WO2014088051A1 - 劣化解析方法 - Google Patents

劣化解析方法 Download PDF

Info

Publication number
WO2014088051A1
WO2014088051A1 PCT/JP2013/082657 JP2013082657W WO2014088051A1 WO 2014088051 A1 WO2014088051 A1 WO 2014088051A1 JP 2013082657 W JP2013082657 W JP 2013082657W WO 2014088051 A1 WO2014088051 A1 WO 2014088051A1
Authority
WO
WIPO (PCT)
Prior art keywords
degradation
deterioration
sulfur
polymer
degree
Prior art date
Application number
PCT/JP2013/082657
Other languages
English (en)
French (fr)
Inventor
房恵 金子
岸本 浩通
Original Assignee
住友ゴム工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友ゴム工業株式会社 filed Critical 住友ゴム工業株式会社
Publication of WO2014088051A1 publication Critical patent/WO2014088051A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/06Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption
    • G01N23/083Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption the radiation being X-rays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/60Specific applications or type of materials
    • G01N2223/623Specific applications or type of materials plastics

Definitions

  • the present invention relates to a degradation analysis method for analyzing a degradation state of a polymer material.
  • the Swell test is a method in which a crosslinked polymer material is swollen with a low molecular weight solvent such as toluene to obtain a network chain density.
  • a crosslinked polymer material is swollen with a low molecular weight solvent such as toluene to obtain a network chain density.
  • Patent Document 1 discloses a degradation analysis method for measuring the amount of X-ray absorption irradiated to a polymer material and analyzing the degradation state of the polymer from a total peak area at the K-shell absorption edge of oxygen atoms. There has been proposed a technique for obtaining the amount of oxygen or ozone bound to a molecular material. However, this method cannot determine whether the polymer part or the sulfur part is bonded, and therefore cannot determine the deterioration ratio of the polymer part or the sulfur cross-linked part.
  • An object of the present invention is to solve the above-mentioned problems and to provide a deterioration analysis method in which a deterioration ratio of a polymer material and a sulfur crosslinking deterioration is particularly required for the deterioration state of a sulfur-crosslinked polymer material.
  • the present invention is based on a polymer degradation state and a sulfur crosslinking degradation state obtained by irradiating a sulfur-crosslinked polymer material with X-rays and measuring the X-ray absorption while changing the energy of the X-rays.
  • the present invention relates to a degradation analysis method for obtaining a degradation rate of polymer degradation and sulfur crosslinking degradation.
  • a sulfur-crosslinked polymer material containing one or more types of diene polymers, or a polymer material obtained by combining the one or more types of diene polymers with one or more resins and sulfur-crosslinked. is preferably used.
  • the energy range scanned using the X-ray is preferably 5000 eV or less.
  • the X-ray energy is normalized by the following (Equation 1) based on the X-ray absorption spectrum obtained by scanning the necessary range of the K-shell absorption edge of carbon atoms in the range of 260 to 400 eV.
  • the constants ⁇ and ⁇ are calculated, and the X-ray absorption spectrum of the K-shell absorption edge of the carbon atom corrected using the normalized constants ⁇ and ⁇ is separated into waveforms, and the resulting ⁇ * transition near 285 eV is attributed.
  • the X-ray energy is normalized by the following (Equation 3) based on the X-ray absorption spectrum obtained by scanning the necessary range of the K-shell absorption edge of the sulfur atom in the range of 2460 to 3200 eV. Constants ⁇ and ⁇ are calculated, and the X-ray absorption spectrum of the K-shell absorption edge of the sulfur atom corrected using the normalized constants ⁇ and ⁇ is separated into waveforms, and assigned to the SS bond near 2472 eV. It is preferable to obtain the degree of sulfur crosslinking deterioration (%) by the following (Equation 4) using the peak area.
  • the present invention from a polymer degradation state and a sulfur crosslinking degradation state obtained by irradiating a sulfur-crosslinked polymer material with X-rays and measuring X-ray absorption while changing the energy of the X-rays. Since this is a deterioration analysis method for determining the deterioration ratio of polymer deterioration and sulfur cross-linking deterioration, it is possible to determine the deterioration ratio of polymer deterioration and sulfur cross-linking deterioration in particular regarding the deterioration state of the polymer material subjected to sulfur cross-linking. Accordingly, it is possible to determine how much each of the deterioration of the polymer and the sulfur crosslinking deterioration has progressed, and it is possible to take a deterioration resistance countermeasure that is more effective than before.
  • a polymer material subjected to sulfur cross-linking is irradiated with X-rays, and the X-ray absorption amount is measured while changing the energy of the X-rays. This is a method for obtaining the deterioration rate of polymer deterioration and sulfur crosslinking deterioration from the deterioration state.
  • Known degradation factors of sulfur-crosslinked polymer materials such as vulcanized rubber include degradation of polymer molecular chains due to ultraviolet rays, oxygen, ozone, heat, etc., and degradation of sulfur crosslinking. For this purpose, it is important to know how the polymer molecular chain and the sulfur cross-linked structure change due to which factors.
  • a method has been proposed in which a sample is measured using the NEXAFS method and the amount of oxygen, ozone, or the like bound to the polymer material is determined from the entire area of the X-ray absorption spectrum near the oxygen K-shell absorption edge.
  • it cannot be determined whether it is bonded to the polymer portion or the sulfur crosslinking portion.
  • a method for obtaining the sulfur bridge deterioration by calculating the ratio of the peak of the oxide bonded to the sulfur bridge to the total area of the S1s orbital spectrum obtained by the XPS method is conceivable. In this method, the deterioration of the sulfur cross-linking portion is required, and the cutting amount of the cross-linking portion directly related to the deterioration cannot be measured.
  • the degradation analysis method of the present invention obtains the degree of degradation of the polymer from the X-ray absorption spectrum near the carbon K-shell absorption edge, and the S—S bond of the X-ray absorption spectrum near the sulfur K-shell absorption edge.
  • the degree of degradation of sulfur cross-linking is measured, and an analysis method is provided that can determine which degradation is progressing, that is, the rate of degradation. It is.
  • the new and degraded polymer materials are irradiated with X-rays while changing the energy, and the respective spectra obtained by measuring the X-ray absorption amount are compared.
  • the deterioration state of the later polymer material is analyzed, and the deterioration ratio of the polymer deterioration degree and the sulfur deterioration degree is determined.
  • the degree of degradation of the polymer and the degree of degradation of the sulfur bridge were analyzed, and each obtained The deterioration rate of the polymer and sulfur cross-linking is judged from the degree of deterioration of the polymer.
  • the degradation state of the polymer part is analyzed from the peak area of the X-ray absorption spectrum of the K-shell absorption edge of carbon atoms obtained by NEXAFS (Near Edge X-ray Absorption Fine Structure: near-absorption X-ray absorption fine structure) measurement
  • the degradation state of the sulfur cross-linking portion is analyzed from the peak area of the X-ray absorption spectrum of the K-shell absorption edge of sulfur atoms obtained by XAFS (X-ray Absorption Fine Structure: near-absorption X-ray absorption fine structure) measurement
  • crosslinking can be determined from each obtained deterioration degree.
  • the X-ray energy used differs between the vicinity of the carbon K-shell absorption edge and the vicinity of the sulfur K-shell absorption edge. Therefore, in general, a necessary energy range of continuous X-rays radiated from the synchrotron is cut out by a spectrometer and used for measurement. However, different spectrometers are used depending on the energy used.
  • the NEXAFS and XAFS methods require a continuous X-ray generator for the light source to scan with X-ray energy, and X-ray absorption with a high S / N ratio and S / B ratio is required to analyze detailed chemical states. It is necessary to measure the spectrum. Therefore, the X-ray emitted from the synchrotron has a brightness of at least 10 10 (photons / s / mrad 2 / mm 2 /0.1% bw) and is a continuous X-ray source. And optimal for XAFS measurements. Note that bw represents the band width of X-rays emitted from the synchrotron.
  • the X-ray luminance (photons / s / mrad 2 / mm 2 /0.1% bw) is preferably 10 10 or more, more preferably 10 11 or more. Although an upper limit is not specifically limited, It is preferable to use the X-ray intensity below the extent that there is no radiation damage.
  • the number of photons (photons / s) of the X-ray is preferably 10 7 or more, more preferably 10 9 or more. Although an upper limit is not specifically limited, It is preferable to use the X-ray intensity below the extent that there is no radiation damage.
  • the energy range scanned using the X-ray is preferably 5000 eV or less, more preferably 4000 eV or less, and still more preferably 3500 eV or less. When it exceeds 5000 eV, there is a possibility that the degradation state analysis in the target polymer composite material cannot be performed.
  • the lower limit is not particularly limited.
  • the measurement can be performed by, for example, a method in which photoelectrons are emitted by irradiating a sample placed in an ultra-high vacuum with X-rays, electrons flow from the ground to compensate for it, and the sample current is measured. Therefore, although it is sensitive to the surface, the conditions of the sample that can be measured include the fact that it does not emit gas in a vacuum and that it is electrically conductive. There has been little research on rubber samples that are likely to be removed and that are insulators.
  • NEXAFS and XAFS are seeing excitation to unoccupied orbitals, and are greatly affected by the elements bound to the elements to be investigated. Therefore, it is possible to separate individual bonding states and to separate degradation factors. This is considered to be possible and used for analysis of polymer degradation in the present invention.
  • NEXAFS NEXAFS
  • XAFS measurement methods The following three methods are typically used as NEXAFS and XAFS measurement methods.
  • the NEXAFS method was performed using the electron yield method and the XAFS method was performed using the fluorescence method.
  • the present invention is not limited to this, and various detection methods may be used. May be.
  • Transmission method This is a method for detecting the X-ray intensity transmitted through a sample.
  • a photodiode array detector or the like is used for measurement of transmitted light intensity.
