WO2014092073A1 - 散乱強度分布の測定方法及び測定装置 - Google Patents

散乱強度分布の測定方法及び測定装置 Download PDF

Info

Publication number
WO2014092073A1
WO2014092073A1 PCT/JP2013/083064 JP2013083064W WO2014092073A1 WO 2014092073 A1 WO2014092073 A1 WO 2014092073A1 JP 2013083064 W JP2013083064 W JP 2013083064W WO 2014092073 A1 WO2014092073 A1 WO 2014092073A1
Authority
WO
WIPO (PCT)
Prior art keywords
ray
scattering intensity
intensity distribution
rays
sample
Prior art date
Application number
PCT/JP2013/083064
Other languages
English (en)
French (fr)
Inventor
正 松下
ヴォルフガング フォグリ
徹郎 白澤
敏男 ▲高▼橋
悦雄 荒川
Original Assignee
大学共同利用機関法人 高エネルギー加速器研究機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大学共同利用機関法人 高エネルギー加速器研究機構 filed Critical 大学共同利用機関法人 高エネルギー加速器研究機構
Priority to EP13862246.9A priority Critical patent/EP2933631B1/en
Priority to US14/651,813 priority patent/US9714907B2/en
Publication of WO2014092073A1 publication Critical patent/WO2014092073A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/20008Constructional details of analysers, e.g. characterised by X-ray source, detector or optical system; Accessories therefor; Preparing specimens therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K2201/00Arrangements for handling radiation or particles
    • G21K2201/06Arrangements for handling radiation or particles using diffractive, refractive or reflecting elements
    • G21K2201/062Arrangements for handling radiation or particles using diffractive, refractive or reflecting elements the element being a crystal
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K2201/00Arrangements for handling radiation or particles
    • G21K2201/06Arrangements for handling radiation or particles using diffractive, refractive or reflecting elements
    • G21K2201/064Arrangements for handling radiation or particles using diffractive, refractive or reflecting elements having a curved surface

