WO2014089905A1 - 一种金属化学机械抛光浆料及其应用 - Google Patents

一种金属化学机械抛光浆料及其应用 Download PDF

Info

Publication number
WO2014089905A1
WO2014089905A1 PCT/CN2013/001493 CN2013001493W WO2014089905A1 WO 2014089905 A1 WO2014089905 A1 WO 2014089905A1 CN 2013001493 W CN2013001493 W CN 2013001493W WO 2014089905 A1 WO2014089905 A1 WO 2014089905A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
chemical mechanical
mechanical polishing
polishing slurry
metal chemical
Prior art date
Application number
PCT/CN2013/001493
Other languages
English (en)
French (fr)
Inventor
荆建芬
张建
蔡鑫元
Original Assignee
安集微电子(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 安集微电子(上海)有限公司 filed Critical 安集微电子(上海)有限公司
Publication of WO2014089905A1 publication Critical patent/WO2014089905A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1454Abrasive powders, suspensions and pastes for polishing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F3/00Brightening metals by chemical means
    • C23F3/04Heavy metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F3/00Brightening metals by chemical means
    • C23F3/04Heavy metals
    • C23F3/06Heavy metals with acidic solutions

Definitions

  • the present invention relates to a chemical mechanical polishing slurry and its use, and more particularly to a chemical mechanical polishing slurry for copper and its use. Background technique
  • the copper interconnect can only be fabricated by a damascene process.
  • a trench is formed in the first layer, and a copper barrier layer and copper are filled in the trench to form a metal wiring and overlying the dielectric layer.
  • the excess copper/copper barrier on the dielectric layer is then removed by chemical mechanical polishing leaving a single interconnect in the trench.
  • the chemical mechanical polishing process of copper is generally divided into three steps. The first step is to remove a large amount of copper on the surface of the substrate with a high and low removal rate with a high downforce. The second step is to approach the barrier layer. When the downforce is reduced, the removal rate is reduced to polish the remaining metal copper and stopped at the barrier layer. In step 3, the barrier layer and the partial dielectric layer and the metal copper are removed by the barrier polishing solution to achieve planarization.
  • copper polishing should remove excess copper on the barrier layer as soon as possible.
  • the butterfly-shaped depression of the polished copper wire should be minimized.
  • the metal layer Prior to copper polishing, the metal layer is partially recessed above the copper wire.
  • polishing The copper on the dielectric material is easily removed under the rest (higher), and the copper in the trap is subjected to a lower polishing pressure than the main body 1 and the removal rate of the crucible is small. As the polishing progresses, the height difference of the crucible is gradually reduced to achieve flattening.
  • the passivation film of copper is easily removed even at a lower pressure (such as a copper line depression), resulting in planarization efficiency. Reduced, the polished butterfly depression increases.
  • TSV enables the chip to be stacked in the three-dimensional direction with the highest density and smallest form factor, greatly improving chip speed and low power consumption.
  • the current TSV process combines a conventional IC process to form a copper via through the silicon substrate. That is, the copper is filled in the TSV opening to achieve conduction, and the excess copper after filling needs to be removed by chemical mechanical polishing to achieve planarization.
  • the excess copper on the surface after filling is usually several to several tens of micrometers thick. In order to quickly remove these extra copper. It is usually desirable to have a high copper removal rate while having a good surface flatness after polishing. In order to make copper better used in semiconductor technology, people are constantly trying to improve the new polishing solution.
  • Chinese patent CN1256765C provides a polishing liquid containing a chelating organic acid buffer system composed of citric acid and potassium citrate.
  • CN1195896C employs a polishing liquid containing an oxidizing agent, a carboxylate such as ammonium citrate, an abrasive slurry, an optional triazole or triazole derivative.
  • CN1459480A provides a copper chemical mechanical polishing liquid comprising a film former and a film forming aid: the film forming agent is composed of a buffer solution composed of a mixture of a strong base and acetic acid, and the film forming aid is potassium nitrate (sodium) salt. .
  • 5,552,742 provides a metal chemical mechanical polishing slurry comprising an aramid silicone, an alkane polysiloxane, The active agent of polyoxyalkylene ether and copolymer.
  • US Pat. No. 6,821,897 B2 provides a chemical mechanical polishing method using a polishing agent containing a cerium polymer complexing agent, which employs a negatively charged polymer including sulfuric acid and its salts, sulfates, phosphoric acid, phosphates, phosphates. Wait.
  • the US5527423 metal chemical mechanical polishing slurry includes a surfactant: aramid siloxane, polysiloxane, polyoxyalkylene ether and copolymers thereof.
  • the techniques in the above patents strive to reduce pitting and corrosion of the copper layer and control the static etching rate during the polishing of copper, thereby better removing the copper layer, increasing the polishing rate of copper, and obtaining good copper. Interconnectivity.
  • the above patent overcomes the problems encountered by the above copper in the polishing process to a certain extent, but the effect is not obvious. After use, there are defects on the copper surface, the flatness is low, and the copper wire has a large dishing after polishing. The window is too narrow; or the polishing rate is not high enough to be applied to processes that require a higher removal rate. Summary of the invention
  • the invention provides a metal chemical mechanical polishing slurry, wherein a surfactant containing a rock ester as a main component is added to the polishing slurry to reduce corrosion of copper while maintaining a high polishing rate of copper. Improve the flatness of the polished surface of copper and enhance the polishing effect.
  • a metal chemical mechanical polishing slurry comprising abrasive particles, a complexing agent, a corrosion inhibitor, an oxidizing agent, wherein, further comprising at least one phosphate surfactant;
  • the phosphate surfactant comprises the following structural formula One or two:
  • X RO, RO-(CH 2 CH 2 0) n , RCOO-(CH 2 CH 2 0) n ;
  • R is a C8 ⁇ C22 sulfhydryl group or an alkyl group, a glyceryl group (C3H5O3-), etc.;
  • the active agent is selected! ⁇ Structure (1) of the compound and the selection of [ ⁇ structure (2)
  • the surfactant is a polyoxyethylene ether phosphate or a salt thereof, such as dodecyl polyoxyethylene ether phosphate, dodecyl polyoxyethylene ether phosphate Potassium salt, octadecyl polyoxyethylene ether phosphate, potassium octadecyl polyoxyethylene ether phosphate, and the like.
  • the surfactant is nonylphenol polyoxyethylene ether phosphate or a salt thereof, including octylphenol polyoxyethylene ether phosphate, nonylphenol polyoxyethylene ether phosphate, octadecane Sodium phenol polyoxyethylene ether phosphate sodium salt and the like.
  • the chemical polishing slurry composed of the above surfactants and abrasive particles, complexing agent, oxidizing agent and the like can effectively control the static corrosion rate of copper, alleviate the local corrosion of copper, and maintain a high copper removal rate.
  • the butterfly depression and the over-polishing window of the polished copper wire are improved to obtain a smoother polished surface of the copper.
  • the above metal chemical mechanical polishing slurry wherein the phosphate surfactant is contained in an amount of 0.0005 to 1% by weight, preferably 0.001 to 0.5% by weight.
  • abrasive particles are one of silica, alumina, doped aluminum or aluminum-coated silica, ceria, titania and/or polymer abrasive particles.
  • the abrasive particles are one of silica, alumina, doped aluminum or aluminum-coated silica, ceria, titania and/or polymer abrasive particles.
  • the above metal chemical mechanical polishing slurry wherein the complexing agent is one or more of an aminocarboxylate compound and a salt thereof, an organic carboxylic acid and a salt thereof, an organic phosphonic acid and a salt thereof, and/or an organic amine .