  • Fluorescence method This is a method for detecting fluorescent X-rays generated when a sample is irradiated with X-rays.
  • the detector include a Lytle detector and a semiconductor detector.
  • the transmission method when X-ray absorption measurement of an element having a small content in a sample is performed, the background is increased due to the X-ray absorption of an element having a small content and a large content, so that the S / B ratio is poor. It becomes a spectrum.
  • the fluorescence method especially when an energy dispersive detector or the like is used), it is possible to measure only the fluorescent X-rays from the target element, so that the influence of the element having a large content is small.
  • this method is the most suitable method for obtaining bulk information after the transmission method.
  • Electrode yield method This is a method for detecting a current flowing when a sample is irradiated with X-rays. Therefore, the sample needs to be a conductive material. Since the polymer material is an insulator, until now, the X-ray absorption measurement of the polymer material has mostly used a sample with a sample placed on a substrate by vapor deposition or spin coating, but in the present invention, A high S / B ratio and S / N ratio measurement can be realized by processing (cutting) the polymer material into a microtome of 100 ⁇ m or less, preferably 10 ⁇ m or less, more preferably 1 ⁇ m or less, and even more preferably 500 nm or less.
  • Another characteristic of the electron yield method is that it is surface sensitive (information on the surface of the sample about several nm). When the sample is irradiated with X-rays, electrons escape from the element, but electrons have a strong interaction with the substance, so that the mean free path in the substance is short.
  • the X-ray energy in the range of 260 to 400 eV requires the K-shell absorption edge of carbon atoms.
  • the normalization constants ⁇ and ⁇ are calculated by the following (Equation 1) based on the X-ray absorption spectrum obtained by scanning various ranges, and the K shell of the carbon atom corrected using the normalization constants ⁇ and ⁇ There is a method in which the X-ray absorption spectrum at the absorption edge is waveform-separated, and the degree of polymer degradation (%) is calculated by the following (Equation 2) using the peak area attributed to the ⁇ * transition near 285 eV.
  • the deterioration degree (%) of the polymer (polymer part) after deterioration can be obtained, and the polymer partial deterioration rate can be analyzed.
  • the energy of the X-ray is in the range of 260 to 350 eV.
  • the background is drawn by evaluating from the slope before the absorption edge before performing the operation of (Equation 1).
  • the total area of the X-ray absorption spectrum in (Equation 1) is obtained by integrating the spectrum within the measurement range, and the energy range can be changed depending on the measurement conditions and the like.
  • the method for determining the degree of polymer degradation will be specifically described using an example of using a new blend rubber of NR and BR and a sample (both sulfur cross-linked) subjected to ozone degradation for 7 hours.
  • the NEXAFS measurement result of the K-shell absorption edge of carbon atoms of these samples is shown in FIG.
  • FIG. 1 in the deteriorated sample, the peak of ⁇ * near 285 eV is smaller than that of a new product, but it is difficult to measure the absolute value in the NEXAFS method.
  • the reason is that subtle changes such as the distance of the sample from the light source affect the magnitude of the X-ray absorption spectrum.
  • the NEXAFS measurement result of the K-shell absorption edge of carbon atoms cannot be simply compared between samples.
  • the spectrum (NEXAFS) of the K-shell absorption edge of the carbon atom after normalization thus obtained is shown in FIG.
  • the degree of polymer degradation is determined from the normalized spectrum using the above (Equation 2).
  • the degree of polymer degradation is the rate of decrease in the peak of ⁇ * from before degradation to after degradation, and indicates the degradation rate (%) of the polymer chain in the sample.
  • the polymer degradation degree can be obtained in the same manner even when the peak intensity is used in place of the peak area in (Equation 2).
  • the deterioration state of the polymer in the present invention can be analyzed using, for example, the BL12 beam line of the Saga Kyushu Synchrotron Light Research Center.
  • the X-ray energy is in the range of 2460 to 3200 eV and the K-shell absorption edge of the sulfur atom is measured.
  • Normalization constants ⁇ and ⁇ are calculated by the following (Equation 3) based on the X-ray absorption spectrum obtained by scanning the necessary range, and the sulfur atom K corrected using the normalization constants ⁇ and ⁇ is calculated.
  • the X-ray absorption spectrum at the shell absorption edge is waveform-separated, and the obtained peak area attributed to the SS bond in the vicinity of 2472 eV is used to obtain the sulfur crosslinking deterioration degree (%) by the following (Equation 4). It is done.
  • crosslinking part after deterioration is obtained, and the deterioration rate of sulfur bridge
  • the energy of the X-ray is in the range of 2460 to 2500 eV.
  • the background is drawn by evaluating from the slope before the absorption edge before performing the operation of (Equation 3).
  • the total area of the X-ray absorption spectrum in (Equation 3) is obtained by integrating the spectrum in the measurement range, and the energy range can be changed depending on the measurement conditions and the like.
  • the method for determining the degree of sulfur cross-linking deterioration will be specifically described using an example of using a new NR and BR blend rubber and a sample subjected to thermal oxygen deterioration for one week (both sulfur cross-linking).
  • the XAFS measurement results of the K-shell absorption edge of sulfur atoms of these samples are shown in FIG.
  • FIG. 3 in the degraded sample, the peak corresponding to the S—S bond (sulfur-sulfur bond) near 2472 eV decreases, and the peak corresponding to SOx (sulfur oxide) increases.
  • the reason is that subtle changes such as the distance of the sample from the light source affect the magnitude of the X-ray absorption spectrum. For the above reasons, the XAFS measurement result of the K-shell absorption edge of sulfur atoms cannot be simply compared between samples.
  • the spectrum (XAFS) of the K-shell absorption edge of the sulfur atom after normalization thus obtained is shown in FIG.
  • the degree of sulfur cross-linking degradation is determined from the normalized spectrum using the above (Equation 4).
  • the degree of sulfur cross-linking deterioration is the rate of decrease of the SS bond peak from before deterioration to after deterioration, and indicates the deterioration rate (%) of sulfur cross-linking in the sample.
  • the degree of sulfur cross-linking deterioration can be similarly determined even if the peak intensity is used in place of the peak area in (Equation 4).
  • oxygen-degraded products are described.
  • ozone-degraded products and degraded products degraded by both ozone and oxygen can be analyzed by the same method, and the degree of deterioration of sulfur crosslinking can be obtained.
  • the deterioration state of the sulfur bridge in the present invention can be analyzed using, for example, the B branch of BL27SU of the Saga Kyushu Synchrotron Light Research Center.
  • the contribution ratio of polymer deterioration and sulfur cross-linking deterioration can be calculated by the following (formula 5).
  • the degree of polymer degradation (%) and the degree of sulfur crosslinking degradation (%) which indicate the degree of degradation of each polymer and sulfur crosslinking, using the method for obtaining the degree of polymer degradation or the method for obtaining the degree of sulfur crosslinking degradation as described above.
  • ratio ratio
  • the contribution ratio of polymer degradation and sulfur cross-linking degradation> 1 when the contribution ratio of polymer degradation and sulfur cross-linking degradation> 1, the progress of polymer degradation is larger, and the contribution ratio of polymer degradation and sulfur cross-linking degradation ⁇ 1. In this case, it can be judged that the progress of sulfur cross-linking degradation is larger. Therefore, by adopting the method of the present invention, anti-deterioration measures that are more effective than conventional methods can be established.
  • the sulfur-crosslinked polymer material applicable to the present invention is not particularly limited and includes conventionally known materials.
  • a sulfur-crosslinked rubber material containing one or more types of diene rubbers, the rubber material A composite material obtained by combining sulfur and one or more resins and sulfur-crosslinking can be suitably used.
  • diene rubber examples include natural rubber (NR), isoprene rubber (IR), butadiene rubber (BR), styrene butadiene rubber (SBR), acrylonitrile butadiene rubber (NBR), chloroprene rubber (CR), butyl rubber (IIR), Examples thereof include polymers having double bonds such as halogenated butyl rubber (X-IIR) and styrene isoprene butadiene rubber (SIBR).
  • NR natural rubber
  • IR isoprene rubber
  • BR butadiene rubber
  • SBR styrene butadiene rubber
  • NBR acrylonitrile butadiene rubber
  • CR chloroprene rubber
  • IIR butyl rubber
  • examples thereof include polymers having double bonds such as halogenated butyl rubber (X-IIR) and styrene isoprene butadiene rubber (SIBR).
  • the resin is not particularly limited, and examples thereof include those widely used in the rubber industry field, and examples thereof include petroleum resins such as C5 aliphatic petroleum resins and cyclopentadiene petroleum resins.
  • the degradation analysis method of the present invention can be suitably applied to these materials.
  • Examples and Comparative Examples The deteriorated samples used in the examples and comparative examples were prepared using the following rubber materials and deterioration conditions.
  • the sample was processed with a microtome so as to have a thickness of 100 ⁇ m or less, and then stored in a vacuum desiccator after the sample was prepared so that the influence of oxygen other than deterioration did not appear.
  • Rubber material NR and BR blend rubber (sulfur cross-linked): TSR20 Hainan Chuka Rubber Co., Ltd., Ubepol BR 130B Ube Industries, Ltd. Cross-linking), using side walls
  • Ozone degradation 40 ° C, 50 pphm
  • Oxygen degradation 80 ° C in air
  • NEXAFS NEXAFS measurement system (measurement conditions) attached to the BL12 beam line at Saga Prefectural Kyushu Synchrotron Light Research Center Luminance: 5 ⁇ 10 12 photons / s / mrad 2 / mm 2 /0.1% bw Number of photons: 2 ⁇ 10 9 photons / s
  • Spectrometer Grating spectrometer Measuring method: Electron yield method
  • XAFS degree of sulfur cross-linking deterioration
  • XAFS SPring-8 BL27SU B branch XAFS measurement system (measurement conditions) at Saga Kyushu Synchrotron Light Research Center Luminance: 1 ⁇ 10 16 photons / s / mrad 2 / mm 2 /0.1% bw Number of photons: 5 ⁇ 10 10 photons / s
  • Spectrometer Crystal spectrometer Detector: SDD (silicon drift detector) Measurement method: Fluorescence method
  • Table 1 shows the results obtained by the above polymer degradation analysis and sulfur crosslinking degradation analysis.