Definitions

  • the present invention relates to a scattering intensity distribution measuring method and measuring apparatus for measuring a scattering intensity distribution in a reciprocal lattice space by irradiating a sample with X-rays.
  • quantum well structures that exhibit physical properties different from those of general crystal materials.
  • superlattice semiconductors in which semiconductor thin films are stacked exhibit different band structures depending on the layer period (thickness), the type of atoms, and the like, and are expected to be applied to various devices.
  • quantum dots which are three-dimensional quantum confinement structures, have a density of states that is discretized and concentrated in a specific state, so that theoretically, an extremely efficient laser medium can be realized. is there. Since the physical properties of such a quantum well structure vary greatly depending on the period and disorder of the crystal lattice, it is necessary to acquire highly accurate information on the crystal lattice when performing the evaluation.
  • a method in which the sample is irradiated with X-rays (X-rays) and the scattering intensity distribution in the reciprocal space is measured.
  • X-rays X-rays
  • the scattering intensity distribution is obtained by mapping the X-ray scattering intensity in the vicinity of the reciprocal lattice point.
  • the X-ray diffraction intensity is strong only at the reciprocal lattice point, but when the crystal lattice is disturbed, significant scattering power appears also at a position away from the reciprocal lattice point.
  • FIG. 6 is a schematic diagram showing the relationship between real space and reciprocal lattice space in a two-dimensional crystal.
  • FIG. 6A a crystal lattice with atoms A1 to A4 is shown.
  • the spacing of 100 plane is d 100
  • spacing of 010 surface is d 010
  • spacing of 110 plane is d 110.
  • the result is as shown in FIG. 6B.
  • the reciprocal space corresponds to the Fourier transform of the real space
  • the reciprocal lattice point includes information on the crystal lattice in the real space.
  • the distance between the origin O of the reciprocal lattice space and a certain reciprocal lattice point corresponds to the reciprocal of the plane spacing of the corresponding crystal plane.
  • the origin O of the reciprocal space, the distance between the 100 points is equivalent to the reciprocal 1 / d 100 of face spacing d 100 of the 100 plane
  • the origin O of the reciprocal space, the distance between the 010 points Corresponds to the reciprocal 1 / d 010 of the inter-plane spacing d 010 of the 010 plane.
  • FIG. 7 is a schematic diagram showing the relationship between the reciprocal lattice points and the Ewald sphere.
  • FIG. 7 shows a state where a reciprocal lattice space corresponding to a three-dimensional crystal is viewed from a qy axis (not shown) direction perpendicular to a plane including the qx axis and the qz axis.
  • the K 0 vector indicates the wave vector of incident X-rays incident on the crystal structure
  • the K vector indicates the wave vector of scattered X-rays scattered by the crystal structure.
  • a plurality of white circles regularly arranged indicate reciprocal lattice points.
  • the scattering intensity of X-rays by an ideal crystal structure in which the crystal lattice is not disturbed is a reciprocal lattice on the spherical surface of the Ewald sphere E 0 having a radius (2 ⁇ / ⁇ ) that is 2 ⁇ times the reciprocal of the wavelength ( ⁇ ) of the X-ray. It becomes stronger in the condition where the point exists.
  • X-rays are scattered by the projection pattern obtained by projecting the reciprocal lattice point located from the center of Evaruto sphere E 0 on the spherical surface of Evaruto sphere E 0.
  • the scattering intensity is increased at points other than the reciprocal lattice points depending on the degree of the disorder. For this reason, the regularity of the crystal lattice can be evaluated by obtaining the distribution of the scattering intensity by reciprocal lattice mapping.
  • FIG. 8 is a schematic diagram illustrating an example of a measuring apparatus used for reciprocal lattice mapping.
  • monochromatic (single wavelength) X-rays emitted from the X-ray source 201 and passing through the monochromator 202 are incident on the sample 203 at a viewing angle (coincident angle of incidence) ⁇ . Is done.
  • X-rays scattered by the sample 203 enter the detector 205 through the collimator 204.
  • the collimator 204 selectively guides only X-rays scattered from the sample in the 2 ⁇ direction to the detector 205.
  • ⁇ scan is an example of a measurement mode of reciprocal lattice mapping using the measuring device 2.
  • is changed in a state where 2 ⁇ is fixed to a predetermined value, and the scattering intensity distribution in the ⁇ direction is scanned.
  • the scattering power distribution in the direction q′x axis direction in FIG. 7 that is substantially orthogonal to the straight line connecting the origin and the reciprocal lattice point is detected in the reciprocal space.
  • the scan in the ⁇ direction for a certain 2 ⁇ is finished, the value of 2 ⁇ is slightly changed and the scan in the ⁇ direction is performed again.
  • Selecting a different 2 ⁇ value has the same meaning as selecting a different qz position along the qz axis of the reciprocal lattice space.
  • the scattering power distribution in the region RSM in the qx-qz plane that is, the two-dimensional scattering intensity distribution corresponding to the reciprocal lattice map is obtained. .
  • ⁇ -2 ⁇ scan Another example of the measurement mode is ⁇ -2 ⁇ scan.
  • FIG. 9 is a schematic diagram showing another example of a measuring apparatus used for reciprocal lattice mapping.
  • monochromatic X-rays emitted from the X-ray source 301 and passed through the monochromator 302 are incident on the sample 303 at a viewing angle ⁇ .
  • X-rays scattered by the sample 303 enter the one-dimensional detector 305.
  • the one-dimensional detector 305 is configured to measure a wide scattering angle (2 ⁇ direction) at a time. For this reason, in the reciprocal lattice mapping using this measuring device 3, scanning in the 2 ⁇ direction is not necessary.
  • the present invention has been made in view of such a point, and an object thereof is to provide a measurement method and a measurement apparatus of a scattering intensity distribution capable of measuring the scattering intensity distribution in a reciprocal lattice space in a short time.
  • the scattering intensity distribution measuring method of the present invention is a monochromatic method in which X-rays radiated from an X-ray source are reflected by an X-ray optical element so as to be focused in the vicinity of the surface of the sample, and are focused through a plurality of optical paths. Between the angle formed by each optical path of X-rays with respect to the reference plane and the angle formed by each optical path with respect to the plane including the optical path located at the center of each optical path and the perpendicular of the reference plane. In a correlated state, the monochromatic X-ray is incident on the sample at a different viewing angle according to each optical path at a time, and the correlated state is a surface on which the X-ray is propagated.
  • X-ray scattering intensity is detected by a two-dimensional detector and detected by the two-dimensional detector.
  • the scattering intensity distribution in the reciprocal lattice space can be calculated based on the scattering intensity distribution and correlation detected by the two-dimensional detector. That is, since it is not necessary to scan in the viewing angle direction ( ⁇ direction) and the scattering angle direction (2 ⁇ direction), the scattering intensity distribution in the reciprocal lattice space can be measured in a short time.
  • the scattering intensity distribution in the reciprocal space can be calculated based on the inclination of the X-ray flux with respect to the reference plane by causing scattering corresponding to a plurality of conditions having different values of the viewing angle and the scattering angle.
  • the X-ray source, the X-ray optical element, and the sample are arranged along the same circumference. According to this configuration, the X-rays emitted from the X-ray source can be focused by the X-ray optical element and appropriately incident on the sample.
  • the reference plane may be a plane including the circumference.
  • the reference surface may be the surface of the sample.
  • the configuration of the X-ray source is simplified as compared with the case of using white X-rays by synchrotron radiation or the like, and the cost for measuring the scattering intensity distribution can be reduced. Further, as in the case of using white X-rays by synchrotron radiation or the like, it is not necessary to enlarge the apparatus for measurement.
  • the X-ray optical element In the method for measuring the scattering intensity distribution of the present invention, it is preferable to use a double curved crystal or a bent-twisted crystal as the X-ray optical element. According to this configuration, it becomes easy to make monochromatic X-rays enter the sample at different viewing angles at a time.
  • the measuring apparatus of the present invention reflects the X-ray source and the X-rays emitted from the X-ray source so as to be focused near the surface of the sample, and is monochromatic at different viewing angles with respect to the sample.
  • An X-ray optical element that makes X-rays incident at once, a two-dimensional detector that detects the scattering intensity of the monochromatic X-ray scattered by the sample, and a scattering intensity distribution detected by the two-dimensional detector
  • the monochromatized X-rays are sampled in a state where there is a correlation between each optical path and an angle formed with respect to a plane including the optical path located at the center of each optical path and a perpendicular to the reference plane.
  • the surface where the X-ray is propagated is It is in a state tilted at an arbitrary angle with respect to a plane including a quasi-plane and a plane including the optical path located in the center of each optical path and the normal of the reference plane, and the coordinates of the scattering intensity distribution are converted based on the correlation.
