
  • the frequency ranges concerned are the areas where the maximum separation effect has been determined. In the non-mentioned frequency ranges, in part, an increased separation compared to control was determined, which, however, was lower than in the aforementioned frequency ranges.
  • FIG. 6 shows that the H-field region of 1-6 MHz and the region 9-13 MHz are suitable for releasing protein-bound uremic toxins from the protein binding and subsequently separating them by dialysis. Shown in Figure 6 is the effect on phenylacetic acid.
  • Embodiment 5 is a diagrammatic representation of Embodiment 5:
  • FIG. 7 shows the effect of an increasing field strength on the content of protein-bound uremic toxins in the retentate using the example of phenylacetic acid.

Landscapes

  • Health & Medical Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Engineering & Computer Science (AREA)
  • Public Health (AREA)
  • Cardiology (AREA)
  • Urology & Nephrology (AREA)
  • Emergency Medicine (AREA)
  • External Artificial Organs (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

Die Erfindung betrifft eine Vorrichtung zur Hämodiafiltration mit einem extrakorporalen Kreislauf (10) zur Aufnahme von zu reinigendem Blut sowie mit einem Hämodialysator und/oder Hämofilter (20), der mit dem Blutkreislauf (10) in Verbindung steht, wobei der Blutkreislauf (10) stromaufwärts und stromabwärts von dem Hämodialysator und/oder Hämofilter (20) jeweils mindestens eine Zuleitung (12, 14) für die Zufuhr einer Substitutionsflüssigkeit aufweist, dadurch gekennzeichnet, dass die Vorrichtung ferner Messvorrichtungen zum Aufzeichnen des transmembranösen Druckes und/oder Hämatokrits (HKT) und/oder der Blutdichte umfasst, wobei die Messvorrichtungen mit einer Steuereinheit (100) zum Steuern eines oder mehrerer von transmembranösem Druck und/oder Hämatokrit (HKT) und/oder Blutdichte verbunden sind, wobei die Steuereinheit (100) so konstruiert ist, dass die Steuerung mit Hilfe mindestens einer der Infusionsgeschwindigkeiten (Qspre, Qspost) der Substitutionsflüssigkeit durchgeführt wird (13, 15) und dass das zu reinigende Blut vor und/oder während des Kontaktes mit dem Dialysator einem hochfrequenten elektromagnetischen Feld und/oder einem elektrischen Gleichfeld (70) ausgesetzt wird.