Landscapes

  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

 本発明は、イオウ架橋させた高分子材料の劣化状態について、高分子劣化とイオウ架橋劣化の割合が求められる劣化解析方法を提供することを目的とする。 本発明の劣化解析方法では、イオウ架橋させた高分子材料にX線を照射し、X線のエネルギーを変えながらX線吸収量を測定することによって、高分子の劣化度とイオウ架橋の劣化度を解析し、それぞれの劣化度から高分子劣化とイオウ架橋劣化の割合を求める。 本発明の劣化解析方法は、例えば、加硫ゴムに適用できる。

Description

劣化解析方法
本発明は、高分子材料について、劣化状態を解析する劣化解析方法に関する。
イオウ架橋ジエン系ゴムなどの高分子材料の劣化による化学状態の変化を評価するために、一般的にSwell(膨潤試験)などの物性試験や赤外分光法(FT-IR)などの方法が用いられている。
Swell試験は、架橋された高分子材料をトルエンなどの低分子量の溶媒で試料を膨潤させ、網目鎖密度を求める方法であり、この方法で劣化前後のゴム分子の切断及び再結合の状態を調べることができるが、全体の変化を見ているため、例えば、イオウ架橋させた高分子材料のポリマー部分とイオウ架橋部分のいずれの劣化が進行しているのか、という点を判断できない。また、FT-IR法では、劣化によって生成したC=OやOHなどの官能基の検出は可能であるが、S-S結合の感度が低いことから、前記と同様、いずれの劣化か判断できない。
更に、高分子材料の劣化状態を調べる上で、高分子(ポリマー)とイオウ架橋のそれぞれの劣化の程度を知ることができれば、従来に比べて有効性の高い耐劣化対策も立てられると考えられるが、上記のような従来法では、高分子及びイオウ架橋の劣化の割合を調べることもできない。
一方、特許文献1には、高分子材料に照射したX線の吸収量を測定し、高分子の劣化状態を解析する劣化解析方法として、酸素原子のK殻吸収端の全ピーク面積から、高分子材料に酸素やオゾンなどが結合した量を求める手法が提案されている。しかし、この手法では、高分子部分、イオウ部分のどちらに結合したのかを判断できないので、ポリマー部分、イオウ架橋部分の劣化比率を調べられない。
特開2012-141278号公報
本発明は、前記課題を解決し、イオウ架橋させた高分子材料の劣化状態について、特に高分子劣化とイオウ架橋劣化の劣化割合が求められる劣化解析方法を提供することを目的とする。
本発明は、イオウ架橋させた高分子材料に、X線を照射し、X線のエネルギーを変えながらX線吸収量を測定することにより求めた高分子の劣化状態及びイオウ架橋の劣化状態から、高分子劣化とイオウ架橋劣化の劣化割合を求める劣化解析方法に関する。
前記高分子材料として、1種類以上のジエン系ポリマーを含むイオウ架橋させた高分子材料、又は前記1種類以上のジエン系ポリマーと1種類以上の樹脂とを複合してイオウ架橋させた高分子材料を使用することが好ましい。
前記X線を用いて走査するエネルギー範囲は、5000eV以下であることが好ましい。
前記劣化解析方法において、X線のエネルギーを260~400eVの範囲において炭素原子のK殻吸収端の必要な範囲を走査することによって得られるX線吸収スペクトルに基づいて下記(式1)により規格化定数α及びβを算出し、該規格化定数α及びβを用いて補正された炭素原子のK殻吸収端のX線吸収スペクトルを波形分離し、得られた285eV付近のπ遷移に帰属されるピーク面積を用いて下記(式2)により高分子劣化度(%)を求めることが好ましい。
(式1)
[劣化前の試料における測定範囲のX線吸収スペクトルの全面積]×α=1
[劣化後の試料における測定範囲のX線吸収スペクトルの全面積]×β=1
(式2)
[1-[(劣化後のπのピーク面積)×β]/[(劣化前πのピーク面積)×α]]×100=高分子劣化度(%)
前記劣化解析方法において、X線のエネルギーを2460~3200eVの範囲において硫黄原子のK殻吸収端の必要な範囲を走査することによって得られるX線吸収スペクトルに基づいて下記(式3)により規格化定数γ及びδを算出し、該規格化定数γ及びδを用いて補正された硫黄原子のK殻吸収端のX線吸収スペクトルを波形分離し、得られた2472eV付近のS-S結合に帰属されるピーク面積を用いて下記(式4)によりイオウ架橋劣化度(%)を求めることが好ましい。
(式3)
[劣化前の試料における測定範囲のX線吸収スペクトルの全面積]×γ=1
[劣化後の試料における測定範囲のX線吸収スペクトルの全面積]×δ=1
(式4)
[1-[(劣化後のS-S結合のピーク面積)×δ]/[(劣化前のS-S結合のピーク面積)×γ]]×100=イオウ架橋劣化度(%)
前記ピーク面積に代えてピーク強度を用いることが好ましい。
前記劣化解析方法において、下記(式5)によって高分子劣化とイオウ架橋劣化の寄与率を算出することが好ましい。
(式5)
[高分子劣化度(%)]/[イオウ架橋劣化度(%)]=高分子劣化とイオウ架橋劣化の寄与率
本発明によれば、イオウ架橋させた高分子材料にX線を照射し、X線のエネルギーを変えながらX線吸収量を測定することにより求めた高分子の劣化状態及びイオウ架橋の劣化状態から、高分子劣化とイオウ架橋劣化の劣化割合を求める劣化解析方法であるので、イオウ架橋させた高分子材料の劣化状態について、特に高分子劣化とイオウ架橋劣化の劣化割合を求めることができる。従って、高分子劣化、イオウ架橋劣化のそれぞれの劣化がどの程度進行しているか判別でき、従来より有効性の高い耐劣化対策を講じることが可能になる。
天然ゴムとブタジエンゴムのブレンドゴムの新品及びオゾン劣化を7時間実施した試料の炭素原子のK殻吸収端のNEXAFS測定結果を示したグラフ(規格化前)。 天然ゴムとブタジエンゴムのブレンドゴムの新品及びオゾン劣化を7時間実施した試料の炭素原子のK殻吸収端のNEXAFS測定結果を示したグラフ(規格化後)。 天然ゴムとブタジエンゴムのブレンドゴムの新品及び熱酸素劣化を1週間実施した試料の硫黄原子のK殻吸収端のXAFS測定結果を示したグラフ(規格化前)。 天然ゴムとブタジエンゴムのブレンドゴムの新品及び熱酸素劣化を1週間実施した試料の硫黄原子のK殻吸収端のXAFS測定結果を示したグラフ(規格化後)。
本発明の劣化解析方法は、イオウ架橋させた高分子材料に、X線を照射し、X線のエネルギーを変えながらX線吸収量を測定することにより求めた高分子の劣化状態及びイオウ架橋の劣化状態から、高分子劣化とイオウ架橋劣化の劣化割合を求める方法である。