  • the scattering intensity distribution in the reciprocal space is calculated.
  • the surface where the X-ray flux is propagated is inclined at an arbitrary angle with respect to the reference plane and a plane including the optical path located at the center of each optical path and the normal of the reference plane, Since the X-ray flux is incident obliquely with respect to the reference plane, scattering corresponding to a plurality of conditions with different values of the viewing angle and the scattering angle is generated at one time, and the reciprocal lattice space is based on the inclination of the X-ray flux with respect to the reference plane.
  • the scattering intensity distribution at can be calculated.
  • the X-ray source, the X-ray optical element, and the sample are arranged along the same circumference. According to this configuration, the X-rays emitted from the X-ray source can be focused by the X-ray optical element and appropriately incident on the sample.
  • the reference plane may be a plane including the circumference.
  • the reference surface may be the surface of the sample.
  • the X-ray source is configured to generate characteristic X-rays used as the X-rays. According to this configuration, the configuration of the X-ray source is simplified and the manufacturing cost of the measuring apparatus can be reduced as compared with the case of using white X-rays by synchrotron radiation or the like.
  • the X-ray optical element is preferably a double-curved crystal or a bent-twisted crystal. According to this configuration, it becomes easy to make monochromatic X-rays enter the sample at different viewing angles at a time.
  • the present invention it is possible to provide a scattering intensity distribution measuring method and measuring apparatus capable of measuring the scattering intensity distribution in the reciprocal lattice space in a short time.
  • FIG. 1 is a schematic diagram showing a configuration example of a measuring apparatus 1 used in the method for measuring the scattering intensity distribution according to the present embodiment.
  • the measuring apparatus 1 reflects only a single-wavelength X-ray (hereinafter referred to as monochromatic X-ray) out of the X-ray source 101 that emits X-rays and the X-rays emitted from the X-ray source 101 to the sample SA.
  • a double curved crystal (X-ray optical element) 102 to be incident and a two-dimensional detector 103 for detecting monochromatic X-rays scattered by the sample SA are provided.
  • Slits SL1 and SL2 are respectively arranged.
  • the X-ray source 101 and the double curved crystal 102 are arranged on the circumference of the same circle (Roland circle) C1 together with the sample SA.
  • the double curved crystal 102 is curved with a predetermined radius of curvature, as will be described later, and converges the X-rays in a parallel direction and a vertical direction with respect to a plane including the Roland circle C1 and a monochromatic function for monochromatic X-rays. It has a focusing function (condensing function).
  • the X-rays radiated from the X-ray source 101 and passed through the slit SL1 are reflected and monochromatic by the double curved crystal 102, pass through the slit SL2, and are focused on the sample SA on the Roland circle C1.
  • the in the present embodiment a configuration example using the double curved crystal 102 is described, but another X-ray optical element having an X-ray focusing function may be used. Further, the X-ray monochromatic function may be realized by other configurations.
  • the two-dimensional detector 103 is arranged at an arbitrary position where the scattering of the monochromatic X-rays on the sample SA can be detected, and a part of the monochromatic X-rays scattered by the sample SA is incident on the two-dimensional detector 103.
  • the two-dimensional detector 103 is disposed so as to simultaneously cover an X-ray scattering angle (an angle formed by incident X-rays and scattered X-rays) in a range of approximately 70 ° to 80 °. It is shown.
  • the two-dimensional detector 103 has a position where the distance from the sample SA is 0.3 to 5 times the distance from the X-ray source 101 to the double curved crystal 102 (typically 5 to 100 cm). It is preferable to arrange in the above.
  • the two-dimensional detector 103 may be arranged so that the distance from the X-ray source 101 to the two-dimensional detector 103 is within 2 m. Such an arrangement makes it possible to reduce the scale of the measuring apparatus 1 and easily obtain the required measurement resolution.
  • the X-ray source 101 includes an X-ray tube (not shown) that generates X-rays by colliding thermoelectrons generated at the cathode against the counter-cathode (anode).
  • This X-ray tube generates characteristic X-rays ( K ⁇ rays, K ⁇ rays) corresponding to the metal used for the counter cathode.
  • X-rays radiated from the X-ray tube include white X-rays as a background in addition to characteristic X-rays. White X-rays are removed through a monochromator composed of a single crystal or a multilayer film.
  • the anticathode X-ray tube copper (Cu), molybdenum (Mo), or silver (Ag) is used, the measurement, the K alpha ray (Cu K alpha line, MoK alpha rays, AGK ⁇ rays) are used.
  • a slit SL1 is disposed in the traveling direction of characteristic X-rays (typically K ⁇ rays) emitted from the X-ray source 101.
  • the slit SL1 is disposed so as to be inclined with respect to the plane including the Roland circle C1 so that the monochromatic X-ray incident on the sample SA has a predetermined correlation. For this reason, in the X-rays radiated from the X-ray source 101, only the component radiated in a predetermined in-plane direction passes through the slit SL1 and is incident on the rear double curved crystal 102.
  • the slit SL1 allows only X-rays radiated in a predetermined in-plane direction inclined with respect to the plane including the Roland circle C1. Note that, when the background strength can be kept sufficiently low by the slit SL2 disposed between the double curved crystal 102 and the sample SA, the slit SL1 is not necessarily used.
  • FIG. 2 is a schematic diagram showing a configuration example (Johan type) of the double curved crystal 102.
  • the double curved crystal 102 includes a flat crystal in a first direction D1 parallel to the plane including the Roland circle C1 and a second direction D2 perpendicular to the plane including the Roland circle C1. Further, it has a shape curved with a predetermined radius of curvature.
  • the lattice plane of the double curved crystal 102 is curved in a first direction D1 along a circle C2 (radius is 2R) having a radius twice that of the Roland circle C1 (radius is R). That is, the lattice plane of the double curved crystal 102 is curved with a radius of curvature of 2R in the first direction D1. Thereby, the double curved crystal 102 is given a focusing function in a direction parallel to the plane including the Roland circle C1.
  • the lattice plane of the double curved crystal 102 is curved along a circle C3 having a radius of 2Rsin 2 ⁇ ( ⁇ is the Bragg angle of a single crystal constituting the double curved crystal 102) in the second direction D2. ing.
  • the lattice plane of the double curved crystal 102 is curved with a radius of curvature of 2Rsin 2 ⁇ in the second direction D2.
  • the double curved crystal 102 is given a focusing function in a direction perpendicular to the plane including the Roland circle C1.
  • the X-rays radiated from the X-ray source 101 arranged on the Roland circle C1 are reflected by the reflecting surface S1 of the double curved crystal 102, and are two-dimensionally (Roland circle circles) on the sample SA on the Roland circle C1. Focused in a direction parallel to and perpendicular to the plane containing C1.
  • the double curved crystal 102 is made of a material such as graphite, silicon, germanium, or copper.
  • the double-curved crystal 102 made of silicon is preferable in that it can be easily obtained with few defects, and thus a high-performance measuring device 1 can be realized at low cost.
  • a slit SL2 similar to the slit SL1 is arranged in the traveling direction of the monochromatic X-ray reflected by the double curved crystal 102.
  • the slit SL2 is also tilted with respect to the plane including the Roland circle C1 so as to give a predetermined correlation to the monochromatic X-ray incident on the sample SA. For this reason, in the monochromatic X-ray reflected by the double curved crystal 102, only the component radiated in a predetermined in-plane direction passes through the slit SL2 and enters the rear sample SA.
  • the slit SL2 may be disposed so as to be inclined with respect to a predetermined reference plane (for example, the reference plane B1, the plane V1 shown in FIG. 3).
  • the monochromatic X-ray incident on the sample SA is scattered by atoms (electrons) constituting the crystal lattice of the sample SA.
  • a part of the scattered X-rays enters the two-dimensional detector 103.
  • the two-dimensional detector 103 includes a light receiving surface S2 having a predetermined area, and is configured to detect a relationship between an incident position and intensity of monochromatic X-rays.
  • the two-dimensional detector 103 detects the X-ray scattering intensity distribution from the sample SA in a predetermined scattering direction range.
  • the detected scattering intensity distribution is coordinate-transformed by a calculation unit (not shown) of the measuring apparatus 1 to calculate the scattering intensity distribution in the reciprocal lattice space.
  • the slit SL1 only emits X-rays radiated in the in-plane direction inclined with respect to the Roland circle C1. Let it pass.
  • the reflecting surface S1 of the double curved crystal 102 has a linear shape along the third direction D3 inclined with respect to the first direction D1 and the second direction D2, respectively. X-ray flux is irradiated.
  • the double curved crystal 102 is curved with a predetermined radius of curvature, and the monochromatic X-ray reflected by the double curved crystal 102 is focused on the sample SA on the Roland circle C1 through the slit SL2. Therefore, the monochromatic X-ray reflected by the double curved crystal 102 and incident on the sample SA is incident on the sample SA at a different viewing angle (coincidence angle of incident angle) ⁇ depending on the path from the X-ray source 101. Will be.
