WO2014088256A1 - 세퍼레이션 영역을 포함하여 전류 분산 효과가 우수한 고휘도 반도체 발광소자 - Google Patents

세퍼레이션 영역을 포함하여 전류 분산 효과가 우수한 고휘도 반도체 발광소자 Download PDF

Info

Publication number
WO2014088256A1
WO2014088256A1 PCT/KR2013/010869 KR2013010869W WO2014088256A1 WO 2014088256 A1 WO2014088256 A1 WO 2014088256A1 KR 2013010869 W KR2013010869 W KR 2013010869W WO 2014088256 A1 WO2014088256 A1 WO 2014088256A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
electrode
semiconductor layer
forming
semiconductor
Prior art date
Application number
PCT/KR2013/010869
Other languages
English (en)
French (fr)
Inventor
송정섭
김동우
황성주
김극
최원진
Original Assignee
일진엘이디(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 일진엘이디(주) filed Critical 일진엘이디(주)
Priority to US14/648,848 priority Critical patent/US20150333228A1/en
Priority to CN201380063331.3A priority patent/CN104854714A/zh
Publication of WO2014088256A1 publication Critical patent/WO2014088256A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • H01L33/387Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape with a plurality of electrode regions in direct contact with the semiconductor body and being electrically interconnected by another electrode layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0075Processes for devices with an active region comprising only III-V compounds comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/14Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • H01L33/42Transparent materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0016Processes relating to electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/08Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a plurality of light emitting regions, e.g. laterally discontinuous light emitting layer or photoluminescent region integrated within the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/14Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure
    • H01L33/145Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure with a current-blocking structure