  • aminocarboxy compound is selected from the group consisting of glycine, alanine, valine, leucine, valine, phenylalanine, tyrosine, tryptophan, Lysine, Arginine, histidine, serine, aspartic acid, threonine, glutamic acid, asparagine, glutamine, ammonia triacetic acid, ethylenediaminetetraacetic acid, cyclohexyltetraacetic acid, ethylenediamine One or more of disuccinic acid, diethylenetriaminepentaacetic acid and diethylenetetraamine hexaacetate; the organic carboxylic acid is acetic acid, oxalic acid, citric acid, tartaric acid, malonic acid, succinic acid, apple One or more of acid, lactic acid, gallic acid and sulfosalicylic acid; the organic phosphonic acid is 2-phosphonic acid butane
  • the weight percentage is 0.1 to 5%.
  • the above metal chemical mechanical polishing slurry wherein the oxidizing agent is hydrogen peroxide, urea peroxide, peroxyformic acid, peracetic acid, persulfate, percarbonate, periodic acid, perchloric acid, high One or more of boric acid, potassium permanganate, and ferric nitrate.
  • the oxidizing agent is hydrogen peroxide, urea peroxide, peroxyformic acid, peracetic acid, persulfate, percarbonate, periodic acid, perchloric acid, high One or more of boric acid, potassium permanganate, and ferric nitrate.
  • the above metal chemical mechanical polishing slurry wherein the oxidizing agent is contained in an amount of 0.05 to 10% by weight.
  • the azole compound comprises: benzotriazole, 5-methylbenzotriazole, 5-carboxybenzotriazole, 1-hydroxy-benzotriazole Azole, 1, 2, 4-triazole, 3-amino-1, 2,4-triazole, 4-amino-1, 2,4-triazole, 3, 5-diamino-1, 2 ,
  • the imidazole compounds include benzimidazole and 2-mercaptobenzimidazole.
  • the thiazole compound includes 2-mercapto-benzothiazole, 2-mercaptothiadiazole and 5-amino-2-mercapto-1,3,4-thiadiazole;
  • the pyridine includes 2, 3-di Aminopyridine, 2-aminopyridine and 2-picolinic acid.
  • the pyrimidine is a 2-aminopyrimidine.
  • the above metal chemical mechanical polishing slurry, wherein the content of the corrosion inhibitor is weight The ratio of i'l is 0.001 ⁇ 2%, which is higher than ⁇ , j, and the ratio of I is 0.005-1%.
  • the above metal chemical mechanical polishing slurry has a pH of from 3 to 11, preferably from 3 to 9.
  • the metal chemical mechanical polishing slurry described above further includes a conventional modifier in the art such as a pH adjuster, a viscosity modifier, an antifoaming agent, and a bactericide.
  • a conventional modifier in the art such as a pH adjuster, a viscosity modifier, an antifoaming agent, and a bactericide.
  • the above metal chemical mechanical polishing slurry can prepare a component other than the oxidizing agent into a concentrated sample, which can be diluted with deionized water to the concentration range of the present invention and added with an oxidizing agent before use.
  • polishing slurry of the present invention in chemical mechanical polishing of a substrate containing copper.
  • advantages of using the metal chemical mechanical polishing slurry of the present invention are:
  • the metal chemical mechanical polishing slurry of the present invention has a high copper removal rate and can effectively control copper corrosion, and the polished copper surface is non-corrosive.
  • the metal chemical mechanical polishing slurry of the present invention enhances the polishing effect of copper and improves the butterfly depression and over-throwing of the polished copper wire.
  • 1A and 1B are scanning electron micrographs of a surface of a copper wafer polished by using the polishing slurry of the present invention
  • 2A and 2B are scanning electron micrographs of the surface of a copper wafer polished and immersed using the polishing slurry of the present invention. detailed description
  • Table 1 shows Examples 1 to 49 of the chemical mechanical polishing liquid of the present invention. According to the formulation given in the table, the components other than the oxidizing agent were uniformly mixed, and the mass percentage was made up to 100% with water. Adjust to the desired pH with KOH or HNO 3 . Add oxidizing agent before use and mix well. Li 1 Example 1-49
  • Table 2 shows Examples 50 to 71 and Comparative Examples 1 to 6 of the chemical mechanical polishing liquid of the present invention. According to the formulation given in the table, the components other than the oxidizing agent were uniformly mixed, and the mass percentage was made up to 100 with water. %. Adjust to the desired pH with KOH or HNO 3 . Add oxidizing agent before use and mix well.
  • the open copper (Cu) wafer and the patterned copper wafer are polished by the comparative polishing liquids 1 to 3 and the polishing liquids 50 to 65 of the present invention.
  • the polishing rate of the obtained copper is shown in Table 3.
  • the polishing conditions of the pattern wafer and the dishing value of the copper block are shown in Table 4.
  • Patterned copper wafer polishing process conditions polishing disc and polishing head rotation speed 93/87 rpm, polishing pad IC1010, polishing liquid flow rate 150ml/min, polishing machine table 8" Mirra. Polished disc 1 with corresponding downforce polishing The patterned copper wafer was left to residual copper of about 3000 A, and then the residual copper was removed and bounced for 20 seconds on the polishing pad 2 with a corresponding downforce. 80 **80 um on a patterned copper wafer was measured with an XE-300P atomic force microscope. The dishing value of the copper block.
  • the polished pattern wafer was immersed in the polishing solution for 30 minutes, and the surface condition of the copper wire before and after the immersion was observed with a scanning electron microscope, as shown in Figs.
  • the metal chemical mechanical polishing slurry of the present invention can effectively reduce the removal rate of copper under low pressure compared with the comparative polishing liquid, but has little effect on the removal rate under higher downforce. .
  • This property allows the polishing fluid to achieve a smoother polishing surface while maintaining a higher removal rate, which greatly increases production efficiency and reduces the dishing of the polished copper block.
  • a lower dishing ⁇ trap can also be obtained under conditions close to the removal rate of the comparative polishing liquid 2. (See Table 4)
  • the SEM image of the patterned wafer after polishing and after polishing and immersion in Example 57 is shown in Figs. 1 to 2, and it can be seen from the figure that the surface of the wafer polished by the polishing liquid has no corrosion and no defects. After soaking in the polishing liquid for 30 minutes, the copper wire still showed no significant corrosion and defects, indicating that the polishing liquid of the present invention has a strong ability to inhibit metal corrosion.
  • the empty copper (Cu) wafer, the empty silicon oxide wafer, the empty wafer, and the patterned copper wafer are polished using the comparative polishing liquid 5 and the polishing liquid 66 to 71 of the present invention.
  • the polishing rate obtained and the dishing value of the copper block are shown in Table 5.
  • the patterned copper wafer was measured with a XE-300P atomic force microscope at 10 ⁇ m/lOum (copper wire / The dishing value at the copper wire of the silicon dioxide. Table 5.
  • the metal chemical mechanical polishing slurry 66 to 68 of the present invention can obtain a flatter polished surface while maintaining a higher removal rate than the comparative polishing liquid 5, by Example 69 ⁇ 71 It can be seen that the polishing solution can also provide a higher removal rate of silicon dioxide and germanium while the copper removal rate is adjustable. The polishing solution can meet different application needs.
  • the patterned copper wafer was polished using the comparative polishing liquids 5, 6 and the polishing liquids 66 to 68 of the present invention. Polishing conditions: polishing disc and polishing head rotation speed 93/87 rpm, polishing pad IC1010, polishing liquid flow rate 150 ml/min, polishing machine table 8" Mirra.
  • Polished patterned copper wafer was polished on the polishing disc 1 with a pressure of 3 psi to The remaining copper is about 5000 angstroms, and then the remaining copper is removed by a 2 psi downforce on the polishing pad 2. Observing the residual copper on the patterned copper wafer after polishing is shown in Table 6. Table 6, copper residue on the surface of the wafer after polishing.
  • the phosphoric acid ester surfactant was used alone in the polishing liquid of Comparative Example 6. After polishing, the surface of the wafer had copper residue. In the polishing liquid of Comparative Example 5, the azole corrosion inhibitor was used alone, although there was no copper residue on the surface after polishing. , but the dish has a large depression. Further, in Examples 66 to 68, a combination of an azole corrosion inhibitor and a phosphate ester surfactant was used, which was capable of reducing dishing and polishing without copper residue.
  • wt% of the present invention refers to the mass percentage.