  • the monochromatic X-ray that has reached the sample SA through the path P1 is incident on the sample SA at the viewing angle ⁇ 1
  • the monochromatic X-ray that has reached the sample SA through the path P2 is incident on the sample SA at the viewing angle ⁇ 2.
  • FIG. 3 is a schematic diagram for explaining monochromatic X-rays incident on the sample SA.
  • the beam surface X1 through which the X-ray bundle is propagated is inclined at an arbitrary angle with respect to the reference plane B1 and the plane V1 perpendicular to the reference plane B1. It is in the state.
  • the plane V1 is typically a plane including an X-ray path P3 located at the center of the X-ray focusing angle and a perpendicular L1 to the reference plane B1.
  • the reference plane B1 is, for example, a lattice plane involved in X-ray diffraction in the sample SA, but the surface of the sample SA may be used as the reference plane B1.
  • a plane including the Roland circle C1 may be used as the reference plane B1.
  • the projection plane X2 of the X-ray bundle projected onto the plane V2 perpendicular to the reference plane B1 and the plane V1 is tilted by tilting the beam plane X1 through which the X-ray bundle is propagated. It becomes a straight line. That is, a correlation is given between the angle formed by the projection pattern X2 with respect to the reference plane B1 and the angle formed by the traveling direction of the monochromatic X-ray with respect to the reference plane B1 (corresponding to the viewing angle ⁇ ).
  • each path for example, paths P4 and P5 of the X-ray focused through a plurality of paths with respect to the reference plane B1 (corresponding to the viewing angles ⁇ 4 and ⁇ 5), and each path A correlation is given between an angle (corresponding to angles ⁇ 4 and ⁇ 5) formed with respect to a plane including the path P3 located at the center of the path and the perpendicular L1 of the reference plane B1.
  • the slit SL2 is linear, and a linear (primary) correlation is given to the X-ray bundle, but the slit SL2 is not limited to linear.
  • the slit SL2 may be a parabolic shape to give a secondary correlation.
  • the beam surface X1 of the X-ray flux may not be parallel or perpendicular to the reference plane B1.
  • the inclination angle of the beam surface X1 with respect to the plane V1 can be 5 ° to 85 °, and preferably 15 ° to 75 °.
  • FIG. 4 shows a state in which the above-described monochromatic X-ray having a predetermined correlation is incident on the sample SA at a different viewing angle ⁇ corresponding to each optical path, and the scattered X-ray is incident on the two-dimensional detector.
  • FIG. 4 a schematic diagram is shown in which the two-dimensional detector 103 is arranged so as to simultaneously cover an X-ray scattering angle (an angle formed by incident X-rays and scattered X-rays) in a range of approximately 5 ° to 15 °. It is.
  • FIG. 4 schematically shows the reciprocal lattice space and the real space.
  • As the sample SA a semiconductor having a superlattice structure is assumed.
  • wave number vectors of X-rays incident on the sample SA at the viewing angles ⁇ H , ⁇ M , and ⁇ L are indicated by K 0H , K 0M , and K 0L , respectively. Since the X-ray scattering intensity increases under the condition where the Ewald sphere and the rod part R intersect, the scattering intensity of the X-rays K 0H , K 0M and K 0L incident on the sample SA is It becomes stronger in the intersecting regions R H , R M and R L.
  • Rod portion R of the center line i.e., qz axis
  • Evaruto sphere K 0H, K 0M
  • K 0H, K 0M a vector connecting the start point of K 0L, respectively K HH, K HM, when the K HL, and K 0H
  • a plane including K HH , a plane including K 0M and K HM, and a plane including K 0L and K HL (scattering plane) are inclined with respect to each other.
  • the scattered X-rays are incident on the two-dimensional detector 103.
  • X-rays incident on the sample SA at K 0H , K 0M , and K 0L are scattered around the directions represented by K ′ HH , K ′ HM , and K ′ HL and are elliptical in the two-dimensional detector 103.
  • the intensity distribution on the straight line including the C'L is, C H in reciprocal space, C M, scattering intensity (i.e. qz axis direction of the straight line containing the C L (Scattering intensity).
  • the two-dimensional detector 103, P'H, C'M, the intensity distribution on the straight line including the P'L is the reciprocal space P H, C M, scattering intensity of the line containing the P L (i.e. qx (Scattering intensity in the axial direction).
  • C'H, C'M, C' L linear direction comprising (Qz axis) and P'H, C'M, the linear direction (Qx axis) including P'L, respectively qz axis and qx axis
  • the scattering intensity distribution in the qx-qz plane of the reciprocal lattice space can be obtained. That is, the scattering intensity distribution in the qx-qz plane of the reciprocal lattice space can be measured without scanning in the ⁇ direction and 2 ⁇ direction.
  • FIG. 5 is a diagram showing the measurement result of the scattering intensity distribution obtained when the sample having the superlattice structure is measured by the method of measuring the scattering intensity distribution according to the present embodiment.
  • the scattering intensity distribution of the sample in which the lattice structure is formed is shown.
  • CuK ⁇ 1 characteristic X-rays obtained by operating the X-ray source 101 under conditions of 50 kV and 60 mA were used as monochromatic X-rays, and PILATUS100K manufactured by Swiss DECTRIS was used as the two-dimensional detector 103.
  • FIG. 5A shows the scattering intensity distribution on the two-dimensional detector 103 detected by the above-described method
  • FIG. 5B shows the coordinate-converted scattering intensity distribution.
  • the vertical axis and horizontal axis in FIG. 5A indicate the pixel position of the two-dimensional detector 103, and the vertical axis and horizontal axis in FIG. 5B indicate the transition momentum qz and qx (the unit is ⁇ ⁇ 1 ).
  • the focusing angle (condensing angle) in the in-plane direction including the Roland circle is small (for example, about ⁇ 2 °).
  • the scattering intensity distribution of FIG. 5A obtained by the above method can be approximated as the scattering power in the qx-qz plane in the reciprocal lattice space.
  • the measurement result shown in FIG. 5 was obtained in a measurement time of only about 10 seconds.
  • the scattering intensity distribution in the reciprocal space can be measured in a short time by the scattering intensity distribution measuring method according to the present embodiment.
  • the coordinate system of the scattered intensity distribution detected by the two-dimensional detector 103 corresponds to the coordinate system of the scattered intensity distribution in the reciprocal lattice space.
  • the qx direction in the reciprocal space corresponds to the Qx direction in FIG. 5A
  • the qz direction in the reciprocal space corresponds to the Qz direction in FIG. 5A.
  • the scattering intensity distribution in the reciprocal lattice space shown in FIG. 5B can be obtained. Since this correspondence depends on the correlation given to the monochromatic X-ray, for example, coordinate conversion can be performed based on the correlation in the calculation unit (not shown) of the measuring apparatus 1.
  • the X-ray source 101, the double curved crystal (X-ray optical element) 102, and the sample SA are arranged along the Roland circle C1.
  • Monochromatic X-rays emitted from the X-ray source 102 can be appropriately incident on the sample SA through the double curved crystal 102.
  • the configuration of the X-ray source 101 is simplified as compared with the case of using white X-rays by synchrotron radiation or the like, and the cost for measuring the scattered intensity distribution can be reduced. .
  • the double curved crystal 102 is used as an X-ray optical element for reflecting and focusing monochromatic X-rays, it is easy to make monochromatic X-rays incident on the sample SA at different viewing angles ⁇ at a time. .
  • the present invention is not limited to the above embodiment, and can be implemented with various modifications.
  • the method and configuration in which the coordinate conversion is performed by the calculation unit included in the measurement device 1 are illustrated, but for example, the coordinate conversion may be performed by an external calculation device.
  • the calculation unit of the measuring apparatus 1 can be omitted.
  • the X-ray source 101 is exemplified as a configuration including an X-ray tube, but the configuration of the X-ray source 101 is not particularly limited.
  • the X-ray source 101 may be a secondary X-ray source in which X-rays emitted from another X-ray source are collected in a dotted or linear manner by some method.
  • the configuration of the X-ray optical element is not particularly limited as long as the X-ray focusing function described in the embodiment is provided.
  • a crystal (bent-twisted crystal) with a twist added in a direction perpendicular to the bending direction of the single curved crystal may be used instead of the double curved crystal 102.
  • the Roland circle C1 In the measuring apparatus 1 in which the Roland circle C1 is not defined, at least the angle formed by the lattice plane (reference plane B1) involved in the diffraction of the sample SA and the X-ray optical path and the angle formed by the plane V1 and the X-ray optical path. And an X-ray optical element having a focusing function (condensing function) toward the surface of the sample SA may be used.
  • a lattice plane which is involved in the diffraction of the sample SA (A similar measurement can be performed by forming a correlated X-ray beam between the angle formed by the reference plane B1) and the X-ray optical path and the angle formed by the plane V1 and the X-ray optical path.
  • the arrangement, size, shape, and the like of each component in the above embodiment can be changed as appropriate.
  • the present invention can be implemented with appropriate modifications.
  • the present invention is useful, for example, when measuring a scattering intensity distribution in a reciprocal space by irradiating a sample with X-rays.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

