WO2014092174A1 - 過給機用サイレンサおよびこのサイレンサを使用した過給機 - Google Patents

過給機用サイレンサおよびこのサイレンサを使用した過給機 Download PDF

Info

Publication number
WO2014092174A1
WO2014092174A1 PCT/JP2013/083425 JP2013083425W WO2014092174A1 WO 2014092174 A1 WO2014092174 A1 WO 2014092174A1 JP 2013083425 W JP2013083425 W JP 2013083425W WO 2014092174 A1 WO2014092174 A1 WO 2014092174A1
Authority
WO
WIPO (PCT)
Prior art keywords
silencer
sound
noise
sound absorbing
wavelength
Prior art date
Application number
PCT/JP2013/083425
Other languages
English (en)
French (fr)
Inventor
輝雄 小坂
大季 平
直樹 石田
浩一 坂元
文人 平谷
Original Assignee
アルパテック株式会社
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アルパテック株式会社, 三菱重工業株式会社 filed Critical アルパテック株式会社
Priority to CN201380064749.6A priority Critical patent/CN104870800B/zh
Priority to EP13861818.6A priority patent/EP2933470A4/en
Priority to KR1020157012434A priority patent/KR20150065894A/ko
Publication of WO2014092174A1 publication Critical patent/WO2014092174A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/12Intake silencers ; Sound modulation, transmission or amplification
    • F02M35/1205Flow throttling or guiding
    • F02M35/1211Flow throttling or guiding by using inserts in the air intake flow path, e.g. baffles, throttles or orifices; Flow guides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • F02C6/04Gas-turbine plants providing heated or pressurised working fluid for other apparatus, e.g. without mechanical power output
    • F02C6/10Gas-turbine plants providing heated or pressurised working fluid for other apparatus, e.g. without mechanical power output supplying working fluid to a user, e.g. a chemical process, which returns working fluid to a turbine of the plant
    • F02C6/12Turbochargers, i.e. plants for augmenting mechanical power output of internal-combustion piston engines by increase of charge pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/12Intake silencers ; Sound modulation, transmission or amplification
    • F02M35/1205Flow throttling or guiding
    • F02M35/1216Flow throttling or guiding by using a plurality of holes, slits, protrusions, perforations, ribs or the like; Surface structures; Turbulence generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/12Intake silencers ; Sound modulation, transmission or amplification
    • F02M35/1205Flow throttling or guiding
    • F02M35/1227Flow throttling or guiding by using multiple air intake flow paths, e.g. bypass, honeycomb or pipes opening into an expansion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/12Intake silencers ; Sound modulation, transmission or amplification
    • F02M35/1288Intake silencers ; Sound modulation, transmission or amplification combined with or integrated into other devices ; Plurality of air intake silencers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/4206Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • F04D29/4213Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps suction ports
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers
    • F04D29/441Fluid-guiding means, e.g. diffusers especially adapted for elastic fluid pumps
    • F04D29/444Bladed diffusers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/661Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for elastic fluid pumps
    • F04D29/663Sound attenuation
    • F04D29/664Sound attenuation by means of sound absorbing material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/50Inlet or outlet
    • F05D2250/51Inlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/70Shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/96Preventing, counteracting or reducing vibration or noise
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Definitions