Abstract

本发明提供一种用于铜的化学机械抛光浆料及其应用,该浆料包括研磨颗粒、络合剂、氧化剂,腐蚀抑制剂,和至少一种磷酸酯类表面活性剂。使用本发明的浆料的可以保持较高的铜的去除速率,改善抛光后铜线的碟形凹陷和过抛窗口,抛光后的铜表面污染物少,无腐蚀等缺陷。

Description

一种金属化学机械抛光浆料及其应用
技术领域
本发明涉及一种化学机械抛光浆料及其应用, 尤其涉及一种用于铜的化 学机械抛光浆料及其应用。 背景技术
随着半导体技术的发展, 电子部件的微小化, 一个集成电路中包含了数 以百万计的晶体管。 在运 fi1过程中, 在整合了如此庞大数量的能迅速开关的 晶体管, 传统的铝或是铝合金互连线, 使得信号传递速度降低, 而且电流传 递过程中需要消耗大量能源, 在一定意义上, 也阻碍了半导体技术的发展。 为了进一步发展, 人们开始寻找采用拥有更高电学性质的材料取代铝的使 用。 众所周知, 铜的电阻小, 拥有良好的导电性, 这加快了电路中晶体管间 信号的传递速度, 还可提供更小的寄生电容能力, 较小电路对于电迁移的敏 感性。 这些电学优点都使得铜在半导体技术发展中拥有良好的发展前景。
但在铜的集成电路制造过程中我们发现, 铜会迁移或扩散方式进入到集 成电路的晶体管区域, 从而对于半导体的晶体管的性能产生不利影响, 因而 铜的互连线只能以镶嵌工艺制造, 在第一层里形成沟槽, 在沟槽内填充 铜阻挡层和铜, 形成金属导线并覆盖在介电层上。 然后通过化学机械抛光将 介电层上多余的铜 /铜阻挡层除去,在沟槽里留下单个互连线。铜的化学机械 抛光过程一般分为 3个步骤, 第 1步是先用较高的下压力, 以快且高效的去 除速率除去衬底表面上大量的铜,第 2步是在快要接近阻挡层时降低下压力, 降低去除速率抛光剩余的金属铜并停在阻挡层, 第 3步再用阻挡层抛光液去 除阻挡层及部分介电层和金属铜, 实现平坦化。
铜抛光一方面要尽快去除阻挡层上多余的铜, 另一方面要尽量减小抛光 后铜线的蝶形凹陷。 在铜抛光前, 金属层在铜线上方有部分凹陷。 抛光时, 介质材料上的铜在 休 力下 (较高) 易于被去除, 而 陷处的铜所受的抛 光压力比主体 1玉力低, 锏去除速率小。 随着抛光的进行, 锏的高度差会逐渐 减小, 达到平坦化。 但是在抛光过程屮, 如果铜抛光液的化学作用太强, 静 态腐蚀速率太高, 则铜的钝化膜即使在较低压力下 (如铜线凹陷处)也易于 被去除, 导致平坦化效率降低, 抛光后的蝶形凹陷增大。
随着集成电路的发展, 一方面, 在传统的 IC行业中, 为了提高集成度, 降低能耗, 缩短延迟时间, 线宽越来越窄, 布线的层数也越来越多, 为了保 证集成电路的性能和稳定性, 对铜化学机械抛光的要求也越来越高。 要求在 保证铜的去除速率的情况下降低抛光压力, 提高铜线表面的平坦化, 控制表 面缺陷。 另一方面, 由于物理局限性, 线宽不能无限缩小, 半导体行业不再 单纯地依赖在单一芯片上集成更多的器件来提高性能, 而转向于多芯片封 装。 硅通孔 (TSV) 技术作为一种通过在芯片和芯片之间、 晶圆与晶圆之间 制作垂直导通, 实现芯片之间互连的最新技术而得到工业界的广泛认可。
TSV能够使芯片在三维方向堆叠的密度最大, 外形尺寸最小, 大大改善芯片 速度和低功耗的性能。 目前的 TSV工艺是结合传统的 IC工艺形成贯穿硅基 底的铜穿孔, 即在 TSV 开口中填充铜实现导通, 填充后多余的铜也需要利 用化学机械抛光去除达到平坦化。 与传统 IC工业不同, 由于硅通孔很深, 填充后表面多余的铜通常有几到几十微米厚。 为了快速去除这些多余的铜。 通常需要具有很高的铜去除速率, 同时抛光后的表面平整度好。 为了使铜在 半导体技术中更好的应用, 人们不断尝试新的抛光液的改进。
中国专利 CN1256765C提供了一种含有柠檬酸、柠檬酸钾组成的螯合有 机酸缓冲体系的抛光液。 CN1195896C采用含有氧化剂、羧酸盐如柠檬酸铵、 磨料浆液、 一种任选的三唑或三唑衍生物的抛光液。 CN1459480A提供了一 种铜的化学机械抛光液, 其包含了成膜剂和成膜助剂: 成膜剂由强碱和醋酸 混合组成的缓冲溶液构成, 成膜助剂为硝酸钾(钠)盐。美国专利 US552742 提供了一种金属化学机械抛光浆料, 包括一种含有芳纶硅氧、 烷聚硅氧垸、 聚氧化烯醚及 共聚物的 而活性剂。 US6821897B2提供了 -种 用含冇聚 合物络合剂的抛光剂的锏化学机械抛光方法, 其采用含负电荷的聚合物, 其 中包括硫磺酸及其盐、 硫酸盐、 磷酸、 磷酸盐、 磷酸酯等。 而 US5527423 金属化学机械抛光浆料, 包括一种表面活性剂: 芳纶硅氧垸、 聚硅氧烷、 聚 氧化烯醚及其共聚物。
上述专利中的技术, 都力求在铜的抛光过程中, 减少铜层局部的点蚀和 腐蚀、 控制静态蚀刻速率, 从而可以更好地清除铜层, 提高铜的抛光速率、 并获得良好的铜互连平面性。上述专利在一定程度上克服了上述铜在抛光过 程中所遇到的问题,但效果并不明显,使用后在铜表面存有缺陷,平整度低, 而且在抛光后铜线出现碟形凹陷大和过抛窗口窄; 或者抛光速率不够高, 不 能应用于对去除速率要求较高的工艺。 发明内容
本发明提供了一种金属化学机械抛光浆料, 所述抛光浆料中加入了以磯 酸酯为主要成分的表面活性剂, 从而减低铜的腐蚀, 在保持较高的铜的抛光 速率的同时, 改善铜的抛光表面的平整性, 加强抛光效果。
本发明金属化学机械抛光浆料通过以下技术方案实现其目的:
一种金属化学机械抛光浆料, 包括研磨颗粒、 络合剂、 腐蚀抑制剂、 氧 化剂, 其中, 还至少含有一种磷酸酯类表面活性剂; 所述的磷酸酯类表面活 性剂含有如下结构式的一种或两种:
Figure imgf000005_0001
其中 X= RO, RO-(CH2CH20)n , RCOO-(CH2CH20)n ; R为 C8〜C22的垸基或 烧基苯、 甘油基 (C3H5O3- ) 等; n=2〜30,M=H, K,NH4, (CH2CH20) 3NH3-i 和 /或 Na。
其中, 优选的为同时包含上述结构 (1 ) 和结构 (2 ) 这两种结构的化合 物。 优选地, ¾而活性剂为选! ^结构 ( 1 ) 的 ·化合物以及选 [^结构 ( 2 ) 的