 逆格子空間での散乱強度分布を短時間に測定可能な散乱強度分布の測定方法及び測定装置を提供すること。X線源(101)から放射されるX線を、試料(SA)の表面近傍において集束させるようにX線光学素子(102)で反射させ、複数の光路を経て集束される単色化されたX線の各光路と基準面とがなす角と、基準面の垂線と各光路の中心に位置する光路を含む面とがなす角との間に相関のある状態で、単色化されたX線を試料に対して各光路に応じて異なる視射角(ω)で一度に入射させ、試料で散乱される単色化されたX線の散乱強度を2次元検出器(103)で検出し、2次元検出器で検出される散乱強度分布及び相関に基づいて、逆格子空間での散乱強度分布を算出することを特徴とする。

Description

散乱強度分布の測定方法及び測定装置
 本発明は、試料にX線を照射して逆格子空間での散乱強度分布を測定する散乱強度分布の測定方法及び測定装置に関する。
 近年、一般的な結晶材料とは異なる物性を示す量子井戸構造の研究が盛んに行われている。例えば、半導体薄膜が積層された超格子半導体は、層の周期(厚さ)や原子の種類などに応じて異なるバンド構造を示すので、様々なデバイスへの応用が期待されている。また、3次元的な量子閉じ込め構造である量子ドットは、状態密度(Density of states)が離散化されて特定の状態に集中されるので、理論的には極めて高効率なレーザー媒質を実現可能である。このような量子井戸構造の物性は、結晶格子の周期や乱れ具合などに応じて大きく変動されるので、その評価の際には、結晶格子に関する精度の高い情報を取得する必要がある。
 結晶格子の規則性を評価するために、試料にX線(エックス線)を照射して逆格子空間での散乱強度分布を測定する方法が用いられている。逆格子マッピング(reciprocal space mapping)、又は逆格子マップ(reciprocal space map)と呼ばれるこの方法では、逆格子点近傍におけるX線の散乱強度をマッピングして散乱能の分布を得る。理想的な結晶構造では、逆格子点においてのみX線の回折強度は強くなるが、結晶格子に乱れがある場合には、逆格子点から離れた位置にも有意の散乱能が現れる。
 逆格子マッピングの基本的な考え方について説明する。まず、実空間と逆格子空間との関係について簡単に説明する。図6は、2次元結晶における実空間と逆格子空間との関係を示す模式図である。図6Aでは、原子A1~A4による結晶格子が示されている。この結晶格子において、例えば、100面の面間隔はd100であり、010面の面間隔はd010であり、110面の面間隔はd110である。
 図6Aの結晶格子を逆格子空間に変換すると、図6Bのようになる。逆格子空間は、実空間のフーリエ変換に対応しており、逆格子点は実空間における結晶格子の情報を含んでいる。例えば、図6Bに示すように、逆格子空間の原点Oと、ある逆格子点との距離は、対応する結晶面の面間隔の逆数に相当する。具体的には、逆格子空間の原点Oと、100点との距離は、100面の面間隔d100の逆数1/d100に相当し、逆格子空間の原点Oと、010点との距離は、010面の面間隔d010の逆数1/d010に相当する。
 図7は、逆格子点とエヴァルト球との関係を示す模式図である。図7では、3次元結晶に対応する逆格子空間を、qx軸及びqz軸を含む平面に垂直なqy軸(不図示)方向から見た様子を示している。図7において、Kベクトルは結晶構造に入射された入射X線の波数ベクトルを示し、Kベクトルは結晶構造で散乱された散乱X線の波数ベクトルを示す。また、図7において、規則的に配列された複数の白抜きの丸印は逆格子点を示している。
 結晶格子に乱れのない理想的な結晶構造によるX線の散乱強度は、X線の波長(λ)の逆数の2π倍の半径(2π/λ)を有するエヴァルト球Eの球面上に逆格子点が存在する条件で強くなる。この場合、X線は、エヴァルト球Eの中心からエヴァルト球Eの球面上に位置する逆格子点を投影して得られる投影パターンで散乱される。結晶格子に乱れがある場合、その乱れの程度に応じて、逆格子点以外でも散乱強度は強くなる。このため、逆格子マッピングにより散乱強度の分布を得ることで、結晶格子の規則性を評価できる。
 具体的には、例えば、試料内に間隔の異なる複数の結晶格子が混在し、qz軸上の逆格子点がエヴァルト球上にある場合には、原点と逆格子点とを結ぶ直線(図7のqz軸方向)に沿って散乱能が現れる。また、試料内において傾きの異なる複数の結晶面(格子面)が混在する場合には、逆格子空間において原点と逆格子点とを結ぶ直線と直交する方向(図7のq´x軸方向)に散乱能が現れる。このように、散乱能の分布を確認することで、結晶格子の規則性を評価できる。
 逆格子マッピングでは、通常、対象となる逆格子点の近傍におけるX線の散乱強度分布が測定される。図8は、逆格子マッピングに用いられる測定装置の例を示す模式図である。図8に示す測定装置2において、X線源201から放射されてモノクロメータ202を通過した単色(単一波長)のX線は、視射角(入射角の余角)ωで試料203に入射される。試料203において散乱されたX線は、コリメータ204を通じて検出器205に入射する。コリメータ204は、試料から2θ方向に散乱されるX線のみを選択的に検出器205へと導く。
 測定装置2を用いる逆格子マッピングの測定モードの一例としてωスキャンがある。ωスキャンでは、2θを所定の値に固定した状態でωを変化させ、ω方向の散乱強度分布をスキャンする。このω方向のスキャンにより、逆格子空間において原点と逆格子点とを結ぶ直線と略直交する方向(図7のq´x軸方向)の散乱能の分布が検出される。ある2θについてのω方向のスキャンが終了すると、2θの値を僅かに変えて再びω方向のスキャンを行う。異なる2θの値を選ぶことは、逆格子空間のqz軸に沿って異なるqzの位置を選択することと同等の意味を持つ。このように、2θの値を異ならせてはω方向のスキャンを繰り返すことにより、qx-qz面内の領域RSM内の散乱能分布、すなわち逆格子マップに相当する2次元散乱強度分布が得られる。
 測定モードの他の例としては、ω-2θスキャンがある。この測定モードでは、ωの変化量Δωと2θの変化量Δ(2θ)とが、常にΔω:Δ(2θ)=1:2の関係を満たすように散乱強度分布をスキャンする。また、ωの初期値ωを異ならせては上記スキャンを繰り返す。Δω:Δ(2θ)=1:2を満たすスキャンは、逆格子空間の任意の点と原点とを通る直線方向の散乱能分布を測定することに相当する。ωを異ならせることは、q´x軸上の異なる位置を指定することに相当する。このため、ωを異ならせてはω-2θのスキャンを繰り返すことで、図7の領域RSM内での散乱能分布を測定できる。
 図9は、逆格子マッピングに用いられる測定装置の別の例を示す模式図である。図9に示す測定装置3においても、X線源301から放射されてモノクロメータ302を通過した単色のX線は、視射角ωで試料303に入射される。試料303において散乱されたX線は、1次元検出器305に入射する。1次元検出器305は、広い散乱角(2θ方向)を一度に測定できるように構成されている。このため、この測定装置3を用いる逆格子マッピングでは、2θ方向のスキャンは不要となる。
特開平7-98286号公報
 ところで、図8に示す測定装置を用いる散乱強度分布の測定方法では、視射角方向(ω方向)及び散乱角方向(2θ方向)のスキャンが必要である。また、図9に示す測定装置を用いる散乱強度分布の測定方法では、少なくとも、視射角方向(ω方向)のスキャンを行って、視射角(ω)の値が異なる複数の条件で散乱強度を測定する必要がある。このため、一つの散乱強度分布を得るのに長時間(代表的には、数分~数時間)を要してしまうという問題があった。
 本発明はかかる点に鑑みてなされたものであり、逆格子空間での散乱強度分布を短時間に測定可能な散乱強度分布の測定方法及び測定装置を提供することを目的とする。
 本発明の散乱強度分布の測定方法は、X線源から放射されるX線を、試料の表面近傍において集束させるようにX線光学素子で反射させ、複数の光路を経て集束される単色化されたX線の各光路が、基準面に対してなす角度と、前記各光路が、前記各光路の中央に位置する光路と前記基準面の垂線とを含む面に対してなす角度との間に相関のある状態で、前記単色化されたX線を前記試料に対して前記各光路に応じて異なる視射角で一度に入射させ、前記相関のある状態は、前記X線の伝播される面が、前記基準面、及び前記各光路の中央に位置する光路と前記基準面の垂線とを含む面に対して任意の角度で傾斜された状態であり、前記試料で散乱される前記単色化されたX線の散乱強度を2次元検出器で検出し、前記2次元検出器で検出される散乱強度分布を前記相関に基づいて座標変換することにより、前記逆格子空間での散乱強度分布を算出することを特徴とする。
 この構成によれば、所定の相関を有する状態の単色X線を試料に対して異なる視射角で一度に入射させ、試料で散乱される単色X線の散乱強度を2次元検出器で検出するので、視射角方向(ω方向)及び散乱角方向(2θ方向)のスキャンがいずれも不要となる。すなわち、所定の相関を有する状態の単色X線を試料に対して異なる視射角で一度に入射させることで、視射角が異なる複数の条件に相当する散乱を一度に生じさせることができるので、2次元検出器により、視射角及び散乱角の値が異なる複数の条件に相当する散乱を一度に検出できる。よって、2次元検出器で検出される散乱強度分布及び相関に基づいて、逆格子空間での散乱強度分布を算出できる。すなわち、視射角方向(ω方向)及び散乱角方向(2θ方向)のスキャンを行わずに済むので、逆格子空間での散乱強度分布を短時間に測定可能である。
 また、前記X線の伝播される面が、前記基準面、及び前記各光路の中央に位置する光路と前記基準面の垂線とを含む面に対して任意の角度で傾斜された状態としたので、視射角及び散乱角の値が異なる複数の条件に相当する散乱を一度に生じさせ、X線束の基準面に対する傾斜に基づき逆格子空間での散乱強度分布を算出できる。
 本発明の散乱強度分布の測定方法において、前記X線源、前記X線光学素子、及び前記試料を、同一の円周に沿って配置することが好ましい。この構成によれば、X線源から放射されるX線を、X線光学素子で集束させて試料に適切に入射させることができる。
 本発明の散乱強度分布の測定方法において、前記基準面は、前記円周を含む平面であっても良い。また、前記基準面は、前記試料の表面であっても良い。
 本発明の散乱強度分布の測定方法において、前記X線として特性X線を用いることが好ましい。この構成によれば、シンクロトロン放射などによる白色X線を用いる場合と比較してX線源の構成は簡略化され、散乱強度分布の測定に係るコストを低減できる。また、シンクロトロン放射などによる白色X線を用いる場合のように、測定に係る装置を大型化させずに済む。
 本発明の散乱強度分布の測定方法において、前記X線光学素子として2重湾曲結晶又はbent-twisted結晶を用いることが好ましい。この構成によれば、単色X線を試料に対して異なる視射角で一度に入射させることが容易になる。