Description

Hämodiafiltrationsverfahren
Die vorliegende Erfindung betrifft eine Vorrichtung zur Durchführung einer Hämodiafiltrationsbehandlung unter Einwirkung eines elektromagnetischen Wechselfeldes und/oder eines elektrischen Gleichfeldes.
Die Aufgabe der gesunden Niere ist die Ausscheidung von Endprodukten des Stoffwechsels (harnpflichtige Substanzen) und Giftstoffen (Urämietoxine) aus dem Körper durch Bildung des Harns. Die Niere entfernen dabei ein breites Spektrum an Substanzen unterschiedlichen Molekulargewichts. Eine Übersicht über urämische Toxine wurde von R. Vanholder er al. veröffentlicht. (R. Vanholder er al., Kidney International, 63 (2003) 1934 - 1943) Die urämischen Toxine werden an Hand ihres Molekulargewichts in drei Klassen eingeteilt. Toxine mit einem Molekulargewicht von unter 500 Dalton bilden die Gruppe mit niedrigem Molekulargewicht. Die Mittelmoleküle liegen in einem mittleren Bereich mit einem Molekulargewicht zwischen 500 und 12 000 D. Zu den Mittelmolekülen gehört beispielsweise ß2-Microglobulin (11800 D). Die dritte Klasse von Urämietoxinen bilden Moleküle mit einem Molekulargewicht von über 12 000 D. Darüber hinaus wird nach der Wasserlöslichkeit der Urämietoxine unterschieden. Beispiele für gut wasserlösliche urämische Toxine mit einem niedrigen Molekulargewicht sind Harnstoff, Creatinin, Oxalate, Guanidine und Harnsäure.
Beispiele für schlecht wasserlösliche urämische Toxine sind p-Cresol, Indoxylsulfat, Phenol, Hippursäure und Homocystein. Diese Urämietoxine liegen im Serum überwiegend an Proteinen gebunden vor.
Bei gesunden Personen werden die Urämietoxine über die Niere mit dem Harn ausgeschieden. Beim chronischen Nierenversagen verbleiben die urämischen Toxine jedoch im Blut des Patienten und müssen durch Hämodialyse oder Peritonealdialyse entfernt werden.
Während die Entfernung wasserlöslicher Toxine wie beispielsweise Harnstoff oder Creatinin mittels Hämodialyse sehr gut möglich ist, ist die Entfernung von schlecht wasserlöslichen hydrophoben Urämietoxinen mittels Hämodialyseverfahren durch die Proteinbindung stark erschwert. Man geht allgemein davon aus, daß ein chemisches Gleichgewicht zwischen dem freien, gelösten Toxin und dem proteingebundenen Toxin vorliegt, das weit auf Seiten des proteingebundenen Toxins liegt. Dies bedeutet, dass der überwiegende Teil dieser Urämietoxine an Proteine gebunden ist und nur ein kleiner Teil im Blutplasma gelöst ist.
Da es sich bei einem großen Teil der Substanzen um niedermolekulare Komponenten handelt, die zu einem geringen Teil in freier Form vorliegen, sind sie prinzipiell dialysierbar.
Weiterhin nimmt man an, daß Albumin als Bindungspartner der hydrophoben Urämietoxine fungiert. Albumin wird auf Grund seines Molekulargewichtes von Dialysemembranen zurückgehalten. Albumin wird durch Hämodialyseverfahren also nicht entfernt. Damit kann nur der freie, gelöste Anteil der urämischen Toxine aus dem Blut des Patienten entfernt werden. Die Einstellung des Gleichgewichtes unter der Dialyse wird zum geschwindigkeitsbestimmenden Schritt. Es ist zwar zu erwarten, dass sich nach der Entfernung der gelösten Toxine aus dem Blut das Gleichgewicht zwischen freien und proteingebundenen Toxinen wieder neu einstellt und bei genügend langer Dialysezeit ein beträchtlicher Teil der Toxine entfernen lässt, diese Zeit steht bei Hämodialysebehandlungen jedoch nicht zur Verfügung. Es besteht also ein Bedarf an Dialyseverfahren, die auch die proteingebundenen urämischen Toxine aus dem Blut des Patienten entfernen.
Die vorliegende Erfindung betrifft eine Vorrichtung zur Hämodiafiltration mit einem extrakorporalen Kreislauf zur Aufnahme von zu reinigendem Blut sowie mit einem Hämodialysator und/oder Hämofilter, der mit dem Blutkreislauf in Verbindung steht, wobei der Blutkreislauf stromaufwärts und stromabwärts von dem Hämodialysator und/oder Hämofilter jeweils mindestens eine Zuleitung für die Zufuhr einer Substitutionsflüssigkeit aufweist. Ferner weist die Vorrichtung ein Mittel zum Erzeugen eines hochfrequenten, elektromagnetischen Wechselfeldes und/oder eine Einrichtung zur Erzeugung einen elektrischen Gleichfeldes, wobei das zu reinigende Blut vor und/oder während des Kontaktes mit dem Dialysator dem hochfrequenten, elektromagnetischen Wechselfeld und/oder dem elektrischen Gleichfeld ausgesetzt wird. Die vorliegende Erfindung stellt damit ein Verfahren bereit, dass die Lage des Gleichgewichts zwischen freien und proteingebundenen Toxinen verschiebt und die Einstellung des Gleichgewichts während der Dialysebehandlung beschleunigt.
Verfahren zur Hämodialyse und zur Hämofiltration sind dem Fachmann bekannt. In den Veröffentlichungen "Replacement of Renal Function by Dialysis" (Drukker, Parsons und Mäher; Kluwer Academic Publishers, 4. Auflage 1996; und "Hemodialysis Machines and Monitors" von H.-D. Polaschegg und N.W. Levin) - auf deren Offenbarung hiermit explizit verwiesen wird - findet sich eine Zusammenfassung der wichtigsten Hämodialyseverfahren und -maschinen: Bei der Hämodialyse wird das Blut eines Patienten durch eine arterielle Blutleitung in die Blutkammer eines Dialysators geleitet. Das Blut wird normalerweise mit Hilfe einer in der arteriellen Blutleitung angeordneten peristaltischen Rotationspumpe transportiert. Nach Durchgang durch die Pumpe wird das Blut durch die Blutkammer des Dialysators geleitet und schließlich durch eine venöse Tropfkammer und eine damit verbundene venöse Blutleitung zu dem Patienten zurückgeleitet. Ein Venendruckmonitor ist mit der venösen Tropfkammer als Schutzsystem zur unmittelbaren Erfassung eines Blutverlustes an die Umgebung verbunden. Gegebenenfalls können bei der sogenannten Einnadeldialyse zwei für die arterielle und die venöse Kanüle erforderliche Nadeln durch eine einzige Nadel ersetzt werden. Bei dieser Art der Dialyse besteht der extrakorporale Kreislauf aus einer Einnadelkanüle mit angeschlossenem Y-Stück. Von dem Dialysator führt die venöse Leitung zurück zu dem Y-Stück. Die arterielle und die venöse Leitung werden abwechselnd durch Klemmen verschlossen. Es laufen eine oder mehrere Blutpumpen, um für die abwechselnde Strömung zu und von dem Y-Stück zu sorgen.
Bei der Hämodialyse erfolgt die Entfernung der gelösten Stoffe aus dem Blut durch Diffusion durch die Dialysatormembran. Wenngleich zur Ultrafiltration des überschüssigen Wassers eines Patienten zusätzlich ein geringer transmembranöser Druck aufgebracht wird, spielt diese Filtration kaum eine Rolle für die Reinigung des Blutes von speziellen Substanzen.
Die Entfernung gelöster Stoffe bei der Hämofiltration erfolgt durch Konvektion und nicht durch Diffusion. Gleichzeitig wird das Ultrafiltrat fast vollständig durch eine Substitutionsflüssigkeit ersetzt, die eine ähnliche Zusammensetzung hat wie das Dialysat bei der Dialyse. Bei diesem Verfahren wird die Ähnlichkeit mit der natürlichen Niere und die wirksamere Entfernung größerer Moleküle betont. Die Entfernung niedermolekularer Substanzen ist dagegen gegenüber der Hämodialyse verringert, weil höchstens 45% des Blutes bei der sogenannten Nachverdünnungshämofiltration ultrafiltriert werden können. Heutzutage wird Hämofiltration wegen der hohen Kosten der handelsüblichen Austauschflüssigkeit und dem zur Durchführung der Behandlung innerhalb einer angemessenen Zeit erforderlichen hohen Blutdurchsatz nur bei einer kleinen Zahl von Patienten eingesetzt. Hämofiltrationsmaschinen zur Dauerbehandlung umfassen dieselben extrakorporalen Pump- und Überwachungssysteme wie Hämodialysemaschinen. Der Dialysatkreislauf wird ersetzt durch ein Flüssigkeitsausgleichs- und - aufwärmsystem. Im sogenannten Vorverdünnungsmodus wird dem Blut stromaufwärts von dem Dialysator Substitutionsflüssigkeit zugesetzt, und das Filtrat wird durch den entsprechenden transmembranösen Druck erzeugt. Um klinisch wirksam zu sein, ist eine sehr große Menge Substitutionsflüssigkeit erforderlich. Wegen der hohen Kosten der handelsüblichen Substitutionsflüssigkeit hat sich dieses Verfahren bisher noch nicht durchgesetzt, üblicher ist der Nachverdünnungsmodus, weil weniger Substitutionsflüssigkeit erforderlich ist. In diesem Modus wird die Substitutionsflüssigkeit dem Blut stromabwärts von einem Dialysator zugesetzt. Im Nachverdünnungsmodus werden gute Reinigungskoeffizienten erzielt. Während einer 4-stündigen Behandlung werden normalerweise ungefähr 20 bis 24 Liter Substitutionsflüssigkeit zugesetzt. Die Wirksamkeit des Verfahrens ist jedoch durch einen kritischen transmembranösen Druck begrenzt, über dem es zu einer Schädigung des Blutes kommen wird.