  • the present invention relates to a turbocharger silencer and a turbocharger using the silencer, and more particularly to a turbocharger silencer suitable for silencing noise generated at an air inlet of the turbocharger and the silencer.
  • turbochargers Regarding turbochargers.
  • the turbocharger has been driven at a higher rotational speed than before.
  • the noise source of such a turbocharger includes a turbine that rotates using engine exhaust gas as a power source, and a cylinder that is directly connected to the turbine coaxially and sucks and compresses air by rotating integrally with the turbine. Compressor that feeds into
  • a duct (conduit) through which exhaust gas is circulated is connected to the inlet / outlet of the turbine.
  • the noise of the turbine permeating through this duct is generated by winding a soundproof material around the outer surface of the duct. Sound insulation is possible.
  • noise transmitted from the turbine case that houses the turbine can be insulated by covering the outer surface of the casting of the turbine case with a soundproofing material.
  • a duct for circulating the compressed air to the cylinder side is connected to the air discharge port (exit) of the compressor. The noise of the compressor permeating through this duct is generated on the outer surface of the duct. Sound insulation can be achieved by winding a soundproofing material around.
  • noise transmitted from a compressor case which is a cast product that accommodates the compressor, can be insulated by covering the outer surface of the compressor case with a soundproofing material.
  • the turbocharger has been provided with a silencer for the turbocharger to mute the noise generated at the air intake port of the compressor.
  • This turbocharger silencer was required to have the appropriate performance described below when applied to an engine.
  • the compressor noise is a wind noise generated by the rotation of the compressor impeller, and has the frequency of the order component of the number of blades as a main component.
  • the noise includes 1650 (3300) Hz, which is a fundamental frequency calculated by the number of blades ⁇ rotational speed ⁇ 60 (seconds), and a frequency component in the vicinity of a harmonic component of the fundamental frequency. It is characterized by a very high level compared to other frequency components.
  • the fundamental frequency of 1650 (3300) Hz is obtained on the assumption that the number of blades is 11 (22) and the rotational speed is 9000 rpm.
  • the level at which such noise is radiated from the air suction port of the compressor (supercharger) is approximately 130 to 155 dB (A), although it varies depending on the intake air volume and the discharge pressure. And since the machine side noise of the engine using the supercharger is around 100 dB (A), the noise due to the air intake of the supercharger must be reduced to around 100 dB (A) from the environmental aspect of the engine. Don't be.
  • the silencer for the supercharger is required to have a high silence level so as to cope with the reduction of the noise of the supercharger.
  • the turbocharger in order to achieve the original purpose of the turbocharger, such as improving the fuel efficiency of the engine, reducing NOx, and thus contributing to fuel saving and exhaust gas regulations, the turbocharger is highly efficient (in other words, high discharge pressure). It is desirable. In order to increase the efficiency of such turbochargers, global turbocharger manufacturers are surpassing. In general, it is said that if the pressure loss on the suction side is reduced by 10 mmAq, the efficiency of the supercharger is improved by 1%. The pressure loss of the silencer for the supercharger arranged on the suction side is small. It becomes an important factor to increase the efficiency of the machine.
  • the silencer for the turbocharger is required not only to have a high volume level but also to have a small pressure loss.
  • silencers having various structures have been proposed so far by the applicant, but a typical structure of a silencer for a large turbocharger is based on the flow of intake air.
  • the structure is classified into three types: a cylindrical outer peripheral suction type, a cylindrical front suction type, and a square front suction type.
  • the cylindrical outer periphery suction type silencer is mounted on the engine in a state of being directly connected to the supercharger as disclosed in Patent Document 1.
  • a silencing element for silencing such noise is obtained by arranging a plurality of Z-shaped plate-shaped sound absorbing splitters radially at an equal pitch in the circumferential direction between the inner diameter and outer diameter of the silencer. It is configured.
  • the cylindrical front suction silencer is configured such that air is sucked from the front (front surface) of the silencer toward the rear in the axial direction.
  • the noise of the turbocharger is radiated from the rear of the silencer toward the front in the axial direction, that is, toward the front (front) side, contrary to such air flow.
  • a silencing element for silencing such noise is configured by concentrically arranging a plurality of cylindrical sound absorbing cylinders whose central portions in the axial direction are bent in the radial direction.
  • a sound wave can collide with the curved portion of the sound absorbing cylinder to obtain a large silence level, and an air flow path in the axial direction is secured between the sound absorbing cylinders. Pressure loss can be suppressed.
  • the square front suction silencer is configured to suck air from the front of the silencer toward the rear in the axial direction, similarly to the cylindrical front suction silencer. Yes.
  • the noise of the supercharger is radiated from the rear of the silencer toward the front in the axial direction so as to resist the flow of the sucked air.
  • the silencing element for silencing such noise is constituted by arranging a plurality of plate-like sound absorbing plates at an equal pitch in a direction orthogonal to the axial direction.
  • the length of the silencing element can be extended in the axial direction according to the required silencing level, and a predetermined silencing level can be obtained.
  • An air flow path can be secured to suppress pressure loss.
  • cylindrical outer circumference suction type silencer Since the cylindrical outer periphery suction type silencer can make the dimensions of the plurality of sound absorbing splitters all the same, it is excellent in mass productivity and is the cheapest among the three types of silencers.
  • the cylindrical outer periphery suction type silencer has an outer diameter (do) that is substantially the same as the outer diameter of the turbocharger due to its configuration, and the inner diameter (di) is also the same as that of the turbocharger. It is uniquely determined by the aperture. Therefore, the silencing element is forced to be arranged in such a limited space, and the path length of the silencing element is limited to ⁇ (do-di) ⁇ 2 ⁇ , so that the silencing volume is increased. There was a limit to this.
  • the cylinder front suction type silencer has been originally developed for the purpose of eliminating the disadvantages of the cylinder outer periphery suction type silencer, and is superior to the cylinder outer periphery suction type silencer in securing the sound reduction.
  • the cylindrical front suction type silencer can easily secure the required noise reduction level by adjusting the axial length of the sound absorbing cylinder.
  • the cylindrical front suction type silencer has a larger surface area than the cylindrical outer suction type silencer, so that sound insulation is wrapped around the outer surface of the case to prevent noise transmitted through the case. There must be.
  • the cylindrical front suction type silencer must have different diameters of the sound absorbing cylinders, so that mass production is difficult and cost is increased.
  • the square front suction type silencer has been developed to eliminate the disadvantages of the two types of silencers described above, and is superior in silence volume than the cylindrical outer suction type silencer and more than the cylindrical front suction type silencer. Excellent in cost.
  • the square front suction silencer like the cylindrical front suction silencer, must be sound-insulated by wrapping a soundproof material around the outer surface of the case in order to prevent noise transmitted from the case.
  • the present inventor pays attention to the fact that the cost of the cylindrical outer peripheral suction type silencer is the lowest, while taking advantage of the lower cost of the cylindrical outer peripheral suction type silencer.
  • Silencer for turbocharger that is optimal for cost reduction and suitable for increasing silence volume, and turbocharger using this silencer to overcome the difficulty of increasing silence volume, which is a weak point of cylinder outer peripheral suction type Is intended to provide.
  • the silencer for a supercharger is characterized in that it is attached to an air suction port where air is sucked by a compressor provided in the supercharger, and the air is sucked.
  • a plurality of plate-like sound absorbing splitters are arranged around a predetermined central axis so as to be along the inner circumference of the air supply inlet.
  • the gap portions By arranging the gap portions in the direction and arranging them radially, the air is sucked inwardly from the outside in the radial direction using the gap portions as flow paths, and the flow of the air
  • the noise radiated from the inside toward the outside in a reverse direction is absorbed by the plurality of sound absorbing splitters to be silenced.
  • the other sound-absorbing splitters adjacent to the liter in the circumferential direction have the same distance section from the start point in each of a plurality of involute curves having different start points that are concentric with the central axis and that have the same radius as each other.
  • the flow is a dimension in the normal direction of the involute curve in the flow path between the arbitrary sound absorption splitter and another sound absorption splitter adjacent to the sound absorption splitter in the circumferential direction.
  • the road width is set to a predetermined constant value suitable for the wavelength of the noise to be silenced.
  • Another feature of the silencer for a supercharger according to the present invention is that the arbitrary sound absorbing splitter and the other sound absorbing splitter adjacent to the sound absorbing splitter in the circumferential direction are the same radius and / or as the plurality of involute curves.
  • the involute curve set corresponding to any pattern is formed in a shape, and all of the plurality of patterns are By being assigned to the shape of a pair of sound absorbing splitters adjacent to each other among the plurality of sound absorbing splitters, the flow passages having the constant value flow passage width respectively corresponding to the plurality of patterns, It exists in the point selectively arrange
  • Another feature of the silencer for a turbocharger according to the present invention is that the arbitrary sound absorbing splitter and the other sound absorbing splitter adjacent to the sound absorbing splitter in the circumferential direction are each stretched based on a concentric constant circle.
  • the opening direction is formed in a shape along a composite curve portion in which a part of a plurality of involute curves whose forward rotation or reverse rotation is connected.
  • a still further feature of the silencer for a supercharger according to the present invention is that the constant value is a size that is 1 ⁇ 2 of the wavelength of the noise to be silenced.
  • the flow path width can be matched to the optimum value for the wavelength of the noise to be silenced, so that one of the most effective silencing can be realized.
  • a still further feature of the silencer for a supercharger according to the present invention is that the arrangement pitch of the sound absorbing splitters is set to a value suitable for the wavelength of the noise to be silenced.
  • a still further feature of the silencer for a supercharger of the present invention is that the arrangement pitch has the same dimension as the wavelength of the noise to be silenced.
  • a still further feature of the silencer for a supercharger according to the present invention is that the wavelength of the noise to be silenced is a wavelength corresponding to the fundamental frequency of the noise.
  • a feature of the supercharger of the present invention is that a plurality of sound absorbing splitters are arranged radially in a circumferential direction around a predetermined central axis so as to be along the inner circumference of the air suction port,
  • the flow path width formed by the sound absorption splitter adjacent to the central axis and having a starting point with a concentric constant circle as a reference and along the involute curve is the noise to be silenced.
  • the compressor is provided with a turbocharger silencer set to a predetermined width suitable for the wavelength.
  • turbocharger silencer that is optimal for cost reduction and suitable for an increase in noise reduction, and a turbocharger using this silencer.
  • FIG. 1 is a configuration diagram showing a longitudinal cross-sectional view of a turbocharger silencer together with a part of a turbocharger in a turbocharger silencer according to a first embodiment of the present invention.
  • FIG. 1 is a partial front sectional view showing a muffler element according to the first embodiment of FIG. The figure which shows the involute curve for determining the shape of the sound absorption splitter in 1st Embodiment of FIG.
  • FIG. 9 the schematic block diagram which shows a silencing element Schematic which shows the 1st specific structure of a silencing element in 3rd Embodiment of the silencer for superchargers which concerns on this invention.
  • the schematic which shows the 2nd specific structure of a silencing element The figure which shows the involute curve for determining the shape of the sound absorption splitter in the structure of FIG.
  • the turbocharger silencer 1 As shown in FIG. 1, the turbocharger silencer 1 according to the present embodiment is attached to an air suction port 4 where air is sucked by a compressor 3 provided in the turbocharger. In addition, the noise generated by the compressor 3 is silenced. However, the noise silenced by the turbocharger silencer 1 does not prevent the noise from the turbine (not shown) from being included. Further, the turbocharger silencer 1 in the present embodiment is the above-described cylindrical outer periphery suction type silencer.
  • the turbocharger silencer 1 has two outer disks 2 ⁇ / b> A and 2 ⁇ / b> B arranged in parallel to each other with a gap in the horizontal direction in FIG. 1.
  • These outer discs 2A and 2B have the same outer diameter.
  • These outer disks 2A and 2B are preferably formed of a strong steel plate in order to insulate the transmitted sound in the noise of the compressor 3.
  • a relatively large-diameter circular hole 5 for air circulation is formed at the center of the outer disk 2B arranged on the air suction port 4 side (the right side in FIG. 1). It is drilled concentrically.
  • a cylindrical body 7 extends toward the air suction port 4 at the inner peripheral end of the outer disk 2B.
  • a flange 8 extends radially outward at the tip of the cylindrical body 7. Is installed around.
  • a plurality of radial reinforcing members 10, 10... Are fixed over the flange 8, the cylindrical body 7 and the outer disk 2B, whereby the outer disk 2B and the cylindrical body 7 are firmly integrated. Yes.
  • a wire mesh 11 and a filter 12 for removing dust in the air are wound between the outer peripheral edges of the outer disks 2A and 2B in order from the inner side in the radial direction. .
  • a silencer element 15 having two inner disks 114A and 14B faces the outer disks 2A and 2B from the inner side on both outer disks 2A and 2B. Is arranged in. Circular holes 16A and 16B having the same inner diameter and concentricity as the circular hole 5 of the outer circular plate 2B are formed in each of the inner circular plates 14A and 14B. Further, between the outer disk 2B on the right side (air inlet 4 side) in FIG. 1 and the right inner disk 14B facing this, and between the left outer disk 2A and the left inner disk 14A facing this. Between them, sound absorbers 17A and 17B, both of which are both vibration-proof and sound-proof, are interposed.
  • These sound absorbers 17A and 17B may be ones in which a sound absorbing material (not shown) such as a net-like or non-woven fabric material such as glass wool is accommodated inside a surface covered with a punching plate made of metal such as aluminum. .
  • a sound absorbing material such as a net-like or non-woven fabric material such as glass wool
  • the sound absorber 17B disposed between the right disks 2B and 14B in FIG. 1 extends to the inner peripheral ends of both disks 2B and 14B, and has a disk shape as a whole. There is no.
  • the sound absorber 17A disposed between the left disks 2A and 14A in FIG. 1 extends to the center side of the outer disk 2A beyond the inner peripheral end of the inner disk 14A.
  • a portion 17Aa extending toward the center of the outer disk 2A in the sound absorber 17A constitutes a truncated cone part 17Aa having a substantially truncated cone shape protruding toward the circular hole 5 side of the outer disk 2B. is doing.
  • the tip of the truncated cone part 17 ⁇ / b> Aa reaches the circular hole 5.
  • the frustoconical portion 17Aa has a conical outer peripheral surface for guiding the air sucked into the turbocharger silencer 1 to the air suction port 4 side with a small pressure loss.
  • the truncated cone portion 17Aa also plays a role of silencing the noise of the compressor 3 entering from the air suction port 4 side.
  • the silencing element 15 has a plurality of plate-like sound absorbing splitters 20, 20... Having a sound absorbing function fixed between the two inner circular plates 14A, 14B described above. ing.
  • Each of the sound absorbing splitters 20 is radially arranged along the inner periphery of the air supply inlet 4 with gaps having a fixed dimension in the circumferential direction around a predetermined central axis CA.
  • an arbitrary sound absorbing splitter 20 and another sound absorbing splitter 20 adjacent to the sound absorbing splitter 20 both in the circumferential direction are concentric with the central axis CA and have the same radius as shown in FIG.
  • a distance section from the starting point a in each of a plurality of involute curves I having different starting points (in other words, starting points) a based on the constant circle C is formed in a curved plate shape along the same portion I ′.
  • the flow path width w which is a dimension in the linear direction, is set to a dimension that is 1 ⁇ 2 of the wavelength as a predetermined constant value that matches the wavelength of the noise to be silenced.
  • the wavelength ⁇ of the noise to be silenced is desirably a wavelength c / F (c is the speed of sound) corresponding to the fundamental frequency F having the highest noise level.
  • the involute curve I is a plane curve whose normal line n is always in contact with one constant circle C, and is also referred to as a circle extension line or anti-clothoid.