加硫ゴムなどのイオウ架橋させた高分子材料の劣化要因として、紫外線、酸素、オゾン、熱などによるポリマー分子鎖の劣化、イオウ架橋の劣化などが知られているが、耐劣化性を改良するためには、どの要因によってポリマー分子鎖、イオウ架橋構造がどのように変化するかを知ることが重要である。
この点について、NEXAFS法を用いて試料の測定を行い、酸素K殻吸収端付近のX線吸収スペクトルの全面積から高分子材料に酸素やオゾンなどが結合した量を求める手法が提案されているが、高分子部分、イオウ架橋部分のいずれに結合したのかを判断できない。またXPS法で得られたS1s軌道のスペクトルの全面積に対するイオウ架橋に結合した酸化物のピークの割合を算出することで、イオウ架橋劣化を求める手法も考えられるが、酸化物の量から間接的にイオウ架橋部の劣化を求めるもので、劣化に直接関与する架橋部分の切断量を測定できない。
これに対し、本発明の劣化解析方法は、例えば、炭素K殻吸収端付近におけるX線吸収スペクトルからポリマーの劣化度を求めるとともに、硫黄K殻吸収端付近におけるX線吸収スペクトルのS-S結合量の変化からイオウ架橋の劣化度を求めることにより、高分子、イオウ架橋のそれぞれの劣化度を測定し、どちらの劣化がより進行しているか、すなわち劣化割合を判別できる解析方法を提供するものである。
本発明の劣化解析方法は、新品及び劣化後の高分子材料に対してそれぞれX線をエネルギーを変えながら照射し、X線吸収量を測定して得られた各スペクトルを比較することで、劣化後の高分子材料の劣化状態を解析し、ポリマー劣化度とイオウ劣化度の劣化割合を判定する。具体的には、特定元素の吸収端付近のX線吸収スペクトルを測定する手法などを用いて試料の測定を行うことで、ポリマーの劣化度とイオウ架橋の劣化度を解析し、得られたそれぞれの劣化度からポリマーとイオウ架橋の劣化割合を判定する。
例えば、NEXAFS(Near Edge X-ray Absorption Fine Structure:吸収端近傍X線吸収微細構造)測定により得られる炭素原子のK殻吸収端のX線吸収スペクトルのピーク面積などからポリマー部分の劣化状態を解析するとともに、XAFS(X-ray Absorption Fine Structure:吸収端近傍X線吸収微細構造)測定により得られる硫黄原子のK殻吸収端のX線吸収スペクトルのピーク面積などからイオウ架橋部分の劣化状態を解析し、得られたそれぞれの劣化度からポリマーとイオウ架橋の劣化割合を判定できる。なお、炭素K殻吸収端付近と硫黄K殻吸収端付近では、使用するX線のエネルギーが異なる。そのため、一般にシンクロトロンから放射される連続X線の必要なエネルギー範囲を分光器で切り出して測定に使用されるが、使用するエネルギーによって異なる分光器が用いられる。
NEXAFS法及びXAFS法は、X線エネルギーで走査するため光源には連続X線発生装置が必要であり、詳細な化学状態を解析するには高いS/N比及びS/B比のX線吸収スペクトルを測定する必要がある。そのため、シンクロトロンから放射されるX線は、少なくとも1010(photons/s/mrad/mm/0.1%bw)以上の輝度を有し、且つ連続X線源であるため、NEXAFS測定及びXAFS測定には最適である。尚、bwはシンクロトロンから放射されるX線のband widthを示す。
上記X線の輝度(photons/s/mrad/mm/0.1%bw)は、好ましくは1010以上、より好ましくは1011以上である。上限は特に限定されないが、放射線ダメージがない程度以下のX線強度を用いることが好ましい。
また、上記X線の光子数(photons/s)は、好ましくは10以上、より好ましくは10以上である。上限は特に限定されないが、放射線ダメージがない程度以下のX線強度を用いることが好ましい。
上記X線を用いて走査するエネルギー範囲は、好ましくは5000eV以下、より好ましくは4000eV以下、更に好ましくは3500eV以下である。5000eVを超えると、目的とする高分子複合材料中の劣化状態解析ができないおそれがある。下限は特に限定されない。
測定は、例えば、超高真空中に設置した試料にX線を照射することで光電子が飛び出し、それを補うためにグラウンドから電子が流れ、その試料電流を測定するという方法で実施できる。そのため、表面敏感ではあるが、測定可能な試料の条件として真空中でガスを出さないこと、導電性であることが挙げられるので、これまでは結晶や分子吸着の研究が主であり、ガスを出しそうでかつ絶縁体であるゴム試料の研究はほとんど行われていない。
この点について、NEXAFS及びXAFSは非占有軌道への励起を見ており、調査する元素に結合した元素の影響を大きく受けるため、個々の結合状態を分離することが可能で、劣化要因の分離が可能であると考え、本発明における高分子劣化の分析に用いたものである。
NEXAFS及びXAFSの測定方法には次の3つの方法が代表的に用いられている。本発明の実施例では、NEXAFS法では電子収量法、XAFS法では蛍光法を用いて実施したが、これに限定されるものではなく、様々な検出方法を用いてもよく、組み合わせて同時計測してもよい。
(透過法)
試料を透過してきたX線強度を検出する方法である。透過光強度測定には、フォトダイオードアレイ検出器などが用いられる。
(蛍光法)
試料にX線を照射した際に発生する蛍光X線を検出する方法である。検出器は、Lytle検出器、半導体検出器などがある。前記透過法の場合、試料中の含有量が少ない元素のX線吸収測定を行うと、シグナルが小さい上に含有量の多い元素のX線吸収によりバックグラウンドが高くなるためS/B比の悪いスペクトルとなる。それに対し蛍光法(特にエネルギー分散型検出器などを用いた場合)では、目的とする元素からの蛍光X線のみを測定することが可能であるため、含有量が多い元素の影響が少ない。そのため、含有量が少ない元素のX線吸収スペクトル測定を行う場合に有効的である。また、蛍光X線は透過力が強い(物質との相互作用が小さい)ため、試料内部で発生した蛍光X線を検出することが可能となる。そのため、本手法は透過法に次いでバルク情報を得る方法として最適である。
(電子収量法)
試料にX線を照射した際に流れる電流を検出する方法である。そのため試料が導電物質である必要がある。高分子材料は絶縁物であるため、今まで高分子材料のX線吸収測定は、蒸着やスピンコートなどによって試料をごく薄く基板に乗せた物を用いることがほとんどだったが、本発明では、高分子材料をミクロトームで100μm以下、好ましくは10μm以下、より好ましくは1μm以下、更に好ましくは500nm以下に加工(カット)することでS/B比及びS/N比の高い測定を実現できる。
