WO2014087505A1 - 光増幅器、波長多重光伝送システム及びプログラム - Google Patents

光増幅器、波長多重光伝送システム及びプログラム Download PDF

Info

Publication number
WO2014087505A1
WO2014087505A1 PCT/JP2012/081552 JP2012081552W WO2014087505A1 WO 2014087505 A1 WO2014087505 A1 WO 2014087505A1 JP 2012081552 W JP2012081552 W JP 2012081552W WO 2014087505 A1 WO2014087505 A1 WO 2014087505A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
light
optical amplifier
detection means
detection result
Prior art date
Application number
PCT/JP2012/081552
Other languages
English (en)
French (fr)
Inventor
十倉 俊之
和行 石田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to US14/412,816 priority Critical patent/US9478935B2/en
Priority to JP2014550850A priority patent/JP5847332B2/ja
Priority to EP12889712.1A priority patent/EP2930800B1/en
Priority to PCT/JP2012/081552 priority patent/WO2014087505A1/ja
Priority to CN201280076247.0A priority patent/CN104704690A/zh
Publication of WO2014087505A1 publication Critical patent/WO2014087505A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/13Stabilisation of laser output parameters, e.g. frequency or amplitude
    • H01S3/131Stabilisation of laser output parameters, e.g. frequency or amplitude by controlling the active medium, e.g. by controlling the processes or apparatus for excitation
    • H01S3/1312Stabilisation of laser output parameters, e.g. frequency or amplitude by controlling the active medium, e.g. by controlling the processes or apparatus for excitation by controlling the optical pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06754Fibre amplifiers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/10007Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating in optical amplifiers
    • H01S3/10015Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating in optical amplifiers by monitoring or controlling, e.g. attenuating, the input signal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/13Stabilisation of laser output parameters, e.g. frequency or amplitude
    • H01S3/1301Stabilisation of laser output parameters, e.g. frequency or amplitude in optical amplifiers
    • H01S3/13013Stabilisation of laser output parameters, e.g. frequency or amplitude in optical amplifiers by controlling the optical pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/13Stabilisation of laser output parameters, e.g. frequency or amplitude
    • H01S3/1305Feedback control systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/29Repeaters
    • H04B10/291Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form
    • H04B10/293Signal power control
    • H04B10/294Signal power control in a multiwavelength system, e.g. gain equalisation
    • H04B10/296Transient power control, e.g. due to channel add/drop or rapid fluctuations in the input power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0221Power control, e.g. to keep the total optical power constant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2301/00Functional characteristics
    • H01S2301/02ASE (amplified spontaneous emission), noise; Reduction thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2301/00Functional characteristics
    • H01S2301/04Gain spectral shaping, flattening
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/0941Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode
    • H01S3/09415Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode the pumping beam being parallel to the lasing mode of the pumped medium, e.g. end-pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/10007Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating in optical amplifiers
    • H01S3/10023Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating in optical amplifiers by functional association of additional optical elements, e.g. filters, gratings, reflectors
    • H01S3/1003Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating in optical amplifiers by functional association of additional optical elements, e.g. filters, gratings, reflectors tunable optical elements, e.g. acousto-optic filters, tunable gratings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/23Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
    • H01S3/2375Hybrid lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/23Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
    • H01S3/2383Parallel arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/30Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range using scattering effects, e.g. stimulated Brillouin or Raman effects
    • H01S3/302Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range using scattering effects, e.g. stimulated Brillouin or Raman effects in an optical fibre

Definitions

  • the present invention relates to an optical amplifier, a wavelength division multiplexing optical transmission system, and a program. More specifically, the present invention relates to an optical amplifier using a plurality of signal lights as input light, a wavelength division multiplexing optical transmission system including an optical amplifier, and an optical amplifier control apparatus. Relates to the program to be executed.
  • an optical amplifier that amplifies signal light collectively is used to compensate for attenuation of signal light caused by an optical fiber.
  • an optical amplifier an optical amplifier using an optical fiber to which erbium is added is known. This optical amplifier amplifies signal light by allowing signal light and pumping light to simultaneously enter an optical fiber doped with erbium.
  • Patent Document 1 connects two optical amplifiers in series, and amplifies each signal light with a first-stage optical amplifier so that the ratio of the levels of input light and output light is constant. Then, each signal light is amplified by the second-stage optical amplifier so that the levels of the input light and the output light are constant, and the wavelength dependence of the gain in the first-stage optical amplifier is compensated.
  • the signal light monitor monitors the intensity of light branched from the signal light. For this reason, when the power of the input light is small, the signal light can be accurately monitored by increasing the proportion of the light branched from the signal light. However, if the ratio of the light branched from the signal light is increased, the loss of the signal light increases and the SN ratio is lowered.
  • the present invention has been made under the above-described circumstances, and an object thereof is to amplify each multiplexed signal light without reducing the SN ratio of each signal light even when the power of incident light is reduced.
  • an optical amplifier is an optical amplifier that uses a plurality of multiplexed signal lights having different wavelengths as input light, and detects the power of the input light.
  • Excitation light output means for outputting excitation light for amplifying the input light
  • second detection means for detecting the power of the amplified input light, and based on the detection result of the first detection means,
  • the excitation light output unit is controlled so that the ratio of the detection result of the second detection unit to the detection result of the first detection unit is constant, and based on the detection result of the first detection unit
  • control means for controlling the excitation light output means so that the detection result of the second detection means becomes substantially constant when it is determined that the power of the incident light is small.
  • the gain for maintaining a constant ratio between the power of the input light and the power of the output light obtained by amplifying the input light instead of constant control, control for maintaining the power of the output light above a certain level is performed. Thereby, even if the power of input light decreases, each multiplexed input light can be amplified without reducing the SN ratio of the output light.
  • FIG. 1 is a block diagram of a wavelength division multiplexing optical transmission system 100 according to the present embodiment.