Definitions

  • the present invention relates to a semiconductor light emitting device having improved luminance characteristics, including a separation region separating a light emitting region, and exhibiting excellent current dispersion effect.
  • FIG. 1 schematically shows a general nitride based light emitting device.
  • a nitride based light emitting device is formed from a growth substrate 11 and includes an n-type nitride semiconductor layer 12, an active layer 13, and a p-type nitride semiconductor layer 14.
  • an n-side electrode pad 15 electrically connected to the n-type nitride semiconductor layer 12 is formed in order to inject electrons into the n-type nitride semiconductor layer 12.
  • an n-side electrode pad 16 electrically connected to the p-type nitride semiconductor layer 14 is formed in order to inject holes into the p-type nitride semiconductor layer 14.
  • the p-type nitride semiconductor layer has a high specific resistance
  • current is not evenly distributed in the p-type nitride semiconductor layer, and current is concentrated in a portion where the p-side electrode pad is formed.
  • the current also flows through the semiconductor layers and exits to the n-side electrode pads. Accordingly, a current is concentrated in a portion where the n-side electrode pad is formed in the n-type nitride semiconductor layer, and a current flows intensively through an edge of the light emitting diode.
  • concentration of current leads to a reduction of the light emitting area, and consequently lowers the light emitting efficiency.
  • planar structure light emitting device in which two electrodes are arranged almost horizontally on the upper surface of the light emitting structure has a uniform current flow in the entire light emitting area as compared to the vertical structure light emitting device.
  • the effective area to join is not large.
  • the light emitting device is gradually increasing in size to about 1 mm 2 or more.
  • the light emitting device becomes larger, it is more difficult to realize a uniform current distribution over the entire area.
  • the current dispersion efficiency problem due to the large area has been recognized as an important technical problem in semiconductor light emitting devices.
  • n-side electrode and p-side electrode include a plurality of electrode fingers extended and engaged with each other at regular intervals. Through this electrode structure, it was intended to provide an additional current path, secure a large effective emission area, and form a uniform current flow.
  • the present inventors have conducted research and efforts to develop a semiconductor light emitting device having a structure capable of improving light emission output, and as a result, the first extension electrode electrically connecting the first semiconductor layer and the second electrically connected to the second semiconductor layer
  • the semiconductor light emitting device is configured to include an electrode contact layer and a second extension electrode, and a separation region that separates the second electrode contact layer into a plurality of regions so that each second electrode contact layer is spaced apart
  • current dispersion was completed by discovering that the luminance can be improved by maximizing.
  • an object of the present invention is to provide a semiconductor light emitting device including a separation region for separating the light emitting region so as to exhibit an excellent current dispersion effect.
  • the semiconductor light emitting device of the present invention for achieving the above object includes a first semiconductor electrode, an active layer and a second semiconductor layer, a first extension electrode for electrically connecting the first semiconductor layer, and the second semiconductor layer And a second electrode contact layer and a second extension electrode electrically connected to each other, wherein the second electrode contact layer is separated by a plurality of separation regions, and the second electrode contact layers are spaced apart from each other. .
  • the semiconductor light emitting device of the present invention is characterized in that the second extension electrode is formed so as to pass through a portion of the separation region.
  • the horizontal area of each second electrode contact layer separated by the separation region is uniformly formed.
  • the second electrode contact layer is formed of ITO, CIO, ZnO, NiO, In 2 O 3 And IZO It characterized by comprising one or two or more selected from.
  • the semiconductor light emitting device of the present invention is characterized in that the width of the separation region is in the range of 0.5 to 20 ⁇ m.
  • the semiconductor light emitting device of the present invention includes a current diffusion contact hole exposing the first semiconductor layer, and a first extension electrode electrically connects the first semiconductor layer exposed by the current diffusion contact hole. Characterized in that.
  • the semiconductor light emitting device may further include a first electrode pad electrically connected to the first extension electrode, and a second electrode pad electrically connected to the second extension electrode.
  • the method of manufacturing a semiconductor light emitting device of the present invention forming a first semiconductor layer, an active layer and a second semiconductor layer; Forming a second electrode contact layer on the second semiconductor layer; Etching a region of the second electrode contact layer to form a separation region; Forming a second extension electrode on the second electrode contact layer and the second semiconductor layer; Etching the active layer and the second semiconductor layer so that one region of the first semiconductor layer is exposed to the outside, and forming a first extension electrode on the exposed first semiconductor layer.
  • the semiconductor light emitting device of the present invention can obtain the effect of improving the uniformity of the effective current density, including the separation region separating the light emitting region, and can be expected to improve the light efficiency due to the excellent current dispersion effect.
  • FIG. 1 is a cross-sectional view showing a cross section of a conventional semiconductor light emitting device.
  • FIG. 2 is a plan view of a semiconductor light emitting device according to an embodiment of the present invention.
  • FIG. 3 is a cross-sectional view taken along the line A-A of FIG. 2.
  • FIG. 4 is a cross-sectional view taken along the line B-B of FIG. 2.
  • FIG. 5 shows an example of an n-side extension electrode formed using a current diffusion contact hole.
  • FIG. 6 shows another example of an n-side extension electrode formed using a current diffusion contact hole.
  • FIG. 7 is a plan view of a semiconductor light emitting device according to still another embodiment of the present invention.
  • the first semiconductor layer is an n-type nitride layer
  • the second semiconductor layer is a p-type nitride layer
  • the second electrode contact layer is a p-contact layer
  • the first extension electrode is an n-side extension electrode
  • the second extension electrode is The p-side extension electrode
  • the first electrode pad is represented by the n-side electrode pad
  • the second electrode pad is represented by the p-side electrode pad.
  • a part such as a layer, a film, an area, or a plate
  • 'on' a part, such as a layer, a film, an area, or a plate
  • 'upper' or 'under' or 'lower' of another part that part is 'directly' of another part. It includes not only 'on' or 'below', but also when there is another part in between.
  • the thicknesses of some layers and areas may be enlarged or exaggerated for clarity or for convenience of description.
  • FIG. 2 is a plan view of a horizontal semiconductor light emitting device according to an embodiment of the present invention.
  • the light emitting device of the present invention includes a separation region 110 that separates the emission region.
  • the n-side extension electrode 111 may be electrically connected to the n-type nitride layer exposed by mesa etching, and the p-side electrode pad may be disposed on a portion of the upper portion of the p-type nitride layer. 122) is electrically connected to the p-side electrode part.
  • the n-side extension electrode 111 is formed to be electrically insulated from the p-side extension electrode 121.
  • the p-side extension electrode 121 is formed to cross a portion of the separation region 110, and the separation region 110 crosses a portion of the p-side extension electrode 121.
  • both the n-side extension electrode 111 and the p-side extension electrode 121 may be formed to cross a part of the separation region 110.
  • the p-contact layer 123 formed on the p-type nitride layer may be separated into three by the separation region 110, and the p-contact separated by the separation region.
  • the number of layer regions may vary depending on the shape of the separation region.
  • the separation region 110 it is preferable to configure the separation region 110 so that the horizontal area of each p-contact layer separated by the separation region 110 is uniform, and considering the error in the manufacturing process, respectively,