  • the involute curve I can be obtained as a trajectory drawn by the tip of the yarn when the yarn wound around the fixed circle C is unwound while being pulled straight without rotating the fixed circle C.
  • the center of curvature of an arbitrary point P on the involute curve I is a contact point b between the normal line n and the fixed circle C at this point P, and the distance between the points Pb is the point P.
  • the radius of curvature and the center of curvature differ depending on the point P.
  • each sound absorbing splitter 20 is formed along such an involute curve I, the constant flow path width w as described above can be secured without changing the thickness of each sound absorbing splitter 20.
  • the passage width w By forming the passage width w to have a size that fits the wavelength of the frequency to be silenced from the viewpoint of noise reduction, the sound energy at that frequency is effectively absorbed by the sound absorption splitter 20, and a large noise reduction volume is achieved.
  • the fundamental frequency is 1650 Hz
  • the harmonic of the fundamental frequency is 3300 Hz
  • the pair of sound absorbing splitters 20 and 20 including any sound absorbing splitter 20 and another sound absorbing splitter 20 adjacent to the arbitrary sound absorbing splitter 20 has an arrangement pitch p (see FIG. 2), and the wavelength of noise to be silenced. It is set to the same dimension as the wavelength as a value suitable for (for example, the wavelength corresponding to the fundamental frequency).
  • the arrangement pitch p is equivalent to a value obtained by adding the thickness t of the sound absorbing splitter 20 to the flow path width w.
  • a core plate 22 is sandwiched between the center portions of glass wool boards 21 made of glass wool fibers processed into an arcuate shape in accordance with an involute curve.
  • An example is one in which the surface of the board 21 is protected by an aluminum punching plate 23 in order to prevent the fibers from scattering due to the flow of air.
  • the front end in the longitudinal direction is protected by an aluminum extrusion mold material 24 that has been processed into a shape that reduces the flow resistance.
  • polyester fibers are thermally welded to both surfaces of a core plate 22 similar to FIG. 6, and processed into a soft plate shape. And a polyester board 26 firmly bonded with an adhesive.
  • the sound absorbing splitter 20 of FIG. 7 is also machined into a shape that reduces the flow resistance at the front end in the longitudinal direction, as in FIG.
  • the sound-absorbing splitter 20 of FIG. 7 does not need to protect the surface because the polyester fibers are thermally welded to each other, so that the airflow unlike the glass wool board 21 does not occur.
  • the specific structure of the sound absorption splitter 20 is not limited to that shown in FIGS. 6 and 7.
  • each flow path 19 After the air that has flowed in each flow path 19 in this way is discharged from the inner peripheral end of each sound absorption splitter 20 to the central portion in the silencer 1 for the supercharger that is outside each flow path 19, The air is sucked into the air suction port 4 side and further compressed by the compressor 3, and then efficiently supplied to an engine cylinder (not shown).
  • the noise generated by the compressor 3 at the time of such air suction is supercharged from the side of the air inlet 4 so that it reverses the air flow as shown by the broken arrow in FIG. After flowing into the central portion of the silencer 1 for use, it is radiated from the inside in the radial direction to the outside.
  • each sound absorbing splitter 20 is formed in a shape along the involute curve, the flow path width w of each flow path 19 does not need to change the thickness of each sound absorbing splitter 20, and the noise to be silenced is reduced. Since it is set to a constant value ⁇ / 2 conforming to the wavelength ⁇ , noise corresponding to the wavelength ⁇ can be effectively silenced with a simple configuration (“Mechanical Noise Handbook (Industry Books)”, page 506 text) (See line 10). At this time, since the pitch p of each sound absorbing splitter 20 is set to a constant value ⁇ suitable for the wavelength ⁇ of the noise to be silenced, the noise corresponding to the wavelength ⁇ can be silenced more effectively. . Further, at this time, if the wavelength ⁇ is a wavelength corresponding to the fundamental frequency, the muffled sound volume can be further increased.
  • the channel width between the pair of adjacent sound absorbing splitters 20, 20 is used. 19 can be easily maintained constant, so that the flow path width 19 is adapted to the wavelength of the noise to be silenced, so that the installation space of the sound absorption splitter 20 is restricted in the radial direction. The amount can be increased effectively.
  • the turbocharger is downsized and the high pressure ratio and high efficiency can be achieved with quiet operation despite high rotation. Can be achieved.
  • the radius of the fixed circle C that defines the involute curve I may be appropriately changed according to the desired volume reduction. For example, in the configuration shown in FIG. 3, if only the radius of the constant circle C is changed to be small, the curvature of the involute curve I increases, and the interval w ′ between a pair of adjacent involute curves I and I becomes larger. In addition, the length of the part I ′ in a certain distance section from the starting point a becomes longer. If such a shape is reflected in the sound absorption splitter 20, the flow path width w is narrow, in other words, the flow path 19 having a small flow path cross-sectional area and a long flow path length is obtained. Is even higher.
  • the number of the sound absorbing splitters 20 may be changed as appropriate according to the desired volume reduction. For example, if only the number of the sound absorbing splitters 20 is increased with respect to the configuration shown in FIG. 2, the flow path width w is narrowed, so that the noise reduction volume is increased.
  • FIG. 8 shows an involute curve group that defines the shape of each sound absorbing splitter 20 in such a case.
  • the flow path width w of the flow path 19 between the pair of adjacent sound absorbing splitters 20 and 20 is a constant value in the flow path 19 according to the first embodiment. It is the same.
  • the channel width w of the channel 19 is set to an equal value between all adjacent pairs of sound absorbing splitters 20 and 20. is not.
  • an arbitrary sound absorbing splitter 20 and another sound absorbing splitter 20 adjacent to the arbitrary sound absorbing splitter 20 have a radius (same radius) ri of a constant circle C and an angle between different starting points a as shown in FIG.
  • a plurality of involute curve sets I (ri, di) (i is 1 to the number of patterns) having a plurality of different distances di are formed in a shape based on a set of involute curves corresponding to any pattern. ing.
  • FIG. 9 shows three patterns, but there is no need to limit to this.
  • the patterns may have the same radius ri of the fixed circle C and the angular interval di between different starting points a.
  • all of the plurality of patterns are assigned to the shape of any one of the plurality of sound absorbing splitters 20 adjacent to each other, as shown in FIG.
  • the flow paths 19 having constant flow path widths w1, w2, and w3 different from each other corresponding to the plurality of patterns are selectively arranged according to the positions in the circumferential direction.
  • the wavelength of the noise to be adapted can be varied according to the flow path 19, and therefore, the change in the wavelength of the noise to be silenced due to the fluctuation in the rotation speed of the compressor 3 (for example, the change in the fundamental frequency) Therefore, it is possible to stably maintain a high level of muffled sound in a flexible manner with respect to a change in wavelength corresponding to the fundamental frequency.
  • the arbitrary sound absorbing splitter 20 and another sound absorbing splitter 20 adjacent thereto have a forward rotation direction (same direction) or a reverse rotation direction (reverse direction) based on a concentric constant circle.
  • the plurality of involute curves are formed in a shape along a composite curve obtained by connecting a part of the involute curves.
  • FIG. 11 a configuration in which the sound absorption splitter 20 and the flow path 19 are refracted into a “ ⁇ ” shape, and an overall view and a diagram of FIG. As shown in the enlarged view of the main part of FIG. 12 (b), a configuration in which the sound absorbing splitter 20 and the flow path 19 are refracted into a substantially “S” shape can be mentioned.
  • the configuration of FIG. 11 includes two involute curves I1 in which the extending direction (the direction of unwinding) is reversed with reference to concentric constant circles C1 and C2 as composite curves.
  • I2 is based on a curve segment L1 obtained by connecting parts of I2.
  • the constant circles C1 and C2 are the same (in other words, concentric and same diameter or involute curves I1 and I2 have the same curvature), and the two involute curves I1 and I2
  • the start point intervals may be equal to each other. However, it is not necessary to limit to such a configuration, and the radii of the fixed circles C1 and C2 may be different from each other.
  • the configuration of FIG. 12 has a positive extension direction based on constant circles C1, C2, C3 (C2 ⁇ C1 ⁇ C3) of concentric and different diameters as a composite curve. This is based on a curve portion L2 obtained by connecting a part of three involute curves I1, I2, and I3 that have been rotated or reversed.
  • the sound absorbing splitter 20 is also based on a linear shape parallel to the radial direction connected to the inner end of the involute curve I3.
  • FIG. 15 individually shows each of the involute curves I1, I2, and I3 that are the source of the composite curve of FIG. 14 and 15, di is a diameter that is the inner diameter of the sound absorption splitter 20, and r 1 , r 2 , r 3 in FIG. 15 are constants corresponding to the involute curves I (I 1, I 2, I 3), respectively.
  • the radius of the circle (C 1, C 2, C 3). In FIG. 14, do is the diameter that is the outer diameter of the sound absorbing splitter 20.
  • the involute curves I2 and I3 have the same extension direction, and the involute curves I2 (or I3) and I1 have the extension directions reversed.
  • the sound wave of the noise traveling in the flow path 19 against the air flow sucked by the compressor 3 can be easily caused to collide with the sound absorption splitter 20. It is possible to efficiently absorb the noise due to the noise and to further increase the muffled sound volume.
  • a silencer for a turbocharger (cylindrical outer peripheral suction type) of a comparative example has an outer diameter and an inner diameter of a silencer as shown in the overall view of FIG. 16A and the enlarged view of the main part of FIG.
  • a sound absorbing splitter 15 ′ having a Z shape is provided between the sound absorbing elements 15 ′ arranged in a concentric radial manner.
  • the silencing element 15 ′ has a processing air volume of 44 m 3 / m, and, as shown in FIG. 16 (a), the outer diameter is 2100 mm to match the outer shape of the supercharger, and the inner diameter is It was 1300 mm according to the suction port diameter of the supercharger.
  • the noise 150 dB (A) generated in the turbocharger after the hearing (A characteristic) correction corresponding to the uppermost line graph (A characteristic) in FIG. 17 is 105 dB (A) or less around the turbocharger.
  • the silencer for the turbocharger as a whole requires a silence level of 45 dB (A) or more.
  • the mute element 15 'needs to bear a mute volume of 29 dB (A) or more.
  • turbocharger silencer of the comparative example has a more specific configuration as shown below.
  • the turbocharger silencers of the comparative example have 48 sound absorbing splitters 20 'and are arranged at equal intervals in the circumferential direction. Further, the shape of the sound absorbing splitter 20 ′ is bent in a “shape” from the outer diameter toward the inner diameter, and the tip (inner end) is bent toward the center so as to be parallel to the radial direction. It is almost Z-shaped. Further, as shown in FIG. 16B, the thickness t of the sound absorption splitter 20 ′ is 25 mm, the flow path width w is 75 mm, the arrangement pitch p of the sound absorption splitter 20 ′ is 100 mm, and the flow path length (total length) l. Was 450 mm.
  • the frequency at which sound is best silenced can be calculated by the following two methods.
  • the measured value of the silencing characteristic of the silencing element 15 ′ alone is as shown in FIG. 18, and the silencer for the turbocharger in the state where the silencing element 15 ′ is incorporated.
  • the actual measured value of the noise characteristic (A characteristic) after passing through is shown in the bottom line graph of FIG.
  • the line graph shown in the middle of FIG. 17 shows the actual measurement value of the noise characteristic (A characteristic) after passing through the turbocharger silencer in a state where the silencing element 15 'is not incorporated.
  • the silencing characteristics of the silencing element 15 ′ alone have a peak silencing volume at 3150 Hz close to the designed value of 3400 Hz (center of the high frequency region 3300 Hz), and a predetermined range around 3150 Hz. In the frequency region, a slightly sharp mountain-shaped characteristic showing a muffled volume of 30 dB or more was obtained.
  • the noise after A characteristic correction corresponding to the bottom line graph in FIG. 17 is 104 dB (A), which is less than the target 105 dB (A).
  • the noise level at the fundamental frequency of 1650 Hz is higher than the levels at the front and rear frequencies (1250 Hz, 2000 Hz) as shown in the bottom line graph of FIG. 15 dB or more is excellent, and it can be seen that the fundamental frequency and the volume reduction of the harmonics are uneven.
  • the silencer 1 for the supercharger according to the embodiment is provided between the outer diameter and the inner diameter of the silencer, as shown in the overall view of FIG. 19A and the enlarged view of the main part of FIG.
  • a silencing element 15 in which substantially S-shaped sound-absorbing splitters 20 arranged concentrically along a composite curve consisting of three involute curves is provided.
  • the muffler element 15 has a processing air volume of 44 m 3 / m, and the outer diameter is 2100 mm so as to match the outer shape of the supercharger as shown in FIG. .
  • the inner diameter was set to 1100 mm, which is slightly smaller than the comparative example.
  • the silencer for the supercharger as a whole requires a silence level of 50 dB (A) or more, and the silencer element 15 needs to bear a silence level of 34 dB (A) or more.
  • the muffler element 15 (necessary muffler volume 34 dB (A)) of the embodiment needs to increase the muffler volume by 5 dB (A) compared to the muffler element 15 ′ (required muffler volume 29 dB (A)) of the comparative example. It becomes.
  • the peak frequency of the muffling is reduced.
  • 2475 Hz an intermediate frequency between the fundamental frequency of 1650 Hz and the harmonic overtone of 3300 Hz
  • the silencer for the supercharger of the embodiment is used to mute 35 dB (A) centering on the peak frequency of such a muffling of 2475 Hz and to obtain an effective muffling volume in a space of 500 mm between the outer diameter and the inner diameter.
  • A the peak frequency of such a muffling of 2475 Hz
  • the silencer for the supercharger of the embodiment has 24 sound absorbing splitters 20 using an involute curve, and is arranged at equal intervals in the circumferential direction.
  • the thickness t of the sound absorption splitter 20 is 40 mm
  • the flow path width w is 100 mm
  • the arrangement pitch p of the sound absorption splitter 20 is 140 mm
  • the flow path length l is 650 mm.
  • (7/5)
  • w (7/5)
  • x 100 (mm) 140 (mm) (11)
  • FIG. 21 shows the actual value of the silencing characteristic of the silencing element 15 alone, and passes through the silencer for the turbocharger with the silencing element 15 incorporated.
  • the actually measured values of the noise characteristics (A characteristics) after this are shown in the bottom line graph of FIG.
  • the line graph shown in the middle of FIG. 20 shows an actual measurement value of the noise characteristic (A characteristic) after passing through the silencer 1 for a supercharger in a state where the silencing element 15 is not incorporated. This is the same as the middle graph of FIG.
  • the silencing characteristics of the silencing element 15 alone have a peak silencing volume at 2500 Hz close to the peak frequency design value 2475 Hz (calculated value 2429 Hz based on the channel width w and the array pitch p).
  • the characteristic was a slightly gradual mountain shape that showed a silence level of 35 dB or more in a frequency range of a predetermined range around 2500 Hz.
  • the frequency region showing the silence level of 35 dB or more includes both 1650 Hz, which is the fundamental frequency of the supercharger (noise), and overtone 3300 Hz.
  • the noise after A characteristic correction corresponding to the bottom line graph of FIG. 20 is 98 dB (A), which is equal to or less than the target 100 dB (A).
  • the silencing volume at 1600 Hz near the fundamental frequency is 39 dB, near the harmonic.
  • the muffled sound volume at 3150 Hz was 42 dB, and almost the same muffled sound volume was obtained. This is due to the non-uniformity of the sound volume between the fundamental frequency and the harmonics, compared to the comparative example of FIG. Indicates an improvement.
  • the effect of such an embodiment is that the noise characteristics after passing through the silencer 1 for the supercharger (the bottom line graph in FIG. 20) in the assembled state of the silencer 15 are compared with the comparative example (the bottom line graph in FIG. 17). ) Will be more obvious.
  • 1600 Hz noise near the fundamental frequency is 103 dB
  • 3150 Hz noise near the harmonic is 88 dB
  • the noise 103 dB near the fundamental frequency (1600 Hz) is slightly 1 dB different from the noise 104 dB (A) after the A characteristic correction. It was.
  • the 1600 Hz noise near the fundamental frequency is 92 dB
  • the 3150 Hz noise near the harmonic is 87 dB
  • the difference between them is 5 dB.
  • the noise 92 dB near the fundamental frequency (1600 Hz) has a difference of 6 dB with respect to the noise 98 dB (A) after the A characteristic correction. The effect of noise on the whole has been mitigated.
  • the silencer 1 for the supercharger of the embodiment unlike the silencer for the supercharger of the comparative example, it is possible to mute with good balance so that both the fundamental frequency 1650 Hz and the overtone 3300 Hz are substantially the same value.
  • the number of the sound absorbing splitters 20 in the silencer 15 is reduced from 48 (comparative example) to 24 (example) with respect to the silencer of the supercharger of the comparative example.
  • the thickness (40 mm) of the sound absorption splitter 20 is thicker than that of the comparative example (25 mm) and the flow path length l (650 mm) is longer than that of the comparative example (450 mm).
  • a significant cost reduction is possible.
  • the second embodiment and the third embodiment may be combined.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Supercharger (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