  • This wavelength division multiplexing optical transmission system 100 is a system that enables transmission and reception of information between a plurality of transceivers.
  • the wavelength division multiplexing optical transmission system 100 includes a plurality of transceivers 31, two multiplexing devices 32, two demultiplexing devices 33, and two optical amplifiers 10.
  • the transceiver 31 transmits information by outputting signal light modulated based on information to be transmitted. Also, information is received by demodulating the received signal light. In the present embodiment, information is transmitted and received between the transceivers 31 1 to 31 3 and the transceivers 31 4 to 31 6 . In the wavelength division multiplexing optical transmission system 100, signal lights S1 to S6 having different wavelengths are output from the transceivers 31 1 to 31 6 . Then, the signal lights S1 to S6 are input to the multiplexing device 32 through the optical fiber.
  • the multiplexer 32 multiplexes a plurality of input signal lights and outputs them to the optical amplifier 10.
  • the multiplexing device 32 1 multiplexes the signal lights S1 to S3 output from the transceivers 31 1 to 31 3 to generate the multiplexed signal light MS1.
  • the multiplexing device 32 2 the signal light S4 ⁇ S6 output from the transceiver 31 4-31 6 are multiplexed, multiplexed signal light MS2 are generated.
  • the multiplexed signal lights MS1 and MS2 are input to the optical amplifier 10 through an optical fiber.
  • the multiplexed signal lights MS1 and MS2 are generated by multiplexing the signal lights S1 to S6. For this reason, the multiplexed signal lights MS1 and MS2 increase in power as the signal light to be multiplexed increases, and decrease in power as the signal light to be multiplexed decreases.
  • the demultiplexing device 33 individually extracts the signal lights S1 to S6 from the input multiplexed signal lights MS1 and MS2 and outputs them to the respective transceivers 31.
  • FIG. 2 is a block diagram of the optical amplifier 10.
  • the optical amplifier 10 is an apparatus that amplifies the multiplexed signal light MS1 and MS2 that pass through the optical fiber 18 doped with erbium.
  • the optical amplifier 10 includes a Raman pumping light source 21, photodiodes 22 and 24, a pumping light source 23, a variable optical attenuator 17, and a control device 25 that comprehensively controls the above-described units.
  • the multiplexed signal light is composed of the optical fiber 18 and the multiplexers 11 and 14, the isolators 13 and 15, the tap couplers 12 and 16, and the variable optical attenuator 17 which are sequentially arranged from the input side to the output side.
  • MS1 and MS2 paths are formed. In this path, the isolators 13 and 15 suppress the backflow of the reflected light of the multiplexed signal lights MS1 and MS2.
  • the Raman excitation light source 21 is a semiconductor laser that emits laser light LB1 having a shorter wavelength than the signal lights S1 to S6 constituting the multiplexed signal lights MS1 and MS2.
  • the laser beam LB1 emitted from the Raman excitation light source 21 enters the optical fiber 18 through the multiplexer 11.
  • the laser light LB1 travels in the optical fiber 18 so that the multiplexed signal light MS1. It is equal to the traveling direction of the MS 2 and causes Raman scattering inside the optical fiber 18.
  • forward pumped Raman amplification for the multiplexed signal lights MS1 and MS2 is realized.
  • the photodiode 22 is an element that outputs a photoelectric conversion signal having a value corresponding to the intensity of incident light.
  • a part of the multiplexed signal light MS1, MS2 is branched as monitor light M1 by the tap coupler 12 arranged on the output side of the multiplexer 11.
  • the photodiode 22 receives the monitor light M1 and outputs a monitor signal E1 corresponding to the intensity of the received monitor light M1 to the control device 25.
  • the excitation light source 23 is a semiconductor laser that emits laser light LB2 having a wavelength of 1480 nm band or 980 nm band.
  • the laser beam LB2 emitted from the excitation light source 23 enters the optical fiber 18 through the multiplexer 14.
  • the laser beam LB2 travels in the same direction as the multiplexed signal beams MS1 and MS2, and causes stimulated emission inside the optical fiber 18. Thereby, the multiplexed signal lights MS1 and MS2 are amplified.
  • the photodiode 24 is an element that outputs a photoelectric conversion signal having a value corresponding to the intensity of incident light.
  • a part of the multiplexed signal light MS1, MS2 is branched as the monitor light M2 by the tap coupler 16 arranged on the output side of the multiplexer 14.
  • the photodiode 24 receives the monitor light M2, and outputs a monitor signal E2 corresponding to the intensity of the received monitor light M2 to the control device 25.
  • variable optical attenuator 17 has, for example, an interference circuit and a heater, and individually adjusts the power of the signal lights S1 to S6 constituting the multiplexed signal lights MS1 and MS2.
  • FIG. 3 is a block diagram of the control device 25.
  • the control device 25 includes a CPU (Central Processing Unit) 25a, a main storage unit 25b, an auxiliary storage unit 25c, an interface unit 25d, and a system bus 25e that interconnects the above-described units. Yes.
  • CPU Central Processing Unit
  • main storage unit 25b main storage unit
  • auxiliary storage unit 25c main storage unit
  • interface unit 25d interface unit
  • system bus 25e that interconnects the above-described units.
  • the main storage unit 25b includes a RAM (Random Access Memory) and the like, and is used as a work area for the CPU 25a.
  • RAM Random Access Memory
  • the auxiliary storage unit 25c includes a ROM (Read Only Memory) and a nonvolatile memory such as a semiconductor memory.
  • the auxiliary storage unit 25c stores programs executed by the CPU 25a, various parameters, and the like.
  • the interface unit 25d is an interface for connecting an external device to the control device 25.
  • the Raman excitation light source 21, the excitation light source 23, the photodiodes 22 and 24, and the variable optical attenuator 17 are connected to the CPU 25a through the interface unit 25d.