また、電子収量法の特徴として表面敏感(試料表面の数nm程度の情報)であるという点が挙げられる。試料にX線を照射すると元素から電子が脱出するが、電子は物質との相互作用が強いため、物質中での平均自由行程が短い。
例えば、高分子材料のX線吸収スペクトル測定を行い解析することで、高分子劣化度(%)、イオウ架橋劣化度(%)を分析できる。以下、これについて説明する。
本発明において、NEXAFS法により、イオウ架橋させた高分子材料における高分子の劣化状態を求める手法としては、例えば、上記X線のエネルギーを260~400eVの範囲において炭素原子のK殻吸収端の必要な範囲を走査することによって得られるX線吸収スペクトルに基づいて下記(式1)により規格化定数α及びβを算出し、該規格化定数α及びβを用いて補正された炭素原子のK殻吸収端のX線吸収スペクトルを波形分離し、得られた285eV付近のπ遷移に帰属されるピーク面積を用いて下記(式2)により高分子劣化度(%)を求める方法が挙げられる。
(式1)
[劣化前の試料における測定範囲のX線吸収スペクトルの全面積]×α=1
[劣化後の試料における測定範囲のX線吸収スペクトルの全面積]×β=1
(式2)
[1-[(劣化後のπのピーク面積)×β]/[(劣化前πのピーク面積)×α]]×100=高分子劣化度(%)
これにより、劣化後の高分子(ポリマー部分)の劣化度合(%)が得られ、ポリマー部分劣化率を分析できる。ここで、上記高分子劣化度を求める方法において、上記X線のエネルギーを260~350eVの範囲にすることが好ましい。なお、上記劣化度を求める方法では、上記(式1)の操作を行う前に、吸収端前のスロープから評価してバックグランドを引くことが行われる。
上記高分子劣化度を求める方法において、上記(式1)におけるX線吸収スペクトルの全面積は、測定範囲内のスペクトルを積分したものであり、測定条件等によってエネルギー範囲は変えることができる。
上記高分子劣化度を求める方法について、NRとBRのブレンドゴムの新品、オゾン劣化を7時間実施した試料(共にイオウ架橋)を用いた例を用いて具体的に説明する。
これらの試料の炭素原子のK殻吸収端のNEXAFS測定結果を図1に示す。図1のように、劣化した試料では285eV付近のπのピークが新品と比較して小さくなるが、NEXAFS法は絶対値測定が困難である。その理由は、光源からの試料の距離などの微妙な変化がX線吸収スペクトルの大きさに影響を与えるためである。以上の理由により、炭素原子のK殻吸収端のNEXAFS測定結果については、試料間の単純な比較ができない。
そこで、測定した試料間のX線吸収スペクトルを比較するために以下の様に規格化を行った(直接比較できるように各試料のX線吸収スペクトルを補正した)。劣化前後で炭素殻のX線吸収量は変わらないことから、上記(式1)を用いて、炭素原子のK殻吸収端のピーク面積が1となるように規格化する。つまり、先ず規格化前のX線吸収スペクトルについて(式1)をもとに規格化定数α、βを算出し、次いで規格化前のX線吸収スペクトルにα、βを乗じたスペクトルに補正(規格化)することで、試料間のπのピークを直接比較できる。
このようにして得られた規格化後の炭素原子のK殻吸収端のスペクトル(NEXAFS)を図2に示す。規格化したスペクトルから高分子劣化度を上記(式2)を用いて決定する。上記高分子劣化度は、劣化前から劣化後へのπのピークの減少率であり、試料におけるポリマー鎖の劣化率(%)を示している。
なお、上記高分子劣化度を求める方法では、上記(式2)においてピーク面積に代えてピーク強度を用いても同様に高分子劣化度を求めることができる。
また、上記では、オゾン劣化品について説明しているが、酸素劣化品、オゾンと酸素の両方で劣化した劣化品でも同様の手法で解析でき、ポリマー鎖の劣化度を求めることが可能である。
前述の本発明における高分子の劣化状態は、例えば、佐賀県立九州シンクロトロン光研究センターのBL12ビームラインを用いて解析できる。
更に本発明において、XAFS法により、イオウ架橋させた高分子材料におけるイオウ架橋の劣化状態を求める手法としては、例えば、上記X線のエネルギーを2460~3200eVの範囲において硫黄原子のK殻吸収端の必要な範囲を走査することによって得られるX線吸収スペクトルに基づいて下記(式3)により規格化定数γ及びδを算出し、該規格化定数γ及びδを用いて補正された硫黄原子のK殻吸収端のX線吸収スペクトルを波形分離し、得られた2472eV付近のS-S結合に帰属されるピーク面積を用いて下記(式4)によりイオウ架橋劣化度(%)を求める方法が挙げられる。
(式3)
[劣化前の試料における測定範囲のX線吸収スペクトルの全面積]×γ=1
[劣化後の試料における測定範囲のX線吸収スペクトルの全面積]×δ=1
(式4)
[1-[(劣化後のS-S結合のピーク面積)×δ]/[(劣化前のS-S結合のピーク面積)×γ]]×100=イオウ架橋劣化度(%)
これにより、劣化後のイオウ架橋部分の劣化度合(%)が得られ、イオウ架橋の劣化率を分析できる。ここで、上記イオウ架橋劣化度を求める方法において、上記X線のエネルギーを2460~2500eVの範囲にすることが好ましい。なお、上記劣化度を求める方法では、上記(式3)の操作を行う前に、吸収端前のスロープから評価してバックグランドを引くことが行われる。
上記イオウ架橋劣化度を求める方法において、上記(式3)におけるX線吸収スペクトルの全面積は、測定範囲内のスペクトルを積分したものであり、測定条件等によってエネルギー範囲は変えることができる。
上記イオウ架橋劣化度を求める方法について、NRとBRのブレンドゴムの新品、熱酸素劣化を1週間実施した試料(共にイオウ架橋)を用いた例を用いて具体的に説明する。
これらの試料の硫黄原子のK殻吸収端のXAFS測定結果を図3に示す。図3のように、劣化した試料では2472eV付近のS-S結合(硫黄-硫黄結合)に対応するピークが減少し、SOx(硫黄酸化物)に対応するピークが増加することが判り、これは、S-S結合が切断され、その部分に酸素が結合したことを示しているが、XAFS法は絶対値測定が困難である。その理由は、光源からの試料の距離などの微妙な変化がX線吸収スペクトルの大きさに影響を与えるためである。以上の理由により、硫黄原子のK殻吸収端のXAFS測定結果については、試料間の単純な比較ができない。