  • the horizontal areas of the p-contact layers are preferably within 10% of each other. That is, the horizontal area of the p-contact layer refers to a light emitting area including an n-side extension electrode and a non-light emitting area, and an area except for an area where the p-side extension electrode 121 and the p-side electrode pad 122 are formed. It is desirable to be uniformly separated on the basis of.
  • the widths of the n-side extension electrode 111 and the p-side extension electrode 121 may be adjusted to 1 to 100 ⁇ m, preferably 5 to 50 ⁇ m, but are not limited thereto.
  • One or two or more n-side extension electrodes 111 may be electrically connected to the n-side electrode pad 112, and the n-side extension electrodes 111 may be formed to have one or more bending points as well as a straight line having no bending points. Can be.
  • one or more p-side extension electrodes 121 may also be electrically connected to the p-side electrode pad 122.
  • opposite ends that are not connected to the p-side electrode pad 122 may be formed spaced apart from each other, or may be formed in a closed form around the p-side electrode pad 122. have.
  • 3 and 4 illustrate cross-sectional views taken along the cutting lines A-A and B-B of FIG. 2 to explain more specific configurations.
  • a buffer layer 140, an n-type nitride layer 150, an active layer 160, and a p-type nitride layer 170 are stacked in an upper direction of the substrate 130. It is formed.
  • the substrate 130 may be made of a compound such as sapphire, SiC, Si, GaN, ZnO, GaAs, GaP, LiAl 2 O 3 , BN or AlN.
  • the buffer layer 140 may be selectively formed to solve the lattice mismatch between the substrate 130 and the n-type nitride layer 150, for example, may be formed of AlN or GaN.
  • the n-type nitride layer 150 is formed on the upper surface of the substrate 130 or the buffer layer 140, and is formed of nitride to which the n-type dopant is doped.
  • the n-type dopant silicon (Si), germanium (Ge), tin (Sn), or the like may be used.
  • the n-type nitride layer 150 is a laminated structure in which a first layer made of n-type AlGaN or undoped AlGaN doped with Si and a second layer made of n-type GaN doped with undoped or Si are formed. Can be.
  • n-type nitride layer 150 may be grown as a single n-type nitride layer, but may be formed as a laminated structure of the first layer and the second layer to act as a carrier limiting layer having good crystallinity without cracking. .
  • the active layer 160 may be formed of a single quantum well structure or a multi-quantum well structure between the n-type nitride layer 150 and the p-type nitride layer 170, and electrons flowing through the n-type nitride layer 150, p As holes flowing through the type nitride layer 170 are re-combined, light is generated.
  • the active layer 160 having a structure in which the quantum barrier layer and the quantum well layer are formed repeatedly may suppress spontaneous polarization due to stress and deformation generated.
  • the p-type nitride layer 170 is formed of a nitride doped with a p-type dopant.
  • a p-type dopant magnesium (Mg), zinc (Zn) or cadmium (Cd) may be used.
  • the p-type nitride layer may be formed by alternately stacking a first layer made of p-type AlGaN or undoped AlGaN doped with Mg, and a second layer made of p-type GaN doped with undoped or Mg. have.
  • the p-type nitride layer 170 may be grown as a single-layer p-type nitride layer similarly to the n-type nitride layer 150, but may be formed as a laminated structure to act as a carrier-limiting layer having good crystallinity without cracks. have.
  • a p-side extension electrode 121 and a p-side electrode pad 122 electrically connected to the p-side extension electrode are formed on the p-type nitride layer 170.
  • a p-contact layer 123 is formed below the p-side extension electrode 121, and the p-contact layer 123 is ohmic contacted to the p-type nitride 170 to lower contact resistance.
  • the p-contact layer 123 may be made of a transparent conductive oxide, and may include ITO, CIO, ZnO, NiO, In 2 O 3 And IZO It may comprise one or two or more selected from.
  • the separation region 110 refers to a space where the p-contact layers 123 are spaced apart from each other.
  • each of the p-contact layers 123 formed to be spaced apart may be electrically connected by the p-side extension electrode 121.
  • the separation region 110 may be formed by partially etching the p-contact layer 123.
  • photo-lithography and e-beam lithography may be performed.
  • Ion-beam lithography, extreme ultraviolet lithography, proximity x-ray lithography, or nano imprint lithography, and the like, and the like may be used.
  • such a method may use dry or wet etching.
  • the width of the region of the separation 110 is preferably in the range of 0.5 ⁇ 20 ⁇ m, more preferably in the range of 3 ⁇ 10 ⁇ m It is good.
  • an n-side extension electrode 111 and an n-side electrode pad 112 electrically connected to the n-side extension electrode are formed on the n-type nitride layer 150 exposed.
  • the n-side extension electrode is formed up to the p-type nitride layer 170, the p-contact layer 123, and the p-side extension electrode 121, and is exposed to the outside by lithography etching to one region. It is formed on the nitride layer 150.
  • an n-contact layer 151 may be further included below the n-side extension electrode 111, and the n-contact layer 151 may be in ohmic contact with the n-type nitride 150 to lower contact resistance. Do it.
  • the n-contact layer 151 may be made of a transparent conductive oxide, and the material may include elements such as In, Sn, Al, Zn, and Ga.
  • n-side extension electrode 111 and the n-side electrode pad 112 are n-type nitride layers formed by lithography etching from the p-contact layer 123 to a part of the n-type nitride layer 130 ( It may be formed in the exposed one area of 130).
  • the light emitting device of the present invention may include a current diffusion contact hole formed to expose the n-type nitride layer 150 through the p-type nitride layer 170 and the active layer 160. .
  • FIG. 5 illustrates an example of an n-side extension electrode formed using a current diffusion contact hole
  • FIG. 6 illustrates another example of an n-side extension electrode formed using a current diffusion contact hole.
  • 5 and 6 illustrate an example in which only one current spreading contact hole is formed, but a plurality of current spreading contact holes may be formed.
  • the current diffusion contact hole forms the upper insulating layer 410 on a portion of the p-contact layer 123, as shown in FIG. 5. Thereafter, holes are formed through the upper insulating layer 410, the p-contact layer 123, the p-type nitride layer 170, and the active layer 160, and then the side insulating layer 420 is formed on the inner wall of the hole. It can be formed in a way.
  • the current diffusion contact hole is a p-type nitride layer 170 in which the p-contact layer 123 is not formed, as shown in FIG. 6.
  • the n-side extension electrode 111 is formed in the current spreading contact hole and the upper insulating layer, and the n-type nitride layer 150 and the n-side extended electrode are formed by the current spreading contact hole. 111 can be electrically connected.
  • the n-side extension electrode electrically connects the n-type nitride layer exposed by the current spreading contact hole, thereby expanding the light emitting area and promoting current dispersion.
  • a side insulating layer for separating the sidewall of the contact hole and the n-side extension electrode is required.
  • the side insulating layer may be formed of silicon oxide or silicon nitride, and may be formed by a Plasma Enhanced Chemical Vapor Deposition (PECVD) method, a sputtering method, a MOCVD method, or an e-beam evaporation method.
  • PECVD Plasma Enhanced Chemical Vapor Deposition
  • the second electrode contact layer corresponding to the emission surface is separated and formed by the separation region as described above, an effect of improving the uniformity of the effective current density can be expected, and the luminance can be increased by improving the current density.
  • GaN was applied as a nitride layer of a nitride light emitting device to a sapphire substrate, a general Au-based electrode was applied as an extension electrode, and a separation region was formed as shown in FIG. 2.
  • a light emitting device was prepared.
  • a nitride light emitting device was manufactured in the same manner as in Example 1, except that the separation region was additionally formed as shown in FIG.
  • a nitride light emitting device was manufactured in the same manner as in Example 1, except that no separate separation region was formed.
  • the light emitting device of the embodiment was improved by about 3% or more light output characteristics compared to the comparative example, it was confirmed that the light emitting device of the embodiment can exhibit excellent light output characteristics.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