Zum Flüssigkeitsausgleich wurden verschiedene Systeme vorgeschlagen. Bei dem gravimetrischen Ausgleichsverfahren kann Ultrafiltrat durch die Ultrafiltratpumpe in einen Beutel oder Behälter, der auf einer Ausgleichsplattform hängt oder steht, abgezogen werden. Substitutionsflüssigkeit aus einem Beutel oder Behälter auf derselben Plattform wid durch eine weitere Pumpe zu der venösen Tropfkammer gepumpt. Eine Nettoflüssigkeitsentnahme wird entweder durch eine zusätzliche Ultrafiltrationspumpe oder durch eine Programmiereinheit erreicht, die die Substitutionspumpe dahingehend steuert, dass sie weniger Flüssigkeit liefert als durch die Filtrationspumpe entfernt wurde.
Hämodiafiltration, eine Kombination aus Hämodialyse und Hämofiltration, kann durchgeführt werden, indem die extrakorporalen Kreisläufe einer Hämofiltrations- und einer Hämodialysemaschine kombiniert werden. Hämodialysemaschinen mit volumetrisch gesteuerter Ultrafiltration können leicht zurHämodiafiltration angepasst werden, die kostengünstiger ist. Diese ist besonders kostengünstig, wenn die Substitutionsflüssigkeit online aus der Dialyseflüssigkeit hergestellt wird.
Behandlungsparameter wie Dialysatgehalt (Natriumkonzentration), Ultrafiltrationsrate, Blut- und Dialysatdurchsatz werden während der Dialyse verändert, um die Wirksamkeit zu erhöhen oder aufrechtzuerhalten und/oder während der Dialyse auftretende Symptome zu verringern. Die Veränderung folgt entweder einem kinetischen Modell oder, häufiger, einer "klinischen Beurteilung". Während der Dialyse auftretende Symptome, insbesondere niedriger Blutdruck, stehen in engem Zusammenhang mit der Ultrafiltration. Bei Dialysemaschinen mit Ultrafiltrationspumpen, die von Dialysatpumpen unabhängig sind, erfolgt eine Profilierung durch Veränderung der Ultrafiltrationsgeschwindigkeit.
Zusammenfassend lässt sich sagen, dass bei der Hämodialyse das Blut des Patienten gereinigt wird, indem die zu entfernenden Substanzen des Blutes aufgrund eines Konzentrationsgefälles über die Membran des Dialysators durch die Membran diffundieren und dadurch die Dialyseflüssigkeit erreichen. Die treibende Kraft bei der Hämofiltration ist im Wesentlichen ein Druckunterschied über die Membran, der einen konvektiven Transport von Substanzen durch die Membran bewirkt und dabei das Blut vor allem auch von höhermolekularen Substanzen reinigt. Bei der Hämofiltration sowie bei dem kombinierten Verfahren der Hämodiafiltration wird Flüssigkeit aus dem Blut des Patienten entfernt, die bis auf einen kleinen Differenzbetrag zur Steuerung des Flüssigkeitsausgleichs substituiert werden muss.
Die Vorverdünnung wird vorzugsweise für Patienten verwendet, die ein höheres Risiko der Blutkoagulation bzw. Blutgerinnung haben. Dieses Risiko wird durch Verdünnung des Blutes vor der Blutbehandlung verringert.
Niedrige Hämatokritkonzentrationen führen zu entsprechend großen Mengen an freiem, d.h. ungebundenem Wasser, was einen charakteristischen konvektiven Transport von Substanzen durch die Membran möglich macht. Dementsprechend kann der Reinigungseffekt bei mittel- und hochmolekularen Substanzen im Vorverdünnungsmodus höher sein als im Nachverdünnungsmodus.
Darüber hinaus führt die Vorverdünnung des zu reinigenden Blutes dazu, dass mehr proteingebundene Urämietoxine in das Plasma übergehen und dialysiert werden können. Daher ist es bei der vorliegenden Erfindung vorteilhaft, wenn das Verhältnis der Infusionsgeschwindigkeiten (Qspre, Qspost) der Substitutionsflüssigkeit so gesteuert wird, dass Qspre stets größer oder gleich Qspost ist. Vorzugsweise beträgt das Verhältnis der Infusionsgeschwindigkeiten Qspre / Qspost mindestens 1 ,2 beträgt.
Um die Vorteile des Vor- und Nachverdünnungsmodus miteinander zu verbinden, wurde außerdem vorgeschlagen, beide Modi gleichzeitig mit einem festen Verhältnis des Durchsatzes an Vor- und Nachverdünnungssubstitutionsflüssigkeit anzuwenden (L. Pedrini und V. De Cristofaro, Abstract beim EDTNERA-Kongress in Madrid, 1999).
Das Dokument WO 98/50091 betrifft ein Verfahren zum Steuern einer Blutreinigungsvorrichtung, die stromaufwärts und stromabwärts von dem Filter jeweils mindestens eine Zuleitung zu dem Blutkreislauf zum Zuführen einer Substitutionsflüssigkeit umfasst. Eine Steuereinheit ist zum überwachen einer Blutpumpe, einer Ultrafiltratpumpe und der Substitutionsflüssigkeitspumpen sowie für Überwachungsmittel zum Abwiegen der entsprechenden Flüssigkeitsmenge vorgesehen. Die Steuereinheit überwacht die Pumpen in vorbestimmten Zeitabständen, um jeweils die momentane Strömungsgeschwindigkeit des Blutstroms, des Ultrafiltrats und der Substitutionsprodukte einzustellen.
Das Dokument WO 00/09182 betrifft eine Flüssigkeitsantriebsvorrichtung, die dazu geeignet ist, bestimmte Blutelemente und/oder Blutbestandteile durch Diffusion durch eine semipermeable Membran abzuziehen. Die Vorrichtung ist mit einer Blutpumpe, einer Pumpe zum Einspeisen von Vorverdünnungs- Substitutionsflüssigkeit, einer Pumpe zum Einspeisen von Nachverdünnungs- Substitutionsflüssigkeit sowie einer Ultrafiltrationspumpe versehen. Ventile sind so angeordnet, dass die Flüssigkeit durch einen Behälter geleitet wird, der mit jeder der Pumpen in Flüssigkeitsverbindung gebracht werden kann, um die Funktionsweise der Pumpen und demzufolge die Strömungsgeschwindigkeiten der entsprechenden Flüssigkeiten zu steuern.
Ein weiterer Nachteil des Nachverdünnungsmodus besteht darin, dass sich während der Blutreinigung eine Begrenzungsmembran an der Membran des Hämodialysators und/oder Hämofilters aufbaut. Die Dicke dieser Membran nimmt mit zunehmender Dauer der Behandlung zu, was die Durchlässigkeit der Membran verringert. Dadurch wird - bei konstant bleibendem transmembranösem Druck - die Reinigungswirkung verschlechtert. Wenn eine konstante Reinigungswirkung erzielt werden soll, wäre ein zu nehmender transmembranöser Druck erforderlich, was zu einer Schädigung der Membran führen kann.
Das US-Patent 5,578,223 offenbart eine künstliche Niere, die in einem Nachverdünnungsmodus arbeitet und geeignet ist zur Verwendung bei einer Hämofiltrations-, Hämodialyse- und Hämodiafiltrationsbehandlung. Um eine gewünschte Bicarbonatkonzentration im Blut eines Patienten aufrechtzuerhalten, umfasst die Vorrichtung Mittel zum Perfundieren einer bicarbonathaltigen Flüssigkeit in den extrakorporalen Blutkreislauf nach Durchgang durch die Austausch- und Dosierungsmittel zum Einstellen der Bicarbonatkonzentration im Blut eines Patienten auf ein gewünschtes Niveau. Eine Extraktionspumpe, die mit dem Auslass des Austauschers verbunden ist, wird durch eine Steuereinheit gesteuert, um ein gewünschtes Maß an Gewichtsverlust während der Dauer der Behandlung zu erhalten. Die Strömungsgeschwindigkeit der Bicarbonatlösung wird durch die Steuereinheit in Abhängigkeit von der Strömungsgeschwindigkeit der Extraktionspumpe, der gewünschten Bicarbonatkonzentration im Blut eines Patienten und der Konzentration der Bicarbonatlösung vor Perfusion in den extrakorporalen Kreislauf gesteuert. Aufgabe der vorliegenden Erfindung ist es, eine Vorrichtung zur Blutreinigung mittels Hämodialyse und/oder Hämofiltration bereitzustellen, mit der die Vorteile des Vorverdünnungsmodus und des Nachverdünnungsmodus kombiniert werden können und bei der gleichzeitig die Reinigungswirkung des Hämodialysators und/oder Hämofilters für proteingebundene Toxine verbessert wird.
Ausgehend von einer Vorrichtung gemäß dem Oberbegriff von Anspruch 1 wird diese Aufgabe dadurch gelöst, dass die Vorrichtung ferner Messvorrichtungen zum Aufzeichnen des transmembranösen Druckes und/oder Hämatokrits und/oder der Blutdichte umfasst, wobei die Messvorrichtungen mit einer Steuereinheit (100) zum Steuern eines oder mehrerer von transmembranösem Druck und/oder Hämatokrit und/oder Blutdichte verbunden sind, wobei die Steuereinheit so konstruiert ist, dass die Steuerung mit Hilfe mindestens einer der Infusionsgeschwindigkeiten der Substitutionsflüssigkeit durchgeführt wird und dass das zu reinigende Blut vor und/oder während des Kontaktes mit dem Dialysator einem hochfrequenten elektromagnetischen Feld und/oder elektrischen Gleichfeld ausgesetzt wird.
Die erfindungsgemäße Vorrichtung gemäß dem Oberbegriff von Anspruch 1 weist zusätzlich Mittel zur Erzeugung eines hochfrequenten elektromagnetischen Feldes und/oder eines elektrischen Gleichfeldes auf. Der Erfindung liegt die Erkenntnis zu Grunde, dass die Einstellung des Gleichgewichtes zwischen proteingebundenen und freien Toxinen mit Hilfe eines hochfrequenten elektromagnetischen Feldes und/oder eines elektrischen Gleichfeldes beschleunigt werden kann. Dem Fachmann sind solche Mittel bekannt. Die erfindungsgemäße Vorrichtung kann zur Erzeugung eines hochfrequenten, elektromagnetischen Feldes beispielsweise einen Hochfrequenzkondensator, eine Hochfrequenzspule und/oder eine Hochfrequenzelektrode aufweisen. Das hochfrequente elektromagnetische Feld weist eine Frequenz von 100 kHz bis 2 GHz, vorzugsweise 1 MHz bis 1 GHz, auf.