其中当 R为 C8~C22的烷基时,表面活性剂为聚氧乙烯醚磷酸酯或其盐, 如十二垸基聚氧乙烯醚磷酸酯、 十二烷基聚氧乙烯醚磷酸酯钾盐、 十八烷基 聚氧乙烯醚磷酸酯、十八垸基聚氧乙烯醚磷酸酯钾盐等等。当 R为烷基苯时, 表面活性剂则为垸基酚聚氧乙烯醚磷酸酯或其盐, 包括辛基酚聚氧乙烯醚磷 酸酯、 壬基酚聚氧乙烯醚磷酸酯、 十八烷基酚聚氧乙烯醚磷酸酯钠盐等。 实 验证明, 在由上述表面活性剂以及研磨颗粒、 络合剂、 氧化剂等成份的化学 抛光浆料可有效控制铜的静态腐蚀速率, 缓解铜的局部腐蚀, 在保持较高的 铜的去除速率的同时, 改善抛光后铜线的蝶形凹陷和过抛窗口, 获得更为平 整的铜的抛光表面。
上述的金属化学机械抛光浆料, 其中, 所述的磷酸酯类表面活性剂的含 量为重量百分比 0.0005〜1%, 较佳为重量百分比 0.001〜0.5%。
上述的金属化学机械抛光浆料, 其中, 所述的研磨颗粒为二氧化硅、 氧 化铝、掺杂铝或覆盖铝的二氧化硅、二氧化铈、二氧化钛和 /或高分子研磨颗 粒中的一种或多种混合。
上述的金属化学机械抛光浆料, 其中, 所述的研磨颗粒的粒径为 20~200nm。
上述的金属化学机械抛光浆料,其中,所述的研磨颗粒的比较面积为 5〜 1000 m2/g。
上述的金属化学机械抛光浆料, 其中, 所述的研磨颗粒的含量为重量百 分比为 0.1〜20 %。
上述的金属化学机械抛光浆料, 其中, 所述的络合剂为氨羧化合物及其 盐、 有机羧酸及其盐、 有机膦酸及其盐和 /或有机胺中的一种或多种。 上述的金属化学机械抛光浆料, 其中, 所述的氨羧化合物选自甘氨酸、 丙氨酸、 缬氨酸、 亮氨酸、 脯氨酸、 苯丙氨酸、 酪氨酸、 色氨酸、 赖氨酸、 精氨酸、 组氨酸、 丝氨酸、 天冬氨酸、 苏氨酸、 谷氨酸、 天冬酰胺、 谷氨酰 胺、 氨三乙酸、 乙二胺四乙酸、 环己垸四乙酸、 乙二胺二琥珀酸、 二乙烯三 胺五乙酸和二乙烯四胺六乙酸屮的一种或多种; 所述的有机羧酸为醋酸、 草 酸、 柠檬酸、 酒石酸、 丙二酸、 丁二酸、 苹果酸、 乳酸、 没食子酸和磺基水 杨酸中的一种或多种; 所述的有机膦酸为 2-膦酸丁烷 -1, 2, 4-三羧酸、 氨基 三甲叉膦酸、羟基乙叉二膦酸、 乙二胺四甲叉膦酸、二乙烯三胺五甲叉膦酸、 2-羟基膦酸基乙酸、 乙二胺四甲叉膦酸和多氨基多醚基甲叉膦酸中的一种或 多种; 所述的有机胺为乙二胺、 二乙烯三胺、 五甲基二乙烯三胺、 多乙烯多 胺、 三乙烯四胺、 四乙烯五胺; 所述的盐为钾盐、 钠盐和 /或铵盐。
上述的金属化学机械抛光浆料, 其中, 所述的络合剂的含量为重量百分 比 0.05〜10%。 较佳为重量百分比 0.1〜 5%
上述的金属化学机械抛光浆料, 其中, 所述的氧化剂为过氧化氢、 过氧 化脲、 过氧甲酸、 过氧乙酸、 过硫酸盐、 过碳酸盐、 高碘酸、 高氯酸、 高硼 酸、 高锰酸钾和硝酸铁中的一种或多种。
上述的金属化学机械抛光浆料, 其中, 所述的氧化剂的含量为重量百分 比 0.05 ~10 %。
上述的金属化学机械抛光浆料,其中,所述的腐蚀抑制剂为氮唑、咪唑、 噻唑、 吡啶和嘧啶类化合物中的一种或多种。
上述的金属化学机械抛光浆料,其中,氮唑类化合物包括:苯并三氮唑、 5-甲基苯并三氮唑、 5-羧基苯并三氮唑、 1-羟基一苯并三氮唑、 1, 2, 4-三 氮唑、 3-氨基 -1, 2, 4-三氮唑、 4-氨基 -1, 2, 4-三氮唑、 3, 5-二氨基 -1, 2,
4-三氮唑、 5-羧基 -3-氨基 -1, 2, 4-三氮唑、 3-氨基 -5-巯基 -1, 2, 4-三氮唑、
5-乙酸 -1H-四氮唑、 5-甲基四氮唑、 5-苯基四氮唑、 5-氨基 -1H-四氮唑和 1- 苯基 -5-巯基-四氮唑。所述的咪唑类化合物包括苯并咪唑和 2-巯基苯并咪唑。 所述的噻唑类化合物包括 2-巯基 -苯并噻唑、 2-巯基噻二唑和 5-氨基 -2-巯基 -1, 3, 4-噻二唑; 所述的吡啶包括 2, 3-二氨基吡啶、 2-氨基吡啶和 2-吡啶 甲酸。 所述的嘧啶为 2-氨基嘧啶。
上述的金属化学机械抛光浆料, 其中, 所述的腐蚀抑制剂的含量为重量 i'l分比 0.001〜2%, 较 ί 、j 量 Ι' I分比 0.005- 1 % =
上述的金属化学机械抛光浆料, 其屮, pH为 3〜11, 较佳为 3〜9。
上述的金属化学机械抛光浆料, 其中, 还包括 pH调节剂, 粘度调节剂, 消泡剂, 杀菌剂等本领域常规的添加剂。
上述的金属化学机械抛光浆料可将除氧化剂以外的其他组分制备成浓 缩样品, 使用前用去离子水稀释到本发明的浓度范围并添加氧化剂即可。
本发明的抛光浆料在含有铜的基材的化学机械抛光中的应用。采用本发 明金属化学机械抛光浆料其优点在于:
1. 本发明的金属化学机械抛光浆料具有较高的铜去除速率,同时可以有 效控制铜的腐蚀, 抛光后的铜表面无腐蚀。
2. 本发明的金属化学机械抛光浆料增强了铜的抛光效果,改善抛光后铜线的 蝶形凹陷和过抛窗口。 附图说明
图 1A和 1B为采用本发明的抛光浆料抛光后的铜晶片表面扫描电子显 微镜照片;
图 2A和 2B为采用本发明的抛光浆料抛光并浸泡后的铜晶片表面扫描 电子显微镜照片。 具体实施方式
下面通过具体实施方式来进一步阐述本发明。
实施例 1~49
表 1给出了本发明的化学机械抛光液的实施例 1~49, 按表中所给配方, 将除氧化剂以外的其他组分混合均匀,用水补足质量百分比至 100%。用 KOH 或 HN03调节到所需要的 pH值。 使用前加氧化剂, 混合均匀即可。 li 1 实施例 1-49
实施例 研麿颗粒 腐迚仰制剂 磷酸酯 络合剂 . 化剂 含
含 ¾ 含 体 具体物 -A体 wt 具体 物 wt% 质 wt% 物质 wt% 具体物质 % 物质 wt% 质
3-氨
基 过
-1,2,4- 氧
Si02 二 0. 化
1 3 (20nm) 2 唑 0.1 C8H17OP03H2 01 草酸 2 氢 3 过 苯并 氧
Si02 二 丁二 化
2 1 (20nm) 0.1 唑 0.01 C12H25OPO3H2 5 酸 1 氢 3
1 ,2,4- ,孟
Si02 二氮 0. 丙二 酸
3 20 (40nm) 1 唑 0.05 C16H33OPO3H2 1 酸 3 钾 3
2-氨 硝
Si02 基吡 苹果 酸
4 1 (40nm) 0.5 啶 0.005 C18H37OPO3H2 2 酸 0.5 铁 4
3-氨
基 过
-1 ,2,4- 氧
Si02 二氮 0. 化
5 1 (50nm) 0.8 唑 0.5 C22H45OPO3H2 5 乳酸 5 氢 4