【課題】コストの低廉化に最適かつ消音量の増加に好適な過給機用サイレンサおよびこのサイレンサを使用した過給機を提供すること。 【解決手段】任意の吸音スプリッタ20と、これに隣り合う他の吸音スプリッタ20とは、中心軸CAと同心かつ同一半径の定円を基準とした始点が異なる複数のインボリュート曲線のそれぞれにおける始点からの距離区間が同一の部位に沿った形状に形成され、任意の吸音スプリッタ20と他の吸音スプリッタ20との間の流路19におけるインボリュート曲線の法線方向の寸法である流路幅wは、消音すべき騒音の波長に適合した所定の一定値に設定されていること。

Description

過給機用サイレンサおよびこのサイレンサを使用した過給機
 本発明は、過給機用サイレンサおよびこのサイレンサを使用した過給機に係り、特に、過給機の空気吸込口において発生する騒音の消音に好適な過給機用サイレンサおよびこのサイレンサを使用した過給機に関する。
 従来から、大型ディーゼルエンジンには、その性能を高めるために、当該エンジンのシリンダ内に空気を強制的に送り込む手段として過給機が使用されていた。
 近年、この種の過給機には、ディーゼルエンジンの燃費向上および窒素酸化物(NOx)削減を目的として、高圧力比かつ高効率であることが求められるようになってきた。
 そして、このような要求に応えるべく、過給機は、従来よりも高回転数で駆動されるようになってきている。
 しかしながら、このように過給機を高回転数で駆動すると、要求される性能(高圧力比および高効率)は実現されるものの、騒音レベルが増大するといった弊害も招来していた。
 このような過給機の騒音源は、エンジンの排気ガスを動力源として回転するタービンと、このタービンに同軸状に直結され、タービンと一体的に回転することによって空気を吸込・圧縮してシリンダに送り込む圧縮機である。
 ここで、タービンの出入口には、排気ガスを流通させるダクト(導管)が接続されているが、このダクトから透過してくるタービンの騒音は、当該ダクトの外面に防音材を巻回することによって遮音することができる。また、タービンを収容するタービンケースから透過してくる騒音に対しては、このタービンケースの鋳物外面を防音材で覆うことによって遮音することができる。さらに、圧縮機の空気吐出口(出口)には、圧縮された空気をシリンダ側に流通させるためのダクトが接続されているが、このダクトから透過してくる圧縮機の騒音は、ダクトの外面に防音材を巻回することによって遮音することができる。さらにまた、圧縮機を収容する鋳造品である圧縮機ケースから透過してくる騒音に対しては、この圧縮機ケースの外面を防音材で覆うことによって遮音することができる。
 一方、圧縮機の空気吸込口(入口)については、圧縮機が空気を吸い込めるように開放しなければならないので、前述した圧縮機の空気吐出口やタービンの出入口における遮音をそのまま適用することができない。このため、何らかの手段を講じなければ、圧縮機で発生した非常に高いレベルの騒音が、空気吸込口を経由して外部に放射されてしまうことになる。
 そこで、従来から、過給機には、圧縮機の空気吸込口において発生した騒音を消音するための過給機用サイレンサが設けられていた。
 この過給機用サイレンサには、エンジンへの適用にあたって、以下に述べるような然るべき性能が求められていた。
 すなわち、圧縮機の騒音は、圧縮機の羽根車が回転することによって発生する風切音であり、羽根枚数の次数成分の周波数を主成分としている。この騒音は、例えば、図22に示すように、羽根枚数×回転数÷60(秒)によって算出される基本周波数である1650(3300)Hzと、この基本周波数の倍音成分近傍の周波数成分が、他の周波数成分に比べて非常に高いレベルになることが特徴である。ただし、図22においては、羽根枚数11(22)枚、回転数9000rpmを前提として、基本周波数1650(3300)Hzが得られている。このような騒音が圧縮機(過給機)の空気吸込口から放射される際のレベルは、吸入風量および吐出圧力によって異なるが、おおよそ130~155dB(A)である。そして、過給機を使用しているエンジンの機側騒音が100dB(A)前後であるから、エンジンの環境面から、過給機の空気吸込による騒音も100dB(A)前後に低減しなければならない。
 したがって、過給機用サイレンサには、このような過給機の騒音の低減に対応できるように、高消音量であることが求められていた。
 また、エンジンの燃費向上およびNOxの削減ひいては燃料節約および排ガス規制への貢献といった過給機本来の目的を達成するためには、過給機は高効率(換言すれば、高吐出圧力)であることが望ましい。このような過給機の効率を高めるために、世界の過給機メーカーは凌ぎを削っている。そして、一般に、吸入側の圧力損失を10mmAq小さくすれば、過給機の効率が1%向上するといわれており、吸入側に配置される過給機用サイレンサの圧力損失が小さいことは、過給機の効率を高めるための重要な要素となる。
 したがって、過給機用サイレンサには、高消音量であるだけでなく、圧力損失が小さいことも求められていた。
 このような過給機用サイレンサとしては、これまでにも本出願人によって種々の構造のサイレンサが提案されてきたが、大型過給機用サイレンサの代表的な構造は、吸入空気の流れによって、円筒外周吸込型、円筒正面吸込型および角形正面吸込型の3タイプの構造に分類される。
 これらの3タイプの大型過給機用サイレンサの具体例を説明する。
(円筒外周吸込型)
 円筒外周吸込型サイレンサは、特許文献1にも開示されているように、過給機に直結された状態でエンジン上に取り付けられている。
 このような円筒外周吸込型サイレンサにおいては、サイレンサの外周から中心に向かって空気の吸い込みが行われる。このとき、過給機(圧縮機)の騒音は、このような空気の流れに逆行して、サイレンサの中心から外周に向かって放射される。
 そして、このような騒音を消音するための消音エレメントは、サイレンサの内径と外径との間に、複数のZ形状の板状の吸音スプリッタを、周方向に等ピッチで放射状に配列することによって構成されている。
 このような円筒外周吸込型サイレンサによれば、基本周波数よりも高い周波数の音波を吸音スプリッタの屈曲部に衝突させて消音することができるとともに、各吸音スプリッタ間に、外周から中心に向かう空気の流路を確保して、圧力損失を抑えることができる。
(円筒正面吸込型)
 円筒正面吸込型サイレンサは、特許文献2にも開示されているように、サイレンサの正面(前面)から軸方向後方に向かって空気の吸い込みが行われるように構成されている。
 また、過給機の騒音は、このような空気の流れとは逆に、サイレンサの後方から軸方向前方すなわち正面(前面)側に向かって放射されるようになっている。
 そして、このような騒音を消音するための消音エレメントは、軸方向における中央部が径方向に彎曲した複数の円筒形状の吸音筒を同心円状に配列することによって構成されている。
 このような円筒正面吸込型サイレンサによれば、音波を吸音筒の彎曲部に衝突させて大きな消音量を得ることができるとともに、各吸音筒間に、軸方向への空気の流路を確保して圧力損失を抑えることができる。
(角形正面吸込型)
 角形正面吸込型サイレンサは、非特許文献1にも開示されているように、円筒正面吸込型サイレンサと同様に、サイレンサの正面から軸方向後方に向かって空気の吸い込みが行われるように構成されている。
 また、円筒正面吸込サイレンサと同様に、過給機の騒音は、吸入される空気の流れに抗するように、サイレンサの後方から軸方向前方に向かって放射されるようになっている。
 そして、このような騒音を消音するための消音エレメントは、複数の板状の吸音板を軸方向に対し直交する方向に等ピッチで配列することによって構成されている。
 このような角形正面吸込型サイレンサによれば、必要消音量に応じて消音エレメントの長さを軸方向に伸ばして所定の消音量を得ることができるとともに、各吸音板間に、軸方向への空気の流路を確保して圧力損失を抑えることができる。
特開2004-360547号公報 特開2002-004964号公報
http://www.alpt.co.jp/products/s_charger.html
 前述した3タイプのサイレンサは、それぞれ求められる性能を満足するものではあったが、以下に述べるように、タイプごとに固有の特性(一長一短)があった。
(円筒外周吸込型)
 円筒外周吸込型サイレンサは、複数の吸音スプリッタの寸法を全て同一にすることができるので、量産性に優れ、3タイプのサイレンサ中、コストが最も安価である。
 その一方で、円筒外周吸込型サイレンサは、その構成上、外径(do)を過給機の外径とほぼ同寸法にしなければならず、また、内径(di)も、過給機の取合口径によって一義的に決まってしまう。したがって、消音エレメントは、このような制限された空間内に配置されることを余儀なくされ、消音エレメントの通路長さは、{(do-di)÷2}に制限されるため、消音量を増やすことには限界があった。
(円筒正面吸込型)
 円筒正面吸込型サイレンサは、そもそも、円筒外周吸込型サイレンサの欠点を解消する目的で開発された経緯があり、円筒外周吸込型サイレンサよりも消音量の確保に優れている。具体的には、円筒正面吸込型サイレンサは、吸音筒の軸方向長さを調整することによって必要消音量を容易に確保することができる。
 その反面、円筒正面吸込型サイレンサは、円筒外周吸込型サイレンサに比べてケースの表面積が大きいので、このケースから透過してくる騒音を防音するために、ケース外表面に防音材を巻き付けて遮音しなければならない。また、円筒正面吸込型サイレンサは、吸音筒の直径を個々に異ならせなければならないため、量産化が困難で、コストが高くなってしまう。
(角形正面吸込型)
 角形正面吸込型サイレンサは、前述した2つのタイプのサイレンサの欠点を解消する目的で開発された経緯があり、円筒外周吸込型サイレンサよりも消音量に優れているとともに、円筒正面吸込型サイレンサよりもコスト面で優れている。
 しかしながら、角形正面吸込型サイレンサは、円筒正面吸込型サイレンサと同様に、ケースから透過してくる騒音を防音するために、ケース外表面に防音材を巻き付けて遮音しなければならない。
 本発明者は、前述した3タイプのサイレンサの特性を考慮して、円筒外周吸込型サイレンサのコストが最も安価である点に着目し、円筒外周吸込型サイレンサのコストが安価であることを活かしつつ円筒外周吸込型ならではの弱点である消音量増加の困難性を克服するため、コストの低廉化に最適で、かつ消音量の増加に好適な過給機用サイレンサおよびこのサイレンサを使用した過給機を提供することを目的とするものである。
 前述した目的を達成するため、本発明の過給機用サイレンサの特徴は、過給機に設けられた圧縮機による空気の吸い込みが行われる空気吸込口に取り付けられ、前記空気の吸い込みの際に前記圧縮機によって発生する騒音の消音を行うための過給機用サイレンサにおいて、板状の複数の吸音スプリッタが、前記空気給入口の内周に沿うようにして所定の中心軸を中心とした周方向にそれぞれ間隙部を設けて放射状に配列されていることによって、前記各間隙部を流路とした径方向の外方から内方に向けた前記空気の吸い込みが行われるとともに、当該空気の流れに逆行して前記内方から前記外方に向けて放射される前記騒音が、前記複数の吸音スプリッタに吸収されて消音されるように構成され、任意の前記吸音スプリッタと、この吸音スプリッタに前記周方向において隣り合う他の前記吸音スプリッタとは、前記中心軸と同心かつ互いに同一半径の定円を基準とした始点が異なる複数のインボリュート曲線のそれぞれにおける前記始点からの距離区間が同一の部位に沿った形状に形成され、前記任意の吸音スプリッタとこの吸音スプリッタに前記周方向において隣り合う他の吸音スプリッタとの間の前記流路における前記インボリュート曲線の法線方向の寸法である流路幅は、消音すべき前記騒音の波長に適合した所定の一定値に設定されている点にある。
 そして、このような構成を採用したことにより、安価な円筒外周吸込型のサイレンサにおいて、インボリュート曲線に沿った形状の吸音スプリッタを用いることにより、隣り合う吸音スプリッタ同士の間の流路幅を、吸音スプリッタの厚みを変えることなく一定に維持することができるので、この流路幅を、消音すべき騒音の波長に適合させることで、吸音スプリッタの設置スペースが径方向において制約が課されている中で消音量を効果的に増加させることができる。例えば、騒音の基本周波数が1650Hzの場合、その波長は、音速340(m/s)÷周波数1650(Hz)=20.6cmとなる。また、基本周波数の倍音の3300Hzの場合、その波長は、音速340(m/s)÷周波数3300(Hz)=10.3cmとなる。この波長に適合するように流路幅を整えると、基本周波数の1650Hzと基本周波数の倍音3300Hzの騒音を効率よく消音することができる。