 本発明の測定装置は、X線源と、前記X線源から放射されるX線を、試料の表面近傍において集束させるように反射させ、前記試料に対して異なる視射角で単色化されたX線を一度に入射させるX線光学素子と、前記試料で散乱される前記単色化されたX線の散乱強度を検出する2次元検出器と、前記2次元検出器で検出される散乱強度分布に基づいて、逆格子空間での散乱強度分布を算出する演算部と、を備え、複数の光路を経て集束される前記単色化されたX線の各光路が、基準面に対してなす角度と、前記各光路が、前記各光路の中央に位置する光路と前記基準面の垂線とを含む面に対してなす角度との間に相関のある状態で、前記単色化されたX線を前記試料に入射させ、前記相関のある状態は、前記X線の伝播される面が、前記基準面、及び前記各光路の中央に位置する光路と前記基準面の垂線とを含む面に対して任意の角度で傾斜された状態であり、前記散乱強度分布を前記相関に基づいて座標変換することにより、前記逆格子空間での散乱強度分布を算出することを特徴とする。
 この構成によれば、所定の相関を有する状態の単色X線を試料に対して異なる視射角で一度に入射させ、試料で散乱される単色X線の散乱強度を2次元検出器で検出するので、視射角方向(ω方向)及び散乱角方向(2θ方向)のスキャンがいずれも不要となる。よって、逆格子空間での散乱強度分布を短時間に測定可能である。
 また、前記X線束の伝播される面が、基準面、及び前記各光路の中央に位置する光路と前記基準面の垂線とを含む面に対して任意の角度で傾斜された状態としたので、X線束は基準面に対して斜めに入射されるので、視射角及び散乱角の値が異なる複数の条件に相当する散乱を一度に生じさせ、X線束の基準面に対する傾斜に基づき逆格子空間での散乱強度分布を算出できる。
 本発明の測定装置において、前記X線源、前記X線光学素子、及び前記試料は、同一の円周に沿って配置されることが好ましい。この構成によれば、X線源から放射されるX線を、X線光学素子で集束させて試料に適切に入射させることができる。
 本発明の測定装置において、前記基準面は、前記円周を含む平面であっても良い。また、前記基準面は、前記試料の表面であっても良い。
 本発明の測定装置において、前記X線源は、前記X線として用いられる特性X線を発生可能に構成されたことが好ましい。この構成によれば、シンクロトロン放射などによる白色X線を用いる場合と比較してX線源の構成は簡略化され、測定装置の製造コストを低減できる。
 本発明の測定装置において、前記X線光学素子は、2重湾曲結晶又はbent-twisted結晶であることが好ましい。この構成によれば、単色X線を試料に対して異なる視射角で一度に入射させることが容易になる。
 本発明によれば、逆格子空間での散乱強度分布を短時間に測定可能な散乱強度分布の測定方法及び測定装置を提供できる。
本実施の形態に係る散乱強度分布の測定方法に用いられる測定装置の構成例を示す模式図である。 2重湾曲結晶の構成例を示す模式図である。 試料に入射される単色X線について説明するための模式図である。 所定の相関を有する単色X線を、各々の光路に対応して異なる視射角で試料に入射させ、散乱されたX線が2次元検出器に入射する様子を示す模式図である。 本実施の形態に係る散乱強度分布の測定方法で超格子構造を有する試料を測定した場合に得られる散乱強度分布を示す模式図である。 実空間と逆格子空間との関係を示す模式図である。 逆格子点とエヴァルト球との関係を示す模式図である。 逆格子マッピングに用いられる測定装置の構成例を示す模式図である。 逆格子マッピングに用いられる測定装置の別の構成例を示す模式図である。
 以下、図面を参照して、本発明の一実施の形態に係る逆格子空間での散乱強度分布の測定方法、及び測定装置について説明する。なお、以下においては、本発明を説明するために簡略化された測定装置について説明するが、通常の測定装置が備える構成は不足なく備えるものとする。
 図1は、本実施の形態に係る散乱強度分布の測定方法に用いられる測定装置1の構成例を示す模式図である。測定装置1は、X線を放射するX線源101と、X線源101から放射されたX線のうち、単一波長のX線(以下、単色X線)のみを反射させて試料SAに入射させる2重湾曲結晶(X線光学素子)102と、試料SAで散乱された単色X線を検出する2次元検出器103とを備えている。X線源101と2重湾曲結晶102との間の位置、及び2重湾曲結晶102と試料SAとの間の位置には、試料SAに入射される単色X線に所定の相関を持たせるためのスリットSL1,SL2がそれぞれ配置されている。
 X線源101及び2重湾曲結晶102は、試料SAと共に同一の円(ローランド円)C1の円周上に配置されている。2重湾曲結晶102は、後述するように所定の曲率半径で湾曲されており、X線を単色化する単色化機能と、ローランド円C1を含む平面に対する平行方向及び垂直方向にX線を集束させる集束機能(集光機能)とを有している。これらの機能により、X線源101から放射されてスリットSL1を通過したX線は、2重湾曲結晶102で反射、単色化され、スリットSL2を通過してローランド円C1上の試料SAに集束される。なお、本実施の形態では、2重湾曲結晶102を用いる構成例について説明するが、X線の集束機能を有する他のX線光学素子を用いても良い。また、X線の単色化機能は、他の構成で実現されても良い。
 2次元検出器103は、試料SAでの単色X線の散乱を検出可能な任意の位置に配置されており、試料SAで散乱された単色X線の一部は2次元検出器103に入射される。なお、図1には、2次元検出器103が、X線の散乱角(入射X線と散乱X線のなす角度)が略70°~80°の範囲について、同時にカバーするように配置した状態が示されている。また、2次元検出器103は、試料SAからの距離が、X線源101から2重湾曲結晶102までの距離(代表的には、5cm~100cm)の0.3倍~5倍となる位置に配置するのが好ましい。または、例えば、X線源101から2次元検出器103までの距離が2m以内となるように2次元検出器103を配置しても良い。このような配置により、測定装置1の規模を小さく抑え、必要とされる測定分解能を容易に得ることができる。
 X線源101は、陰極で発生される熱電子を対陰極(陽極)に衝突させてX線を発生させるX線管(不図示)を備えている。このX線管は、対陰極に用いられる金属に対応する特性X線(Kα線,Kβ線)を発生させる。X線管から放射されるX線には、特性X線の他に、バックグラウンドとしての白色X線が含まれている。白色X線は、単結晶や多層膜などで構成されるモノクロメータを通じて除去される。一般に、X線管の対陰極には、銅(Cu)、モリブデン(Mo)、又は銀(Ag)が使用されており、測定には、そのKα線(CuKα線,MoKα線,AgKα線)が用いられる。
 X線源101から放射される特性X線(代表的には、Kα線)の進行方向には、スリットSL1が配置されている。スリットSL1は、試料SAに入射される単色X線に所定の相関を持たせるように、ローランド円C1を含む平面に対して傾けて配置されている。このため、X線源101から放射されたX線は、所定の面内方向に放射される成分のみがスリットSL1を通過され、後方の2重湾曲結晶102に入射される。具体的には、スリットSL1は、ローランド円C1を含む平面に対して傾斜された所定の面内方向に放射されるX線のみを通過させる。なお、2重湾曲結晶102と試料SAとの間に配置されるスリットSL2によってバックグラウンドの強度を十分低く保てる場合には、必ずしもスリットSL1を用いなくても良い。
 図2は、2重湾曲結晶102の構成例(ヨハン型)を示す模式図である。図2においては、2重湾曲結晶102の反射面S1を正面から見た正面図に加え、ローランド円C1を含む平面に垂直な方向から見た平面図、及び右側面図を併せて示している。図2に示すように、2重湾曲結晶102は、平板状の結晶を、ローランド円C1を含む平面に平行な第1の方向D1、及びローランド円C1を含む平面に垂直な第2の方向D2に、所定の曲率半径で湾曲させた形状を有している。
 2重湾曲結晶102の格子面は、第1の方向D1において、ローランド円C1(半径はR)の2倍の半径の円C2(半径は2R)に沿って湾曲されている。すなわち、2重湾曲結晶102の格子面は、第1の方向D1において、2Rの曲率半径で湾曲されている。これにより、2重湾曲結晶102には、ローランド円C1を含む平面に平行な方向の集束機能が与えられている。また、2重湾曲結晶102の格子面は、第2の方向D2において、半径が2RsinΘ(Θは、2重湾曲結晶102を構成する単結晶のブラッグ角)の円C3に沿って湾曲されている。すなわち、2重湾曲結晶102の格子面は、第2の方向D2において、2RsinΘの曲率半径で湾曲されている。これにより、2重湾曲結晶102には、ローランド円C1を含む平面に垂直な方向の集束機能が与えられている。ローランド円C1上に配置されるX線源101から放射されたX線は、この2重湾曲結晶102の反射面S1で反射されて、ローランド円C1上の試料SAに2次元的に(ローランド円C1を含む平面に平行な方向及び垂直な方向に)集束される。
 この2重湾曲結晶102は、例えば、グラファイト、シリコン、ゲルマニウム、銅などの材料で構成されている。特に、シリコンによる2重湾曲結晶102は、欠陥が少なく容易に入手可能なので、性能の良い測定装置1を低コストに実現できる点で好ましい。
 2重湾曲結晶102で反射された単色X線の進行方向には、スリットSL1と同様のスリットSL2が配置されている。スリットSL2も、試料SAに入射される単色X線に所定の相関を持たせるように、ローランド円C1を含む平面に対して傾けて配置されている。このため、2重湾曲結晶102で反射された単色X線は、所定の面内方向に放射される成分のみがスリットSL2を通過され、後方の試料SAに入射される。なお、ローランド円C1が定義されない測定装置では、スリットSL2は、所定の基準面(例えば、図3に示す基準面B1、平面V1など)に対して傾けて配置されていれば良い。
 試料SAに入射された単色X線は、試料SAの結晶格子を構成する原子(電子)で散乱される。散乱されたX線の一部は、2次元検出器103に入射される。2次元検出器103は、所定の面積を有する受光面S2を備えており、単色X線の入射位置と強度との関係を検出できるように構成されている。この2次元検出器103により、所定の散乱方向の範囲における試料SAからのX線の散乱強度分布が検出される。検出された散乱強度分布は、測定装置1の演算部(不図示)により座標変換され、逆格子空間での散乱強度分布が算出される。
 図1に示すように、X線源101から放射されるX線がスリットSL1に入射されると、スリットSL1は、ローランド円C1に対して傾斜された面内方向に放射されるX線のみを通過させる。これにより、2重湾曲結晶102の反射面S1には、図2に示すように、第1の方向D1及び第2の方向D2に対してそれぞれ傾斜された第3の方向D3に沿う直線状のX線束が照射される。
 上述のように、2重湾曲結晶102は所定の曲率半径で湾曲されており、2重湾曲結晶102で反射された単色X線は、スリットSL2を通じてローランド円C1上の試料SAに集束される。このため、2重湾曲結晶102で反射されて試料SAに入射される単色X線は、X線源101からの経路に応じて異なる視射角(入射角の余角)ωで試料SAに入射されることになる。例えば、経路P1で試料SAに到達した単色X線は、視射角ω1で試料SAに入射され、経路P2で試料SAに到達した単色X線は、視射角ω2で試料SAに入射される。