  • the optical amplifier 10 when the multiplexed signal lights MS1 and MS2 are input, a part of the multiplexed signal lights MS1 and MS2 is branched by the tap couplers 12 and 16 and enters the photodiodes 22 and 24, respectively. Thus, monitor signals E1 and E2 are output from the photodiodes 22 and 24, respectively.
  • control device 25 monitors the value P1 of the monitor signal E1, and when the value P1 falls below the reference value, it drives the Raman excitation light source 21 to amplify the multiplexed signal light MS1, MS2.
  • the multiplexed signal light MS1 having a predetermined power or higher is output from the multiplexer 11.
  • the control device 25 compares the value P1 of the monitor signal E1 with the threshold value Th1 read from the auxiliary storage unit 25c.
  • the value P1 of the monitor signal E1 is equal to or greater than the threshold value Th1
  • the ratio of the power of the multiplexed signal light MS1, MS2 after amplification to the power of the multiplexed signal light MS1, MS2 before amplification is constant.
  • the excitation light source 23 is controlled.
  • the control device 25 performs excitation so that the ratio (P2 / P1) between the value P1 of the monitor signal E1 from the photodiode 22 and the value P2 of the monitor signal E2 from the photodiode 24 is constant.
  • the light source 23 is controlled.
  • the value P1 of the monitor signal E1 is equal to or greater than the threshold Th1
  • the value P1 of the monitor signal E1 and the value P2 of the monitor signal E2 are set as indicated by the straight line L1 passing through the origin. Is a proportional relationship.
  • this control is referred to as constant gain control for convenience of explanation.
  • control is performed so that the powers of the multiplexed signal lights MS1 and MS2 after amplification are substantially constant.
  • the control device 25 controls the excitation light source 23 so that the value P2 of the monitor signal E2 becomes a constant value P2 limit .
  • the value P2 of the monitor signal E2 is set to the value P2 limit as shown by a straight line L2 parallel to the axis indicating the value P1. Converge to.
  • this control is referred to as constant output control for convenience of explanation.
  • the optical amplifier 10 compares the value P1 of the monitor signal E1 with a threshold value Th1 equivalent to the value of the monitor signal E1 when the noise figure of the multiplexed signal lights MS1 and MS2 starts increasing, and the value of the monitor signal E1.
  • a threshold value Th1 equivalent to the value of the monitor signal E1 when the noise figure of the multiplexed signal lights MS1 and MS2 starts increasing, and the value of the monitor signal E1.
  • the powers of the multiplexed signal lights MS1 and MS2 are kept constant.
  • the noise figure of the amplified multiplexed signal lights MS1 and MS2 increases as shown by the line a3 in FIG. 4 even if the power of the multiplexed signal lights MS1 and MS2 before amplification decreases. It becomes constant without.
  • the wavelength division multiplexing optical transmission system 100 having the optical amplifier 10 described above, when information is transmitted from the transceivers 31 1 to 31 3 to the transceivers 31 4 to 31 6 , transmission / reception is performed.
  • the signal lights S1 to S3 output from the devices 31 1 to 31 3 are multiplexed by the multiplexing device 32 1 to generate the multiplexed signal light MS1.
  • the multiplexed signal light MS1 when transmitted, is amplified by the optical amplifier 10 1, leading to branching device 33 1.
  • Demultiplexing device 33 1 from the multiplexed signal light MS1, taking out the signal light S1 ⁇ S3 individually output to the transceiver 31 4-31 6.
  • the signal light S4 ⁇ S6 output from the transceiver 31 4-31 6 multiplexing device 32 2 The multiplexed signal light MS2 is generated by multiplexing.
  • the multiplexed signal light MS2 when transmitted, is amplified by the optical amplifier 10 2, leading to branching unit 33 2.
  • the value P1 of the monitor signal E1 and the noise figure of the multiplexed signal lights MS1 and MS2 start to increase.
  • the threshold value Th1 equivalent to the value of the monitor signal E1 is compared.
  • the multiplexed signal lights MS1 and MS2 are amplified by performing constant output control.
  • multiplexed signal light MS1 when the signal light S1 ⁇ S3 from transceivers 31 1 to 31 3 are multiplexed, multiplexed signal light MS1 is generated, the signal light S4 ⁇ from transceivers 31 4-31 6
  • the case where the multiplexed signal light MS2 is generated by multiplexing S6 has been described.
  • the present invention is not limited to this, and multiplexed signal light MS1 and MS2 may be generated by multiplexing four or more signal lights.
  • FIG. 5 and 6 are diagrams schematically showing multiplexed signal light. Each arrow shown in the figure indicates signal light, the position with respect to the horizontal axis indicates the wavelength, and the length indicates the power.
  • the optical amplifier 10 when the value P1 of the monitor signal E1 output from the photodiode 22 is equal to or greater than the threshold Th1, that is, when the power of the multiplexed signal light MS1, MS2 is large, the wavelength dependence of gain is increased. It becomes flat. Therefore, as shown in FIG. 5, the amplified multiplexed signal light MS1 is composed of a large number of signal lights S having the same power. For this reason, it can be said that the entire amplification band of the optical amplifier 10 can be used when the power of the multiplexed signal light MS1, MS2 is large.
  • the value P1 of the monitor signal E1 output from the photodiode 22 is less than the threshold value Th1, that is, when the power of the multiplexed signal lights MS1 and MS2 is small, the wavelength dependence of gain does not become flat, and FIG. As shown, variations occur in the magnitudes of the signal light S constituting the amplified multiplexed signal lights MS1 and MS2. This is because the S / N ratio of the multiplexed signal lights MS1 and MS2 is small. In this case, it is necessary to set the wavelength range in which the signal light S having a small difference from the reference value is included as the use band of the optical amplifier 10 and the other range as the non-use band. In this case, only the signal light S having a wavelength in the use band is used for communication.
  • ⁇ Modification 1 In the present embodiment, constant gain control and constant output control are performed based on the comparison result between the value P1 of the monitor signal E1 and the threshold value Th1.