 本発明の他の過給機用サイレンサの特徴は、前記任意の吸音スプリッタとこの吸音スプリッタに前記周方向において隣り合う他の吸音スプリッタとが、前記複数のインボリュート曲線として、前記同一半径および/または前記異なる始点同士の間隔が相違する複数のパターンの前記インボリュート曲線の組のうち、いずれかのパターンに該当する前記インボリュート曲線の組に基づいた形状に形成され、前記複数のパターンの全てが、前記複数の吸音スプリッタのうちのいずれかの互いに隣り合う1対の吸音スプリッタ同士の形状に割り当てられていることによって、前記複数のパターンにそれぞれ対応する前記一定値の流路幅を有する流路が、前記周方向の位置に応じて選択的に配置されている点にある。
 そして、このような構成を採用したことにより、流路に応じて適合する騒音の波長を異ならせることができるので、圧縮機の回転数変動による消音すべき騒音の波長の変化(例えば、基本周波数の変化にともなう基本周波数に対応する波長の変化)に柔軟に対応して、高い消音量を安定的に維持することができる。
 本発明のさらに他の過給機用サイレンサの特徴は、前記任意の吸音スプリッタとこの吸音スプリッタに前記周方向において隣り合う他の吸音スプリッタとは、それぞれが、同心の定円を基準とした伸開方向が正転または逆転した複数のインボリュート曲線の一部同士を繋ぎ合わせた複合曲線分に沿った形状に形成されている点にある。
 そして、このような構成を採用したことにより、空気の流れに逆行して流路内を進行する騒音の音波を吸音スプリッタに衝突させやすくすることができるので、吸音スプリッタによる騒音の吸音を効率的に行うことができ、消音量を更に増加させることができる。
 本発明のさらに他の過給機用サイレンサの特徴は、前記一定値が、前記消音すべき騒音の波長の1/2の寸法である点にある。
 そして、このような構成を採用したことにより、流路幅を消音すべき騒音の波長に最適な値に整合させることができるので、最も効果的な消音の1つを実現することができる。
 本発明のさらに他の過給機用サイレンサの特徴は、前記吸音スプリッタの配列ピッチが、前記消音すべき騒音の波長に適合した値に設定されている点にある。
 そして、このような構成を採用したことにより、吸音スプリッタの配列ピッチを消音すべき騒音の波長に適合させることで、消音量を更に増加させることができる。
 本発明のさらに他の過給機用サイレンサの特徴は、前記配列ピッチが、前記消音すべき騒音の波長と同一の寸法である点にある。
 そして、このような構成を採用したことにより、吸音スプリッタの配列ピッチを消音すべき騒音の波長に最適な値に整合させることができるので、最も効果的な消音の1つを実現することができる。
 本発明のさらに他の過給機用サイレンサの特徴は、前記消音すべき騒音の波長が、前記騒音の基本周波数に対応する波長である点にある。
 そして、このような構成を採用したことにより、騒音レベルが最も高い基本周波数の騒音を効果的に消音することができるので、過給機用サイレンサに求められる性能を確実に発揮することができる。
 本発明の過給機の特徴は、複数の吸音スプリッタが、空気吸入口の内周に沿うようにして所定の中心軸を中心とした周方向にそれぞれ間隔を設けて放射状に配列されるとともに、前記中心軸と、同心の定円を基準とした始点を有する有するとともにインボリュート曲線に沿った形状に形成され、前記周方向において隣り合う吸音スプリッタによって形成された流路幅は、消音すべき騒音の波長に適合した所定幅に設定された過給機用サイレンサを圧縮機に備える点にある。
 そして、このような構成を採用したことにより、吸音スプリッタの設置スペースが径方向において制約が課されている中で消音量を効果的に増加させることのできる過給機を提供することができる。
 本発明によれば、コストの低廉化に最適かつ消音量の増加に好適な過給機用サイレンサおよびこのサイレンサを使用した過給機を実現することができる。
本発明に係る過給機用サイレンサの第1実施形態において、過給機用サイレンサの縦断面図を過給機の一部とともに示した構成図 図1の第1実施形態の消音エレメントを示す正面部分断面図 図1の第1実施形態における吸音スプリッタの形状を定めるためのインボリュート曲線を示す図 インボリュート曲線の原理を説明するための第1の説明図 インボリュート曲線の原理を説明するための第2の説明図 吸音スプリッタの具体的な構造の一例を示す拡大図 吸音スプリッタの具体的な構造の他の一例を示す拡大図 図1の第1実施形態において、吸音スプリッタの変形例に対応するインボリュート曲線を示す図 本発明に係る過給機用サイレンサの第2実施形態において、吸音スプリッタの形状を定めるためのインボリュート曲線を示す図 図9の第2実施形態において、消音エレメントを示す概略構成図 本発明に係る過給機用サイレンサの第3実施形態において、消音エレメントの第1の具体的構成を示す概略図 図11の第3実施形態において、消音エレメントの第2の具体的構成を示す概略図 図11の構成における吸音スプリッタの形状を定めるためのインボリュート曲線を示す図 図12の構成における吸音スプリッタの形状を定めるための複数のインボリュート曲線からなる複合曲線分を示す図 図14の複合曲線分の元となる各インボリュート曲線を個別に示した図 第3実施形態の説明に用いられる比較例の過給機用サイレンサの消音エレメントを示す概略構成図 第3実施形態の説明に用いられる比較例の過給機用サイレンサの騒音特性を示す複合グラフ 第3実施形態の説明に用いられる比較例の消音エレメント単体の消音特性を示すグラフ 第3実施形態における実施例の消音エレメントを示す概略構成図 第3実施形態における実施例の過給機用サイレンサの騒音特性を示す複合グラフ 第3実施形態における実施例の消音エレメント単体の消音特性を示すグラフ 過給機内部発生騒音を示すグラフ
(第1実施形態)
 以下、本発明に係る過給機用サイレンサの第1実施形態について、図1ないし図8を参照して説明する。
 図1に示すように、本実施形態における過給機用サイレンサ1は、過給機に備えられた圧縮機3による空気の吸い込みが行われる空気吸込口4に取り付けられ、当該空気の吸い込みの際に圧縮機3によって発生する騒音の消音を行うように構成されている。ただし、過給機用サイレンサ1によって消音される騒音には、図示しないタービンによる騒音が含まれることを妨げない。また、本実施形態における過給機用サイレンサ1は、前述した円筒外周吸込型のサイレンサとされている。
 具体的には、図1に示すように、過給機用サイレンサ1は、図1における横方向に間隔を設けて互いに平行に配置された2枚の外円板2A,2Bを有しており、これらの外円板2A,2Bは互いに等しい寸法の外径とされている。これらの外円板2A,2Bは、圧縮機3の騒音における透過音を遮音するために、強固な鋼板によって形成することが望ましい。これらの外円板2A,2Bのうち、空気吸込口4側(図1における右側)に配置されている外円板2Bの中心部には、比較的大径の空気流通用の円形孔5が同心状に穿設されている。また、外円板2Bの内周端には、空気吸込口4側に向かって円筒体7が延出されており、この円筒体7の先端には、径方向外方に延在するフランジ8が周設されている。そして、このフランジ8、円筒体7および外円板2Bにかけて、複数枚の放射状補強材10,10…が固定されており、これにより外円板2Bと円筒体7とが強固に一体化されている。
 また、図1に示すように、前記両外円板2A,2Bの外周縁部間には、径方向における内側から順に、金網11および空気中の埃を除去するフィルタ12が巻回されている。
 さらに、図1に示すように、両外円板2A,2Bの内側には、2枚の内円板114A,14Bを有する消音エレメント15が、各外円板2A,2Bに内側から臨んだ状態で配置されている。各内円板14A,14Bには、外円板2Bの円形孔5と同内径かつ同心の円形孔16A,16Bが穿設されている。また、図1における右側(空気吸込口4側)の外円板2Bとこれに臨む右側の内円板14Bとの間および左側の外円板2Aとこれに臨む左側の内円板14Aとの間には、それぞれ、防振と防音を兼ねた吸音体17A,17Bが介装されている。
 これらの吸音体17A,17Bは、アルミニウムなどの金属からなるパンチングプレートにより被覆されている表面の内側にグラスウールのような材質の網状あるいは不織布状の図示しない吸音材を収納したものであってもよい。これらの吸音体17A,17Bのうち、図1における右側の円板2B,14B間に配置された吸音体17Bは、両円板2B,14Bの内周端まで延在し、全体として円盤状をなしている。
 一方、図1における左側の円板2A,14A間に配置された吸音体17Aは、内円板14Aの内周端を越えて外円板2Aの中心部側に延在している。具体的には、吸音体17Aにおける外円板2Aの中心部側に延在された部位17Aaは、外円板2Bの円形孔5側に突出する先細ほぼ円錐台形をなす円錐台部17Aaを構成している。この円錐台部17Aaの先端は、円形孔5内にまで到達している。この円錐台部17Aaは、過給機用サイレンサ1内に吸い込まれた空気を少ない圧力損失にて空気吸込口4側に導くために、外周面が円錐形に形成されている。また、円錐台部17Aaは、空気吸込口4側から進入してくる圧縮機3の騒音を消音する役割も担っている。
 つぎに、図2に示すように、消音エレメント15は、前述した2枚の内円板14A,14Bの間に固定された吸音機能を有する板状の複数の吸音スプリッタ20,20…を有している。各吸音スプリッタ20は、空気給入口4の内周に沿うようにして、所定の中心軸CAを中心とした周方向に一定寸法の間隙部をそれぞれ設けて放射状に配列されている。
 これによって、各1対の吸音スプリッタ20,20間の間隙部を流路19とした径方向の外方から内方に向けた空気の吸い込みが行われるとともに、当該空気の流れに逆行して内方から外方に向けて放射される騒音が、各吸音スプリッタ20に吸収されて消音されるようになっている。
 そして、本実施形態においては、任意の吸音スプリッタ20と、この吸音スプリッタ20に周方向の双方において隣り合う他の吸音スプリッタ20とが、図3に示すように、中心軸CAと同心かつ同一半径の定円Cを基準とした始点(換言すれば、出発点)aが異なる複数のインボリュート曲線Iのそれぞれにおける始点aからの距離区間が同一の部位I’に沿った曲板状に形成されている。また、図2に示すように、任意の吸音スプリッタ20とこの吸音スプリッタ20に隣り合う他の吸音スプリッタ20とからなる各1対の吸音スプリッタ20,20間の流路19におけるインボリュート曲線Iの法線方向の寸法である流路幅wは、消音すべき騒音の波長に適合した所定の一定値としての波長の1/2の寸法に設定されている。なお、消音すべき騒音の波長λは、騒音レベルが最も高い基本周波数Fに対応する波長c/F(cは音速)であることが望ましい。また、このように、流路幅wが(1/2)λに設定されている場合における吸音スプリッタ20の厚み(横幅)tは、流路幅wに等しい(w=t)ことが望ましい。
 ここで、図4に示すように、インボリュート曲線Iとは、その法線nが常に1つの定円Cに接するような平面曲線であり、円の伸開線あるいは反クロソイドとも称されている。このインボリュート曲線Iは、定円Cに巻き付けた糸を定円Cを回転させずに真っ直ぐに引っ張りながらほどく際の糸の先端が描く軌跡として得ることができる。
 図4に示すように、インボリュート曲線I上の任意の点Pの曲率中心は、この点Pにおける法線nと定円Cとの接点bとなっており、このPb間の距離が、点Pにおけるインボリュート曲線Iの曲率半径となっている。勿論、曲率半径および曲率中心は、点Pに応じて異なっている。
 そして、このようなインボリュート曲線Iを、定円C上で等ピッチに繰り返し描くと、図5に示すような放射状のインボリュート曲線Iの群(インボリュート曲線群)が得られる。そして、図5に示すように、各インボリュート曲線Iは、法線n方向における間隔w’が、いずれの位置Pにおいても一定となることが分かる。
 したがって、このようなインボリュート曲線Iに沿って各吸音スプリッタ20を形成すれば、各吸音スプリッタ20の厚みを変化させることなく、前述のような一定の流路幅wを確保できるわけである。この通路幅wを、消音する周波数の波長に対して消音の観点から適合するような寸法に形成することで、その周波数の音のエネルギを効果的に吸音スプリッタ20に吸音し、大きな消音量を得ることができる。例えば、基本周波数が1650Hzの場合、その波長は、音速340(m/s)÷周波数1650(Hz)=20.6cmとなる。また、基本周波数の倍音が3300Hzの場合、その波長は、音速340(m/s)÷周波数3300(Hz)=10.3cmとなる。そして、この波長に適合するように流路幅wを整えると、基本周波数の1650Hzと、この基本周波数の倍音の3300Hzの騒音を効率よく消音することになる。