5-氨
基 过
-1H- 氧
Si02 四氮 0. 没食 化
6 10 (60nm) 0.6 唑 0.003 (C12H250)2P02H 5 子酸 8 氢 4 过
1 ,2,4- 磺基 氧
Si02 三氮 水杨 化
7 1 (70nm) 0.1 唑 0.005 (C14H290)2P02H 1 酸 10 氢 4
4-氨
-1 ,2,4- 过 三氮 氧
A1203 唑 化
8 3 (30nm) 0.01 0.01 (C16H330)2P02H 3 醋酸 1 脲 4
3 , 5- 二氨 过 基 -1 , 氧
Ce02 2, 4- C3H503(CH2CH20 乙
9 2 (200nm) 0.01 二¾ 0.01 )2θ( 03Η2)3 8 酸铰 5 酸 4 3-¾
-1 ,2,4- 硫
Ti02 :二挺 C3H503(CH2CH20 酸
1 (120nm) 0.01 唑 0.01 )3θ(Ρ03Η2)3 2 酸钾 0.5 钾 4
2-膦
酸丁
烷基 过 苯并 -1 ,2,4- 氧
Si02 二¾1 C3H503(CH2CH20 二羧 乙
3 (150nm) 0.02 唑 0.02 )in(P03H2)3 2 酸 3 酸 4 乙二
2 , 3- 胺四 过 二氨 亚甲 硫
Si02 基吡 C3H503(CH2CH20 基膦 酸
2 (80nm) 0.5 啶 0.01 )i5(P03K2)3 2 酸 4 钾 5
3-氨 二乙
烯二 过
-1 ,2,4- 胺五 硫
Si02 二氮 C3H503(CH2CH20 甲义 酸
8 (lOOnm) 0.08 唑 0.005 )30(PO3Na2)3 2 膦酸 2.5 铰 5 羟基 过
2-氨 亚乙 氧
Si02 基嘧 C3H503(CH2CH20 基二 化
0.5 (70— 0.5 啶 0.01 )20(PO3H2)3 2 膦酸 3.5 氢 4
3,5-二
氨基 氨基 过
-1,2,4- 三亚 氧
Si02 二氮 C8H170(CH2CH20 甲基 化
0.5 (80nm) 0.5 唑 0.01 )2P03H2 2 膦酸 4.5 脲 4
4-氨
-基 2-羟 过
-1 ,2,4- 基膦 氧
Si02 二氮
Figure imgf000010_0001
酸基 乙
0.5 (lOOnm) 2 唑 0.01 2 乙酸 0.8 酸 4
3-氨 多氨
基 -5- 基多
醚基 过
-1,2,4- 亚甲 硫
Si02 二氮 C8H170(CH2CH20 基膦 酸
0.5 (lOOnm) 0.1 唑 0.02 )2。P〇3K2 2 酸 0.8 钾 5
3,5-二
氨基 乙二 过
-1,2,4- 胺四 氧
Si02 二¾ CisH;37〇(CH;2CH2 甲义 化
12 (lOOnm) 0.3 唑 0.003 0)3P03H2 3 膦酸 0.1 氢 5
1-羟 乙二 过
Si02 基一 CigH370(CH2CH2 胺四 氧
0.5 (lOOnm) 0.3 苯并 0.01 O)10PO3K2 1 乙酸 3 乙 5
Figure imgf000011_0001
¾
3-¾l 巯基 过
-1 ,2,4- 氧
Si02 二¾ 苏氨 化
15 (70 0.2 唑 0.01 C9H19C6H4OPO3K2 8 酸 2 氢 5
5-羧 过 基-苯 氧
Si02 并二 (C9H19C6H40)2P02 天冬 化
0.2 (70nm) 0.1 氮唑 0.01 NH4 8 酰胺 2 氢 6 苯并
Si02 二¾ [C17H35COO(CH2C 丝氨 氯
0.2 (70nm) 0.05 唑 0.02 H20)3]2P02K 5 酸 2 酸 6
4-氨
基 过
-1 ,2,4- 氧
Si02 二¾ CnH23COO(CH2C 脯氨 化
0.3 (70nm) 1 唑 0.02 H20)15P03(NH4)2 1 酸 3 氢 6
5-甲
基-苯
并二 [Ci2H250(CH2CH
0.02 氮唑 0.2 0)3]2P02K
4-氨
-1,2,4- 氧
Si02 二氮
Figure imgf000012_0001
色氨 化
1 (70nm) 0.5 唑 0.0005 3 酸 1 氢 6
3,5-1
氨基
-1 ,2,4- 二氮 [C8H170(CH2CH20
0.5 唑 0.3 )3]2P02K
3,5-二
氨基 过
-1 ,2,4- 氧
Si02 二氮
Figure imgf000012_0002
蚩氨 化
2 (70nm) 0.5 唑 0.0005 3 1 氢 6
1-羟
基一 过 苯并 氧
Si02 二¾ C16H33OP03(NH4) 大冬 化
3 (80nm) 0.05 唑 0.001 2 3 氨酸 2 氢 7
3,5-二
氨基
-1,2,4-
Si02 二氮 谷氨 碘
3 (80nm) 0.5 唑 0.002 (C14H290)2P02NH4 3 酸 2 酸 7
Si02 1-羟 C16H33OP03[NH2( 精 过
1 (80nm) 0.02 0.003 CH2CH2OH)2]2 1 酸 1 氧 8
Figure imgf000013_0001
Si02 (比 过
面积 3-氨
= 1000m 基四 (C12H25C6H40(CH2 甘氨 化
48 1 2/g) 0.05 0.005 CH20)4)2P03K 2 酸 1 氢 8
5- :乙
ϊ ό' 甲
Figure imgf000014_0001
基四 0. 烯二
0.5 0.1 挺唑 0.5 Η2ΟΗ)12 05 胺
聚醚消泡 硼
49 添加剂 (wt% ) 甲基纤维素 (0.01%) 剂 (0.01%) 2 酸 10
效果实施例
表 2给出了本发明的化学机械抛光液的实施例 50~71及对比实施例 1〜6, 按表中所给配方, 将除氧化剂以外的其他组分混合均匀, 用水补足质量百分 比至 100%。 用 KOH 或 HN03调节到所需要的 pH值。 使用前加氧化剂, 混 合均匀即可。
表 2、 对比实施例 1~6和实施例 50〜71 施
例 ) -磨颗粒 腐蚀抑制剂 磷酸酉 ^ 络合剂 氧化剂 PH 含 含 含
W
wt 具体物 Pi m wt 具体 wt 具体
% 质 wt% 具体物质 wt% 具体物质 % 物质 % 物质 对
比 Si02 甘氨 过氧
1 (80nm) 无 无 无 无 酸 化 a 5.7 对
比 Si02 甘¾ 过氧
1
2 (80nm) 0.15 1 ,2,4-二氮唑 无 无 酸 化 a 5.7