  • the value P2 of the monitor signal E2 output from the photodiode 24 is controlled to be a constant value P2 limit .
  • the output of the excitation light source 23 may be controlled to be constant when the value P1 of the monitor signal E1 is less than the threshold Th1.
  • the power of the multiplexed signal lights MS1 and MS2 when the noise characteristics start to increase rapidly is P limit , and the power of the multiplexed signal lights MS1 and MS2 is not less than P limit. Is always kept constant. Specifically, the current supplied to the semiconductor laser included in the excitation light source 23 is kept constant. As a result, even if the power of the multiplexed signal lights MS1 and MS2 before amplification decreases, the power of the amplified multiplexed signal lights MS1 and MS2 is maintained at P limit or higher.
  • the optical amplifier 10 has a Raman excitation light source 21. For this reason, it is possible to suppress a decrease in the SN ratio of the multiplexed signal light MS1, MS2 by Raman amplification.
  • the optical amplifier 10 includes a variable optical attenuator 17. For this reason, when the Raman excitation light source 21 is driven, the values of the multiplexed signal lights MS1 and MS2 before amplification are increased, and as a result, the powers of the multiplexed signal lights MS1 and MS2 after amplification are increased more than necessary. However, the power of the multiplexed signal lights MS1 and MS2 can be attenuated to a desired magnitude.
  • a filter 26 that allows only signal light Sn having a specific wavelength to pass is provided on the input side of each of the photodiodes 22 and 24. Then, the excitation light source 23 is controlled so that the ratio between the value P1 of the monitor signal E1 for the signal light Sn and the value P2 of the monitor signal E2 for the signal light Sn is constant. Thereby, it is possible to perform control to make the gain of the signal light Sn having a specific wavelength constant.
  • the excitation light source 23 is controlled so that the value P1 of the monitor signal E1 and the value P2 of the monitor signal E2 are constant.
  • the correction value P3 is calculated by subtracting the value corresponding to the power of the noise light from the value P2 of the monitor signal E2 corresponding to the multiplexed signal lights MS1 and MS2 after amplification. Control may be performed so that the ratio of the monitor signal E1 to the value P1 is constant. As a result, it is possible to reduce the influence of errors that occur when performing constant gain control.
  • the constant gain control is performed when the value P1 of the monitor signal E1 is equal to or greater than the threshold value Th1, and the constant output control is performed when the value P1 is less than the threshold value Th1.
  • the threshold value Th1 and a threshold value Th2 smaller than the threshold value Th1 are set in advance.
  • the output constant control may be performed by determining that the power of the multiplexed signal light MS1, MS2 is small.
  • whether the multiplexed signal lights MS1 and MS2 are large or small is determined based on the result of comparing the value P1 of the monitor signal E1 and the threshold Th1.
  • the present invention is not limited to this, and based on the comparison result between the power of the pumping light emitted from the pumping light source 23 and the predetermined threshold Th3, it may be determined whether the multiplexed signal lights MS1 and MS2 are large or small.
  • the threshold Th3 and the threshold Th4 smaller than the threshold Th3 are set in advance and the power of the pumping light from the pumping light source 23 is equal to or higher than the threshold Th3, the multiplexed signal lights MS1 and MS2 are large. It may be determined that when the power of the pumping light from the pumping light source 23 is equal to or less than the threshold Th4, it is determined that the multiplexed signal light MS1, MS2 is small.
  • the present invention is not limited to this, and based on the comparison result between the current value of the semiconductor laser constituting the excitation light source 23 and the predetermined threshold value Th5, it may be determined whether the multiplexed signal lights MS1 and MS2 are large or small.
  • the threshold value Th5 and the threshold value Th6 smaller than the threshold value Th5 are set in advance and the current value of the semiconductor laser constituting the excitation light source 23 is equal to or greater than the threshold value Th5, the multiplexed signal lights MS1 and MS2 are If the current value of the semiconductor laser constituting the excitation light source 23 is equal to or smaller than the threshold Th6, it may be determined that the multiplexed signal light MS1, MS2 is small.
  • the lower limit value is set for the value P1 of the monitor signal E1, the power value of the pumping light from the pumping light source 23, and the current value of the semiconductor laser constituting the pumping light source 23.
  • the gain constant control may be performed within a range that does not fall below the lower limit value.
  • the wavelength division multiplexing optical transmission system 100 includes the six transceivers 31 . Not limited to this, the wavelength division multiplexing optical transmission system 100 may include seven or more transceivers 31. Similarly, three or more optical amplifiers 10 may be provided.
  • the optical amplifier 10 includes the isolators 13 and 15 and the Raman pumping light source 21 .
  • the isolators 13 and 15 are not essential components of the optical amplifier 10, and are optical amplifiers. 10 does not have to include the isolators 13 and 15 and the Raman excitation light source 21.
  • the laser light LB2 emitted from the pumping light source 23 travels in the same direction as the multiplexed signal light MS1 and MS2 inside the optical fiber 18, thereby amplifying the multiplexed signal light MS1 and MS2.
  • Excitation mode amplification was performed. Not limited to this, the laser light LB2 emitted from the excitation light source 23 travels in the opposite direction to the multiplexed signal light MS1 and MS2, thereby amplifying the multiplexed signal light MS1 and MS2, and so-called backward excitation amplification. May be performed.
  • the control device 25 of the optical amplifier 10 according to the above embodiment can be realized by dedicated hardware or by a normal computer system.
  • the program is stored in the auxiliary storage unit 25c of the control device 25.
  • the program is stored in a flexible disk, a CD-ROM (Compact Disk Read-Only Memory), a DVD (Digital Versatile Disk).
  • a control device that executes the above-described processing may be configured by storing and distributing in a computer-readable recording medium such as MO (Magneto-Optical disk) and installing the program in the computer.