 また、本実施形態において、任意の吸音スプリッタ20とこれに隣り合う他の吸音スプリッタ20からなる1対の吸音スプリッタ20,20は、配列ピッチp(図2参照)が、消音すべき騒音の波長(例えば、基本周波数に対応する波長)に適合した値としての波長と同一の寸法に設定されている。なお、配列ピッチpは、流路幅wに、吸音スプリッタ20の厚みtを加算した値と等価である。
 このような吸音スプリッタ20の具体的な構造の一例としては、図6に示すように、インボリュート曲線に合わせて弓形に加工されたグラスウール繊維からなるグラスウールボード21の中央部分に芯板22を挟持し、ボード21の表面を空気の流れによる繊維の飛散を防止するためにアルミニウム製パンチングプレート23で保護したものを挙げることができる。
 なお、図6の吸音スプリッタ20において、長手方向の先端部は、流れ抵抗を小さくする形状に加工されたアルミニウム製押出型材24によって保護されている。
 また、吸音スプリッタ20の具体的な構造の他の一例としては、図7に示すように、図6と同様の芯板22の両面に、ポリエステル繊維同士を熱溶着させて軟質の板状に加工してなるポリエステルボード26を接着剤によって強固に貼り付けたものを挙げることができる。この図7の吸音スプリッタ20も、図6と同様に、長手方向の先端部が、流れ抵抗を小さくする形状に加工されている。ただし、図7の吸音スプリッタ20は、ポリエステル繊維同士が熱溶着されているため、グラスウールボード21のような空気の流れによる飛散は生じないので、表面を保護する必要はない。
 ただし、吸音スプリッタ20の具体的な構造は、図6および図7に示したものに限定されない。
 つぎに、前述した構成からなる本実施形態の作用について説明する。
 図1に実線の矢印で示すように、圧縮機3によって吸い込まれる空気は、過給機用サイレンサ1の径方向の外方(外周側)から流入する際に、その大部分が消音エレメント15の隣り合う各1対の吸音スプリッタ20,20間の各流路19に分散されることになる。そして、各流路19に分散された空気は、径方向の内方に向かって各流路19内を流動する。このとき、各流路19の形状を規定する吸音スプリッタ20がインボリュート曲線に沿って滑らかな形状に形成されているため、各流路19における空気の急峻な方向転換を抑制して圧力損失を抑えることができる。そして、このようにして各流路19内を流動した空気は、各吸音スプリッタ20の内周端から各流路19の外部である過給機用サイレンサ1内の中央部に放出された後に、空気吸込口4側に吸い込まれ、さらに、圧縮機3によって圧縮されたうえで図示しないエンジンのシリンダに効率よく供給される。
 一方、このような空気の吸い込みの際に、圧縮機3によって発生した騒音は、図1に破線の矢印で示すように、空気の流れに逆行するように、空気吸込口4側から過給機用サイレンサ1内の中央部に流入した後に、径方向の内方から外方に向けて放射される。
 このとき、各吸音スプリッタ20がインボリュート曲線に沿った形状に形成されていることによって、各流路19の流路幅wが、各吸音スプリッタ20の厚みを変化させる必要なく、消音すべき騒音の波長λに適合する一定値λ/2に設定されているため、波長λに対応する騒音を簡易な構成によって効果的に消音することができる(「機械騒音ハンドブック(産業図書)」第506頁本文第10行目参照)。また、このとき、各吸音スプリッタ20のピッチpが、消音すべき騒音の波長λに適合する一定値λに設定されているため、波長λに対応する騒音をより効果的に消音することができる。さらに、このとき、波長λが基本周波数に対応する波長であれば、消音量をさらに増加させることができる。
 また、ピッチpをλに一致させることによってλに対応する騒音についての高い消音量が得られることについては、1975年に発表された「吸音ダクトの減衰特性について」(日本音響学会誌31巻8号、東京大学生産研究所、小幡輝夫、平田賢、大西伊逸雄、西脇仁一)に掲載されている。
 したがって、本実施形態によれば、安価な円筒外周吸込型のサイレンサ1において、インボリュート曲線に沿った形状の吸音スプリッタ20を用いることにより、隣り合う1対の吸音スプリッタ20,20間の流路幅19を容易に一定に維持することができるので、この流路幅19を消音すべき騒音の波長に適合させることで、吸音スプリッタ20の設置スペースが径方向において制約が課されている中で消音量を効果的に増加させることができる。
 また、本実施形態の過給機用サイレンサ1を使用した過給機によれば、過給機として小型化をはかったうえで、高回転にもかかわらず静粛な運転で高圧力比および高効率を達成することができる。
 なお、インボリュート曲線Iを定義する定円Cの半径については、所望の消音量に応じて適宜変更してもよい。例えば、図3に示した構成に対して、定円Cの半径だけを小さく変更すれば、インボリュート曲線Iの曲率が大きくなって、隣り合う1対のインボリュート曲線I,I同士の間隔w’が狭くなり、また、始点aから一定の距離区間の部位I’の長さも長くなる。そして、このような形状を吸音スプリッタ20に反映させれば、流路幅wが狭く、換言すれば、流路断面積が小さく、かつ流路長が長い流路19が得られるため、消音量はさらに高くなる。このことは、前述した「吸音ダクトの減衰特性について」に掲載されている消音量の計算式、すなわち、R=K×(P÷S)×Lからも明らかである。ただし、R:吸音板の通路間で得られる消音(dB)、K:消音量に関する係数、P:通路断面における吸音面の周囲長さ(m)、S:通路断面積(m)、L:通路長さ(m)である。
 また、吸音スプリッタ20の枚数についても、所望の消音量に応じて適宜変更してもよい。例えば、図2に示した構成に対して、吸音スプリッタ20の枚数だけを増加させれば、流路幅wが狭まるので、消音量は増加することになる。
 図8は、このような場合における各吸音スプリッタ20の形状を定義するインボリュート曲線群を示したものである。
(第2実施形態)
 つぎに、過給機用サイレンサ1の第2実施形態について、図9および図10を参照して説明する。
 本実施形態における過給機用サイレンサ1においては、隣り合う1対の吸音スプリッタ20,20間の流路19の流路幅wが、その流路19において一定値であることは第1実施形態と同様である。
 ただし、本実施形態においては、第1実施形態のように、すべての隣り合う1対の吸音スプリッタ20,20間において、流路19の流路幅wがいずれも等しい値に設定されているわけではない。
 すなわち、本実施形態においては、任意の吸音スプリッタ20とこれに隣り合う他の吸音スプリッタ20とが、図9に示すように、定円Cの半径(同一半径)riおよび異なる始点a同士の角度間隔diが互いに相違する複数のパターンのインボリュート曲線の組I(ri、di)(iは、1~パターン数)のうち、いずれかのパターンに該当するインボリュート曲線の組に基づいた形状に形成されている。
 なお、便宜上、図9には、3つのパターンが示されているが、これに限定する必要はない。また、各パターン同士は、定円Cの半径riおよび異なる始点a同士の角度間隔diのいずれか一方が一致していてもよい。
 そして、本実施形態においては、前記複数のパターンの全てが、複数の吸音スプリッタ20のうちのいずれかの互いに隣り合う吸音スプリッタ20同士の形状に割り当てられていることによって、図10に示すように、複数のパターンにそれぞれ対応する互いに相違する一定値の流路幅w1,w2,w3を有する流路19が、周方向の位置に応じて選択的に配置されている。
 なお、図10においては、便宜上、3つの流路w1,w2,w3同士の間の間隔が比較的広くなっているが、消音量の確保の観点から、各流路w1,w2,w3同士の間をできるだけ狭めてもよい。
 このような構成によれば、流路19に応じて適合する騒音の波長を異ならせることができるので、圧縮機3の回転数変動による消音すべき騒音の波長の変化(例えば、基本周波数の変化にともなう基本周波数に対応する波長の変化)に柔軟に対応して、高い消音量を安定的に維持することができる。
(第3実施形態)
 つぎに、過給機用サイレンサ1の第3実施形態について、図11ないし図21を参照して説明する。
 本実施形態においては、任意の吸音スプリッタ20とこれに隣り合う他の吸音スプリッタ20とが、それぞれ、同心の定円を基準とした伸開方向が正転(同一方向)または逆転(逆方向)した複数のインボリュート曲線の一部同士を繋ぎ合わせた複合曲線分に沿った形状に形成されている。ただし、互いに隣り合う吸音スプリッタ20同士が、同心かつ同一半径の始点が異なる各インボリュート曲線における始点からの距離区間が同一の部位に沿った形状に形成されているという基本構成自体は、前述した各実施形態と同様である。
 本実施形態の具体的な構成としては、例えば、図11に示すように、吸音スプリッタ20および流路19が「く」の字状に屈折した構成と、図12(a)の全体図および図12(b)の要部拡大図に示すように、吸音スプリッタ20および流路19がほぼ「S」字状に屈折した構成とを挙げることができる。
 ここで、図11の構成は、図13に示すように、複合曲線分としての同心の定円C1,C2を基準とした伸開方向(糸をほどく方向)が逆転した2本のインボリュート曲線I1,I2の一部同士を繋ぎ合わせた曲線分L1に基づいている。ここで、図13に示すように、定円C1,C2が同一物(換言すれば、同心同径もしくはインボリュート曲線I1,I2が同曲率)であり、また、2本のインボリュート曲線I1,I2の始点間隔が互いに等間隔であってもよい。ただし、このような構成に限定する必要はなく、定円C1,C2の半径を互いに異ならせるようにしてもよい。
 一方、図12の構成は、図14および図15に示すように、複合曲線分としての同心異径の定円C1,C2,C3(C2<C1<C3)を基準とした伸開方向が正転または逆転した3本のインボリュート曲線I1,I2,I3の一部同士を繋ぎ合わせた曲線分L2に基づいている。ただし、図12(b)に示すように、吸音スプリッタ20は、インボリュート曲線I3の内端に連接された径方向に平行な直線の形状にも基づいている。
 なお、図15は、図14の複合曲線分の元となる各インボリュート曲線I1,I2,I3を個別に示したものである。また、図14および図15中、diは吸音スプリッタ20の内径たる直径であり、図15中、r,r,rは各インボリュート曲線I(I1,I2,I3)にそれぞれ対応する定円(C1,C2,C3)の半径であり、図14中、doは吸音スプリッタ20の外径たる直径である。
 ここで、図15からも分かるように、インボリュート曲線I2とI3とは、伸開方向が同一であり、インボリュート曲線I2(もしくはI3)とI1とは、伸開方向が逆転している。
 このような第3実施形態の構成によれば、圧縮機3によって吸い込まれる空気の流れに逆行して流路19内を進行する騒音の音波を吸音スプリッタ20に衝突させやすくできるので、吸音スプリッタ20による騒音の吸音を効率的に行うことができ、消音量を更に増加させることができる。
 つぎに、本実施形態における過給機用サイレンサ1の具体例(実施例)による消音効果について、従来の過給機用サイレンサの具体例(比較例)との比較によって説明する。
〔比較例〕
 まず、比較例の過給機用サイレンサ(円筒外周吸込型)は、図16(a)の全体図および図16(b)の要部拡大図に示すように、サイレンサの外径と内径との間にZ型形状の吸音スプリッタ20’が同心放射状に配列された消音エレメント15’を備えたものである。
 ただし、消音エレメント15’は、処理風量を44m/mとし、また、図16(a)に示すように、外径を、過給機の外形に見合うように2100mmとし、なおかつ、内径を、過給機の吸込口径に合わせて1300mmとした。
 ここで、図17の最上段の折れ線グラフ(A特性)に対応する聴感(A特性)補正後の過給機内部の発生騒音150dB(A)を、過給機の周囲において105dB(A)以下に低減させるためには、過給機用サイレンサ全体で、45dB(A)以上の消音量を必要とする。そして、この消音量のうち、消音エレメント15’が29dB(A)以上の消音量を負担する必要がある。なお、A特性補正後の騒音レベルLは、A特性における周波数別の音圧レベルL1~Lnの合成式L=10log(10L1/10+10L2/10+10L3/10+・・・+10Ln/10)として求めることができる(「機械騒音ハンドブック(産業図書)」第8頁参照)。