Si02 甘氨 过¾
50 1 (80nm) 0.07 1 ,2,4-三氮唑 0.005 H2O)10PO3K2 11 化氢 5.7
Si02 CgHi9C6H40(CH2C 甘氨 过氧
51 1 (80nm) 0.07 1 ,2,4-三氮唑 0.01 H2〇)4P〇2K2 ! 酸 化氢 5.7
Si02 [CgHi9C6H40(CH2C 甘氨 过氧
52 1 (80nm) 0.07 1 ,2,4-三氮唑 0.005 H2O)10]2PO2H 11 化 a 5.7
Si02
Figure imgf000014_0002
甘' si 过 ¾
53 1 (80nm) 0.07 1 ,2,4-二氮唑 0.005 H2O)10]2PO2H 1 酸 2 化 a 5.7
Si02 [。9Ηΐ9〇6Η4〇(〇Η2〇 甘¾ 过氧
54 1 (80nm) 0.07 1 ,2,4-三氮唑 0.005 H2O)10]2PO2H 1 酸 3 化氢 5.7
Si02 [〇9Ηΐ9〇6Η4θ(〇Η2〇 甘氨 过氧
55 1 (80nm) 0.07 1 ,2,4-三氮唑 0.005 H2O)10]2PO2H 1 酸 5 化氢 5.7
56 1 Si02 0.05 1 ,2,4-二氮唑 0.005 CgHi9C6H40(CH2C 1 甘氨 1 过氧 5.7
Figure imgf000015_0001
¾用对比抛光液 1〜3和本发明的抛光液 50〜65, 对空片铜 (Cu ) 晶片和 有图形的铜晶片进行抛光。 所得的铜的抛光速率见表 3, 图形晶片的抛光条 件及铜块的碟型凹陷值见表 4。
空片铜晶片抛光条件: 下压力 l〜3psi; 抛光盘及抛光头转速 93/87rpm, 抛光垫 IC1010, 抛光液流速 150ml/min, 抛光机台为 8" Mirra。
有图案的铜晶片抛光工艺条件: 抛光盘及抛光头转速 93/87rpm, 抛光垫 IC1010 , 抛光液流速 150ml/min, 抛光机台为 8" Mirra。 在抛光盘 1上用相 应的下压力抛光有图案的铜晶片至残留铜约 3000A, 然后再在抛光盘 2上用 相应的下压力将残留的铜清除并过抛 20秒。 用 XE-300P 原子力显微镜测量 有图案的铜晶片上 80um*80um 的铜块的碟型凹陷值。
将抛光后的图形晶片在抛光液中浸泡 30分钟, 用扫描电子显微镜观察 浸泡前后铜线表面状况, 见附图 1和 2。
表 3、 抛光液的不同抛光压力下的铜去除速率
Figure imgf000016_0001
63 1 3550 2580 1510
对比 4 1 7325 5880 4387
64 1 4367 3710 2380
65 1 4129 3138 1513 4 仃图¾的铜品片的抛光条件及抛光后 80um*80um铜块处的碟形凹陷值
Figure imgf000017_0001
从表格 3可得知: 与对比抛光液相比, 本发明的金属化学机械抛光浆料 可以有效的降低铜在低下压力下的去除速率, 而对较高的下压力下的去除速 率影响不大。这种特性可以使得抛光液在保持较高的去除速率下仍能获得更 为平整的抛光表面, 大大提高了生产效率, 又降低了抛光后的铜块的碟形凹陷 值。在与对比抛光液 2的去除速率接近的条件下,也能获得更低的碟形 ω陷值。 (见表 4 )
用实施例 57抛光后以及抛光和浸泡后的图形晶片的 SEM图见附图 1〜2, 由图中可见, 用该抛光液抛光后的晶片表面无腐蚀, 无缺陷。 在抛光液中浸 泡 30分钟, 铜线仍然无明显腐蚀和缺陷, 说明本发明的抛光液有很强的抑 制金属腐蚀的能力。 采用对比抛光液 5和本发明的抛光液 66~71, 对空片铜 (Cu) 晶片, 空 片二氧化硅晶片, 空片钽晶片和有图形的铜晶片进行抛光。 所得的抛光速率 及铜块的碟型凹陷值见表 5。
空片抛光条件: 下压力 l~3psi; 抛光盘及抛光头转速 93/87rpm, 抛光垫 IC1010, 抛光液流速 150ml/min, 抛光机台为 8" Mirra。 冇图案的锏品片抛光. Ί :艺条件: 抛光盘及抛光头转速 93/87rpm, 抛光垫 IC1010 , 抛光液流速 150mlZmin, 抛光机台为 8" Mirra。在抛光盘 1上 W 3psi 的下压力抛光有图案的铜晶片至残留铜约 5000A, 然后再在抛光盘 2 上用 2psi 的下压力将残留的铜去除。 用 XE-300P 原子力显微镜测量有图案的铜 晶片上 lOum/lOum (铜线 /二氧化硅)的铜线处的碟型凹陷值。 表 5、 抛光液的空片 ±·除速率以及冇图 ¾的铜晶片的抛光条件和抛光后的碟形凹陷值
Figure imgf000018_0002
从表格 5可得知: 与对比抛光液 5相比, 本发明的金属化学机械抛光浆 料 66〜68可以在保持较高的去除速率下仍能获得更为平整的抛光表面, 由 实施例 69〜71 可见, 该抛光液在铜去除速率可调的同时, 也可以提供较高 的二氧化硅和钽的去除速率。 该抛光液可以满足不同的应用需求。 采用对比抛光液 5, 6和本发明的抛光液 66〜68, 对有图案的铜晶片进 行抛光。 抛光工艺条件: 抛光盘及抛光头转速 93/87rpm, 抛光垫 IC1010, 抛光液流速 150ml/min, 抛光机台为 8" Mirra。 在抛光盘 1上用 3psi的下压 力抛光有图案的铜晶片至剩余铜约 5000埃, 然后再在抛光盘 2上用 2psi的 下压力将剩余的铜去除。 观察抛光后有图案的铜晶片上铜的残留情况见表 6 表 6、 抛光后晶片表面上铜残留情况
Figure imgf000018_0001
对比 5 无
对比 6 有
66 无
67 无
68 无 由表 6可见, 对比 6的抛光液中单独使用磷酸酯表面活性剂, 抛光后晶 片表面有铜残留, 对比 5的抛光液中单独使用唑类腐蚀抑制剂, 虽然抛光后 表面无铜残留, 但碟型凹陷较大。 而实施例 66〜68中使用了唑类腐蚀抑制 剂和磷酸酯表面活性剂的组合, 既能减少碟型凹陷, 抛光后又无铜残留。
应当理解的是, 本发明所述 wt%均指的是质量百分含量。
以上对本发明的具体实施例进行了详细描述, 但其只是作为范例, 本发 明并不限制于以上描述的具体实施例。 对于本领域技术人员而言, 任何对本 发明进行的等同修改和替代也都在本发明的范畴之中。 因此, 在不脱离本发 明的精神和范围下所作的均等变换和修改, 都应涵盖在本发明的范围内。