본 발명은 발광면을 분리하는 세퍼레이션 영역을 포함하여 우수한 전류 분산 효과를 나타내면서, 휘도 특성을 향상시킨 반도체 발광소자에 관한 것이다. 본 발명의 반도체 발광소자는 발광 영역을 분리하는 세퍼레이션 영역을 포함하여 유효 전류 밀도의 균일도를 개선하는 효과를 얻을 수 있으며, 전류 분산 효과가 우수하여 광효율의 향상도 기대할 수 있다.

Description

세퍼레이션 영역을 포함하여 전류 분산 효과가 우수한 고휘도 반도체 발광소자
본 발명은 발광 영역을 분리하는 세퍼레이션 영역을 포함하여 우수한 전류 분산 효과를 나타내면서, 휘도 특성을 향상시킨 반도체 발광소자에 관한 것이다.
도 1은 일반적인 질화물계 발광소자를 개략적으로 나타낸 것이다.
도 1을 참조하면, 질화물계 발광소자는 성장 기판(11)로부터 형성되며, n형 질화물 반도체층(12), 활성층(13) 및 p형 질화물 반도체층(14)을 포함한다.
또한, n형 질화물 반도체층(12)에 전자를 주입하기 위하여, n형 질화물 반도체층(12)에 전기적으로 연결되는 n측 전극 패드(15)이 형성된다. 또한, p형 질화물 반도체층(14)에 정공을 주입하기 위하여, p형 질화물 반도체층(14)에 전기적으로 연결되는 p측 전극 패드(16)가 형성된다.
그러나, p형 질화물 반도체층은 높은 비저항을 가지므로, p형 질화물 반도체층 내에서 전류가 고르게 분산되지 못하고, 상기 p측 전극 패드가 형성된 부분에 전류가 집중된다. 또한, 상기 전류는 반도체층들을 통해 흘러서 n측 전극 패드로 빠져나간다. 이에 따라, 상기 n형 질화물 반도체층에서 n측 전극 패드가 형성된 부분에 전류가 집중되며, 발광 다이오드의 모서리를 통해 전류가 집중적으로 흐르는 문제점이 발생된다. 상기와 같은 전류의 집중은 발광영역의 감소로 이어지고, 결과적으로 발광 효율을 저하시킨다.
특히, 2개의 전극이 발광구조의 상면에 거의 수평으로 배열되는 플래너(planar) 구조 발광소자는, 수직(vertical) 구조 발광소자에 비해 전류흐름이 전체 발광영역에 균일하게 분포하지 못하므로, 발광에 가담하는 유효면적이 크지 못하다는 문제가 있다.
한편, 조명용 발광소자와 같이 고출력을 위해서, 발광소자는 점차 약 1㎟ 이상으로 대면적화 되는 추세에 있다. 하지만, 발광소자는 대면적화 될수록 전체면적에서 균일한 전류분포를 실현하는 것은 보다 어려운 문제이다. 이와 같이, 대면적화에 따른 전류분산효율문제는 반도체 발광소자에서 중요한 기술적 과제로 인식되고 있다.
종래 전류밀도를 향상시키고 면적효율성을 향상시키기 위하여 주로 다양한 p측 전극과 n측 전극의 형태과 배열을 개선하는 방향으로 연구되어 왔다. 그 일 예로 미국특허 제6,486,499호에서는 n측 전극과 p측 전극이 서로 일정한 간격을 갖도록 연장되어 맞물린 다수의 전극지(finger)를 포함하는 것을 개시하고 있다. 이러한 전극 구조를 통하여 추가적인 전류 경로를 제공하고, 넓은 유효발광면적을 확보하며 균일한 전류 흐름을 형성하고자 하였다.
그러나 이러한 전극 구조에서도 p측 전극 부근의 p형 반도체층에서 전류밀도가 증가함에 따라 출력효율이 저하되고, 전류 분산 효율에 한계가 있었다.
따라서 반도체층을 통하여 흐르는 전류를 고르게 분산시킬 수 있는 반도체 발광소자의 개발이 지속적으로 요구되는 실정이다.
이에 본 발명자들은 발광 출력을 향상시킬 수 있는 구조의 반도체 발광소자를 개발하고자 연구, 노력한 결과, 제1 반도체층을 전기적으로 연결하는 제1 연장 전극과, 상기 제2 반도체층과 전기적으로 연결된 제2 전극 컨택층 및 제2 연장 전극을 형성하고, 상기 제2 전극 컨택층을 복수의 영역으로 분리하여 각각의 제2 전극 컨택층이 이격되도록 하는 세퍼레이션 영역을 포함하도록 반도체 발광 소자를 구성하면 전류 분산을 극대화하여 휘도를 향상시킬 수 있음을 발견함으로써 본 발명을 완성하게 되었다.
따라서 본 발명의 목적은 우수한 전류 분산 효과를 나타낼 수 있도록 발광 영역을 분리하는 세퍼레이션 영역을 포함하는 반도체 발광소자를 제공하는데 있다.
이와 같은 목적을 달성하기 위한 본 발명의 반도체 발광소자는 제1 반도체층, 활성층 및 제2 반도체층을 포함하고, 상기 제1 반도체층을 전기적으로 연결하는 제1 연장 전극과, 상기 제2 반도체층과 전기적으로 연결된 제2 전극 컨택층 및 제2 연장 전극을 포함하며, 상기 제2 전극 컨택층은 세퍼레이션 영역에 의하여 복수로 분리되어 각각의 제2 전극 컨택층이 이격되어 형성되는 것을 특징으로 한다.
또한, 본 발명의 반도체 발광소자는 상기 제2 연장 전극이 상기 세퍼레이션 영역의 일부를 지나가도록 형성되는 것을 특징으로 한다.
또한, 본 발명의 반도체 발광소자는 상기 세퍼레이션 영역에 의하여 분리되는 각각의 제2 전극 컨택층의 수평 면적이 균일하게 형성되는 것을 특징으로 한다.
또한, 본 발명의 반도체 발광소자는 상기 제2 전극 컨택층이 ITO, CIO, ZnO, NiO, In2O3 및 IZO 중에서 선택되는 1종 또는 2종 이상을 포함하여 이루어지는 것을 특징으로 한다.
또한, 본 발명의 반도체 발광소자는, 상기 세퍼레이션 영역의 폭이 0.5 ~ 20 ㎛ 범위에 있는 것을 특징으로 한다.
또한, 본 발명의 반도체 발광소자는, 상기 제1 반도체층을 노출시킨 전류 확산용 컨택홀을 포함하며, 상기 전류 확산용 컨택홀에 의하여 노출된 제1 반도체층을 제1 연장 전극이 전기적으로 연결하는 것을 특징으로 한다.
또한, 본 발명의 반도체 발광소자는, 상기 제1 연장 전극과 전기적으로 연결된 제1 전극 패드 및 상기 제2 연장 전극과 전기적으로 연결된 제2 전극 패드를 더 포함하는 것을 특징으로 한다.
한편 본 발명의 반도체 발광소자의 제조 방법은, 제1 반도체층, 활성층 및 제2 반도체층을 형성하는 단계; 상기 제2 반도체층 상부에 제2 전극 컨택층을 형성하는 단계; 상기 제2 전극 컨택층의 일 영역을 식각하여 세퍼레이션 영역을 형성하는 단계; 상기 제2 전극 컨택층 및 제2 반도체층 상부에 제2 연장 전극을 형성하는 단계; 상기 제1 반도체층의 일 영역이 외부로 노출되도록 활성층 및 제2 반도체층을 식각하는 단계 및 상기 노출된 제1 반도체층 상부에 제1 연장 전극을 형성하는 단계를 포함하는 것을 특징으로 한다.
본 발명의 반도체 발광소자는 발광 영역을 분리하는 세퍼레이션 영역을 포함하여 유효 전류 밀도의 균일도를 개선하는 효과를 얻을 수 있으며, 전류 분산 효과가 우수하여 광효율의 향상도 기대할 수 있다.
도 1은 종래의 반도체 발광소자의 단면을 도시한 단면도이다.
도 2는 본 발명의 일 실시예에 따른 반도체 발광소자의 평면도이다.
도 3은 도 2의 절취선 A-A에서 얻어진 단면도이다.
도 4는 도 2의 절취선 B-B에서 얻어진 단면도이다.
도 5는 전류 확산용 컨택홀을 이용하여 형성된 n측 연장 전극의 예를 나타낸 것이다.
도 6은 전류 확산용 컨택홀을 이용하여 형성된 n측 연장 전극의 다른 예를 나타낸 것이다.