Weiterhin kann die erfindungsgemäße Vorrichtung Mittel zur Erzeugung eines elektrischen Gleichfeldes aufweisen. Dem Fachmann sind solche Mittel bekannt. Die erfindungsgemäße Vorrichtung kann beispielsweise aus einem Plattenkondensator mit zwei, vier oder mehr Platten aufgebaut sein. Das elektrische Gleichfeld weist eine Feldstärke bis zu 1500 V/m auf. In einer bevorzugten Ausführungsform weist das elektrische Gleichfeld eine Feldstärke von 10 V/m bis 400 V/m, besonders bevorzugt 100 V/m bis 250 V/m, auf. Durch niederfrequentes Umpolen der Kondensatorplatten kann ein rotierendes oder wanderndes Gleichfeld erzeugt werden.
Die Mittel zur Erzeugung eines hochfrequenten, elektromagnetischen Feldes und/oder eines elektrischen Gleichfeldes können derart ausgestaltet sein und im bzw. am Blutkreislauf angeordnet sein, dass das zu reinigende Blut dem hochfrequenten elektromagnetischen Feld ausgesetzt werden kann vor, während oder sowohl vor als auch während des Kontaktes des zu reinigenden Blutes mit dem Dialysator bzw. mit der semipermeablen Membran des Dialysators.
Durch Zugabe von Substitutionslösungen zu dem extrakorporalen Kreislauf stromaufwärts und stromabwärts von dem Hämodialysator und/oder Hämofilter können einerseits die Vorteile der Nachverdünnung und Vorverdünnung kombiniert werden, d.h. für niedermolekulare Substanzen sowie für mittel- und hochmolekulare Substanzen werden zufriedenstellende Reinigungsergebnisse erzielt. Andererseits werden gemäß der Erfindung die Infusionsgeschwindigkeiten einer oder beider stromaufwärts und stromabwärts zugeführten Substitutionsflüssigkeiten zur Steuerung von Betriebs- und/oder Blutparametern herangezogen.
Zum Beispiel im Falle eines hohen transmembranösen Druckes oder eines hohen Hämatokritwertes des Blutes kann also die Infusionsgeschwindigkeit der stromaufwärts von dem Dialysator zugegebenen Substitutionslösung erhöht werden, bis die gewünschten Werte für die zu steuernden Werte erreicht sind oder die Werte unter gegebene Grenzwerte fallen. Dementsprechend kann im Falle eines niedrigen transmembranösen Druckes oder eines niedrigen Hämatokritwertes die Infusionsgeschwindigkeit der stromabwärts von dem Dialysator zugeführten Substitutionsflüssigkeit erhöht werden, was infolge des dann resultierenden größeren Konzentrationsgefälles über die Membran zu einer Verbesserung des diffusiven Transports von Substanzen, d.h. zu einer verbesserten Reinigungswirkung für niedermolekulare Substanzen führt.
Die Infusionsgeschwindigkeit der stromaufwärts von dem Hämodialysator und/oder Hämofilter zugeführten Substitutionslösungen erhöht sich vorzugsweise gegenüber der stromabwärts von dem Hämodialysator und/oder Hämofilter zugeführten Infusionsgeschwindigkeit mit zunehmendem transmembranösem Druck und/oder zunehmender Blutdichte und/oder zunehmendem Hämatokritwert des Blutes.
Der transmembranöse Druck und/oder Hämatokrit und/oder die Blutdichte können kontinuierlich erfasst werden.
Besonders vorteilhaft ist es, wenn die Infusionsgeschwindigkeiten der Substitutionslösungen so gewählt sind, dass eine im Wesentlichen feststehende Begrenzungsmembran auf der der Kammer, durch die das Blut fließt, gegenüberliegenden Seite der Membran des Hämodialysators und/oder Hämofilters gebildet wird. Daraus resultiert der Vorteil, dass der Wirkungsgrad und das Spektrum des Siebkoeffizienten des Hämodialysators und/oder Hämofilters während der Zeit der Behandlung konstant bleiben.
Darüber hinaus führt die Vorverdünnung des zu reinigenden Blutes dazu, dass mehr proteingebundene Urämietoxine in das Plasma übergehen und dialysiert werden können - insbesondere durch den Einfluss des elektrischen Feldes. Daher ist es bei der vorliegenden Erfindung vorteilhaft, wenn das Verhältnis der Infusionsgeschwindigkeiten (Qspre, Qspost) der Substitutionsflüssigkeit so steuert, dass Qspre stets größer oder gleich Qspost ist. Vorzugsweise beträgt das Verhältnis der Infusionsgeschwindigkeiten Qspre / Qspost mindestens 1 ,2. Besonders bevorzugt beträgt das Verhältnis der Infusionsgeschwindigkeiten Qspre / Qspost mindestens 1 ,5.
Das Verhältnis der Infusionsgeschwindigkeiten der Substitutionslösungen Qspre / Qspost in dem Blutstrom kann nach Beendigung der Behandlung geändert werden, um die Begrenzungsmembran aufzulösen. Dadurch kann ein Großteil der die Begrenzungsmembran bildenden Proteine nach Beendigung der Blutbehandlung zu dem Patienten zurückgeleitet werden.
Die Messvorrichtungen können Drucksensoren umfassen, die jeweils in dem extrakorporalen Kreislauf und/oder in dem Dialyseflüssigkeitskreislauf stromaufwärts und/oder stromabwärts von dem Hämodialysator und/oder Hämofilter angeordnet sind.
Bei einer weiteren Ausführungsform der vorliegenden Erfindung umfassen die Messvorrichtungen Sensoren in dem extrakorporalen Kreislauf stromaufwärts und/oder stromabwärts von dem Hämodialysator und/oder Hämofilter zum Erfassen des Hämatokritwerts.
Gemäß einer bevorzugten Ausführungsform sind Mittel zum Steuern der mindestens einen der Infusionsgeschwindigkeiten (Qspre, Qspost) Pumpen in den Zuleitungen.
Bei einer weiteren Ausführungsform sind Mittel zum Steuern der mindestens einen der Infusionsgeschwindigkeiten (Qspre, Qspost) Ventile in den Zuleitungen.
Weitere Einzelheiten und Vorteile der vorliegenden Erfindung werden anhand der folgenden Figuren und Ausführungsbeispiele erläutert. In den Figuren zeigen:
Figur 1 : eine schematische Darstellung eines Teils des extrakorporalen
Kreislaufs sowie des Dialyseflüssigkeitskreislaufs mit Hämodialysator und Hämofilter sowie Zuleitungen für die Substitutionsflüssigkeit;
Figur 2: experimentelle Ergebnisse betreffend den Einfluss hochfrequenter elektromagnetischer Felder auf den proteingebundenen Anteil der Urämietoxine; Figur 3: experimentelle Ergebnisse als Nachweis der fehlenden Beschädigung der Membran durch die hochfrequenten Felder;
Figur 4: experimentelle Ergebnisse betreffend die Einflüsse eines HF-Feldes im Frequenzbereich 1 bis 170 MHz auf den proteingebundenen Anteil der Urämietoxine;
Figur 5: experimentelle Ergebnisse betreffend die Einflüsse eines HF-Feldes im Frequenz-Bereich 110 bis 115 MHz auf den proteingebundenen Anteil der Urämietoxine;
Figur 6: experimentelle Ergebnisse betreffend die Einflüsse eines H-Feldes in den Frequenzbereichen 1 bis 6 MHz sowie 9 bis 13 MHz auf den proteingebundenen Anteil der Urämietoxine; und
Figur 7: experimentelle Ergebnisse betreffend die Einflüsse der Feldstärke auf den proteingebundenen Anteil der Urämietoxine.
Figur 1 zeigt einen Teil des extrakorporalen Kreislaufs 10, durch den Blut mit der Strömungsgeschwindigkeit QB durch eine Blutpumpe 11 in Pfeilrichtung in Umlauf gebracht wird. In dem extrakorporalen Kreislauf 10 ist stromaufwärts von dem Hämodialysator oder Hämofilter 20 ein Drucksensor 40 sowie ein Sensor 50 zum Erfassen des arteriellen Blutdrucks Part sowie des Hämatokritwerts HKTin vor der Blutreinigung angeordnet.
Stromabwärts von dem Hämodialysator und/oder Hämofilter 20 sind entsprechende Messvorrichtungen 40, 50 zum Erfassen der entsprechenden Werte Pven und HKTout nach der Blutreinigung angeordnet.
Im Gegenstrom zum Blutstrom fließt Dialyseflüssigkeit in Pfeilrichtung mit der Strömungsgeschwindigkeit QD durch den Hämodialysator oder Hämofilter 20. Die Dialyseflüssigkeitsleitung 30 hat Drucksensoren 40 stromaufwärts und stromabwärts von dem Hämodialysator oder Hämofilter für den jeweiligen Druck PDin und PDout der Dialyseflüssigkeit. Die Zirkulation der Dialyseflüssigkeit wird durch Pumpen- und/oder Ausgleichsmittel 31 und 32 gesteuert.
Der Hämodialysator und/oder Hämofilter wird durch eine semipermeable Membran 21 in eine Blutkammer 22 und eine Dialyseflüssigkeitskammer 23 unterteilt.
Der Hämodialysator und/oder Hämofilter 20 wird von einem Mittel zur Erzeugung eines hochfrequenten elektromagnetischen Feldes und/oder eines elektrischen Gleichfeldes 70 umgeben.
In einer weiteren Ausführungsform wird neben dem Hämodialysator und/oder Hämofilter 20 auch ein davor stromaufwärts liegender Teil des extrakorporalen Blutkreislaufs 10 von einem Mittel zur Erzeugung eines hochfrequenten elektromagnetischen Feldes und/oder eines elektrischen Gleichfeldes 70 umgeben. Stromaufwärts und stromabwärts von dem Hämodialysator und/oder Hämofilter 20 sind Zuleitungen 12, 14 mit Flüssigkeitspumpen 13 bzw. 15 vorgesehen, mit denen Substitutionsflüssigkeit dem während der Behandlung in dem extrakorporalen Kreislauf 10 fließenden Blut zugeführt wird. Die jeweiligen Strömungsgeschwindigkeiten sind mit Qspre und Qspost gekennzeichnet.
