WO2014090877A1 - Iso(thio)cyanates (hétéro)aromatiques en tant qu'additifs navettes redox pour cellules galvaniques - Google Patents

Iso(thio)cyanates (hétéro)aromatiques en tant qu'additifs navettes redox pour cellules galvaniques Download PDF

Info

Publication number
WO2014090877A1
WO2014090877A1 PCT/EP2013/076234 EP2013076234W WO2014090877A1 WO 2014090877 A1 WO2014090877 A1 WO 2014090877A1 EP 2013076234 W EP2013076234 W EP 2013076234W WO 2014090877 A1 WO2014090877 A1 WO 2014090877A1
Authority
WO
WIPO (PCT)
Prior art keywords
alkyl
atoms
redox
aqueous electrolyte
lithium
Prior art date
Application number
PCT/EP2013/076234
Other languages
German (de)
English (en)
Inventor
Ulrich Wietelmann
Original Assignee
Rockwood Lithium GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rockwood Lithium GmbH filed Critical Rockwood Lithium GmbH
Publication of WO2014090877A1 publication Critical patent/WO2014090877A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to a non-aqueous electrolyte of a galvanic cell containing a redox-active additive and galvanic cells containing these redox-active additives.
  • BMS electronic battery management system
  • RSA redox shuttle additives
  • the battery assembly of several single cells can be simplified in case of success, since the electronic single cell monitoring (the so-called battery management) can be largely replaced by an addition in the electrolyte.
  • the redox-active additive thus provides intrinsic protection against uncontrollable charge states.
  • Existing investigations are predominantly limited to battery cells with relatively low terminal voltage, ie cells with charging end potentials ⁇ approx. Li / Li + , for example those with LiFePO 4 as the cathode material.
  • aromatic and heteroaromatic compounds have been tested for their use as redox shuttle additives (JRDahn et al., J. Electrochem. Soc 153 (2) A445-9 (2006)).
  • 3M has been offering the compound 1 (2,5-di-tert-butyl-1,4-dimethoxybenzene, "DDB") developed by J. Dahn (A. Xiao, 29 th Intl. Batt. Sem Exhib. March 12-15, Ft. Lauderdale, FLO, 2012).
  • DDB 2,5-di-tert-butyl-1,4-dimethoxybenzene
  • DBB 1 has an oxidation potential of about 3.9 V and therefore, as mentioned above, is limited to the use of the cathode material lithium iron phosphate (JRDahn, J. E. Electrochem, Soc., 156 (4) A309-12 (2009)). Disadvantage of the compound 1 is furthermore the low solubility in common battery electrolytes. By introducing glycol ether moieties as in 2 (2,5-di-tert-butyl-1,4-ib / s (2-methoxyethoxy) benzene, "DBBB”), solubility increases significantly (to 0.4 M im Compared to ⁇ 0.008M for 1_).
  • DBBB 2,5-di-tert-butyl-1,4-ib / s (2-methoxyethoxy) benzene
  • Cyclic 1,3-benzodioxanes are slightly more resistant to oxidation than the noncyclic ones.
  • E ox 4.1 V is given (K. Amine, J.
  • Aromatic organophosphorus compounds such as tetraethyl-2,5-diterf-butyl-1,4-phenylenediphosphate 5 (US201 1 / 0294018A1):
  • organic isocyanates as additives for non-aqueous electrolytes.
  • phenyl isocyanate by adding 0.5-10% by weight of phenyl isocyanate, the increase of water and HF in LiPF 6 -based electrolytes is avoided, resulting in improved chemical and electrochemical stability.
  • the organic isocyanate is added to a nonaqueous electrolyte for an electrochemical cell comprising at least one fluorine-containing conductive salt in an amount effective to reduce the water content of the electrolyte (DE10042149A1).
  • R 2 and R 3 may be the same or different and may be positioned at any position of the carbons 2, 2 ', 3, 3' on the benzyl ring and may be hydrogen atoms, halogen atoms, isocyanate groups, ether groups, ester groups or alkyl groups are known (US 6,905,762 B1).
  • SEI solid electrolyte interface
  • the molar masses preferably have ⁇ 300 g / mol and can be prepared with little expense
  • the object is achieved by a non-aqueous electrolyte of a galvanic cell containing a redox-active additive, wherein the additive of a structure of the general formulas A or B
  • Y N or C
  • X 1 , X 2 independently of one another O, S or Se
  • Y N or C
  • the aromatic redox-active additive contains two NCX groups and all substituents R 1 to R 4 are not H, ie the aromatic or heteroaromatic ring is completely substituted.
  • R 1 to R 4 are not H, ie the aromatic or heteroaromatic ring is completely substituted.
  • X 1 , X 2 independently of one another O, S or Se
  • the additives according to the invention can be reversibly oxidized and reduced. This is in contrast to the known aromatic iso (thio) cyanate compounds, which are not stable to decomposition, but which decompose irreversibly when an electrochemical potential is applied outside its stability range.
  • Fig. 1 Cyclic voltammogram of 0.1 mol / LG in 1 M LiPF 6 / EC-DMC (1: 1 by weight) on a glassy carbon electrode. Potential feed rate: 100 mV / s
  • Fig. 2 Cyclic voltammogram of 0.1 mol / LH in 1 M LiPF 6 / EC-DMC (1: 1 by weight) on a glassy carbon electrode, potential feed rate: 10 mV / s
  • Fig. 3 Galvanostatic overload test of a LiFePO 4 / Li cell with 0.1 MW in 1 M LiPF 6 / EC-DMC (1: 1 by weight). Flow rate: C / 5. 100% each