 また、試料SAに入射される単色X線は、スリットSL1,SL2を通じて所定の相関を付与されている。図3は、試料SAに入射される単色X線について説明するための模式図である。図3に示すように、スリットSL1,SL2を通過されることで、X線束の伝播されるビーム面X1は、基準面B1及び基準面B1に垂直な平面V1に対して任意の角度で傾斜された状態になっている。平面V1は、代表的には、X線の集束角の中央に位置するX線の経路P3と、基準面B1に対する垂線L1とを含む平面である。基準面B1は、例えば、試料SAにおいてX線回折に関与する格子面であるが、試料SAの表面を基準面B1としても良い。また、ローランド円C1を含む平面を基準面B1としても良い。
 図3に示すように、X線束の伝播されるビーム面X1が傾斜されることで、基準面B1及び平面V1に対して垂直な平面V2に投影されたX線束の投影パターンX2は、傾斜された直線状になる。つまり、投影パターンX2が基準面B1に対してなす角度と、単色X線の進行方向が基準面B1に対してなす角度(視射角ωに相当)との間には、相関が与えられる。また、複数の経路を経て集束されるX線の各経路(例えば、経路P4,P5)が、基準面B1に対してなす角度(視射角ω4,ω5に相当)と、各経路が、各経路の中央に位置する経路P3と基準面B1の垂線L1とを含む面に対してなす角度(角度ψ4,ψ5に相当)との間には、相関が与えられる。このような相関を付与することで、後の座標変換を適切に行うことが可能になる。
 なお、ここでは、スリットSL2を直線状として、X線束に直線状(一次)の相関を付与しているが、スリットSL2は直線状に限られない。例えば、スリットSL2を放物線状にして、2次の相関を付与しても良い。少なくとも、X線束のビーム面X1が、基準面B1に対して平行又は垂直でなければ良い。例えば、平面V1に対するビーム面X1の傾斜角は、5°~85°とすることが可能であり、15°~75°とすると好ましい。
 このように、所定の相関を有する単色X線を異なる視射角ωで試料SAに入射させると、視射角ωの異なる複数の条件に相当する散乱を一度に生じさせることができる。試料SAで散乱されたX線は、視射角ωと散乱角2θに応じて、試料SAの後方に配置される2次元検出器103の異なる位置に入射される。このため、この散乱を2次元検出器103で一度に検出させることで、視射角方向(ω方向)のスキャンは不要になる。2次元検出器103は、広い散乱角2θについても一度に測定できるように構成されているので、散乱角方向(2θ方向)のスキャンも不要である。
 図4は、上述した所定の相関を有する単色X線を、各々の光路に対応して異なる視射角ωで試料SAに入射させ、散乱されたX線が2次元検出器に入射する様子を示す模式図である。図4では、2次元検出器103が、X線の散乱角(入射X線と散乱X線のなす角度)が略5°~15°の範囲について、同時にカバーするように配置した模式図が描かれている。図4では、逆格子空間及び実空間の様子を模式的に示している。試料SAとしては、超格子構造を有する半導体を想定する。図4の左側に示す逆格子空間において、散乱波の波数ベクトルの終端が、原点Oからqz方向に延びるロッド部分Rに位置付けられると、X線の散乱強度は強くなる。より詳細には、エヴァルト球とロッド部分Rとが交わる条件で、X線の散乱強度は強くなる。
 図4では、視射角ω、ω、ωで試料SAに入射されたX線の波数ベクトルを、それぞれ、K0H,K0M,K0Lで示している。エヴァルト球とロッド部分Rとが交わる条件でX線の散乱強度は強くなるので、試料SAに入射されたX線K0H,K0M,K0Lの散乱強度は、エヴァルト球とロッド部分Rとが交わる領域R,R,Rにおいて強くなる。ロッド部分Rの中心線(つまり、qz軸)及びエヴァルト球の交点と、K0H,K0M,K0Lの始点とを結ぶベクトルを、それぞれKHH,KHM,KHLとすると、K0HとKHHとを含む面、K0MとKHMを含む面、K0LとKHLとを含む面(散乱面)は、互いに傾いている。
 図4の右側に示す実空間において、散乱されたX線は、2次元検出器103に入射される。試料SAに対してK0H,K0M,K0Lで入射されたX線は、K´HH,K´HM,K´HLで表される方向を中心に散乱され、2次元検出器103において楕円で表される領域R´,R´,R´に投影される。このとき、逆格子空間においてロッド部分Rの中心線(qz軸)に沿う点C,C,Cは、2次元検出器103においてC´,C´,C´として記録される。また、qx-qy平面に対して平行なロッド部分Rの断面においてqxに平行な方向の端点P,Pは、2次元検出器103においてP´,P´として記録される。
 2次元検出器103において、C´,C´,C´を含む直線上の強度分布は、逆格子空間でC,C,Cを含む直線の散乱強度(すなわちqz軸方向の散乱強度)を反映している。また、2次元検出器103において、P´,C´,P´を含む直線上の強度分布は、逆格子空間でP,C,Pを含む直線の散乱強度(すなわちqx軸方向の散乱強度)を反映している。このため、C´,C´,C´を含む直線方向(Qz軸)及びP´,C´,P´を含む直線方向(Qx軸)を、それぞれqz軸及びqx軸に座標変換することで、逆格子空間のqx-qz面内における散乱強度分布を得ることができる。つまり、ω方向及び2θ方向のスキャンを行うことなく、逆格子空間のqx-qz面内における散乱強度分布を測定できる。
 図5は、本実施の形態に係る散乱強度分布の測定方法で超格子構造を有する試料を測定した場合に得られる散乱強度分布の測定結果を示す図であり、GaAs基板上にAlAs/GaAs超格子構造が形成された試料の散乱強度分布を示している。ここでは、単色X線として、X線源101を50kV,60mAの条件で運転して得られるCuKα1特性X線を用い、2次元検出器103として、スイスDECTRIS社製PILATUS100Kを用いた。図5Aは、上述した方法で検出された2次元検出器103上の散乱強度分布を示し、図5Bは、座標変換された散乱強度分布を示す。図5Aの縦軸及び横軸は、2次元検出器103のピクセル位置を示し、図5Bの縦軸及び横軸は、移行運動量qz及びqx(単位は共にÅ-1)を示している。試料SAに照射される単色X線において、ローランド円を含む面内方向の集束角度(集光角度)は小さい(例えば、±2°程度)。このため、上述の方法で得られた図5Aの散乱強度分布は、逆格子空間におけるqx-qz平面内の散乱能として近似できる。図5に示す測定結果は、僅か10秒程度の測定時間で得られたものである。このように、本実施の形態に係る散乱強度分布の測定方法によって、逆格子空間での散乱強度分布を短時間に測定できるのが分かる。
 2次元検出器103で検出される散乱強度分布の座標系と、逆格子空間における散乱強度分布の座標系とは対応している。具体的には、逆格子空間におけるqx方向は、図5AのQx方向に相当し、逆格子空間におけるqz方向は、図5AのQz方向に相当する。このため、Qx及びQzを、それぞれqx及びqzに座標変換することで、図5Bに示す逆格子空間の散乱強度分布を得ることができる。この対応関係は、単色X線に与えられる相関に依存するので、例えば、測定装置1の演算部(不図示)において相関に基づいて、座標変換を行うことができる。
 以上のように、本実施の形態に係る散乱強度分布の測定方法及び測定装置では、複数の光路を経て集束されるX線の各光路が、基準面に対してなす角度と、各光路が、各光路の中央に位置する光路と基準面の垂線とを含む面に対してなす角度との間に相関のある状態で単色X線を試料に対して異なる視射角ωで一度に入射させ、試料SAで散乱される単色X線の散乱強度を2次元検出器103で検出するので、視射角方向(ω方向)及び散乱角方向(2θ方向)のスキャンがいずれも不要となる。すなわち、単色X線を試料SAに対して異なる視射角ωで一度に入射させることで、視射角ωが異なる複数の条件に相当する散乱を一度に生じさせることができるので、2次元検出器103により、視射角ω及び散乱角2θの値が異なる複数の条件に相当する散乱を一度に検出できる。よって、逆格子空間での散乱強度分布を短時間に測定できる。
 また、本実施の形態に係る散乱強度分布の測定方法及び測定装置では、X線源101、2重湾曲結晶(X線光学素子)102、及び試料SAを、ローランド円C1に沿って配置するので、X線源102から放射される単色X線を、2重湾曲結晶102を介して試料SAに適切に入射させることができる。また、単色X線として特性X線を用いるので、シンクロトロン放射などによる白色X線を用いる場合と比較してX線源101の構成は簡略化され、散乱強度分布の測定に係るコストを低減できる。また、単色X線を反射、集束させるためのX線光学素子として2重湾曲結晶102を用いるので、単色X線を試料SAに対して異なる視射角ωで一度に入射させることが容易である。
 なお、本発明は上記実施の形態に限定されず、種々変更して実施することができる。例えば、上記実施の形態では、測定装置1の備える演算部で座標変換が行われる方法及び構成を例示しているが、例えば、外部の演算装置で座標変換を行わせるようにしても良い。2次元検出器で検出された散乱強度分布を直接利用できる場合などには、必ずしも座標変換を行わせる必要はない。なお、これら場合には、測定装置1の演算部は省略可能である。
 また、上記実施の形態では、X線源101としてX線管を備える構成を例示しているが、X線源101の構成は特に限定されない。例えば、X線源101は別のX線源から射出されたX線を何らかの方法により点状又は線状に集光した二次的X線源でもよい。同様に、実施の形態において説明したX線の集束機能を備えていれば、X線光学素子の構成も特に限定されない。例えば、2重湾曲結晶102の代わりに、1重湾曲結晶の湾曲方向に対して垂直な方向にさらにひねりを加えた結晶(bent-twisted結晶)などを用いても良い。ローランド円C1が定義されない測定装置1においては、少なくとも、試料SAの回折に関与する格子面(基準面B1)とX線の光路とのなす角度と、平面V1とX線の光路とのなす角度との間に相関があり、試料SAの表面に向かって集束機能(集光機能)を有するX線光学素子を用いれば良い。
 また、線状のX線源、モノクロメータ結晶、及び線状のX線源を垂直方向に収束させる扇状の多重スリット又はキャピラリーチューブを用いる測定装置においても、試料SAの回折に関与する格子面(基準面B1)とX線の光路とのなす角度と、平面V1とX線の光路とのなす角度との間に相関のあるX線ビームを形成して同様の測定が可能である。また、上記実施の形態における各構成の配置、大きさ、形状などは適宜変更して実施することが可能である。その他、本発明は、適宜変更して実施できる。
 本発明は、例えば、試料にX線を照射して逆格子空間での散乱強度分布を測定する際に有用である。
 本出願は、2012年12月14日出願の特願2012-273064に基づく。この内容は、全てここに含めておく。
 