도 7은 본 발명의 또 다른 실시예에 따른 반도체 발광소자의 평면도이다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예에 따른 반도체 발광소자에 관하여 상세히 설명하면 다음과 같다.
하기 실시예에서 제1 반도체층은 n형 질화물층, 제2 반도체층은 p형 질화물층, 제2 전극 컨택층은 p-컨택층, 제1 연장 전극은 n측 연장 전극, 제2 연장 전극은 p측 연장 전극, 제1 전극 패드는 n측 전극 패드, 제2 전극 패드는 p측 전극 패드로 나타난다.
또한, 본 명세서에서 층, 막, 영역, 판 등의 어떤 부분이 다른 부분의 '상에', '상부에' 또는 '하에, '하부에' 있다고 할 때, 이는 해당 부분이 다른 부분의 '바로 위에' 또는 ' 바로 아래에' 있는 경우뿐만 아니라, 해당 부분과 다른 부분 중간에 또 다른 부분이 있는 경우도 포함한다. 또한, 도면에서 여러 층 및 영역을 명확하게 표현하거나 혹은 설명의 편의를 위하여 일부 층 및 영역의 두께를 확대 또는 과장되게 나타내었다.
도 2는 본 발명의 일 실시예에 따른 수평형 반도체 발광소자의 평면도이다.
도 2에서 도시된 바와 같이, 본 발명의 발광소자는 발광 영역을 분리하는 세퍼레이션 영역(110)을 포함한다. 또한, 메사 식각 등에 의하여 노출된 n형 질화물층을 전기적으로 연결하는 n측 연장 전극(111)을 포함하며, p측 연장 전극(121)이 p형 질화물층 상부 중 일부에 위치한 p측 전극 패드(122)와 전기적으로 연결되어 p측 전극부를 형성한다. 상기 n측 연장 전극(111)은 상기 p측 연장 전극(121)과 전기적으로 절연되도록 형성된다.
상기 p측 연장 전극(121)은 세퍼레이션 영역에(110)의 일부를 가로지르도록 형성되는 바, 상기 세퍼레이션 영역(110)이 p측 연장 전극(121)의 일부를 가로지르는 형태로 이루어진다. 또한, n측 연장 전극(111) 및 p측 연장 전극(121) 모두 세퍼레이션 영역(110)의 일부를 가로지르도록 형성될 수 있다.
도 2에서 보는 바와 같이 상기 세퍼레이션 영역(110)에 의하여 p형 질화물층 상부에 형성되는 p-컨택층(123) 영역이 3개로 분리될 수 있으며, 세페러이션 영역에 의하여 분리되는 p-컨택층 영역의 수는 세퍼레이션 영역의 형태에 따라 다르게 나타날 수 있다.
이 때, 상기 세퍼레이션 영역(110)에 의하여 분리되는 각각의 p-컨택층의 수평 면적이 균일하도록 세퍼레이션 영역(110)을 구성하는 것이 바람직하며, 그 제조 공정 상의 오차 등을 고려할 때, 각각의 p-컨택층의 수평 면적은 상호 간에 10% 내의 차이를 나타내는 것이 좋다. 즉, 상기 p-컨택층의 수평 면적은 n측 연장 전극을 비롯하여 비발광 영역을 제외한 발광 영역을 의미하며, p측 연장 전극(121)과 p측 전극 패드(122)가 형성되는 영역을 제외한 면적을 기준으로 균일하게 분리되도록 함이 바람직하다.
한편, 상기 n측 연장 전극(111) 및 p측 연장 전극(121)의 폭은 각각 1 ~ 100 ㎛, 바람직하게는 5 ~ 50 ㎛ 범위 내로 조절할 수 있으나, 이에 제한되지 아니한다.
상기 n측 전극 패드(112)에는 하나 또는 2 이상의 n측 연장 전극(111)이 전기적으로 연결될 수 있으며, 상기 n측 연장 전극(111)은 절곡점이 없는 직선 형태뿐만 아니라 하나 이상의 절곡점을 갖도록 형성될 수 있다.
또한, 상기 p측 전극 패드(122)에도 역시 하나 또는 2 이상의 p측 연장 전극(121)이 전기적으로 연결될 수 있다. 상기 2 이상의 p측 연장 전극(121)이 형성되는 경우 p측 전극 패드(122)에 연결되지 않는 반대편의 끝단은 각각 이격되어 형성되거나 p측 전극 패드(122)를 중심으로 폐쇄형으로 형성될 수 있다.
보다 구체적인 구성을 설명하기 위하여 도 3 및 4에서 도 2의 절취선 A-A, B-B를 따라 보여지는 단면도를 나타내었다.
도 3에서 도시된 바와 같이, 본 발명의 반도체 발광소자는 기판(130)의 상부 방향으로 버퍼층(140), n형 질화물층(150), 활성층(160), p형 질화물층(170)이 적층되어 형성된다.
상기 기판(130)은 사파이어를 비롯하여, SiC, Si, GaN, ZnO, GaAs, GaP, LiAl2O3, BN 또는 AlN 등의 화합물로 이루어질 수 있다. 또한, 상기 버퍼층(140)은 기판(130)과 n형 질화물층(150) 사이의 격자 부정합을 해소하기 위해 선택적으로 형성될 수 있고, 예컨대 AlN 또는 GaN으로 형성할 수 있다.
n형 질화물층(150)은 기판(130) 또는 버퍼층(140)의 상부면에 형성되고, n형 도판트가 도핑되어 있는 질화물로 형성된다. 상기 n형 도판트로는 실리콘(Si), 게르마늄(Ge), 주석(Sn) 등이 사용될 수 있다. 여기서, n형 질화물층(150)은 Si을 도핑한 n형 AlGaN 또는 언도우프 AlGaN으로 이루어진 제 1 층, 및 언도우프 또는 Si을 도핑한 n형 GaN로 이루어진 제 2 층이 번갈아가며 형성된 적층 구조일 수 있다. 물론, n형 질화물층(150)은 단층의 n형 질화물층으로 성장시키는 것도 가능하나, 제 1 층과 제 2 층의 적층 구조로 형성하여 크랙이 없는 결정성이 좋은 캐리어 제한층으로 작용할 수 있다.
활성층(160)은 n형 질화물층(150)과 p형 질화물층(170) 사이에서 단일양자우물구조 또는 다중양자우물구조로 이루어질 수 있으며, n형 질화물층(150)을 통하여 흐르는 전자와, p형 질화물층(170)을 통하여 흐르는 정공이 재결합(re-combination)되면서, 광이 발생된다. 여기서, 활성층(160)은 다중양자우물구조로서, 양자장벽층과 양자우물층은 각각 AlxGayInzN(이 때, x+y+z=1, 0≤x≤1, 0≤y≤1, 0≤z≤1)으로 이루어질 수 있다. 이러한 양자장벽층과 양자우물층이 반복되어 형성된 구조의 활성층(160)은 발생하는 응력과 변형에 의한 자발적인 분극을 억제할 수 있다.
p형 질화물층(170)은 p형 도판트가 도핑되어 있는 질화물로 형성된다. 상기 p형 도판트로는 마그네슘(Mg), 아연(Zn) 또는 카드뮴(Cd) 등이 사용될 수 있다. 여기서, p형 질화물층은 Mg을 도핑한 p형 AlGaN 또는 언도우프 AlGaN으로 이루어진 제 1 층, 및 언도우프 또는 Mg을 도핑한 p형 GaN로 이루어진 제 2 층을 번갈아가며 적층한 구조로 형성될 수 있다. 또한, p형 질화물층(170)은 n형 질화물층(150)과 마찬가지로 단층의 p형 질화물층으로 성장시키는 것도 가능하나, 적층 구조로 형성하여 크랙이 없는 결정성이 좋은 캐리어 제한층으로 작용할 수 있다.
상기 p형 질화물층(170)의 상부에는 p측 연장 전극(121) 및 상기 p측 연장 전극과 전기적으로 연결되는 p측 전극 패드(122)가 형성된다. 또한, 상기 p측 연장 전극(121)의 하부에는 p-컨택층(123)이 형성되며, 상기 p-컨택층(123)은 p형 질화물(170)에 오믹 컨택되어 접촉 저항을 낮추는 역할을 한다. 상기 p-컨택층(123)은 투명 전도성 산화물로 이루어질 수 있으며, ITO, CIO, ZnO, NiO, In2O3 및 IZO 중에서 선택되는 1종 또는 2종 이상을 포함하여 이루어질 수 있다.