そこで、測定した試料間のX線吸収スペクトルを比較するために以下の様に規格化を行った(直接比較できるように各試料のX線吸収スペクトルを補正した)。劣化前後で硫黄殻のX線吸収量は変わらないことから、上記(式3)を用いて、硫黄原子のK殻吸収端のピーク面積が1となるように規格化する。つまり、先ず規格化前のX線吸収スペクトルについて(式3)をもとに規格化定数γ、δを算出し、次いで規格化前のX線吸収スペクトルにγ、δを乗じたスペクトルに補正(規格化)することで、試料間のS-S結合のピークを直接比較できる。
このようにして得られた規格化後の硫黄原子のK殻吸収端のスペクトル(XAFS)を図4に示す。規格化したスペクトルからイオウ架橋劣化度を上記(式4)を用いて決定する。上記イオウ架橋劣化度は、劣化前から劣化後へのS-S結合のピークの減少率であり、試料におけるイオウ架橋の劣化率(%)を示している。
なお、上記イオウ架橋劣化度を求める方法では、上記(式4)においてピーク面積に代えてピーク強度を用いても同様にイオウ架橋劣化度を求めることができる。
また、上記では、酸素劣化品について説明しているが、オゾン劣化品、オゾンと酸素の両方で劣化した劣化品でも同様の手法で解析でき、イオウ架橋の劣化度を求めることが可能である。
前述の本発明におけるイオウ架橋の劣化状態は、例えば、佐賀県立九州シンクロトロン光研究センターのBL27SUのBブランチを用いて解析できる。
更に本発明の劣化解析方法では、例えば、下記(式5)によって高分子劣化とイオウ架橋劣化の寄与率を算出することができる。
(式5)
[高分子劣化度(%)]/[イオウ架橋劣化度(%)]=高分子劣化とイオウ架橋劣化の寄与率
つまり、前述の高分子劣化度を求める方法やイオウ架橋劣化度を求める方法などを用いて高分子とイオウ架橋のそれぞれの劣化度を示す高分子劣化度(%)とイオウ架橋劣化度(%)の比(割合)を求めることにより、いずれの劣化がより進行しているか判別できる。具体的には、上記(式5)において、高分子劣化とイオウ架橋劣化の寄与率>1の場合は高分子劣化の進行の方が大きく、高分子劣化とイオウ架橋劣化の寄与率<1の場合はイオウ架橋劣化の進行の方が大きい、と判断できる。そのため、本発明の方法を採用することにより、従来よりも有効性の高い耐劣化対策が立てられる。
本発明に適用できる上記イオウ架橋させた高分子材料としては特に限定されず、従来公知のものが挙げられるが、例えば、1種類以上のジエン系ゴムを含むイオウ架橋させたゴム材料、該ゴム材料と1種類以上の樹脂とを複合してイオウ架橋させた複合材料を好適に使用できる。上記ジエン系ゴムとしては、天然ゴム(NR)、イソプレンゴム(IR)、ブタジエンゴム(BR)、スチレンブタジエンゴム(SBR)、アクリロニトリルブタジエンゴム(NBR)、クロロプレンゴム(CR)、ブチルゴム(IIR)、ハロゲン化ブチルゴム(X-IIR)、スチレンイソプレンブタジエンゴム(SIBR)などの二重結合を有するポリマーが挙げられる。
上記樹脂としては特に限定されず、例えば、ゴム工業分野で汎用されているものが挙げられ、例えば、C5系脂肪族石油樹脂、シクロペンタジエン系石油樹脂などの石油樹脂が挙げられる。これらの材料に対して本発明の劣化解析方法を好適に適用できる。
実施例に基づいて、本発明を具体的に説明するが、本発明はこれらのみに限定されるものではない。
(実施例及び比較例)
実施例及び比較例に供した劣化後の試料は、以下のゴム材料、劣化条件により作成した。なお、NEXAFS法の測定の際には、試料をミクロトームで100μm以下の厚みになるように加工し、その後、劣化以外の酸素の影響が現れないように、試料作成後は真空デシケータに保存した。
(ゴム材料)
NR及びBRのブレンドゴム(イオウ架橋):TSR20 海南中化ゴム有限会社製、ウベポールBR 130B 宇部興産(株)製
中近東走行品:中近東で走行済みのタイヤ(NR及びBRのブレンドゴム(イオウ架橋)、サイドウォールを使用)
(劣化条件)
オゾン劣化:40℃ 50pphm
酸素劣化:80℃ 空気中
<NEXAFS測定>
NEXAFSを使用して、劣化前後の各試料について、以下の分析の実施により高分子劣化度(%)を測定した。
(使用装置)
NEXAFS:佐賀県立九州シンクロトロン光研究センターのBL12ビームライン付属のNEXAFS測定装置
(測定条件)
輝度:5×1012photons/s/mrad/mm/0.1%bw
光子数:2×10photons/s
分光器:回折格子分光器
測定法:電子収量法
(高分子劣化度分析)
X線のエネルギーを260~400eVの範囲で走査し、炭素原子のK殻吸収端のX線吸収スペクトルを得た。このスペクトルにおいて必要な範囲である260~350eVの範囲をもとに(式1)から規格化定数α、βを算出し、この定数を用いてスペクトルを規格化(補正)した。規格化後のスペクトルを波形分離し、285eV付近のπ遷移に帰属されるピーク面積をもとに(式2)から高分子劣化度(%)を求めた。
<XAFS測定>
XAFSを使用して、劣化前後の各試料について、以下の分析の実施によりイオウ架橋劣化度(%)を測定した。
(使用装置)
XAFS:佐賀県立九州シンクロトロン光研究センターのSPring-8 BL27SUのBブランチのXAFS測定装置
(測定条件)
輝度:1×1016photons/s/mrad/mm/0.1%bw
光子数:5×1010photons/s
分光器:結晶分光器
検出器:SDD(シリコンドリフト検出器)
測定法:蛍光法
(イオウ架橋劣化度分析)
X線のエネルギーを2460~3200eVの範囲で走査し、硫黄原子のK殻吸収端のX線吸収スペクトルを得た。このスペクトルにおいて必要な範囲である2460~2500eVの範囲をもとに(式3)から規格化定数γ及びδを算出し、この定数を用いてスペクトルを規格化(補正)した。規格化後のスペクトルを波形分離し、2472eV付近のS-S結合に帰属されるピーク面積をもとに(式4)からイオウ架橋劣化度(%)を求めた。
(高分子劣化とイオウ架橋劣化の寄与率分析)
上記の高分子劣化度分析、イオウ架橋劣化度分析で求められた高分子劣化度、イオウ架橋劣化度の値を(式5)に適用して、高分子劣化とイオウ架橋劣化の寄与率を算出した。
上記の高分子劣化度分析、イオウ架橋劣化度分析で得られた結果を表1にそれぞれ示した。
Figure JPOXMLDOC01-appb-T000001
SwellやFT-IRを使用した比較例1~2では、劣化後の試料の高分子劣化度、イオウ架橋劣化度、寄与率をいずれも分析できなかったのに対し、NEXAFSとXAFSを用いた実施例1~4では、いずれの分析も可能であり、本発明の評価法の有効性が立証された。