Die beiden Infusionsgeschwindigkeiten Qspre und Qspost der Substitutionsflüssigkeit können gemäß der Erfindung mit Hilfe einer Steuereinheit 100 verändert werden. Die Steuereinheit 100 ist mit allen dargestellten Aktuatoren und Sensoren durch nicht dargestellte Verbindungen verbunden. Die Veränderung der Infusionsgeschwindigkeiten erfolgt gemäß den Messwerten der zu steuernden Steuerungswerte. Bei der in Figur 1 dargestellten Ausführungsform sind die Messwerte der arterielle und venöse Blutdruck Part. Pven sowie der Druck der Dialyseflüssigkeit PDin und Poout vor und nach Durchgang durch den Hämodialysator und Hämofilter 20. Der daraus ermittelte transmembranöse Druck TMP wird gemäß der Erfindung durch eine geeignete Veränderung der Strömungsgeschwindigkeiten Qspre und Qspost auf den gewünschten Zielwert eingestellt oder wird auf diesem Wert gehalten. Anstelle des transmembranösen Druckes TMP können die Hämatokritwerte HKTin, HKT0Ut als Steuerungswerte verwendet werden. TMP kann auch von weniger als den dargestellten vier Drucksensoren genähert werden. Bei den derzeit üblichen Dialysemaschinen werden Drucksensoren normalerweise nur für Pven und PDout verwendet.
Mit Hilfe der beanspruchten Vorrichtung wird erreicht, dass die Begrenzungsmembran, die sich auf der der Kammer, in der das Blut vorhanden ist, gegenüberliegenden Seite der Membran des Hämodialysators oder Hämofilters aufbaut, in einem stationären Zustand gehalten werden kann, was in einem konstanten Reinigungsspektrum sowie einem konstanten Grad der Reinigung während der Behandlung resultiert. Gleichzeitig kann der transmembranose Druck während der Behandlung konstant gehalten werden, da der durch die Membran und die Begrenzungsmembran bedingte Druckverlust ebenfalls konstant bleibt.
Durch die Begrenzung des transmembranösen Druckes auf einen vorbestimmbaren Wert kann die Gefahr eines durch große Konvektionskräfte bedingten extensiven Verlusts an Albumin durch die Membran verhindert werden. Bei Verwendung von Hochflussmembranen ist die Begrenzung des transmembranösen Druckes besonders wichtig.
Vor allem bei Patienten mit starken Gerinnungsproblemen trägt die Kombination aus Vor- und Nachverdünnung zur Verringerung des Verbrauchs an Heparin bei, das normalerweise in das Blut infundiert wird, um eine Blutgerinnung im extrakorporalen Kreislauf zu vermeiden. Wenn das Blut stromaufwärts von dem Hämodialysator und/oder Hämofilter verdünnt wird, ist weniger gerinnungshemmende Flüssigkeit erforderlich, um die Gefahr der Blutgerinnung in dem Hämodialysator und/oder Hämofilter zu verringern, da Letzterer das signifikanteste Potenzial zur Blutgerinnung in dem extrakorporalen Blutkreislauf dargestellt. Abgesehen von den oben genannten Vorteilen eines konstanten Betriebsverhaltens, kann durch die Kombination von Vorverdünnung und Nachverdünnung sowie durch die Einwirkung eines hochfrequenten elektromagnetischen Feldes und/oder eines elektrischen Gleichfeldes eine gute Reinigungsleistung für proteingebundene Urämietoxine erreicht werden.
Die nachfolgenden Versuchsergebnisse dienen als experimenteller Nachweis des Effektes eines elektrischen Feldes auf die Abtrennung proteingebundener Toxine während der Dialyse.
In Ausführungsbeispiel 1 wird der Effekt eines HF-Feldes im Frequenzbereich von 1 bis 20 MHz beschrieben. Ausführungsbeispiel 2 zeigt den Effekt des HF-Feldes im Frequenzbereich von 1 bis 170 MHz auf die Abtrennung von Phenylessigsäure. Unter dem Einfluss des HF-Feldes konnte die Abtrennrate für Phenylessigsäure um mindestens 45,3% gesteigert werden. Im Subband von 110 bis 120 MHz war der Effekt mit 54,6% besonders ausgeprägt. Im Ausführungsbeispiel 3 wird das Subband von 110 bis 120 MHz näher untersucht. Ausführungsbeispiel 4 zeigt den Einfluss eines H-Feldes in den Bereichen 1-6 MHz sowie 9-13 MHz. Ausführungsbeispiel 5 zeigt den Einfluss der Feldstärke auf die Abtrennung von Phenylessigsäure.
Die Temperatur wurde in allen Ausführungsbeispielen 1 bis 5 konstant gehalten, sodass die beobachteten Änderungen auf den Eigenschaften des elektrischen Feldes und nicht auf einer Erwärmung beruhen.
Ausführungsbeispiel 1
In /'n- 'fro-Versuchsreihen wurde der Einfluss hochfrequenter elektromagnetischer Felder auf den proteingebundenen Anteil der Urämietoxine untersucht.
Hierzu wurde ein Dialysemodul erstellt, indem konventionelle Hämofiltrations- Kapillaren mit Hilfe von Silikon als Schlaufen in einen Spritzenaufnahmestutzen eingegossen wurden. In das betreffende Modul wurde eine wässerige Albumin- Lösung in Gegenwart der Urämie-Toxine Phenylessigsäure, p-Hydroxyhippursäure und Indoxylsulfat eingebracht. Mit Hilfe einer Spritzenpumpe wurde diese Lösung mit dem Dialysemodul für 10 min filtriert. Anschließend wurde durch Verwendung einer Hochfrequenz-Elektrode (HF-Elektrode) ein hochfrequentes elektromagnetisches Feld in der Lösung induziert. Das elektromagnetische Feld wird mittels einer Hochfrequenzspannungsquelle über einen Zeitraum von 10 Minuten von 1 bis 20 MHz in 1 MHz-Schritten inkrementiert. In den resultierenden Filtraten wurden die Konzentration der zuvor zum künstlichen Plasma gegebenen Urämie-Toxine Phenylessigsäure, p-Hydroxyhippursäure und Indoxylsulfat bestimmt. Durch Vergleich der Urämie-Toxin-Konzentrationen in den resultierenden Filtraten konnte der Effekt des HF-Feldes auf die Bindung zwischen Proteine und Urämie-Toxine evaluiert werden.
Die quantitative Bestimmung der Urämie-Toxin-Konzentration in den resultierenden Filtraten zeigte, dass hochfrequente elektromagnetische Felder die Filtrationsraten proteingebundener Urämie-Toxine signifikant erhöhen (Figur 2). Um zu überprüfen, ob hochfrequente elektromagnetische Felder die Dialysemembranen beschädigen, wurde die Proteinkonzentration im Filtrat mittels Proteinfärbung nach Bradford bestimmt. Die Ergebnisse zeigen, dass keine signifikanten Änderungen der Proteinkonzentration in Dialysemodulen ohne und unter Einfluss von hochfrequenten elektromagnetischen Feldern nachweisbar sind (Figur 3). Eine makroskopische Beschädigung der Membran ist aufgrund dieser Daten auszuschließen.
Ausführungsbeispiel 2
Untersuchung der HF-Feldeinwirkung im Frequenz-Bereich 1 bis 170 MHz.
In das Dialysemodul aus Beispiel 1 wurde eine wässerige Lösung von bovinem Serumalbumin (BSA, 60 mg/ml) in Gegenwart des Urämie-Toxins Phenylessigsäure (1 mmol/l in 0.9 % NaCI-Lösung) eingebracht. Das HF-Feld wurde im Frequenz-Bereich 1-170 MHz in Subbändern von 10 MHz variiert und mit einem Kontrollversuch ohne HF-Feld verglichen.
Die quantitative Bestimmung der Phenylessigsäure erfolgte mittels HPLC.
Die Ergebnisse der Versuche sind in Figur 4 zusammengefasst. Unter dem Einfluss des HF-Feldes konnte die Abtrennrate für Phenylessigsäure um mindestens 45,3% gesteigert werden. Im Subband von 110 bis 120 MHz war der Effekt mit 54,6% besonders ausgeprägt.
Ausführungsbeispiel 3
Dieses Ausführungsbeispiel schließt an die Untersuchungen gemäß Ausführungsbeispiel 2 an, die gezeigt haben, dass der Effekt im Subband von 110 bis 120 MHz besonders ausgeprägt war.
In den weiterführenden Untersuchungen gemäß Ausführungsbeispiel 3 konnte im Besonderen der Frequenzbereich um 110 bis 115 MHz als effektiver Frequenzbereich zur Freisetzung proteingebundener Urämietoxine identifiziert werden. Figur 5 zeigt den betreffenden Effekt auf die entsprechende Freisetzung und im Anschluss Abtrennung von Phenylessigsäure.
Nach bisherigem Stand eignen sich die im Folgenden in Tabelle 1 summarisch genannten Frequenzbereiche zur Abtrennung proteingebundener Urämietoxine.
Tabelle 1 : Geeignete Frequenzen im HF-Feld
Frequenzen PAA IDS pCRS
E-Feld
80-120 MHz 110 110 110
110-111 110-111 110-111
111 111 111
120-170 MHz 140-141 140-141 140-141
148-149 151-152
Figure imgf000021_0001
Bei den betreffenden Frequenzbereichen handelt es sich um die Bereiche, bei denen der maximale Abtrenneffekt bestimmt worden ist. In den nicht-genannten Frequenzbereichen wurde teilweise eine im Vergleich zu Kontrolle vermehrte Abtrennung bestimmt, die jedoch geringer war, als in den genannten Frequenzbereichen.
Ausführungsbeispiel 4:
Weiterhin konnte auch im Bereich des H-Feld eine vermehrte Freisetzung und damit Abtrennung der proteingebundener Urämietoxine bestimmt werden.
Figur 6 ist zu entnehmen, dass der H-Feld-Bereich von 1-6 MHz sowie der Bereich 9-13 MHz geeignet ist, proteingebundener Urämietoxine aus der Proteinbindung freizusetzen und in Folge dialytisch abzutrennen. Gezeigt ist in Figur 6 der Effekt auf Phenylessigsäure.
Ausführungsbeispiel 5:
Neben der Frequenz des eingesetzten Feldes ist auch dessen Feldstärke für die resultierende Freisetzung und Abtrennung relevant. Mit zunehmender Feldstärke werden vermehrt die betreffenden Urämietoxine aus der Proteinbindung freigesetzt und anschließend abtrennt werden.
Figur 7 zeigt den Effekt einer ansteigenden Feldstärke auf den Gehalt proteingebundener Urämietoxine im Retentat am Beispiel der Phenylessigsäure.