  • Fig. 4 Galvanostatic overload test of a LiMn 2 O 4 / Li cell with 0.1 MW in 1 M
  • Fig. 6 DSC test (RADEX) of LiPF 6 -electrolyte solution without inventive
  • Fig. 7 Cyclic voltammogram of 0.01 mol / LF in 1 M LiPF 6 / EC-DMC (1: 1 by weight) on a glassy carbon electrode, potential feed rate: 100 mV / s.
  • compound G can be reversibly oxidized and reduced with a first oxidation potential of 4.5 V
  • the non-inventive compound H is irreversibly oxidized at 4.5 V as well.
  • the redox-active additives according to the invention can be used as overcharge protection in all galvanic cells which use non-aqueous electrolytes.
  • These are in particular all types of lithium batteries, namely lithium-ion batteries, lithium-metal or alloy-anode lithium batteries and lithium batteries with conversion cathode materials.
  • the electrolyte in a galvanic cell containing a redox-active additive according to the invention can be present in gelatinous or preferably in liquid form.
  • organic, aprotic solvents carbonic acid esters (dimethyl carbonate, diethyl carbonate, ethylmethyl carbonate, propylene carbonate, ethylene carbonate), cyclic ethers such as tetrahydropyran or tetrahydrofuran, polyethers such as 1, 2-dimethoxyethane or diethylene glycol dimethyl ether, furthermore nitriles such as acetonitrile, adiponitrile , Malononitrile, glutaronitrile and lactones such as ⁇ -butyrolactone), ionic liquids (eg imidazolium salts) and lithium secondary salts (eg LiPF 6 , lithium fluoroalkyl phosphates, LiBF, imide salts (eg LiPF 6 , lithium fluoroalkyl phosphat
  • Lithium fluorochelatophosphates eg Li (C 2 O 4 ) 2 PF 2
  • lithium halides LiCl, LiBr, Lil
  • further stabilizing eg SEI-forming additives
  • vinylene carbonate eg vinylene carbonate
  • polar polymers eg polyethylene oxide, polyacrylonitrile, polyvinylidene fluoride
  • Preferred cathode materials include lithiated metal insert cathode materials, preferably layered materials such as UCO 2, LiNiO 2, Li (Ni, Mn, Co) O 2 , LiNio , 8oCoo, i5Alo, osO20 spinel structured materials such as LiMn 2 O 4 and LiNio .5 Mni. 5 O 4 or those with olivine structure such as LiFePO 4 and LiMnPO 4 .
  • Metallinsertions as electrolytic manganese dioxide (MnO2) or vanadium oxide (V2O3) or conversion cathode materials such as metal fluorides (for example, NiF 2, CoF 2, FeF 2, FeF 3) or Metalloxyfluoride (for example, BiO x F 3- 2x, FEOF) are used ,
  • metal fluorides for example, NiF 2, CoF 2, FeF 2, FeF 3
  • Metalloxyfluoride for example, BiO x F 3- 2x, FEOF
  • the anode material is graphite, Lithiumtitanspinell, (in part) are lithiated transition metal nitrides (eg Li 2 6Coo, 4 N, LiCuO, 4 N) of lithium metal, lithium alloys or conversion anode materials such as finely divided magnesium hydride.
  • lithiated transition metal nitrides eg Li 2 6Coo, 4 N, LiCuO, 4 N
  • lithium metal lithium alloys
  • conversion anode materials such as finely divided magnesium hydride.
  • the concentration of the redox-active additive according to the invention in the electrolyte is at least 0.01 mol / l, preferably at least 0.05 mol / l and particularly preferably at least 0.1 mol / l.
  • a redox-active additive according to the invention depends on the electrodes installed in the galvanic element, in particular on the redox potential of the cathode material used.
  • the oxidation potential of the additive according to the invention is generally higher than that of the cathode material. It is at least 0.1 V, preferably at least 0.2 V and at most 0.8 V, preferably at most 0.6 V above that of the cathode material used.
  • Example 1 Preparation of the additive 1, 4-diisocyanato-2,3,5,6-tetramethylbenzene F according to the invention
  • Compound F can be prepared in a one-pot synthesis from commercially available 2,3,5,6-tetramethyl-1,4-phenylenediamine (e.g., Aldrich Best. No. 523755). It has a molecular weight of only 246 g / mol and can be prepared as follows:
  • IR (ATR) (cm "1 ): 3004, 2926, 2870, 2278, 1720, 1510, 1450, 1384, 1356, 1222, 1024, 854, 764
  • the electrochemical stability and the reversibility of the oxidation step were determined by cyclic voltammetry.
  • the first oxidation step of the substance starts at about 4.2 V vs. Li / Li + .
  • a corresponding reductive peak is observed, and the subsequent cycles are nearly congruent, ie the oxidation / reduction is highly reversible.
  • the electrochemical stability and the reversibility of the oxidation step were determined by cyclic voltammetry. To this end, 0.01 M of 1,4-diisocyanato-2, 3,5,6-tetramethylbenzene in 1 M LiPF 6 / EC-DMC (1: 1 by weight) was added to a glassy carbon electrode (having a surface area of 0.196 cm 2 ) a potential feed rate of 100 mV / s examined. The first oxidation step of the substance starts at approx. 4.5 V vs. Li / Li + . During the backward scan, a corresponding reductive peak is observed, ie the oxidation / reduction is reversible (see Fig. 7).
  • the electrolyte solution according to the invention from Example 3 shows decomposition phenomena only at higher temperatures, i. the additive F stabilizes the electrolyte solution.