Claims (12)

  1.  X線源から放射されるX線を、試料の表面近傍において集束させるようにX線光学素子で反射させ、
     複数の光路を経て集束される単色化されたX線の各光路が、基準面に対してなす角度と、前記各光路が、前記各光路の中央に位置する光路と前記基準面の垂線とを含む面に対してなす角度との間に相関のある状態で、前記単色化されたX線を前記試料に対して前記各光路に応じて異なる視射角で一度に入射させ、前記相関のある状態は、前記X線の伝播される面が、前記基準面、及び前記各光路の中央に位置する光路と前記基準面の垂線とを含む面に対して任意の角度で傾斜された状態であり、前記試料で散乱される前記単色化されたX線の散乱強度を2次元検出器で検出し、
     前記2次元検出器で検出される散乱強度分布を前記相関に基づいて座標変換することにより、前記逆格子空間での散乱強度分布を算出することを特徴とする散乱強度分布の測定方法。
  2.  前記X線源、前記X線光学素子、及び前記試料を、同一の円周に沿って配置することを特徴とする請求項1記載の散乱強度分布の測定方法。
  3.  前記基準面は、前記円周を含む平面であることを特徴とする請求項2に記載の散乱強度分布の測定方法。
  4.  前記基準面は、前記試料の表面であることを特徴とする請求項1又は請求項2に記載の散乱強度分布の測定方法。
  5.  前記X線として特性X線を用いることを特徴とする請求項1から請求項4のいずれかに記載の散乱強度分布の測定方法。
  6.  前記X線光学素子として2重湾曲結晶又はbent-twisted結晶を用いることを特徴とする請求項1から請求項5のいずれかに記載の散乱強度分布の測定方法。
  7.  X線源と、
     前記X線源から放射されるX線を、試料の表面近傍において集束させるように反射させ、前記試料に対して異なる視射角で単色化されたX線を一度に入射させるX線光学素子と、
     前記試料で散乱される前記単色化されたX線の散乱強度を検出する2次元検出器と、
     前記2次元検出器で検出される散乱強度分布に基づいて、逆格子空間での散乱強度分布を算出する演算部と、を備え、
     複数の光路を経て集束される前記単色化されたX線の各光路が、基準面に対してなす角度と、前記各光路が、前記各光路の中央に位置する光路と前記基準面の垂線とを含む面に対してなす角度との間に相関のある状態で、前記単色化されたX線を前記試料に入射させ、前記相関のある状態は、前記X線の伝播される面が、前記基準面、及び前記各光路の中央に位置する光路と前記基準面の垂線とを含む面に対して任意の角度で傾斜された状態であり、前記散乱強度分布を前記相関に基づいて座標変換することにより、前記逆格子空間での散乱強度分布を算出することを特徴とする測定装置。
  8.  前記X線源、前記X線光学素子、及び前記試料は、同一の円周に沿って配置されることを特徴とする請求項7に記載の測定装置。
  9.  前記基準面は、前記円周を含む平面であることを特徴とする請求項8に記載の測定装置。
  10.  前記基準面は、前記試料の表面であることを特徴とする請求項7又は請求項8に記載の測定装置。
  11.  前記X線源は、前記X線として用いられる特性X線を発生可能に構成されたことを特徴とする請求項7から請求項10のいずれかに記載の測定装置。
  12.  前記X線光学素子は、2重湾曲結晶又はbent-twisted結晶であることを特徴とする請求項7から請求項11のいずれかに記載の測定装置。
     
PCT/JP2013/083064 2012-12-14 2013-12-10 散乱強度分布の測定方法及び測定装置 WO2014092073A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP13862246.9A EP2933631B1 (en) 2012-12-14 2013-12-10 Method and device for measuring scattering intensity distribution
US14/651,813 US9714907B2 (en) 2012-12-14 2013-12-10 Method and apparatus for measuring scattering intensity distribution

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012273064A JP6206901B2 (ja) 2012-12-14 2012-12-14 散乱強度分布の測定方法及び測定装置
JP2012-273064 2012-12-14

Publications (1)

Publication Number Publication Date
WO2014092073A1 true WO2014092073A1 (ja) 2014-06-19

Family

ID=50934361

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/083064 WO2014092073A1 (ja) 2012-12-14 2013-12-10 散乱強度分布の測定方法及び測定装置

Country Status (4)

Country Link
US (1) US9714907B2 (ja)
EP (1) EP2933631B1 (ja)
JP (1) JP6206901B2 (ja)
WO (1) WO2014092073A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9588066B2 (en) 2014-01-23 2017-03-07 Revera, Incorporated Methods and systems for measuring periodic structures using multi-angle X-ray reflectance scatterometry (XRS)
JP6069609B2 (ja) * 2015-03-26 2017-02-01 株式会社リガク 二重湾曲x線集光素子およびその構成体、二重湾曲x線分光素子およびその構成体の製造方法
US10677744B1 (en) * 2016-06-03 2020-06-09 U.S. Department Of Energy Multi-cone x-ray imaging Bragg crystal spectrometer

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0798286A (ja) 1993-09-29 1995-04-11 Ricoh Co Ltd X線評価装置
JP2012122746A (ja) * 2010-12-06 2012-06-28 Rigaku Corp X線回折装置及びx線回折測定方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5923720A (en) * 1997-06-17 1999-07-13 Molecular Metrology, Inc. Angle dispersive x-ray spectrometer
JP3691827B2 (ja) * 2003-05-29 2005-09-07 株式会社リガク 逆格子マップの測定範囲の設定方法
EP1571441A1 (en) * 2004-03-01 2005-09-07 Panalytical B.V. Monitoring epitaxial growth in situ by means of an angle dispersive X-ray diffractometer
US9222901B2 (en) * 2013-03-05 2015-12-29 Danmarks Tekniske Universitet Anker Engelundsvej X-ray diffraction method of mapping grain structures in a crystalline material sample, and an X-ray diffraction apparatus
EP2818851B1 (en) * 2013-06-26 2023-07-26 Malvern Panalytical B.V. Diffraction Imaging
US9588066B2 (en) * 2014-01-23 2017-03-07 Revera, Incorporated Methods and systems for measuring periodic structures using multi-angle X-ray reflectance scatterometry (XRS)

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0798286A (ja) 1993-09-29 1995-04-11 Ricoh Co Ltd X線評価装置
JP2012122746A (ja) * 2010-12-06 2012-06-28 Rigaku Corp X線回折装置及びx線回折測定方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP2933631A4
TETSURO SHIRASAWA ET AL.: "Development of a quick method for crystal truncation rod scattering profile measurement by using a simultaneous multi-wavelength dispersive mode", HOSHAKO, vol. 25, no. 4, 31 July 2012 (2012-07-31), pages 229 - 237, XP008179273 *

Also Published As

Publication number Publication date
EP2933631B1 (en) 2018-02-14
JP2014119294A (ja) 2014-06-30
EP2933631A4 (en) 2016-07-27
US9714907B2 (en) 2017-07-25
US20160069825A1 (en) 2016-03-10
EP2933631A1 (en) 2015-10-21
JP6206901B2 (ja) 2017-10-04

Similar Documents

Publication Publication Date Title
US10466185B2 (en) X-ray interrogation system using multiple x-ray beams
CN101011253B (zh) 产生投影或断层造影的相位对比照片的焦点-检测器装置
EP0724150B1 (en) Device for obtaining an image of an object using a stream of neutral or charged particles and a lens for converting the said stream of neutral or charged particles
JP5158699B2 (ja) X線撮像装置、及び、これに用いるx線源
US7742566B2 (en) Multi-energy imaging system and method using optic devices
JP5127249B2 (ja) X線装置の焦点‐検出器装置のx線光学透過格子
KR101912907B1 (ko) X선 토포그래피 장치
US6271534B1 (en) Device for producing the image of an object using a flux of neutral or charged particles, and an integrated lens for converting such flux of neutral or charged particles
US8094780B2 (en) Two dimensional small angle X-Ray scattering camera
US20040062349A1 (en) Phase contrast X-ray device for creating a phase contrast image of an object and method for creating the phase contrast image
JP6392850B2 (ja) ビーム生成ユニットおよびx線小角散乱装置
US20200057010A1 (en) Sample inspection apparatus employing a diffraction detector
WO2014092073A1 (ja) 散乱強度分布の測定方法及び測定装置
RU2556712C2 (ru) Устройство рентгеновского формирования изобретений
JPH06258259A (ja) 面内分布測定方法及び装置
JP2020512527A (ja) 格子ベースの位相コントラスト画像化
US8068582B2 (en) Methods and systems for the directing and energy filtering of X-rays for non-intrusive inspection
Florio Performance analysis and simulations of a laboratory X-ray absorbtion spectrometer
Pyakurel Phase and dark field radiography and CT with mesh-based structured illumination and polycapillary optics
JPH09222401A (ja) 微小領域x線回折装置
JP2020038153A (ja) 放射線画像生成装置
CN113984815A (zh) 基于逆康普顿散射x光源的高效康普顿散射成像系统
JP2014048174A (ja) X線トポグラフィ装置
Das et al. Image Evaluation of a DCM Based XAFS Beamline at Indus-2 SRS Facility

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13862246

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2013862246

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14651813

Country of ref document: US