Claims

Hämodiafiltrationsverfahren Patentansprüche
1. Vorrichtung zur Hämodiafiltration mit einem extrakorporalen Kreislauf (10) zur Aufnahme von zu reinigendem Blut sowie mit einem Hämodialysator und/oder Hämofilter (20), der mit dem Blutkreislauf (10) in Verbindung steht, wobei der Blutkreislauf (10) stromaufwärts und stromabwärts von dem Hämodialysator und/oder Hämofilter (20) jeweils mindestens eine Zuleitung (12, 14) für die Zufuhr einer Substitutionsflüssigkeit aufweist, dadurch gekennzeichnet, dass die Vorrichtung ferner Messvorrichtungen zum Aufzeichnen des transmembranösen Druckes und/oder Hämatokrits (HKT) und/oder der Blutdichte umfasst, wobei die Messvorrichtungen mit einer Steuereinheit (100) zum Steuern eines oder mehrerer von transmembranösem Druck und/oder Hämatokrit (HKT) und/oder Blutdichte verbunden sind, wobei die Steuereinheit (100) so konstruiert ist, dass die Steuerung mit Hilfe mindestens einer der Infusionsgeschwindigkeiten (Qspre, Qspost) der Substitutionsflüssigkeit durchgeführt wird (13, 15) und dass das zu reinigende Blut vor und/oder während des Kontaktes mit dem Hämodialysator und/oder Hämofilter (20) einem hochfrequenten elektromagnetischen Feld und/oder einem elektrischen Gleichfeld (70) ausgesetzt wird.
2. Vorrichtung nach Anspruch 1 , dadurch gekennzeichnet, dass die Messvorrichtungen Sensoren (40) umfassen, die in dem extrakorporalen Kreislauf (10) und/oder in dem Dialyseflüssigkeitskreislauf (30) stromaufwärts und/oder stromabwärts von dem Hämodialysator und/oder Hämofilter (20) angeordnet sind.
3. Vorrichtung nach einem der vorhergehenden Ansprüche wobei die Steuereinheit (100) die Infusionsgeschwindigkeiten (Qspre, Qspost) der Substitutionsflüssigkeit so steuert, dass Qspre während der Behandlung größer oder gleich Qspost ist.
4. Vorrichtung nach Anspruch 3, wobei das Verhältnis der Infusionsgeschwindigkeiten Qspre / Qspost mindestens 1 ,2 beträgt.
5. Vorrichtung nach Anspruch 3 oder 4, wobei das Verhältnis der Infusionsgeschwindigkeiten Qspre / Qspost mindestens 1 ,5 beträgt.
6. Vorrichtung nach einem der vorhergehenden Ansprüche, wobei das hochfrequente elektromagnetische Feld von einer Hochfrequenzspule, einer Hochfrequenzelektrode und/oder einem Hochfrequenzkondensator erzeugt wird.
7. Vorrichtung nach einem der vorhergehenden Ansprüche, wobei das elektrische Gleichfeld von einem Kondensator mit mindestens zwei Platten erzeugt wird.
8. Vorrichtung nach einem der vorhergehenden Ansprüche, wobei das hochfrequente elektromagnetische Feld eine Frequenz von 100 kHz bis 2 GHz, vorzugsweise 1 MHz bis 1 GHz, aufweist.
9. Vorrichtung nach einem der vorhergehenden Ansprüche, wobei das elektrische Gleichfeld eine Feldstärke bis zu 1500 V/m aufweist
10. Vorrichtung nach einem der vorhergehenden Ansprüche, wobei das elektrische Gleichfeld eine Feldstärke von 10 bis 400 V/m, aufweist.
PCT/EP2013/003870 2012-12-20 2013-12-19 Hämodiafiltrationsverfahren WO2014095073A1 (de)

Priority Applications (9)

Application Number Priority Date Filing Date Title
BR112015014618-0A BR112015014618B1 (pt) 2012-12-20 2013-12-19 Aparelho para hemodiafiltração
CN201380067631.9A CN104902940B (zh) 2012-12-20 2013-12-19 血液透析过滤方法
JP2015548287A JP6514109B2 (ja) 2012-12-20 2013-12-19 血液透析濾過方法
EA201591149A EA029566B1 (ru) 2012-12-20 2013-12-19 Устройство для гемодиафильтрации
CA2895350A CA2895350C (en) 2012-12-20 2013-12-19 Hemodiafiltration method
AU2013362119A AU2013362119B2 (en) 2012-12-20 2013-12-19 Haemodiafiltration method
US14/654,711 US10172994B2 (en) 2012-12-20 2013-12-19 Hemodiafiltration method
EP13818983.2A EP2934620B1 (de) 2012-12-20 2013-12-19 Hämodiafiltrationsverfahren
KR1020157019764A KR102211104B1 (ko) 2012-12-20 2013-12-19 혈액투석여과장치