Abstract

L'invention concerne un électrolyte non aqueux d'une cellule galvanique qui contient un additif ayant une activité redox. Cet additif possède une structure de formule générale A ou B, où X = O, S ou Se; Y = N ou C; Z = O, S ou NR (R = alkyle contenant 1 à 8 atomes de C); R1, R2, R3 sont indépendamment les uns des autres NCS, NCO, alkyle (1 à 8 atomes de C), perfluoroalkyle (CnF2n+1 avec n = 1 à 8), aryle, F ou Cl, CN, OR (R = alkyle contenant 1 à 8 atomes de C, peut également contenir d'autres groupes alcoxy), NR2 (R = alkyle contenant 1 à 8 atomes de C); R4 = H, NCS, NCO, alkyle (1 à 8 atomes de C), perfluoroalkyle (CnF2n+1 avec n = 1 à 8), aryle, F ou Cl, CN, OR (R = alkyle contenant 1 à 8 atomes de C, peut également contenir d'autres groupes alcoxy), NR2 (R = alkyle contenant 1 à 8 atomes de C); uniquement pour Y = C, R5 = H, NCS, NCO, alkyle (1 à 8 atomes de C), perfluoroalkyle (CnF2n+1 avec n = 1 à 8), aryle, F ou Cl, CN, OR (R = alkyle contenant 1 à 8 atomes de C, peut également contenir d'autres groupes alcoxy), NR2 (R = alkyle contenant 1 à 8 atomes de C), et l'additif comprenant au moins un groupe isocyanate ou/et isothiocyanate ou/et isosélénocyanate. L'invention concerne en outre des cellules galvaniques contenant ces additifs ayant une activité redox.
PCT/EP2013/076234 2012-12-12 2013-12-11 Iso(thio)cyanates (hétéro)aromatiques en tant qu'additifs navettes redox pour cellules galvaniques WO2014090877A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012222941.8 2012-12-12
DE102012222941 2012-12-12