Claims (7)

  1. イオウ架橋させた高分子材料に、X線を照射し、X線のエネルギーを変えながらX線吸収量を測定することにより求めた高分子の劣化状態及びイオウ架橋の劣化状態から、高分子劣化とイオウ架橋劣化の劣化割合を求める劣化解析方法。
  2. 高分子材料として、1種類以上のジエン系ポリマーを含むイオウ架橋させた高分子材料、又は前記1種類以上のジエン系ポリマーと1種類以上の樹脂とを複合してイオウ架橋させた高分子材料を使用する請求項1記載の劣化解析方法。
  3. X線を用いて走査するエネルギー範囲が5000eV以下である請求項1又は2記載の劣化解析方法。
  4. X線のエネルギーを260~400eVの範囲において炭素原子のK殻吸収端の必要な範囲を走査することによって得られるX線吸収スペクトルに基づいて下記(式1)により規格化定数α及びβを算出し、該規格化定数α及びβを用いて補正された炭素原子のK殻吸収端のX線吸収スペクトルを波形分離し、得られた285eV付近のπ遷移に帰属されるピーク面積を用いて下記(式2)により高分子劣化度(%)を求める請求項1~3のいずれかに記載の劣化解析方法。
    (式1)
    [劣化前の試料における測定範囲のX線吸収スペクトルの全面積]×α=1
    [劣化後の試料における測定範囲のX線吸収スペクトルの全面積]×β=1
    (式2)
    [1-[(劣化後のπのピーク面積)×β]/[(劣化前πのピーク面積)×α]]×100=高分子劣化度(%)
  5. X線のエネルギーを2460~3200eVの範囲において硫黄原子のK殻吸収端の必要な範囲を走査することによって得られるX線吸収スペクトルに基づいて下記(式3)により規格化定数γ及びδを算出し、該規格化定数γ及びδを用いて補正された硫黄原子のK殻吸収端のX線吸収スペクトルを波形分離し、得られた2472eV付近のS-S結合に帰属されるピーク面積を用いて下記(式4)によりイオウ架橋劣化度(%)を求める請求項1~4のいずれかに記載の劣化解析方法。
    (式3)
    [劣化前の試料における測定範囲のX線吸収スペクトルの全面積]×γ=1
    [劣化後の試料における測定範囲のX線吸収スペクトルの全面積]×δ=1
    (式4)
    [1-[(劣化後のS-S結合のピーク面積)×δ]/[(劣化前のS-S結合のピーク面積)×γ]]×100=イオウ架橋劣化度(%)
  6. ピーク面積に代えてピーク強度を用いる請求項4又は5記載の劣化解析方法。
  7. 下記(式5)によって高分子劣化とイオウ架橋劣化の寄与率を算出する請求項4~6のいずれかに記載の劣化解析方法。
    (式5)
    [高分子劣化度(%)]/[イオウ架橋劣化度(%)]=高分子劣化とイオウ架橋劣化の寄与率
PCT/JP2013/082657 2012-12-06 2013-12-05 劣化解析方法 WO2014088051A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-267388 2012-12-06
JP2012267388A JP5486073B1 (ja) 2012-12-06 2012-12-06 劣化解析方法