 そこで、発生騒音の大部分を占める基本周波数1650Hz以上の高周波数領域すなわち3300Hzを中心に30dB(A)を消音し、外径と内径との間隔400mmの空間において効果的な消音量を得るために、比較例の過給機用サイレンサは、以下に示すような更に具体的な構成を備えている。
 すなわち、図16(a)に示すように、比較例の過給機用サイレンサは、吸音スプリッタ20’の枚数が48枚で、周方向に等間隔に配列されている。また、吸音スプリッタ20’の形状は、外径から内径に向かって「くの字」に曲がっており、さらにその先端(内端)は、中心に向かって径方向に平行になるように折れ曲がったほぼZ型になっている。さらに、図16(b)に示すように、吸音スプリッタ20’の厚みtは25mm、流路幅wは75mm、吸音スプリッタ20’の配列ピッチpは100mm、流路長さ(延べ長さ)lは450mmとした。
 このように構成された比較例の過給機用サイレンサは、流路幅wと流路長さlとの比がl/w=450(mm)/75(mm)=6.0であり、最も良く消音する周波数は、以下の2通りの方法で計算することができる。
 <波長λと流路幅wとの関係からの計算>
 第1の計算方法として、波長λと流路幅wとの関係から最も良く消音する周波数を計算すると、以下のようになる。
 すなわち、まず、流路幅w=75mmは厚みt=25mmの3倍に相当するので、次式が成立する。
 w=3t  (1)
 次いで、配列ピッチpと流路幅wとの間には、(1)式の結果を用いると、次式が成立する。
 p=w+t
  =w+(1/3)w
  =(4/3)w    (2)
 そして、波長λの騒音を効果的に消音するための条件p/λ=1に、(2)式の右辺を代入してpを消去すると、波長λと流路幅wとの関係式として、次式を導出することができる。
 w=(3/4)λ   (3)
 次いで、次式のように、(3)式を変形してw=75mmを代入することによって、波長λが求まる。
 λ=(4/3)w
  =(4/3)×75(mm)
  =100(mm)   (4)
 そして、最も良く消音する周波数fは、音速v=340m/sおよび波長λとの関係から、次式のように求まる。
 f=v/λ
  =340(m/s)/0.100(m)
  =3400(Hz)    (5)
 <波長λと配列ピッチpとの関係からの計算>
 次に、第2の計算方法として、波長λと配列ピッチpとの関係から最も良く消音する周波数を計算すると、以下のようになる。
 すなわち、まず、波長λと配列ピッチpとの関係式から、次式が得られる。
 p=λ
 ≡λ=P
   =100(mm)  (6)
 そして、最も良く消音する周波数fは、音速v=340m/sおよび波長λとの関係から、次式のように求まる。
 f=v/λ
  =340(m/s)/0.100(m)
  =3400(Hz)    (7)
 この(7)式の計算結果は、前述した波長λと流路幅wとの関係からの計算結果と一致している。
 そして、このような比較例の過給機用サイレンサは、消音エレメント15’単体の消音特性の実測値が図18に示すようになり、消音エレメント15’が組み込まれた状態の過給機用サイレンサを通過した後における騒音特性(A特性)の実測値が図17の最下段の折れ線グラフに示すようになった。なお、図17の中段に示す折れ線グラフは、消音エレメント15’が組み込まれない状態の過給機用サイレンサを通過した後における騒音特性(A特性)の実測値を示している。
 ここで、図18に示すように、消音エレメント15’単体の消音特性は、設計値の3400Hz(高周波数領域の中心3300Hz)に近い3150Hzにおける消音量がピークとなるとともに、3150Hzの前後の所定範囲の周波数領域において30dB以上の消音量を示すような、ややシャープな山形の特性となった。
 また、図17の最下段の折れ線グラフに対応するA特性補正後の騒音は、104dB(A)となり、目標とする105dB(A)以下となった。
 しかしながら、このような比較例の過給機用サイレンサにおいては、図17の最下段の折れ線グラフに示すように、基本周波数1650Hzにおける騒音のレベルが、前後の周波数(1250Hz、2000Hz)におけるレベルに対して15dB以上も卓越しており、基本周波数と倍音の消音量が不均等であることが分かる。
 このような騒音特性は、基本周波数1650Hzおよびその倍音の3300Hzにおける騒音レベルがバランス良く低減されているものとは言えない。
〔実施例〕
 これに対して、実施例の過給機用サイレンサ1は、図19(a)の全体図および図19(b)の要部拡大図に示すように、サイレンサの外径と内径との間に、3つのインボリュート曲線からなる複合曲線分に沿った略S型形状の吸音スプリッタ20を同心放射状に配列した消音エレメント15を備えたものである。
 ただし、消音エレメント15は、比較例と同様に、処理風量を44m/mとし、また、図19(a)に示すように、外径を、過給機の外形に見合うように2100mmとした。一方、図19(a)に示すように、内径については、比較例よりもやや小さく、1100mmとした。
 ここで、実施例においては、比較例よりも消音量を増加すべく、図20の最上段のグラフ(図17の最上段のグラフと同一のグラフ)に対応する聴感(A特性)補正後の過給機内部の発生騒音150dB(A)を、過給機の周囲において100dB(A)以下にまで低減させることを狙った。
 したがって、実施例においては、過給機用サイレンサ全体で50dB(A)以上の消音量を必要とし、そのうち、消音エレメント15が34dB(A)以上の消音量を負担する必要がある。
 すなわち、実施例の消音エレメント15(必要消音量34dB(A))は、比較例の消音エレメント15’(必要消音量29dB(A))に対して、5dB(A)の消音量の増加が必要となる。
 そこで、実施例においては、比較例において成し得なかった発生騒音の大部分を占める基本周波数1650Hzとその倍音である3300Hzとの双方における騒音のレベルを効率良く低減するために、消音のピーク周波数を比較例(3400Hz)よりも低い2475Hz(基本周波数1650Hzと倍音3300Hzとの中間周波数)とすることを目標とした。
 そして、このような消音のピーク周波数2475Hzを中心に35dB(A)を消音し、外径と内径との間隔500mmの空間において効果的な消音量を得るために、実施例の過給機用サイレンサは、以下に示すような更に具体的な構成を備えている。
 すなわち、図19(a)に示すように、実施例の過給機用サイレンサは、インボリュート曲線を用いた吸音スプリッタ20の枚数が24枚で、周方向に等間隔に配列されている。また、図19(b)に示すように、吸音スプリッタ20の厚みtは40mm、流路幅wは100mm、吸音スプリッタ20の配列ピッチpは140mm、流路長さlは650mmとした。
 このように構成された実施例の過給機用サイレンサは、流路幅wと流路長さlとの比がl/w=650(mm)/100(mm)=6.5であり、比較例と同様に、最も良く消音する周波数は、以下の2通りの方法で計算することができる。
 <波長λと流路幅wとの関係からの計算>
 第1の計算方法として、波長λと流路幅wとの関係から最も良く消音する周波数を計算すると、以下のようになる。
 すなわち、まず、流路幅w=100mmは厚みt=40mmの2.5倍に相当するので、次式が成立する。
 w=2.5t  (8)
 ついで、配列ピッチpと流路幅wとの間には、(8)式の結果を用いると、次式が成立する。
 p=w+t
  =w+(2/5)w
  =(7/5)w    (9)
 そして、波長λの騒音を効果的に消音するための条件p/λ=1に、(9)式の右辺を代入してpを消去すると、波長λと流路幅wとの関係式として、次式を導出することができる。
 w=(5/7)λ   (10)
 ついで、次式のように、(10)式を変形してw=100mmを代入することによって、波長λが求まる。
 λ=(7/5)w
  =(7/5)×100(mm)
  =140(mm)   (11)
 そして、最も良く消音する周波数fは、音速v=340m/sおよび波長λとの関係から、次式のように求まる。
 f=v/λ
  =340(m/s)/0.140(m)
  =2429(Hz)    (12)
 <波長λと配列ピッチpとの関係からの計算>
 つぎに、第2の計算方法として、波長λと配列ピッチpとの関係から最も良く消音する周波数を計算すると、以下のようになる。
 すなわち、まず、波長λと配列ピッチpとの関係式から、次式が得られる。
 p=λ
 ≡λ=P
   =140(mm)  (13)
 そして、最も良く消音する周波数fは、音速v=340m/sおよび波長λとの関係から、次式のように求まる。
 f=v/λ
  =340(m/s)/0.140(m)
  =2429(Hz)   (14)
 この(14)式の計算結果は、前述した波長λと流路幅wとの関係からの計算結果と一致している。
 そして、このような実施例の過給機用サイレンサは、消音エレメント15単体の消音特性の実測値が図21に示すようになり、消音エレメント15が組み込まれた状態の過給機用サイレンサを通過した後における騒音特性(A特性)の実測値が図20の最下段の折れ線グラフに示すようになった。なお、図20の中段に示す折れ線グラフは、消音エレメント15が組み込まれない状態の過給機用サイレンサ1を通過した後における騒音特性(A特性)の実測値を示しており、このグラフは、図17の中段のグラフと同一である。
 ここで、図21に示すように、消音エレメント15単体の消音特性は、ピーク周波数の設計値2475Hz(流路幅wおよび配列ピッチpによる計算値2429Hz)に近い2500Hzにおける消音量がピークとなるとともに、2500Hzの前後の所定範囲の周波数領域において35dB以上の消音量を示すような、やや緩やかな山形の特性となった。同図からも分かるように、35dB以上の消音量を示す周波数領域には、過給機(騒音)の基本周波数である1650Hzと倍音3300Hzとの双方が含まれている。
 また、図20の最下段の折れ線グラフに対応するA特性補正後の騒音は、98dB(A)となり、目標とする100dB(A)以下となった。
 さらに、図21に示すように、実施例によれば、消音ピーク周波数を基本周波数(1650Hz)と倍音(3300Hz)との中間に設けることで、基本周波数付近の1600Hzにおける消音量が39dB、倍音付近の3150Hzにおける消音量が42dBとなり、ほぼ同値の消音量を得ることができた。このことは、消音ピーク周波数が倍音に片寄っていた図18の比較例(1600Hzにおける消音量が28dB、3150Hzにおける消音量が41dB)に対して、基本周波数-倍音間における消音量の不均等の問題が改善されていることを示している。
 このような実施例の効果は、消音エレメント15の組み込み状態における過給機用サイレンサ1通過後の騒音特性(図20の最下段の折れ線グラフ)を、比較例(図17の最下段の折れ線グラフ)と比べてみれば更に明らかであろう。
 すなわち、図17の最下段の折れ線グラフに示すように、比較例においては、基本周波数付近の1600Hzの騒音が103dB、倍音付近の3150Hzの騒音が88dBとなり、両者には、15dBもの差がある。また、比較例においては、基本周波数付近(1600Hz)の騒音103dBが、A特性補正後の騒音104dB(A)に対して僅かに1dB差であったため、基本周波数の騒音が全体に与える影響が大きかった。
 これに対して、図20の最下段の折れ線グラフに示すように、実施例においては、基本周波数付近の1600Hzの騒音が92dB、倍音付近の3150Hzの騒音が87dBとなり、両者の差は、5dBに低減されている。また、実施例においては、基本周波数付近(1600Hz)の騒音92dBが、A特性補正後の騒音98dB(A)に対して6dBの差を有しているため、比較例に対して、基本周波数の騒音が全体に与える影響が緩和されている。
 したがって、実施例の過給機用サイレンサ1によれば、比較例の過給機用サイレンサとは異なり、基本周波数1650Hzおよび倍音3300Hzの双方をほぼ同値となるようにバランス良く消音することができる。
 また、実施例の過給機用サイレンサによれば、比較例の過給機用サイレンサに対して、消音エレメント15における吸音スプリッタ20の枚数を48枚(比較例)から24枚(実施例)に削減(半減)させることができるので、吸音スプリッタ20の厚み(40mm)が比較例(25mm)よりも厚く、流路長さl(650mm)が比較例(450mm)よりも長いことを考慮しても、大幅なコストダウンが可能となる。
 なお、本発明は、前述した3つの実施形態に限定されるものではなく、必要に応じて種々の変更が可能である。
 例えば、第2実施形態と第3実施形態とを組み合わせるようにしてもよい。
 1 過給機用サイレンサ
 3 圧縮機
 4 空気吸込口
 19 流路
 20 吸音スプリッタ