Publications (1)

Publication Number Publication Date
WO2014090877A1 true WO2014090877A1 (fr) 2014-06-19

Family

ID=49759305

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/076234 WO2014090877A1 (fr) 2012-12-12 2013-12-11 Iso(thio)cyanates (hétéro)aromatiques en tant qu'additifs navettes redox pour cellules galvaniques

Country Status (2)

Country Link
DE (1) DE102013225596A1 (fr)
WO (1) WO2014090877A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110183356A (zh) * 2019-05-20 2019-08-30 江苏蓝丰生物化工股份有限公司 取代类对苯二异氰酸酯的制备方法及非腈极性有机溶剂在其制备中的应用

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014109237A1 (de) * 2014-07-02 2016-01-07 Clariant Produkte (Deutschland) Gmbh Lithium-Ionen-Batterie mit reduzierter Gasentwicklung
CN105036091A (zh) * 2015-09-18 2015-11-11 花垣县强桦矿业有限责任公司 一种从电解锰压滤渣中回收硒的方法
DE102015218189A1 (de) * 2015-09-22 2017-03-23 Bayerische Motoren Werke Aktiengesellschaft Lithium-Ionen-Zelle
CN109585919B (zh) * 2018-11-06 2020-08-28 欣旺达电子股份有限公司 锂离子电池及其电解液

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10042149A1 (de) * 1999-09-17 2001-05-17 Merck Patent Gmbh Nichtwäßriger Elektrolyt sowie diesen enthaltende elektrochemische Zelle
JP2002008719A (ja) * 2000-06-27 2002-01-11 Mitsui Chemicals Inc 非水電解液およびそれを使用した二次電池
US6905762B1 (en) * 2001-02-13 2005-06-14 The United States Of America As Represented By The Secretary Of The Army Non-aqueous electrolyte solutions comprising additives and non-aqueous electrolyte cells comprising the same
JP2006012713A (ja) * 2004-06-29 2006-01-12 Asahi Denka Kogyo Kk 非水電解液及び該電解液を用いた非水電解液二次電池
EP2190054A1 (fr) * 2007-09-12 2010-05-26 Mitsubishi Chemical Corporation Solution électrolytique non aqueuse pour batterie secondaire et batterie secondaire à électrolyte non aqueux
WO2012115119A1 (fr) * 2011-02-22 2012-08-30 三菱化学株式会社 Solution d'électrolyte non aqueux et batterie utilisant cette dernière

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070072085A1 (en) 2005-09-26 2007-03-29 Zonghai Chen Overcharge protection for electrochemical cells
US8367253B2 (en) 2006-02-02 2013-02-05 U Chicago Argonne Llc Lithium-ion batteries with intrinsic pulse overcharge protection
US8968940B2 (en) 2010-05-25 2015-03-03 Uchicago Argonne, Llc Redox shuttles for high voltage cathodes
US8877390B2 (en) 2010-05-25 2014-11-04 Uchicago Argonne, Llc Redox shuttles for lithium ion batteries
WO2011149970A2 (fr) 2010-05-25 2011-12-01 Uchicago Argonne, Llc Adjuvants de navette redox fonctionnalisés par polyéther pour accumulateurs lithium-ion