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201261740026P 2012-12-20 2012-12-20
DE102012025052.5 2012-12-20
DE102012025052.5A DE102012025052A1 (de) 2012-12-20 2012-12-20 Hämodiafiltrationsverfahren
US61/740,026 2012-12-20

Publications (1)

Publication Number Publication Date
WO2014095073A1 true WO2014095073A1 (de) 2014-06-26

Family

ID=50878299

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/003870 WO2014095073A1 (de) 2012-12-20 2013-12-19 Hämodiafiltrationsverfahren

Country Status (11)

Country Link
US (1) US10172994B2 (de)
EP (1) EP2934620B1 (de)
JP (1) JP6514109B2 (de)
KR (1) KR102211104B1 (de)
CN (1) CN104902940B (de)
AU (1) AU2013362119B2 (de)
BR (1) BR112015014618B1 (de)
CA (1) CA2895350C (de)
DE (1) DE102012025052A1 (de)
EA (1) EA029566B1 (de)
WO (1) WO2014095073A1 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2941283A1 (de) * 2013-01-04 2015-11-11 Fresenius Medical Care Deutschland GmbH Vorrichtung und verfahren zur entfernung proteingebundener toxine aus dem blut von patienten unter einsatz eines hochfrequenten, elektromagnetischen feldes und eines elektrostatischen gleichfeldes
DE102014010907A1 (de) * 2014-07-23 2016-01-28 Fresenius Medical Care Deutschland Gmbh Vorrichtung zur extrakorporalen Entfernung proteingebundener Toxine
WO2016091366A1 (de) * 2014-12-08 2016-06-16 Fresenius Medical Care Deutschland Gmbh Dialysemaschine zur überwachung zeitliche veränderungen des hämatokrits und/oder hämoglobinswertes
WO2019002065A1 (en) 2017-06-28 2019-01-03 Gambro Lundia Ab SYSTEM AND METHOD FOR RENAL REPLACEMENT THERAPY
WO2019002067A1 (en) 2017-06-28 2019-01-03 Gambro Lundia Ab SYSTEM AND METHOD FOR TREATMENT OF RENAL SUBSTITUTION

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011078695A1 (de) * 2011-07-05 2013-01-10 Charité - Universitätsmedizin Berlin Dialyseverfahren zur Entfernung proteingebundener Toxine aus dem Blut von Patienten unter Einsatz hochfrequenter elektromagnetischer Felder
DE102015114404A1 (de) * 2015-08-28 2017-03-02 Nephro-Solutions Ag Immunmodulation
DE102016008755B4 (de) * 2016-07-18 2024-06-06 Fresenius Medical Care Deutschland Gmbh Dialysegerät mit einer Steuereinheit zur Durchführung einer Konditionierung der Dialysemembran
DE102017210134A1 (de) * 2016-12-15 2018-06-21 Fresenius Medical Care Deutschland Gmbh System zur extrakorporalen Blutbehandlung, Behandlungsvorrichtung, Kit und Verfahren zum Betreiben eines Systems zur extrakorporalen Blutbehandlung
BR102017021552A2 (pt) * 2017-10-06 2019-04-24 Zammi Instrumental Ltda Processo de recuperação de sangue residual de circuito de circulação extracorpórea e equipamento de coleta e recuperação de sangue residual de circuito de circulação extracorpórea
AU2018200511B1 (en) * 2018-01-23 2019-06-20 Venitas Research Center Inc Blood magnetic stimulation device
CN112805044A (zh) * 2018-08-23 2021-05-14 尼普洛株式会社 细胞外液量计算装置和细胞外液量计算方法
US10926019B2 (en) 2019-06-05 2021-02-23 Choon Kee Lee Gradient dialysate hemodiafiltration
JP7468541B2 (ja) 2019-10-25 2024-04-16 ニプロ株式会社 透析装置
US11583617B2 (en) * 2019-11-08 2023-02-21 Stichting Imec Nederland Dialysis device and a control system for blood dialysis
GR1009965B (el) * 2020-07-06 2021-03-29 Ευαγγελος Αριστειδη Βαμβακουσης Ηλεκτρομαγνητικη συσκευη βελτιωσης της αποδοσης των φιλτρων αιμοκαθαρσης
US20230321329A1 (en) * 2020-09-04 2023-10-12 Byonyks Medical Devices, Inc. Transfer sets with filters, including transfer sets for peritoneal dialysis systems, and associated systems, devices, and methods
CN113181458A (zh) * 2021-04-22 2021-07-30 浙大宁波理工学院 人工肝的生物反应器
TR2021019595A2 (tr) * 2021-12-10 2021-12-21 Cukurova Ueniversitesi Rektoerluegue Fi̇ltrasyon performansi arttirilmiş hemodi̇yali̇zör
WO2024129417A1 (en) 2022-12-16 2024-06-20 Fresenius Medical Care Holdings, Inc. Systems and methods for using nitric oxide in dialysis

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998050091A1 (fr) * 1997-05-07 1998-11-12 Infomed S.A. Procede de controle de dispositif d'epuration de sang
WO2000009182A1 (fr) * 1998-08-11 2000-02-24 Alpamed S.A. Dispositif d'entrainement de fluide
US20050015040A1 (en) * 2003-05-30 2005-01-20 Andreas Wuepper Device for extracorporal irradiation of a liquid containing bilirubin, and method therefor
US20050082225A1 (en) * 2002-05-14 2005-04-21 Bernhard Kreymann Means for removing protein-bound substances
RO122077B1 (ro) * 2002-07-18 2008-12-30 A. Mihai Laschi Dispozitiv pentru dializă
US20090221948A1 (en) * 2006-02-22 2009-09-03 Henry Ford Health System System and method for delivery of regional citrate anticoagulation to extracorporeal blood circuits
DE102010028902A1 (de) * 2010-05-11 2011-11-17 Fresenius Medical Care Deutschland Gmbh Verfahren und Vorrichtung zur Bestimmung zellulärer und/oder extrazellulärer, insbesondere makromolekularer Anteile von Flüssigkeiten, vorzugsweise von Körperflüssigkeiten von Lebewesen

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2087416A5 (de) * 1970-05-20 1971-12-31 Ortolan Jean Yves
DE2731744A1 (de) * 1977-07-14 1979-02-01 Werner Schwartz Hyperthermie-blutbehandlungs-geraet
JPS5962058A (ja) 1982-09-30 1984-04-09 持田製薬株式会社 透析能強化装置
JPH03114468A (ja) 1989-09-29 1991-05-15 Terumo Corp 血液浄化器および浄化方法
JPH06304454A (ja) 1991-08-07 1994-11-01 Nikko Kogyo Kk 中空糸膜モジュール
FR2680975B1 (fr) 1991-09-10 1998-12-31 Hospal Ind Rein artificiel muni de moyens pour doser une substance dans le sang.
CN1065798A (zh) 1992-02-19 1992-11-04 刘广凯 血液离子治疗仪
DE19651355B4 (de) * 1996-12-10 2004-03-18 Fresenius Medical Care Deutschland Gmbh Gasblasendetektor
US6193681B1 (en) * 1998-09-14 2001-02-27 American Immuno Tech, Llc. Septicemia prevention and treatment system
AUPR748501A0 (en) 2001-09-04 2001-09-27 Life Therapeutics Limited Renal dialysis
US7066900B2 (en) * 1998-12-23 2006-06-27 Life Therapeutics Removal of metabolic components from blood
US7890183B2 (en) * 2000-02-17 2011-02-15 Novocure Ltd. Treating parasites with electric fields
CN2438454Y (zh) 2000-07-07 2001-07-11 山西人康医疗器械有限公司 多功能血液治疗仪
ATE380563T1 (de) * 2000-07-07 2007-12-15 Fresenius Medical Care De Gmbh Vorrichtung zur hämodialyse
EP1362605A1 (de) 2002-05-14 2003-11-19 Bernhard Dr. Kreymann Dialysevorrichtung zur Entfernung proteingebundener Substanzen
JP2007325679A (ja) 2006-06-07 2007-12-20 Fuji Xerox Co Ltd 医療用デバイス
US7755488B2 (en) * 2007-09-21 2010-07-13 Baxter International Inc. Access disconnection detection system
DE102007052571A1 (de) * 2007-11-03 2009-05-07 Fresenius Medical Care Deutschland Gmbh Verfahren und Vorrichtung zur Überwachung der Zufuhr von Substitutionsflüssigkeit während einer extrakorporalen Blutbehandlung
WO2009079383A1 (en) * 2007-12-14 2009-06-25 The Trustees Of Columbia University In The City Of New York Systems, methods, and devices for blood treatment
EP2087916A1 (de) * 2008-02-11 2009-08-12 ICinnovation BV Elektrosorptionsvorrichtung zur Reinigung von Blut und anderen Flüssigkeiten
DE102008050849A1 (de) 2008-10-08 2010-04-15 Fresenius Medical Care Deutschland Gmbh Vorrichtung zur Umkehr des Blutflusses für eine extrakorporale Blutbehandlungsvorrichtung und Verfahren zur Feststellung der Umkehr des Blutflusses bei einer extrakorporalen Blutbehandlung
DE102009001901A1 (de) * 2009-03-26 2010-09-30 Robert Bosch Gmbh Blutbehandlungsvorrichtung
US9561316B2 (en) * 2011-04-29 2017-02-07 Medtronic, Inc. Intersession monitoring for blood fluid removal therapy