특히, 상기 p-컨택층(123)은 상기 세퍼레이션 영역(110)에 의하여 복수로 분리되므로, 각각의 p-컨택층(123)은 이격되어 위치하게 된다. 따라서, 상기 세퍼레이션 영역(110)은 각 p-컨택층(123)이 이격되어 있는 공간을 의미한다. 다만 이격되어 형성된 각 p-컨택층(123)은 상기 p측 연장 전극(121)에 의하여 전기적으로 연결될 수 있다.
상기 세퍼레이션 영역(110)은 p-컨택층(123)을 일부 식각하는 과정을 통하여 형성될 수 있으며, 마스크로 포토 레지스트를 이용하는 경우 포토 리소그래피(photo-lithography), 전자빔 리소그래피(e-beam lithography), 이온빔 리소그래피(Ion-beam Lithography), 극자외선 리소그래피(Extreme Ultraviolet Lithography), 근접 X선 리소그라피(Proximity X-ray Lithography) 또는 나노 임프린트 리소그래피(nano imprint lithography) 등의 방법을 이용하여 형성할 수 있고, 또한 이와 같은 방법은 건식(Dry) 또는 습식(Wet) 식각(Etching)을 이용할 수 있다.
상기 세퍼레이션(110) 영역의 폭, 즉, 각각의 p-컨택층(123)이 이격되어 있는 거리는 0.5 ~ 20 ㎛ 범위에 있는 것이 바람직하며, 보다 바람직하게는 3 ~ 10 ㎛ 범위에 있도록 형성하는 것이 좋다.
한편, 도 4에서 도시된 바와 같이, n형 질화물층(150)이 노출된 상부에 n측 연장 전극(111) 및 상기 n측 연장 전극과 전기적으로 연결되는 n측 전극 패드(112)가 형성된다. 상기 n측 연장 전극은 p형 질화물층(170), p-컨택층(123) 및 p측 연장 전극(121)까지 형성한 후, 일 영역까지 노광 에칭(lithography etching)되어 외부로 노출된 n형 질화물층(150)의 상부에 형성된다.
또한, 상기 n측 연장 전극(111)의 하부에는 n-컨택층(151)이 더 포함될 수 있으며, 상기 n-컨택층(151)은 n형 질화물(150)에 오믹 컨택되어 접촉 저항을 낮추는 역할을 한다. 상기 n-컨택층(151)은 투명 전도성 산화물로 이루어질 수 있으며, 그 재질은 In, Sn, Al, Zn, Ga 등의 원소를 포함할 수 있다.
또한, 상기 n측 연장 전극(111) 및 n측 전극 패드(112)는 p-컨택층(123)으로부터 n형 질화물층(130)의 일부까지 노광 에칭(lithography etching)하여 형성된 n형 질화물층(130)의 노출된 일 영역에 형성될 수 있다.
한편, 본 발명에 따른 본 발명의 발광소자는 p형 질화물층(170) 및 활성층(160)을 관통하여 상기 n형 질화물층(150)을 노출시키도록 형성된 전류 확산용 컨택홀을 포함할 수 있다.
도 5는 전류 확산용 컨택홀을 이용하여 형성된 n측 연장 전극의 예를 나타낸 것이고, 도 6은 전류 확산용 컨택홀을 이용하여 형성된 n측 연장 전극의 다른 예를 나타낸 것이다. 도 5 및 도 6에서는 전류 확산용 컨택홀이 하나만 형성된 예를 나타내었으나, 전류 확산용 컨택홀은 복수개 형성될 수 있다.
p-컨택층(123)을 전면적으로 형성하는 경우, 전류 확산용 컨택홀은, 도 5에 도시된 예와 같이, p-컨택층(123)의 일부 영역 상에 상부 절연층(410)을 형성한 후, 상부 절연층(410), p-컨택층(123), p형 질화물층(170), 활성층(160)을 관통하는 홀을 형성한 후, 홀 내벽에 측면 절연층(420)을 형성하는 방법으로 형성될 수 있다.
반면, p-컨택층(123)을 일부 영역에만 형성하는 경우, 전류 확산용 컨택홀은, 도 6에 도시된 예와 같이, p-컨택층(123)이 형성되지 않은 p형 질화물층(170)의 일부 영역 상에 상부 절연층(410)을 형성한 후, 상부 절연층(410), p형 질화물층(170), 활성층(160)을 관통하는 홀을 형성한 후, 홀 내벽에 측면 절연층(420)을 형성하는 방법으로 형성될 수 있다.
전류 확산용 컨택홀이 형성된 경우, 전류 확산용 컨택홀 내부 및 상부 절연층에 n측 연장 전극(111)이 형성되며, 전류 확산용 컨택홀에 의하여 n형 질화물층(150)과 n측 연장 전극(111)이 전기적으로 연결될 수 있다.
상기 n측 연장 전극은 상기 전류 확산용 컨택홀에 의하여 노출된 n형 질화물층을 전기적으로 연결하게 되며, 이를 통하여 발광 영역을 확대하고 전류 분산을 도모할 수 있다. 다만, 이 경우 컨택홀의 측벽과 n측 연장 전극을 이격시키기 위한 측면 절연층이 요구된다. 상기 측면 절연층은 실리콘 산화물 또는 실리콘 질화물로 형성될 수 있으며, PECVD(Plasma Enhanced Chemical Vapor Deposition) 방법, 스퍼터링 방법, MOCVD 방법 또는 전자빔 증착(e-beam evaporation) 방법으로 형성될 수 있다.
상기와 같이 세퍼레이션 영역에 의하여 발광면에 해당하는 제2 전극 컨택층이 분리되어 형성됨에 따라, 유효 전류 밀도의 균일도를 개선하는 효과를 기대할 수 있으며, 전류 밀도를 향상시켜 휘도를 높일 수 있다.
이하, 본 발명의 하기 실시예를 통하여 본 발명의 반도체 발광소자에 대하여 보다 구체적으로 설명하기로 한다.
실시예 1
도 2 내지 4와 같은 반도체 발광소자를 구성하기 위하여 사파이어 기판에 질화물 발광소자의 질화물층으로 GaN을 적용하였고, 연장 전극으로 일반적인 Au 기반 전극을 적용하였으며, 세퍼레이션 영역은 도 2와 같이 형성하여 질화물 발광소자를 제조하였다.
실시예 2
세퍼레이션 영역을 추가적으로 도 7과 같이 형성하는 것을 제외하고는 실시예 1과 동일하게 질화물 발광소자를 제조하였다.
비교예
별도의 세퍼레이션 영역을 형성하지 않는 것을 제외하고는 상기 실시예 1과 동일하게 질화물 발광소자를 제조하였다.
상기 실시예 및 비교예의 발광소자에서의 발광 출력을 패키지 상태에서 120 mA의 동일 전류를 인가하여 측정하였으며, 그 결과를 하기 표 1 에 나타내었다.
[표 1]
Figure PCTKR2013010869-appb-I000001
상기 표 1에서 보는 바와 같이, 실시예의 발광소자는 비교예에 비하여 약 3 % 이상 광출력 특성이 개선된 바, 실시예의 발광소자는 우수한 광출력 특성을 나타낼 수 있음을 확인할 수 있었다.
이상에서는 본 발명의 실시예를 중심으로 설명하였으나, 이는 예시적인 것에 불과하며, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 기술자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 진정한 기술적 보호범위는 이하에 기재되는 특허청구범위에 의해서 판단되어야 할 것이다.