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10042149A1 (de) * 1999-09-17 2001-05-17 Merck Patent Gmbh Nichtwäßriger Elektrolyt sowie diesen enthaltende elektrochemische Zelle
JP2002008719A (ja) * 2000-06-27 2002-01-11 Mitsui Chemicals Inc 非水電解液およびそれを使用した二次電池
US6905762B1 (en) * 2001-02-13 2005-06-14 The United States Of America As Represented By The Secretary Of The Army Non-aqueous electrolyte solutions comprising additives and non-aqueous electrolyte cells comprising the same
JP2006012713A (ja) * 2004-06-29 2006-01-12 Asahi Denka Kogyo Kk 非水電解液及び該電解液を用いた非水電解液二次電池
EP2190054A1 (fr) * 2007-09-12 2010-05-26 Mitsubishi Chemical Corporation Solution électrolytique non aqueuse pour batterie secondaire et batterie secondaire à électrolyte non aqueux
WO2012115119A1 (fr) * 2011-02-22 2012-08-30 三菱化学株式会社 Solution d'électrolyte non aqueux et batterie utilisant cette dernière
US20130337317A1 (en) * 2011-02-22 2013-12-19 Mitsubishi Chemical Corporation Nonaqueous electrolytic solution, and battery using same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
C. KOREPP ET AL: "Isocyanate compounds as electrolyte additives for lithium-ion batteries", JOURNAL OF POWER SOURCES, vol. 174, no. 2, 6 December 2007 (2007-12-06), pages 387 - 393, XP025917571, ISSN: 0378-7753, [retrieved on 20071206], DOI: 10.1016/J.JPOWSOUR.2007.06.141 *
S.S. ZHANG ET AL: "Aromatic isocyanate as a new type of electrolyte additive for the improved performance of Li-ion batteries", JOURNAL OF POWER SOURCES, vol. 163, no. 1, 7 December 2006 (2006-12-07), pages 567 - 572, XP027938506, ISSN: 0378-7753, [retrieved on 20061207] *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110183356A (zh) * 2019-05-20 2019-08-30 江苏蓝丰生物化工股份有限公司 取代类对苯二异氰酸酯的制备方法及非腈极性有机溶剂在其制备中的应用

Also Published As

Publication number Publication date
DE102013225596A1 (de) 2014-06-12

Similar Documents

Publication Publication Date Title
EP3113274B1 (fr) Solution d'électrolyte non aqueux et batterie secondaire à solution d'électrolyte non aqueux l'utilisant
CN103891033B (zh) 非水电解液及使用了该非水电解液的蓄电设备
EP4087005A1 (fr) Électrolytes contenant du phosphore
EP2849266B1 (fr) Batterie électrolytique non aqueuse
JP4320914B2 (ja) 非水電解液及びそれを用いたリチウム二次電池
EP3583653B1 (fr) Additif électrolytique pour batteries lithium-ion
KR20070121034A (ko) 비수 전해액, 및 그것을 이용한 전기 화학 에너지 축적디바이스 및 비수 전해액 2차 전지
CN102224630B (zh) 非水电解液及使用该非水电解液的锂电池
WO2020241161A1 (fr) Composition d'électrolyte, composition de solvant, électrolyte non aqueux et leur utilisation
WO2014090877A1 (fr) Iso(thio)cyanates (hétéro)aromatiques en tant qu'additifs navettes redox pour cellules galvaniques
EP2907189A2 (fr) Additifs pour cellules galvaniques
CN117613381A (zh) 含有六元环环状硫酸酯的电解质
EP3738167B1 (fr) Compositions d'électrolytes non-aqueux comprenant du bis(fluorosulfonyl)imidure de lithium
CN105428720B (zh) 一种非水电解液及其制备方法以及一种锂二次电池
EP1187244A2 (fr) Amines organiques pour piles électrochimiques
US5681669A (en) Electrolyte for lithium secondary battery
EP3373379B1 (fr) Additif pour solutions électrolytiques non aqueuses, solution électrolytique non aqueuse et dispositif de stockage d'électricité
US20170162909A1 (en) Nonaqueous electrolytic solution including ester having 3,3,3-trifluoropropionate group and nonaqueous electrolyte battery using same
EP3155686A1 (fr) Électrolyte, élément de batterie et batterie comprenant l'électrolyte et son utilisation
EP3709426A1 (fr) Solution d'électrolyte non aqueux et dispositif de stockage d'énergie l'utilisant
WO2013135824A2 (fr) Composé polymère à conductibilité ionique pour des cellules électrochimiques
KR20180118452A (ko) 이차전지용 전해액 첨가제 및 이를 포함하는 이차전지용 전해액
CN110635166B (zh) 电解液、含有该电解液的电池和电动车辆
EP3604276A1 (fr) Nouveaux composants pour compositions d'électrolyte
JP4253921B2 (ja) リチウム二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13802984

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13802984

Country of ref document: EP

Kind code of ref document: A1