Publications (1)

Publication Number Publication Date
WO2014088051A1 true WO2014088051A1 (ja) 2014-06-12

Family

ID=50792167

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/082657 WO2014088051A1 (ja) 2012-12-06 2013-12-05 劣化解析方法

Country Status (2)

Country Link
JP (1) JP5486073B1 (ja)
WO (1) WO2014088051A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019078669A (ja) * 2017-10-25 2019-05-23 Toyo Tire株式会社 高分子材料の硫黄架橋構造解析方法
CN110208298A (zh) * 2019-06-03 2019-09-06 中国农业科学院农业环境与可持续发展研究所 原位分离土壤微团聚体中活性组分表征其微观结构的方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6371109B2 (ja) * 2014-05-09 2018-08-08 住友ゴム工業株式会社 硫黄の化学状態を調べる方法
JP6371174B2 (ja) * 2014-09-10 2018-08-08 住友ゴム工業株式会社 硫黄の化学状態を調べる方法
JP6374355B2 (ja) * 2014-09-11 2018-08-15 住友ゴム工業株式会社 硫黄含有高分子複合材料における架橋密度の測定方法
JP6544098B2 (ja) * 2015-07-10 2019-07-17 住友ゴム工業株式会社 硫黄含有高分子複合材料における架橋密度の測定方法
JP2023141840A (ja) 2022-03-24 2023-10-05 住友ゴム工業株式会社 耐摩耗性能を予測する方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012141278A (ja) * 2010-12-16 2012-07-26 Sumitomo Rubber Ind Ltd 劣化解析方法
JP2012173093A (ja) * 2011-02-21 2012-09-10 Bridgestone Corp ゴム材料の検査方法
WO2013060809A2 (de) * 2011-10-28 2013-05-02 Basf Se Verfahren zur herstellung von in lösungsmitteln flockulationsstabilen polyisocyanaten von (cyclo)aliphatischen diisocyanaten

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3054289B1 (en) * 2011-11-04 2019-01-09 Sumitomo Rubber Industries, Ltd. Deterioration analyzing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012141278A (ja) * 2010-12-16 2012-07-26 Sumitomo Rubber Ind Ltd 劣化解析方法
JP2012173093A (ja) * 2011-02-21 2012-09-10 Bridgestone Corp ゴム材料の検査方法
WO2013060809A2 (de) * 2011-10-28 2013-05-02 Basf Se Verfahren zur herstellung von in lösungsmitteln flockulationsstabilen polyisocyanaten von (cyclo)aliphatischen diisocyanaten

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KENKICHI MURAKAMI: "Degradation mechanism of rubber vulcanizates", MATERIALS LIFE, vol. 2, no. 1, January 1990 (1990-01-01), pages 36 - 44 *
WANWISA PATTANASIRIWISAWA ET AL.: "Structural analysis of sulfur in natural rubber using X-ray absorption near-edge spectroscopy", JOURNAL OF SYNCHROTRON RADIATION, vol. 15, no. 5, September 2008 (2008-09-01), pages 510 - 513 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019078669A (ja) * 2017-10-25 2019-05-23 Toyo Tire株式会社 高分子材料の硫黄架橋構造解析方法
JP7053217B2 (ja) 2017-10-25 2022-04-12 Toyo Tire株式会社 高分子材料の硫黄架橋構造解析方法
CN110208298A (zh) * 2019-06-03 2019-09-06 中国农业科学院农业环境与可持续发展研究所 原位分离土壤微团聚体中活性组分表征其微观结构的方法
CN110208298B (zh) * 2019-06-03 2022-02-01 中国农业科学院农业环境与可持续发展研究所 原位分离土壤微团聚体中活性组分表征其微观结构的方法

Also Published As

Publication number Publication date
JP2014115102A (ja) 2014-06-26
JP5486073B1 (ja) 2014-05-07

Similar Documents

Publication Publication Date Title
JP5964850B2 (ja) 劣化解析方法
JP5486073B1 (ja) 劣化解析方法
JP5256332B2 (ja) 劣化解析方法
JP6348295B2 (ja) 硫黄の化学状態を調べる方法
JP6219607B2 (ja) 化学状態測定方法
EP2995946B1 (en) Method of measuring crosslink densities in sulfur-containing polymer composite material
JP6294623B2 (ja) 高分子材料の寿命予測方法
JP6374355B2 (ja) 硫黄含有高分子複合材料における架橋密度の測定方法
EP2966437B1 (en) Deterioration analysis method
JP2015132518A (ja) 硫黄の化学状態を調べる方法
JP5805043B2 (ja) 劣化解析方法
JP2017219476A (ja) 架橋密度の測定方法
JP6371174B2 (ja) 硫黄の化学状態を調べる方法
JP6371109B2 (ja) 硫黄の化学状態を調べる方法
JP2014206498A (ja) 劣化解析方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13860650

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13860650

Country of ref document: EP

Kind code of ref document: A1