Claims

权利要求
1 .一种金属化学机械抛光浆料, 包括研磨颗粒、 络合剂、 腐蚀抑制剂、 氧化剂, 其特征在于, 还至少含有一种磷酸酯类表面活性剂。
2. 如权利要求 1所述的金属化学机械抛光浆料, 其特征在于, 所述的磷 酸酯类表面活性剂至少含有如下结构式的一种或多种:
0 o
II II
X— P— OM X—— P— X
1 I
OM ( 1 ) 和 /或 OM ( 2 ) , 其 中 : X= RO,
RO-(CH2CH20)n , RCOO-(CH2CH20)n; R为 C8〜C22的烷基或垸基苯、 甘油 基 (C3H503-), n=2〜30,M=H, K, NH4, (CP^Ci^O sNHw和/或 Na。
3. 如权利要求 1所述的金属化学机械抛光浆料, 其特征在于, 所述的磷 酸酯类表面活性剂至少含有如下结构式的两种或多种:
o o
II II
X— P— OM X— P— X
OM ( 1 ) 和 /或 OM ( 2 ) , 其中 : X= RO,
RO-(CH2CH20)n , RCOO-(CH2CH20)n; R为 C8〜C22的烷基或烷基苯、 甘油 基 (C3H503-), n=2〜30, M=H,K, NH4, ^NHw和/或 Na。
4. 如权利要求 1所述的金属化学机械抛光桨料, 其特征在于, 所述的磷 酸酯类表面活性剂的含量为重量百分比 0.0005〜1%。
5. 如权利要求 4所述的金属化学机械抛光浆料, 其特征在于, 所述磷酸 酯类表面活性剂的含量为重量百分比 0.001〜0.5%。
6. 如权利要求 1所述的金属化学机械抛光浆料, 其特征在于, 所述的研 磨颗粒为二氧化硅、 氧化铝、 掺杂铝或覆盖铝的二氧化硅、 二氧化铈、 二氧 化钛、 高分子研磨颗粒中的一种或多种。
7. 如权利要求 1所述的金属化学机械抛光浆料, 其特征在于, 所述的研 磨颗粒的粒径为 20〜200nm。
8. 如权利要求 1所述的金属化学机械抛光浆料, 其特征在于, 所述的研 磨颗粒的宽量 I'l分比浓度为 0.1〜20 % .
9. 如权利要求 1所述的金属化学机械抛光浆料, 其特征在于, 所述的络 合剂为氨羧化合物及其盐、 有机羧酸及其盐、 有机膦酸及其盐和有机胺中的 一种或多种。
10. 如权利要求 9所述的金属化学抛光浆液, 其特征在于, 所述的氨羧 化合物选自甘氨酸、 丙氨酸、 缬氨酸、亮氨酸、 脯氨酸、 苯丙氨酸、 酪氨酸、 色氨酸、 赖氨酸、 精氨酸、 组氨酸、 丝氨酸、 天冬氨酸、 苏氨酸、 谷氨酸、 天冬酰胺、 谷氨酰胺、 氨三乙酸、 乙二胺四乙酸、 环己垸四乙酸、 乙二胺二 琥珀酸、 二乙烯三胺五乙酸和三乙烯四胺六乙酸中的一种或多种; 所述的有 机羧酸为醋酸、 草酸、 柠檬酸、 酒石酸、 丙二酸、 丁二酸、 苹果酸、 乳酸、 没食子酸和磺基水杨酸中的一种或多种; 所述的有机膦酸为 2-膦酸丁烷 -1, 2 , 4-三羧酸、 氨基三甲叉膦酸、 羟基乙叉二膦酸、 乙二胺四甲叉膦酸、 二 乙烯三胺五甲叉膦酸、 2-羟基膦酸基乙酸、 乙二胺四甲叉膦酸和多氨基多醚 基甲叉膦酸中的一种或多种; 所述的有机胺为乙二胺、 二乙烯三胺、 五甲基 二乙烯三胺、 多乙烯多胺、 三乙烯四胺、 四乙烯五胺; 所述的盐为钾盐、 钠 盐和 /或铵盐。
11 . 如权利要求 1 所述的金属化学机械抛光浆料, 其特征在于, 所述的 络合剂的含量为重量百分比 0.05〜10%。
12. 如权利要求 11所述的金属化学机械抛光桨料, 其特征在于, 所述的 络合剂的含量较佳为重量百分比 0. 1〜 5%。
13. 如权利要求 1所述的金属化学机械抛光浆料, 其特征在于, 所述的 氧化剂为过氧化氢、过氧化脲、过氧甲酸、过氧乙酸、过硫酸盐、过碳酸盐、 高碘酸、 高氯酸、 高硼酸、 高锰酸钾和硝酸铁中的一种或多种。
14. 如权利要求 1所述的金属化学机械抛光浆料, 其特征在于, 所述的 氧化剂的含量为重量百分比 0.05〜10 %。
15. 如权利要求 1所述的金属化学机械抛光浆料, 其特征在于, 所述的 腐蚀抑制剂为氮唑、 咪唑、 噻唑、 吡啶和嘧啶类化合物中的一种或多种。
16. 如权利要求 15所述的金属化学机械抛光浆料, 其特征在于, 所述 的氮唑类化合物选自苯并三氮唑、 5-甲基苯并三氮唑、 5-羧基苯并三氮唑、 1 -羟基一苯并三氮唑、 1, 2, 4-三氮唑、 3-氨基 -1, 2, 4-三氮唑、 4-氨基 -1, 2, 4-三 唑、 3, 5-一氨基 - 1, 2, 4-二 唑、 5-羧基 -3-氨基 -1 , 2, 4-二 唑、 3-氨基 -5-巯基- 1, 2, 4-二氮唑、 5-乙酸- 1 H-四氮唑、 5-甲基四氮唑、 5- 苯基四氮唑、 5-氨基 -1 H-四氮唑和 1 -苯基 -5-巯基-四氮唑。 所述的的咪唑类 化合物包括苯并咪唑和 2-巯基苯并咪唑。 所述的噻唑类化合物包括 2-巯基- 苯并噻唑、 2-巯基噻二唑和 5-氨基 -2-巯基 -1, 3, 4-噻二唑; 所述的吡啶选 自下列中的一种或多种: 2, 3-二氨基吡啶、 2-氨基吡啶和 2-吡啶甲酸。 所 述的嘧啶为 2-氨基嘧啶。
17. 如权利要求 1所述的金属化学机械抛光浆料, 其特征在于, 所述的 腐蚀抑制剂的含量为重量百分比 0.001〜2%。
18. 如权利要求 17所述的金属化学机械抛光浆料, 其特征在于, 所述 的腐蚀抑制剂的含量为重量百分比 0.005〜1 %。
19. 如权利要求 1所述的金属化学机械抛光桨料, 其特征在于, 所述的 研磨颗粒比表面积为 5〜1000 m2/g
20. —种如权利要求 1 ~19中任一项所述的抛光浆料在含有铜的基材的 化学机械抛光中的应用。
PCT/CN2013/001493 2012-12-10 2013-12-03 一种金属化学机械抛光浆料及其应用 WO2014089905A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210528946.6 2012-12-10
CN201210528946.6A CN103866326A (zh) 2012-12-10 2012-12-10 一种金属化学机械抛光浆料及其应用