Claims (8)

  1.  過給機に設けられた圧縮機による空気の吸い込みが行われる空気吸込口に取り付けられ、前記空気の吸い込みの際に前記圧縮機によって発生する騒音の消音を行うための過給機用サイレンサにおいて、
     板状の複数の吸音スプリッタが、前記空気給入口の内周に沿うようにして所定の中心軸を中心とした周方向にそれぞれ間隙部を設けて放射状に配列されていることによって、前記各間隙部を流路とした径方向の外方から内方に向けた前記空気の吸い込みが行われるとともに、当該空気の流れに逆行して前記内方から前記外方に向けて放射される前記騒音が、前記複数の吸音スプリッタに吸収されて消音されるように構成され、
     任意の前記吸音スプリッタと、この吸音スプリッタに前記周方向において隣り合う他の前記吸音スプリッタとは、前記中心軸と同心かつ互いに同一半径の定円を基準とした始点が異なる複数のインボリュート曲線のそれぞれにおける前記始点からの距離区間が同一の部位に沿った形状に形成され、
     前記任意の吸音スプリッタとこの吸音スプリッタに前記周方向において隣り合う他の吸音スプリッタとの間の前記流路における前記インボリュート曲線の法線方向の寸法である流路幅は、消音すべき前記騒音の波長に適合した所定の一定値に設定されていること
     を特徴とする過給機用サイレンサ。
  2.  前記任意の吸音スプリッタとこの吸音スプリッタに前記周方向において隣り合う他の吸音スプリッタとが、前記複数のインボリュート曲線として、前記同一半径および/または前記異なる始点同士の間隔が相違する複数のパターンの前記インボリュート曲線の組のうち、いずれかのパターンに該当する前記インボリュート曲線の組に基づいた形状に形成され、前記複数のパターンの全てが、前記複数の吸音スプリッタのうちのいずれかの互いに隣り合う1対の吸音スプリッタ同士の形状に割り当てられていることによって、前記複数のパターンにそれぞれ対応する前記一定値の流路幅を有する流路が、前記周方向の位置に応じて選択的に配置されていること
     を特徴とする請求項1に記載の過給機用サイレンサ。
  3.  前記任意の吸音スプリッタとこの吸音スプリッタに前記周方向において隣り合う他の吸音スプリッタとは、それぞれが、同心の定円を基準とした伸開方向が正転または逆転した複数のインボリュート曲線の一部同士を繋ぎ合わせた複合曲線分に沿った形状に形成されていること
     を特徴とする請求項1または請求項2に記載の過給機用サイレンサ。
  4.  前記一定値は、前記消音すべき騒音の波長の1/2の寸法であること
     を特徴とする請求項1ないし請求項3のいずれか1項に記載の過給機用サイレンサ。
  5.  前記吸音スプリッタの配列ピッチが、前記消音すべき騒音の波長に適合した値に設定されていること
     を特徴とする請求項1ないし請求項4のいずれか1項に記載の過給機用サイレンサ。
  6.  前記配列ピッチは、前記消音すべき騒音の波長と同一の寸法であること
     を特徴とする請求項5に記載の過給機用サイレンサ。
  7.  前記消音すべき騒音の波長は、前記騒音の基本周波数に対応する波長であること
     を特徴とする請求項1ないし請求項6のいずれか1項に記載の過給機用サイレンサ。
  8.  複数の吸音スプリッタが、空気吸入口の内周に沿うようにして所定の中心軸を中心とした周方向にそれぞれ間隔を設けて放射状に配列されるとともに、前記中心軸と、同心の定円を基準とした始点を有する有するとともにインボリュート曲線に沿った形状に形成され、
     前記周方向において隣り合う吸音スプリッタによって形成された流路幅は、消音すべき騒音の波長に適合した所定幅に設定された過給機用サイレンサを圧縮機に備えることを特徴とする過給機。
PCT/JP2013/083425 2012-12-13 2013-12-13 過給機用サイレンサおよびこのサイレンサを使用した過給機 WO2014092174A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201380064749.6A CN104870800B (zh) 2012-12-13 2013-12-13 增压机用消音器以及使用了该消音器的增压机
EP13861818.6A EP2933470A4 (en) 2012-12-13 2013-12-13 SILENCER FOR A POWER COMPRESSOR AND A POWER COMPRESSOR USING THE SILENCER
KR1020157012434A KR20150065894A (ko) 2012-12-13 2013-12-13 과급기용 사이렌서 및 이 사이렌서를 사용한 과급기

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012272308A JP6152612B2 (ja) 2012-12-13 2012-12-13 過給機用サイレンサおよびこのサイレンサを使用した過給機
JP2012-272308 2012-12-13

Publications (1)

Publication Number Publication Date
WO2014092174A1 true WO2014092174A1 (ja) 2014-06-19

Family

ID=50934455

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/083425 WO2014092174A1 (ja) 2012-12-13 2013-12-13 過給機用サイレンサおよびこのサイレンサを使用した過給機

Country Status (5)

Country Link
EP (1) EP2933470A4 (ja)
JP (1) JP6152612B2 (ja)
KR (1) KR20150065894A (ja)
CN (1) CN104870800B (ja)
WO (1) WO2014092174A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016183619A (ja) * 2015-03-26 2016-10-20 三菱重工業株式会社 過給機用サイレンサ及び過給機

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6392103B2 (ja) * 2014-12-09 2018-09-19 三菱重工業株式会社 吸音装置、遠心圧縮機、および過給機
DE102018100465A1 (de) * 2018-01-10 2019-07-11 Abb Turbo Systems Ag Filterschalldämpfer für einen Abgasturbolader einer Brennkraftmaschine
DE102018100466A1 (de) * 2018-01-10 2019-07-11 Abb Turbo Systems Ag Filterschalldämpfer für einen Abgasturbolader einer Brennkraftmaschine
DE102018102237A1 (de) * 2018-02-01 2019-08-01 Man Energy Solutions Se Schalldämpfer und Verdichter
CN110159568A (zh) * 2019-06-12 2019-08-23 珠海格力电器股份有限公司 导流装置及无叶风扇
DE102020122027B4 (de) * 2020-08-24 2023-05-04 Mann+Hummel Gmbh Schalldämpfer und Filtersystem

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05195893A (ja) * 1992-01-20 1993-08-03 Toushiyou Eng Kk 通路断面積変化型消音装置
JP2876000B1 (ja) * 1998-01-13 1999-03-31 三菱アルミニウム株式会社 過給機のサイレンサ
JP2002004964A (ja) 2000-06-21 2002-01-09 Arupatec Kk 過給機のサイレンサ
JP2004360547A (ja) 2003-06-04 2004-12-24 Arupatec Kk 過給機用サイレンサ
JP2006194161A (ja) * 2005-01-14 2006-07-27 Mitsubishi Heavy Ind Ltd 吸気サイレンサを備えた排気ターボ過給機
JP2008542602A (ja) * 2005-05-28 2008-11-27 シーメンス アクチエンゲゼルシヤフト 内燃機関用ターボチャージャのためのエアインテーク

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2050049T3 (es) * 1989-12-22 1994-05-01 Emitec Emissionstechnologie Conducto de gas de escape con cuerpo soporte de catalizador atacado por el flujo en forma de helice.
DE19514990B4 (de) * 1995-04-24 2005-06-30 Abb Turbo Systems Ag Filterschalldämpfer
JP4204437B2 (ja) * 2003-10-09 2009-01-07 象印マホービン株式会社 空気清浄機
SE528857C2 (sv) * 2005-04-27 2007-02-27 Scania Cv Ab Anordning för dämpning av ljud i en ledning

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05195893A (ja) * 1992-01-20 1993-08-03 Toushiyou Eng Kk 通路断面積変化型消音装置
JP2876000B1 (ja) * 1998-01-13 1999-03-31 三菱アルミニウム株式会社 過給機のサイレンサ
JP2002004964A (ja) 2000-06-21 2002-01-09 Arupatec Kk 過給機のサイレンサ
JP2004360547A (ja) 2003-06-04 2004-12-24 Arupatec Kk 過給機用サイレンサ
JP2006194161A (ja) * 2005-01-14 2006-07-27 Mitsubishi Heavy Ind Ltd 吸気サイレンサを備えた排気ターボ過給機
JP2008542602A (ja) * 2005-05-28 2008-11-27 シーメンス アクチエンゲゼルシヤフト 内燃機関用ターボチャージャのためのエアインテーク

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"The Journal of the Acoustical Society of Japan", vol. 31, 1975, INSTITUTE OF INDUSTRIAL SCIENCE, article "Attenuation Characteristic of Sound-absorbing Duct"
See also references of EP2933470A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016183619A (ja) * 2015-03-26 2016-10-20 三菱重工業株式会社 過給機用サイレンサ及び過給機

Also Published As

Publication number Publication date
EP2933470A4 (en) 2016-05-25
CN104870800A (zh) 2015-08-26
KR20150065894A (ko) 2015-06-15
JP6152612B2 (ja) 2017-06-28
EP2933470A1 (en) 2015-10-21
CN104870800B (zh) 2018-06-22
JP2014118832A (ja) 2014-06-30

Similar Documents

Publication Publication Date Title
JP6152612B2 (ja) 過給機用サイレンサおよびこのサイレンサを使用した過給機
JP2781168B2 (ja) フィルタマフラ
US20140020975A1 (en) Resonator silencer for a radial flow machine, in particular for a radial compressor
JP2007298027A (ja) フィルタマフラ
WO2015005252A1 (ja) 過給機用サイレンサ
JP2876000B1 (ja) 過給機のサイレンサ
JP5583287B2 (ja) 過給機用サイレンサ
JP2021510790A (ja) 内燃機関の排ガスターボチャージャのためのフィルタ消音器
JP5684031B2 (ja) ターボ圧縮機用消音器および消音器の配置方法
JP7258893B2 (ja) 内燃機関の排ガスターボチャージャのためのフィルタ消音器
JP6097186B2 (ja) 過給機用サイレンサ
EP3692264B1 (en) An air silencer connectable to a compressor part of a turbocharger
JPH09324711A (ja) 吸気用サイレンサー
CN201502421U (zh) 柴油发电机组中发动机防噪音结构
KR20040104890A (ko) 과급기용 소음기
JP2006194161A (ja) 吸気サイレンサを備えた排気ターボ過給機
JP5909112B2 (ja) 過給機用サイレンサ
JP4384933B2 (ja) 過給機用サイレンサ
US20230213009A1 (en) Intake device for a compressor
JPH05195893A (ja) 通路断面積変化型消音装置
JP2011227519A (ja) 消音器
JP2019143494A (ja) 軸流送風機及びボイラシステム並びに軸流送風機の製造方法
JP2002004964A (ja) 過給機のサイレンサ
CN113464331A (zh) 一种组合式消音器
TWM647552U (zh) 複合排氣管

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13861818

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157012434

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2013861818

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013861818

Country of ref document: EP