  • the optical amplifier and program of the present invention are suitable for signal light amplification.
  • the wavelength optical transmission system of the present invention is suitable for information transmission / reception.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Automation & Control Theory (AREA)
  • Lasers (AREA)
  • Optical Communication System (AREA)

Abstract

 多重信号光(MS1,MS2)が光増幅器(10)によって増幅される際に、モニタ信号(E1)の値と、多重信号光(MS1,MS2)の雑音指数が増加を開始するときのモニタ信号(E1)の値と等価な閾値を比較する。そして、モニタ信号(E1)の値が閾値以上のとき、即ち、多重信号光(MS1,MS2)のパワーが大きいときには、利得一定制御を行うことにより、多重信号光(MS1,MS2)の増幅を行う。一方、モニタ信号(E1)の値が閾値未満のとき、即ち、多重信号光(MS1,MS2)のパワーが小さいときには、出力一定制御を行うことにより、多重信号光(MS1,MS2)の増幅を行う。

Description

光増幅器、波長多重光伝送システム及びプログラム
 本発明は、光増幅器、波長多重光伝送システム、及びプログラムに関し、更に詳しくは、複数の信号光を入力光とする光増幅器、光増幅器を備える波長多重光伝送システム、及び光増幅器の制御装置に実行されるプログラムに関する。
 波長多重光伝送システムでは、光ファイバによる信号光の減衰を補償するために、信号光を一括して増幅する光増幅器が用いられる。光増幅器としては、エルビウムが添加された光ファイバを用いた光増幅器が知られている。この光増幅器は、エルビウムが添加された光ファイバに、信号光と励起光を同時に入射させることにより、信号光を増幅する。
 光増幅器では、入力光のパワーが変化すると、利得の波長依存性も変化してしまう。そのため、波長多重光伝送システムに、この種の光増幅器を用いると、信号光それぞれの利得が、多重化された信号光の数に応じて変動してしまうことになる。そこで、各信号光の利得を一定に維持するための技術が種々提案されている(例えば特許文献1参照)。
 特許文献1に開示された装置は、2つの光増幅器を直列に接続し、1段目の光増幅器で、入力光と出力光のレベルの比が一定となるように各信号光を増幅する。そして、2段目の光増幅器で、入力光と出力光のレベルが一定となるように各信号光を増幅するとともに、1段目の光増幅器での利得の波長依存性を補償する。
特開平08-248455号公報
 特許文献1に開示された装置では、各光増幅器で、入力光と出力光のレベルの比を一定にする利得一定制御が行われる。そのため、光増幅器に入射する入力光のパワーが小さいときには、増幅に用いられる励起光の強度も弱くなる。この場合、光ファイバの反転分布が弱くなり、結果的に、各信号光のSN比が低下してしまう。特に、無中継伝送システムでは、光増幅器へ入射する入力光のパワーが、減衰などにより極めて小さくなる場合がある。このため、多重化される信号光が少ないときなどには、SN比の低下が顕著に表れ、通信に支障をきたすことが考えられる。
 また、入力光のパワーが小さい場合に利得一定制御を行うと、入力光と出力光双方のパワーが小さくなる。この場合には、信号光のモニタが困難になり、結果的に信号光を増幅するための制御が困難になる。一般に、信号光のモニタは、信号光から分岐した光の強度を監視する。このため、入力光のパワーが小さい場合には、信号光から分岐する光の割合を多くすることで、信号光のモニタを正確に行うことができる。しかしながら、信号光から分岐する光の割合を多くすると、信号光の損失が増加するとともに、SN比が低下してしまう。
 本発明は、上述の事情の下になされたもので、入射光のパワーが減少しても、各信号光のSN比を低下させることなく、多重化された信号光それぞれを増幅することを目的とする。
 上記目的を達成するため、本発明に係る光増幅器は、多重化された波長が相互に異なる複数の信号光を入力光とする光増幅器であって、入力光のパワーを検出する第1検出手段と、入力光を増幅するための励起光を出力する励起光出力手段と、増幅された入力光のパワーを検出する第2検出手段と、第1検出手段の検出結果に基づいて、入力光のパワーが大きいと判断した場合に、第1検出手段の検出結果に対する第2検出手段の検出結果の比が一定となるように、励起光出力手段を制御し、第1検出手段の検出結果に基づいて、入射光のパワーが小さいと判断した場合に、第2検出手段の検出結果がほぼ一定となるように、励起光出力手段を制御する制御手段と、を備える。
 本発明によれば、入射光のパワーが小さいと判断された場合には、入力光のパワーと、この入力光が増幅されることにより得られる出力光のパワーとの比を一定に維持する利得一定制御に代えて、出力光のパワーを一定以上に維持するための制御が行われる。これにより、入力光のパワーが減少しても、出力光のSN比を低下させることなく、多重化された入力光それぞれを増幅することができる。
本実施形態に係る波長多重光伝送システムのブロック図である。 光増幅器のブロック図である。 制御装置のブロック図である。 制御装置の動作を説明するための図である。 多重化される信号光を模式的に示す図である。 多重化される信号光を模式的に示す図である。 変形例に係る光増幅器のブロック図である。
 以下、本発明の一実施形態を、図面を参照しつつ説明する。図1は、本実施形態に係る波長多重光伝送システム100のブロック図である。この波長多重光伝送システム100は、複数の送受信機相互間で情報の送受信を可能とするシステムである。図1に示されるように、波長多重光伝送システム100は、複数の送受信機31と、2つの合波装置32と、2つの分波装置33と、2つの光増幅器10から構成されている。