Publications (1)

Publication Number Publication Date
WO2014089905A1 true WO2014089905A1 (zh) 2014-06-19

Family

ID=50905321

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/001493 WO2014089905A1 (zh) 2012-12-10 2013-12-03 一种金属化学机械抛光浆料及其应用

Country Status (3)

Country Link
CN (1) CN103866326A (zh)
TW (1) TW201422741A (zh)
WO (1) WO2014089905A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10876073B2 (en) 2016-08-09 2020-12-29 Fujimi Incorporated Composition for surface treatment, and method for surface treatment using the same

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104745094B (zh) * 2013-12-26 2018-09-14 安集微电子(上海)有限公司 一种化学机械抛光液
CN105350000B (zh) * 2015-12-02 2018-06-22 林小芬 一种环保型铝合金材料抛光液及其制备方法
CN106929858A (zh) * 2015-12-31 2017-07-07 安集微电子科技(上海)有限公司 金属化学机械抛光浆料
WO2017169743A1 (ja) * 2016-03-28 2017-10-05 株式会社フジミインコーポレーテッド 金属を含む層を有する研磨対象物の研磨に用いられる研磨用組成物
JP6670715B2 (ja) * 2016-03-28 2020-03-25 株式会社フジミインコーポレーテッド 金属を含む層を有する研磨対象物の研磨に用いられる研磨用組成物
CN108250234A (zh) * 2016-12-28 2018-07-06 安集微电子(上海)有限公司 一种磷酸酯表面活性剂的合成工艺及其应用
CN111378376A (zh) * 2018-12-29 2020-07-07 安集微电子(上海)有限公司 一种化学机械抛光液及其应用
CN113122142B (zh) * 2019-12-31 2024-04-12 安集微电子科技(上海)股份有限公司 一种化学机械抛光液
TW202138505A (zh) * 2020-03-31 2021-10-16 美商富士軟片電子材料美國股份有限公司 研磨組成物及其使用方法
CN114686115A (zh) * 2020-12-30 2022-07-01 安集微电子科技(上海)股份有限公司 一种化学机械抛光液及其使用方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100077701A (ko) * 2008-12-29 2010-07-08 제일모직주식회사 구리 배선 연마용 cmp 슬러리 조성물 및 이를 이용한 연마 방법
CN102453440A (zh) * 2010-10-22 2012-05-16 安集微电子(上海)有限公司 一种化学机械抛光液
CN102533118A (zh) * 2010-12-10 2012-07-04 安集微电子(上海)有限公司 一种化学机械抛光浆料
CN103160207A (zh) * 2011-12-16 2013-06-19 安集微电子(上海)有限公司 一种金属化学机械抛光浆料及其应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101463225A (zh) * 2007-12-21 2009-06-24 安集微电子(上海)有限公司 一种阻挡层化学机械抛光液

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100077701A (ko) * 2008-12-29 2010-07-08 제일모직주식회사 구리 배선 연마용 cmp 슬러리 조성물 및 이를 이용한 연마 방법
CN102453440A (zh) * 2010-10-22 2012-05-16 安集微电子(上海)有限公司 一种化学机械抛光液
CN102533118A (zh) * 2010-12-10 2012-07-04 安集微电子(上海)有限公司 一种化学机械抛光浆料
CN103160207A (zh) * 2011-12-16 2013-06-19 安集微电子(上海)有限公司 一种金属化学机械抛光浆料及其应用

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10876073B2 (en) 2016-08-09 2020-12-29 Fujimi Incorporated Composition for surface treatment, and method for surface treatment using the same

Also Published As

Publication number Publication date
CN103866326A (zh) 2014-06-18
TW201422741A (zh) 2014-06-16

Similar Documents

Publication Publication Date Title
TWI580766B (zh) Metal Chemical Mechanical Polishing Slurry and Its Application
WO2014089905A1 (zh) 一种金属化学机械抛光浆料及其应用
WO2017114301A1 (zh) 金属化学机械抛光浆料
KR100720985B1 (ko) 연마액 및 연마방법
TWI452099B (zh) 含金屬基材的化學機械平坦化的方法及組合物
US8262435B2 (en) Chemical mechanical polishing aqueous dispersion, chemical mechanical polishing method, and chemical mechanical polishing aqueous dispersion preparation kit
WO2014089906A1 (zh) 一种磷酸酯表面活性剂在自停止抛光中的应用
TWI780075B (zh) 化學機械研磨液及其應用
US20100081279A1 (en) Method for Forming Through-base Wafer Vias in Fabrication of Stacked Devices
TWI413678B (zh) 研磨液
KR20100065304A (ko) 금속용 연마액 및 연마 방법
WO2018120807A1 (zh) 一种化学机械抛光液及其应用
TWI635168B (zh) Chemical mechanical polishing slurry
KR20090031821A (ko) 연마액
US20070249167A1 (en) CMP method for copper-containing substrates
WO2018120809A1 (zh) 一种用于阻挡层平坦化的化学机械抛光液
TWI787329B (zh) 用於鈷的化學機械拋光方法
KR20080108561A (ko) 요오드산염을 함유하는 화학적-기계적 연마 조성물 및 방법
JP2008227098A (ja) 金属用研磨液
WO2010025623A1 (zh) 一种化学机械抛光液
JP2001031950A (ja) 金属膜用研磨剤
TW201927953A (zh) 化學機械拋光液
JP5344136B2 (ja) 化学機械研磨用水系分散体、および該分散体の調製方法、ならびに半導体装置の化学機械研磨方法
CN109972145A (zh) 一种化学机械抛光液
WO2015096630A1 (zh) 一种用于钴阻挡层抛光的化学机械抛光液

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13862529

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC

122 Ep: pct application non-entry in european phase

Ref document number: 13862529

Country of ref document: EP

Kind code of ref document: A1