Claims (16)

  1. 제1 반도체층, 활성층 및 제2 반도체층을 포함하는 반도체 발광소자에 있어서,
    상기 제1 반도체층을 전기적으로 연결하는 제1 연장 전극;
    상기 제2 반도체층과 전기적으로 연결되며, 서로 이격되어 형성된 복수의 제2 전극 컨택층; 및
    상기 복수의 제2 전극 컨택층을 전기적으로 연결하는 제2 연장 전극을 포함하고,
    상기 제2 전극 컨택층은 세퍼레이션 영역에 의하여 복수로 분리된 것을 특징으로 하는 반도체 발광소자.
  2. 제1항에 있어서,
    상기 제2 연장 전극은 상기 세퍼레이션 영역의 일부를 가로지르도록 형성되는 것을 특징으로 하는 반도체 발광소자.
  3. 제1항에 있어서,
    상기 제1 연장 전극 및 제2 연장 전극은 상기 세퍼레이션 영역의 일부를 가로지르도록 형성되는 것을 특징으로 하는 반도체 발광소자.
  4. 제1항에 있어서,
    상기 세퍼레이션 영역에 의하여 분리되는 복수의 제2 전극 컨택층 각각의 수평 면적이 균일하게 형성되는 것을 특징으로 하는 반도체 발광소자.
  5. 제1항에 있어서,
    상기 제2 전극 컨택층은 ITO, CIO, ZnO, NiO, In2O3 및 IZO 중에서 선택되는 1종 또는 2종 이상을 포함하는 재질로 형성된 것을 특징으로 하는 반도체 발광소자.
  6. 제1항에 있어서,
    상기 세퍼레이션 영역의 폭은 0.5 ~ 20 ㎛ 범위에 있는 것을 특징으로 하는 반도체 발광소자.
  7. 제1항에 있어서,
    상기 반도체 발광소자는
    상기 제1 반도체층이 노출되어 있고, 상기 제1 반도체층 상에 상기 제1 연장 전극이 형성되어 있는 것을 특징으로 하는 반도체 발광소자.
  8. 제1항에 있어서,
    상기 반도체 발광소자는
    상기 제2 전극 컨택층의 일부 영역 상에 형성되는 상부 절연층; 및
    상기 상부 절연층, 상기 제2 전극 컨택층, 상기 제2 반도체층, 상기 활성층을 관통하는 전류 확산용 컨택홀;을 더 포함하고,
    상기 전류 확산용 컨택홀에 의하여 상기 제1 반도체층과 제1 연장 전극이 전기적으로 연결되는 것을 특징으로 하는 반도체 발광소자.
  9. 제1항에 있어서,
    상기 반도체 발광소자는
    상기 제2 반도체층의 일부 영역 상에 형성되는 상부 절연층; 및
    상기 상부 절연층, 상기 제2 반도체층, 상기 활성층을 관통하는 전류 확산용 컨택홀;을 더 포함하고,
    상기 전류 확산용 컨택홀에 의하여 상기 제1 반도체층과 제1 연장 전극이 전기적으로 연결되는 것을 특징으로 하는 반도체 발광소자.
  10. 제1항에 있어서,
    상기 제1 연장 전극과 전기적으로 연결된 제1 전극 패드 및 상기 제2 연장 전극과 전기적으로 연결된 제2 전극 패드를 더 포함하는 것을 특징으로 하는 반도체 발광소자.
  11. 제1 반도체층, 활성층 및 제2 반도체층을 형성하는 단계;
    상기 제2 반도체층 상부에 제2 전극 컨택층을 형성하는 단계;
    상기 제2전극 컨택층이 복수 영역으로 분리되도록, 상기 제2 전극 컨택층의 일 영역을 식각하여 세퍼레이션 영역을 형성하는 단계;
    상기 복수 영역으로 분리된 제2 전극 컨택층 및 상기 세퍼레이션 영역에 노출된 제2 반도체층 상부에 제2 연장 전극을 형성하는 단계;
    상기 제1 반도체층의 일 영역이 외부로 노출되도록 활성층 및 제2 반도체층을 식각하는 단계; 및
    상기 노출된 제1 반도체층 상부에 제1 연장 전극을 형성하는 단계를 포함하는 것을 특징으로 하는 반도체 발광소자의 제조 방법.
  12. 제11항에 있어서,
    상기 활성층 및 제2 반도체층을 식각하는 단계는,
    상기 제2 전극 컨택층의 일부 영역 상에 상부 절연층을 형성하는 단계와,
    식각을 통하여, 상기 상부 절연층, 상기 제2 전극 컨택층, 상기 제2 반도체층 및 상기 활성층을 관통하여 상기 제1 반도체층이 노출되는 전류 확산용 컨택홀을 형성하는 단계와,
    상기 전류 확산용 컨택홀 각각의 내벽에 측면 절연층을 형성하는 단계를 포함하는 것을 특징으로 하는 반도체 발광소자의 제조 방법.
  13. 제12항에 있어서,
    상기 노출된 제1 반도체층 상부에 제1 연장 전극을 형성하는 단계에서는
    상기 전류 확산용 컨택홀 각각의 내부 및 상기 상부 절연체 상에 제1 연장 전극을 형성하는 것을 특징으로 하는 반도체 발광소자의 제조 방법.
  14. 제11항에 있어서,
    상기 제2 반도체층 상부에 제2 전극 컨택층을 형성하는 단계에서는 상기 제2 반도체층의 일부 영역을 제외한 영역에 제2 전극 컨택층을 형성하고,
    상기 활성층 및 제2 반도체층을 식각하는 단계는,
    상기 제2 전극 컨택층이 형성되어 있지 않은 제2 반도체층 상에 상부 절연층을 형성하는 단계와,
    식각을 통하여, 상기 상부 절연층, 상기 제2 반도체층 및 상기 활성층을 관통하여 상기 제1 반도체층이 노출되는 전류 확산용 컨택홀을 형성하는 단계와,
    상기 전류 확산용 컨택홀 각각의 내벽에 측면 절연층을 형성하는 단계를 포함하는 것을 특징으로 하는 반도체 발광소자의 제조 방법.
  15. 제14항에 있어서,
    상기 노출된 제1 반도체층 상부에 제1 연장 전극을 형성하는 단계에서는
    상기 전류 확산용 컨택홀 각각의 내부 및 상기 상부 절연체 상에 제1 연장 전극을 형성하는 것을 특징으로 하는 반도체 발광소자의 제조 방법.
  16. 제11항에 있어서,
    상기 제1 연장 전극과 전기적으로 연결되는 제1 전극 패드를 형성하는 단계; 및
    상기 제2 연장 전극과 전기적으로 연결되는 제2 전극 패드를 형성하는 단계;를 더 포함하는 것을 특징으로 하는 반도체 발광소자의 제조 방법.
PCT/KR2013/010869 2012-12-03 2013-11-27 세퍼레이션 영역을 포함하여 전류 분산 효과가 우수한 고휘도 반도체 발광소자 WO2014088256A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/648,848 US20150333228A1 (en) 2012-12-03 2013-11-27 High-brightness semiconductor light-emitting device having excellent current dispersion effect by including separation region
CN201380063331.3A CN104854714A (zh) 2012-12-03 2013-11-27 包括分隔区域来呈现优秀的电流分散效果的高亮度半导体发光器件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020120138806A KR101532917B1 (ko) 2012-12-03 2012-12-03 세퍼레이션 영역을 포함하여 전류 분산 효과가 우수한 고휘도 반도체 발광소자
KR10-2012-0138806 2012-12-03