 送受信機31は、送信する情報に基づいて変調した信号光を出力することにより、情報の送信を行う。また、受信した信号光を復調することにより、情報を受信する。本実施形態では、送受信機31~31と送受信機31~31の間で情報の送受信が行われる。波長多重光伝送システム100では、送受信機31~31から、波長が相互に異なる信号光S1~S6が出力される。そして、信号光S1~S6は、光ファイバを介して合波装置32へ入力される。
 合波装置32は、入力される複数の信号光を多重化して光増幅器10へ出力する。波長多重光伝送システム100では、合波装置32によって、送受信機31~31から出力される信号光S1~S3が多重化され、多重信号光MS1が生成される。また、合波装置32によって、送受信機31~31から出力される信号光S4~S6が多重化され、多重信号光MS2が生成される。多重信号光MS1,MS2は、光ファイバを介して光増幅器10へ入力される。
 多重信号光MS1,MS2は、信号光S1~S6が多重化されることにより生成される。このため、多重信号光MS1,MS2は、多重化される信号光が多くなるほどパワーが大きくなり、多重化される信号光が少なくなるほどパワーが小さくなる。
 分波装置33は、入力される多重信号光MS1,MS2から、信号光S1~S6を個別に取り出して、それぞれの送受信機31に出力する。
 図2は光増幅器10のブロック図である。この光増幅器10は、エルビウムが添加された光ファイバ18を通過する多重信号光MS1,MS2を増幅する装置である。図2に示されるように、光増幅器10は、ラマン励起光源21、フォトダイオード22,24、励起光源23、可変光減衰器17、及び上記各部を統括的に制御する制御装置25を有している。また、光増幅器10では、光ファイバ18と、入力側から出力側に順次配置された合波器11,14、アイソレータ13,15、タップカプラ12,16、可変光減衰器17によって、多重信号光MS1,MS2の経路が形成されている。この経路では、アイソレータ13,15により、多重信号光MS1,MS2の反射光の逆流が抑制される。
 ラマン励起光源21は、多重信号光MS1,MS2を構成する各信号光S1~S6よりも波長が短いレーザ光LB1を射出する半導体レーザである。ラマン励起光源21から射出されたレーザ光LB1は、合波器11を介して光ファイバ18に入射する。このレーザ光LB1は、光ファイバ18での進行方向が、多重信号光MS1.MS2の進行方向と等しく、光ファイバ18の内部にラマン散乱を引き起こす。これにより、多重信号光MS1,MS2に対する前方励起ラマン増幅が実現する。
 フォトダイオード22は、入射する光の強度に応じた値の光電変換信号を出力する素子である。光増幅器10では、合波器11の出力側に配置されたタップカプラ12によって、多重信号光MS1,MS2の一部がモニタ光M1として分岐される。フォトダイオード22は、モニタ光M1を受光し、受光したモニタ光M1の強度に応じたモニタ信号E1を、制御装置25へ出力する。
 励起光源23は、波長が1480nm帯、或いは980nm帯のレーザ光LB2を射出する半導体レーザである。励起光源23から射出されたレーザ光LB2は、合波器14を介して光ファイバ18に入射する。このレーザ光LB2は、多重信号光MS1,MS2と同じ方向に進行し、光ファイバ18の内部で誘導放出を引き起こす。これにより、多重信号光MS1,MS2が増幅される。
 フォトダイオード24は、フォトダイオード22と同様に、入射する光の強度に応じた値の光電変換信号を出力する素子である。光増幅器10では、合波器14の出力側に配置されたタップカプラ16によって、多重信号光MS1,MS2の一部がモニタ光M2として分岐される。フォトダイオード24は、モニタ光M2を受光し、受光したモニタ光M2の強度に応じたモニタ信号E2を、制御装置25へ出力する。
 可変光減衰器17は、例えば干渉回路とヒータを有し、多重信号光MS1,MS2を構成する信号光S1~S6それぞれのパワーを個別に調整する。
 図3は制御装置25のブロック図である。図3に示されるように、制御装置25は、CPU(Central Processing Unit)25a、主記憶部25b、補助記憶部25c、インタフェース部25d、及び上記各部を相互に接続するシステムバス25eを有している。
 主記憶部25bは、RAM(Random Access Memory)等を含んで構成され、CPU25aの作業領域として用いられる。
 補助記憶部25cは、ROM(Read Only Memory)や、半導体メモリ等の不揮発性メモリを含んで構成されている。この補助記憶部25cは、CPU25aが実行するプログラム、及び各種パラメータなどを記憶している。
 インタフェース部25dは、外部機器を制御装置25に接続するためのインタフェースである。ラマン励起光源21、励起光源23、フォトダイオード22,24、可変光減衰器17は、インタフェース部25dを介して、CPU25aに接続される。
 次に上述のように構成された光増幅器10の動作について説明する。光増幅器10では、多重信号光MS1,MS2が入力されると、多重信号光MS1,MS2の一部がタップカプラ12,16によって分岐され、フォトダイオード22,24にそれぞれ入射する。これにより、フォトダイオード22,24それぞれから、モニタ信号E1、E2が出力される。
 次に、制御装置25は、モニタ信号E1の値P1を監視し、値P1が基準値を下回ったときには、ラマン励起光源21を駆動して多重信号光MS1,MS2を増幅する。これにより、合波器11からは所定のパワー以上の多重信号光MS1が出力される。
 次に、制御装置25は、モニタ信号E1の値P1と、補助記憶部25cから読み出した閾値Th1とを比較する。そして、モニタ信号E1の値P1が、閾値Th1以上である場合には、増幅前の多重信号光MS1,MS2のパワーに対する、増幅後の多重信号光MS1,MS2のパワーの比が一定になるように、励起光源23を制御する。