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998050091A1 (fr) * 1997-05-07 1998-11-12 Infomed S.A. Procede de controle de dispositif d'epuration de sang
WO2000009182A1 (fr) * 1998-08-11 2000-02-24 Alpamed S.A. Dispositif d'entrainement de fluide
US20050082225A1 (en) * 2002-05-14 2005-04-21 Bernhard Kreymann Means for removing protein-bound substances
RO122077B1 (ro) * 2002-07-18 2008-12-30 A. Mihai Laschi Dispozitiv pentru dializă
US20050015040A1 (en) * 2003-05-30 2005-01-20 Andreas Wuepper Device for extracorporal irradiation of a liquid containing bilirubin, and method therefor
US20090221948A1 (en) * 2006-02-22 2009-09-03 Henry Ford Health System System and method for delivery of regional citrate anticoagulation to extracorporeal blood circuits
DE102010028902A1 (de) * 2010-05-11 2011-11-17 Fresenius Medical Care Deutschland Gmbh Verfahren und Vorrichtung zur Bestimmung zellulärer und/oder extrazellulärer, insbesondere makromolekularer Anteile von Flüssigkeiten, vorzugsweise von Körperflüssigkeiten von Lebewesen

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2941283A1 (de) * 2013-01-04 2015-11-11 Fresenius Medical Care Deutschland GmbH Vorrichtung und verfahren zur entfernung proteingebundener toxine aus dem blut von patienten unter einsatz eines hochfrequenten, elektromagnetischen feldes und eines elektrostatischen gleichfeldes
EP2941283B1 (de) * 2013-01-04 2017-04-05 Fresenius Medical Care Deutschland GmbH Vorrichtung und verfahren zur entfernung proteingebundener toxine aus dem blut von patienten unter einsatz eines hochfrequenten, elektromagnetischen feldes und eines elektrostatischen gleichfeldes
US9682181B2 (en) 2013-01-04 2017-06-20 Fresenius Medical Care Deutschland Gmbh Device and method for removing protein-bound toxins from the blood of patients using a high-frequency, electromagnetic field and an electrostatic direct current field
AU2014204314B2 (en) * 2013-01-04 2018-03-29 Fresenius Medical Care Deutschland Gmbh Device and method for removing protein-bound toxins from the blood of patients using a high-frequency, electromagnetic field and an electrostatic direct current field
DE102014010907A1 (de) * 2014-07-23 2016-01-28 Fresenius Medical Care Deutschland Gmbh Vorrichtung zur extrakorporalen Entfernung proteingebundener Toxine
WO2016091366A1 (de) * 2014-12-08 2016-06-16 Fresenius Medical Care Deutschland Gmbh Dialysemaschine zur überwachung zeitliche veränderungen des hämatokrits und/oder hämoglobinswertes
JP2017536929A (ja) * 2014-12-08 2017-12-14 フレゼニウス メディカル ケア ドイッチェランド ゲゼルシャフト ミット ベシュレンクテル ハフツング 透析装置
WO2019002065A1 (en) 2017-06-28 2019-01-03 Gambro Lundia Ab SYSTEM AND METHOD FOR RENAL REPLACEMENT THERAPY
WO2019002067A1 (en) 2017-06-28 2019-01-03 Gambro Lundia Ab SYSTEM AND METHOD FOR TREATMENT OF RENAL SUBSTITUTION
EP3646337B1 (de) 2017-06-28 2023-06-28 Gambro Lundia AB Ein system und ein verfahren zur nierenersatztherapie
EP3646336B1 (de) 2017-06-28 2023-06-28 Gambro Lundia AB Ein system und ein verfahren zur nierenersatztherapie
US11975130B2 (en) 2017-06-28 2024-05-07 Gambro Lundia Ab System and a method for renal replacement therapy

Also Published As

Publication number Publication date
AU2013362119A1 (en) 2015-07-23
AU2013362119B2 (en) 2017-06-15
JP6514109B2 (ja) 2019-05-15
KR102211104B1 (ko) 2021-02-02
EP2934620A1 (de) 2015-10-28
US10172994B2 (en) 2019-01-08
EA201591149A1 (ru) 2015-10-30
US20150343134A1 (en) 2015-12-03
EA029566B1 (ru) 2018-04-30
DE102012025052A1 (de) 2014-06-26
BR112015014618B1 (pt) 2021-06-01
KR20150097785A (ko) 2015-08-26
JP2016500319A (ja) 2016-01-12
CA2895350A1 (en) 2014-06-26
CN104902940B (zh) 2017-03-15
CA2895350C (en) 2020-09-15
EP2934620B1 (de) 2016-12-14
BR112015014618A2 (pt) 2017-07-11
CN104902940A (zh) 2015-09-09

Similar Documents

Publication Publication Date Title
EP2934620B1 (de) Hämodiafiltrationsverfahren
DE60037408T3 (de) Vorrichtung zur Hämodialyse
EP2934619B1 (de) Vorrichtung zur entfernung proteingebundener toxine aus blutplasma
EP1534359B1 (de) Vorrichtung zur entfernung proteingebundener substanzen
DE60127657T2 (de) Blutreinigungssystem
EP2897669B1 (de) Vorrichtung zur erkennung der rezirkulation während einer extrakorporalen blutbehandlung
DE69934248T2 (de) Anlage zur nicht-isosmotischen diafiltration
EP2714128A1 (de) Vorrichtung und verfahren zur erkennung eines betriebszustandes einer extrakorporalen blutbehandlung
WO2018109070A1 (de) System zur extrakorporalen blutbehandlung, behandlungsvorrichtung, kit und verfahren zum betreiben eines systems zur extrakorporalen blutbehandlung
EP2729198B1 (de) Dialyseverfahren zur entfernung proteingebundener toxine aus dem blut von patienten unter einsatz hochfrequenter, elektromagnetischer felder
DE102016107024A1 (de) Verfahren und Vorrichtung zur extrakorporalen Blutbehandlung
EP2696911B1 (de) Verfahren und vorrichtung zur anpassung der mittelmolekularen reinigungsleistung durch einstellung des substitutionsflusses
DE19854338A1 (de) Verfahren und Einrichtung zur Nierenersatztherapie
EP2440265B1 (de) Dialysevorrichtung
WO2015091842A2 (de) Verfahren zur entfernung proteingebundener urämietoxine durch adsorption an dialysierbare hilfsstoffe
DE19624250A1 (de) Einrichtung zur Entfernung von Substanzen aus Blut durch rezirkulationsbedingte Filtration bei der Hämodialyse
EP2729199B1 (de) Dialyseverfahren zur entfernung proteingebundener toxine aus dem blut von akut oder chronisch-niereninsuffizienten patienten

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13818983

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2895350

Country of ref document: CA

REEP Request for entry into the european phase

Ref document number: 2013818983

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013818983

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2015548287

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14654711

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015014618

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 201591149

Country of ref document: EA

ENP Entry into the national phase

Ref document number: 20157019764

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2013362119

Country of ref document: AU

Date of ref document: 20131219

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112015014618

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20150618