Publications (1)

Publication Number Publication Date
WO2014088256A1 true WO2014088256A1 (ko) 2014-06-12

Family

ID=50883635

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/010869 WO2014088256A1 (ko) 2012-12-03 2013-11-27 세퍼레이션 영역을 포함하여 전류 분산 효과가 우수한 고휘도 반도체 발광소자

Country Status (5)

Country Link
US (1) US20150333228A1 (ko)
KR (1) KR101532917B1 (ko)
CN (1) CN104854714A (ko)
TW (1) TW201429001A (ko)
WO (1) WO2014088256A1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI633645B (zh) * 2017-08-04 2018-08-21 鼎展電子股份有限公司 可撓性led元件與可撓性led顯示面板
KR102427637B1 (ko) * 2017-09-29 2022-08-01 삼성전자주식회사 반도체 발광소자
CN110911465B (zh) * 2019-11-29 2022-11-25 京东方科技集团股份有限公司 阵列基板及其制备方法和显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100721142B1 (ko) * 2006-03-14 2007-05-23 삼성전기주식회사 질화물계 반도체 발광소자
US20090179215A1 (en) * 2008-01-16 2009-07-16 Rohm Co., Ltd. Semiconductor light emitting device and fabrication method for the semiconductor light emitting device
JP2011124580A (ja) * 2009-12-14 2011-06-23 Seoul Opto Devices Co Ltd 電極パッドを有する発光ダイオード
KR20120084563A (ko) * 2011-01-20 2012-07-30 갤럭시아포토닉스 주식회사 영역 구분형 발광 다이오드 및 발광 다이오드 패키지
KR20120086876A (ko) * 2011-01-27 2012-08-06 엘지이노텍 주식회사 발광 소자
KR20120100359A (ko) * 2011-03-04 2012-09-12 주식회사 에피밸리 3족 질화물 반도체 발광소자

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101106135B1 (ko) * 2009-06-30 2012-01-20 서울옵토디바이스주식회사 균일한 전류밀도 특성을 갖는 발광 다이오드
KR101777262B1 (ko) * 2010-12-22 2017-09-11 엘지이노텍 주식회사 발광 소자

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100721142B1 (ko) * 2006-03-14 2007-05-23 삼성전기주식회사 질화물계 반도체 발광소자
US20090179215A1 (en) * 2008-01-16 2009-07-16 Rohm Co., Ltd. Semiconductor light emitting device and fabrication method for the semiconductor light emitting device
JP2011124580A (ja) * 2009-12-14 2011-06-23 Seoul Opto Devices Co Ltd 電極パッドを有する発光ダイオード
KR20120084563A (ko) * 2011-01-20 2012-07-30 갤럭시아포토닉스 주식회사 영역 구분형 발광 다이오드 및 발광 다이오드 패키지
KR20120086876A (ko) * 2011-01-27 2012-08-06 엘지이노텍 주식회사 발광 소자
KR20120100359A (ko) * 2011-03-04 2012-09-12 주식회사 에피밸리 3족 질화물 반도체 발광소자

Also Published As

Publication number Publication date
KR20140071003A (ko) 2014-06-11
KR101532917B1 (ko) 2015-07-01
CN104854714A (zh) 2015-08-19
US20150333228A1 (en) 2015-11-19
TW201429001A (zh) 2014-07-16

Similar Documents

Publication Publication Date Title
WO2014061971A1 (ko) 발광 영역 분리 트렌치를 갖는 전류 분산 효과가 우수한 고휘도 반도체 발광소자
US10256387B2 (en) Light emitting diode
WO2014081251A1 (ko) 전류 분산 효과가 우수한 발광소자 및 그 제조 방법
WO2010095781A1 (ko) 발광소자 및 그 제조방법
WO2012020901A1 (en) Light emitting diode with improved light extraction efficiency
WO2013157786A1 (ko) 배면에 패턴을 갖는 기판을 구비하는 발광다이오드 및 그의 제조방법
WO2011074768A1 (en) Light emitting diode having electrode pads
WO2012026695A2 (en) Light emitting diode with improved luminous efficiency
WO2014104688A1 (ko) 질화물 반도체 발광 소자 및 그 제조 방법
CN102169937A (zh) 发光器件、发光器件封装、制造发光器件的方法及照明系统
WO2009145501A2 (ko) 발광 소자 및 그 제조방법
WO2013024914A1 (ko) 질화물 반도체 발광소자의 제조방법 및 이에 의해 제조된 질화물 반도체 발광소자
WO2013022228A2 (ko) 누설전류 차단 효과가 우수한 질화물 반도체 발광소자 및 그 제조 방법
WO2013015472A1 (ko) 반도체 발광소자 및 그 제조방법
WO2011008038A2 (ko) 3족 질화물 반도체 발광소자
WO2013165127A1 (ko) 발광 다이오드 소자 및 그의 제조 방법
WO2013141421A1 (ko) 수평형 파워 led 소자 및 그 제조방법
WO2014126300A1 (ko) 나노 구조체 및 이를 포함하는 나노 디바이스
WO2013129812A1 (en) Light emitting diode having gallium nitride substrate
WO2014088256A1 (ko) 세퍼레이션 영역을 포함하여 전류 분산 효과가 우수한 고휘도 반도체 발광소자
WO2013137554A1 (ko) 발광 소자 및 그 제조 방법
WO2016052929A1 (en) Light emitting diode comprising porous transparent electrode
WO2019045435A1 (en) LIGHT EMITTING DIODE APPARATUS AND METHOD FOR MANUFACTURING THE SAME
WO2014126438A1 (ko) 반도체 발광 소자 및 그 제조방법
WO2014193109A1 (en) Light emitting diode having plurality of light emitting elements and method of fabricating the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13860494

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14648848

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13860494

Country of ref document: EP

Kind code of ref document: A1