 具体的には、制御装置25は、フォトダイオード22からのモニタ信号E1の値P1と、フォトダイオード24からのモニタ信号E2の値P2との比(P2/P1)が一定になるように、励起光源23を制御する。これにより、図4に示されるように、モニタ信号E1の値P1が閾値Th1以上のときには、原点を通る直線L1に示されるように、モニタ信号E1の値P1と、モニタ信号E2の値P2とが比例した関係になる。以下、説明の便宜上この制御を、利得一定制御という。
 一方、モニタ信号E1の値P1が閾値Th1より小さい場合には、増幅後の多重信号光MS1,MS2のパワーがほぼ一定になるように制御する。具体的には、制御装置25は、モニタ信号E2の値P2が一定値P2limitとなるように、励起光源23を制御する。これにより、図4に示されるように、モニタ信号E1の値P1が閾値Th1未満のときには、値P1を示す軸に平行な直線L2に示されるように、モニタ信号E2の値P2が値P2limitに収束する。以下、説明の便宜上この制御を、出力一定制御という。上述した制御が行われることで、光増幅器10では、図4に実線で示される線a1に従って、モニタ信号E1の値P1とモニタ信号E2の値P2が推移する。
 一般に、利得一定制御が行われている場合に、多重信号光MS1,MS2のパワーが減少していくと、モニタ信号E1の値P1も減少を続ける。そして、増幅された多重信号光MS1,MS2の雑音指数は、図4に破線で示される線a2に従って推移し、あるところから急激に増加しはじめる。そこで、光増幅器10では、モニタ信号E1の値P1と、多重信号光MS1,MS2の雑音指数が増加を開始するときのモニタ信号E1の値と等価な閾値Th1を比較し、モニタ信号E1の値P1が閾値Th1未満となったときには、出力一定制御を行う。これにより、多重信号光MS1,MS2のパワーが一定に維持される。この場合、増幅された多重信号光MS1,MS2の雑音指数は、増幅前の多重信号光MS1,MS2のパワーが減少していったとしても、図4の線a3に示されるように、増加することなく一定になる。
 図1を参照するとわかるように、上述した光増幅器10を有する波長多重光伝送システム100では、送受信機31~31から送受信機31~31へ情報が送信される際には、送受信機31~31から出力される信号光S1~S3が合波装置32によって多重化され、多重信号光MS1が生成される。この多重信号光MS1は、伝送される際に、光増幅器10によって増幅され、分波装置33に至る。分波装置33は、多重信号光MS1から、信号光S1~S3を個別に取り出して、送受信機31~31へ出力する。
 また、送受信機31~31から送受信機31~31へ情報が送信される際には、送受信機31~31から出力される信号光S4~S6が合波装置32によって多重化され、多重信号光MS2が生成される。この多重信号光MS2は、伝送される際に、光増幅器10によって増幅され、分波装置33に至る。分波装置33は、多重信号光MS2から、信号光S4~S6を個別に取り出して、送受信機31~31へ出力する。
 以上説明したように、本実施形態では、多重信号光MS1,MS2が光増幅器10によって増幅される際に、モニタ信号E1の値P1と、多重信号光MS1,MS2の雑音指数が増加を開始するときのモニタ信号E1の値と等価な閾値Th1を比較する。そして、モニタ信号E1の値P1が閾値Th1以上のとき、即ち、多重信号光MS1,MS2のパワーが大きいときには、利得一定制御を行うことにより、多重信号光MS1,MS2の増幅を行う。一方、モニタ信号E1の値P1が閾値Th1未満のとき、即ち、多重信号光MS1,MS2のパワーが小さいときには、出力一定制御を行うことにより、多重信号光MS1,MS2の増幅を行う。
 これにより、多重信号光MS1,MS2のパワーが減少したとしても、増幅後の多重信号光MS1,MS2の雑音特性の増加が抑制される。その結果、多重信号光MS1,MS2のSN比の低下が抑制される。
 本実施形態では、多重信号光MS1,MS2のパワーが小さいときには、出力一定制御が行われる。出力一定制御では、増幅された多重信号光MS1,MS2のパワーのみをモニタすればよい。このため、出力一定制御が行われるときには、フォトダイオード22へ入射するモニタ光M1の分岐を行わないようにすることで、多重信号光MS1,MS2のパワーの損失を抑えることができる。その結果、多重信号光MS1の雑音指数を低減することができる。
 なお、本実施形態では、送受信機31~31からの信号光S1~S3が多重化されることにより、多重信号光MS1が生成され、送受信機31~31からの信号光S4~S6が多重化されることにより、多重信号光MS2が生成される場合について説明した。これ限らず、4つ以上の信号光が多重化されることにより、多重信号光MS1,MS2が生成されることとしてもよい。
 図5及び図6は、多重化される信号光を模式的に示す図である。図に示される矢印それぞれは信号光を示し、横軸に対する位置が波長を示し、長さがパワーを示している。本実施形態に係る光増幅器10では、フォトダイオード22から出力されるモニタ信号E1の値P1が閾値Th1以上のとき、即ち、多重信号光MS1,MS2のパワーが大きいときには、利得の波長依存性が平坦になる。したがって、図5に示されるように、増幅された多重信号光MS1は、パワーが相互に等しい多数の信号光Sから構成される。このため、多重信号光MS1,MS2のパワーが大きいときには、光増幅器10の全増幅帯域を使用することができるといえる。
 一方、フォトダイオード22から出力されるモニタ信号E1の値P1が閾値Th1未満のとき、即ち、多重信号光MS1,MS2のパワーが小さいときには、利得の波長依存性が平坦にならず、図6に示されるように、増幅された多重信号光MS1,MS2を構成する信号光Sの大きさにばらつきが生じる。その理由は、多重信号光MS1,MS2のSN比が小さくなるためである。この場合には、基準値との差が小さい信号光Sが含まれる波長の範囲を光増幅器10の使用帯域とし、他の範囲を不使用帯域とする必要がある。この場合に、使用帯域に波長が属する信号光Sのみが通信に使用される。
《変形例1》
 本実施形態では、モニタ信号E1の値P1と閾値Th1の比較結果に基づいて、利得一定制御及び出力一定制御が行われる。そして、出力一定制御では、図4を参照するとわかるように、フォトダイオード24から出力されるモニタ信号E2の値P2を一定値P2limtとする制御が行われる。これに限らず、モニタ信号E1の値P1が閾値Th1未満の場合に、励起光源23の出力を一定に制御することとしてもよい。
 上述したように、利得一定制御が行われた場合、多重信号光MS1,MS2のパワーが減少すると、あるところで多重信号光MS1,MS2の雑音特性が急激に増加し始める。そこで、本変形例では、雑音特性が急激に増加し始めるときの多重信号光MS1,MS2のパワーをPlimitとして、多重信号光MS1,MS2のパワーがPlimitを下回らないように、励起光源23の出力を常時一定に維持する。具体的には、励起光源23が有する半導体レーザに供給する電流を一定に維持する。これにより、増幅前の多重信号光MS1,MS2のパワーが減少しても、増幅された多重信号光MS1,MS2のパワーはPlimit以上に維持される。
 これにより、多重信号光MS1,MS2のパワーが減少したとしても、増幅後の多重信号光MS1,MS2の雑音特性の増加が抑制される。その結果、多重信号光MS1,MS2のSN比の低下を抑制することができ、結果的に、多重信号光MS1,MS2の長距離伝送が可能となる。
 本実施形態では、光増幅器10がラマン励起光源21を有している。このため、ラマン増幅により、多重信号光MS1,MS2のSN比の低下を抑制することができる。
 本実施形態では、光増幅器10が可変光減衰器17を備えている。このため、ラマン励起光源21が駆動されることにより、増幅前の多重信号光MS1,MS2の値が大きくなり、その結果、増幅後の多重信号光MS1,MS2のパワーが必要以上に大きくなったとしても、当該多重信号光MS1,MS2のパワーを所望の大きさまで減衰させることができる。
《変形例2》
 本実施形態では、モニタ信号E1の値P1と閾値Th1の比較結果に基づいて、利得一定制御及び出力一定制御が行われる。そして、利得一定制御では、多重信号光MS1,MS2から分岐されたモニタ光M1,M2に基づいて生成されたモニタ信号E1,E2を用いて、励起光源23の制御が行われる。これに限らず、特定の波長の信号光のパワーに基づいて、利得一定制御を行ってもよい。
 具体的には、図7に示されるように、フォトダイオード22,24それぞれの入力側に、特定の波長の信号光Snのみを通過させるフィルタ26を設ける。そして、信号光Snについてのモニタ信号E1の値P1と、信号光Snについてのモニタ信号E2の値P2との比が一定になるように、励起光源23を制御する。これにより、特定の波長の信号光Snについての利得を一定にする制御を行うことが可能となる。
  以上、本発明の実施形態及び変形例について説明したが、本発明は上記実施形態等によって限定されるものではない。例えば、上記実施形態では、利得一定制御を行う際に、モニタ信号E1の値P1と、モニタ信号E2の値P2とが一定となるように、励起光源23の制御を行った。これに限らず、増幅後の多重信号光MS1,MS2に対応するモニタ信号E2の値P2から、雑音光のパワーに対応する値を減算して、補正値P3を算出し、この補正値P3とモニタ信号E1の値P1との比が一定となるような制御を行ってもよい。これにより、利得一定制御を行う際に生じる誤差の影響を低減することができる。
 上記実施形態では、モニタ信号E1の値P1が、閾値Th1以上の場合に利得一定制御を行い、値P1が閾値Th1未満の場合に出力一定制御を行うこととした。これに限らず、閾値Th1と、この閾値Th1よりも小さい閾値Th2を予め設定しておく。そして、モニタ信号E1の値P1が、閾値Th1以上の場合に、多重信号光MS1,MS2のパワーが大きいと判断して利得一定制御を行い、モニタ信号E1の値P1が、閾値Th2以下の場合に、多重信号光MS1,MS2のパワーが小さいと判断して出力一定制御を行うこととしてもよい。
 このように、大きさが異なる閾値Th1と閾値Th2とを用いて、利得一定制御と出力一定制御を切り替えることで、制御装置25によって行われる制御が頻繁に変更されることがなくなり、システムが安定する。
 上記実施形態では、モニタ信号E1の値P1と閾値Th1とを比較した結果に基づいて、多重信号光MS1,MS2が大きいか小さいかが判断された。これに限らず、励起光源23から射出される励起光のパワーと所定の閾値Th3との比較結果に基づいて、多重信号光MS1,MS2が大きいか小さいかを判断することとしてもよい。
 この場合にも、閾値Th3と、閾値Th3よりも小さい閾値Th4とを予め設定しておき、励起光源23からの励起光のパワーが閾値Th3以上のときに、多重信号光MS1,MS2が大きいと判断し、励起光源23からの励起光のパワーが閾値Th4以下のときに、多重信号光MS1,MS2が小さいと判断してもよい。
 上記実施形態では、モニタ信号E1の値P1と閾値Th1とを比較した結果に基づいて、多重信号光MS1,MS2が大きいか小さいかを判断した。これに限らず、励起光源23を構成する半導体レーザの電流値と所定の閾値Th5との比較結果に基づいて、多重信号光MS1,MS2が大きいか小さいかを判断することとしてもよい。
 この場合にも、閾値Th5と、閾値Th5よりも小さい閾値Th6とを予め設定しておき、励起光源23を構成する半導体レーザの電流値が閾値Th5以上のときに、多重信号光MS1,MS2が大きいと判断し、励起光源23を構成する半導体レーザの電流値が閾値Th6以下のときに、多重信号光MS1,MS2が小さいと判断してもよい。
 上記実施形態の光増幅器において、モニタ信号E1の値P1、励起光源23からの励起光のパワーの値、励起光源23を構成する半導体レーザの電流の値に下限値を設定し、上記各値が、下限値を下回らない範囲で、利得一定制御を行うこととしてもよい。
 上記実施形態では、波長多重光伝送システム100が6つの送受信機31を備えている場合について説明した。これに限らず、波長多重光伝送システム100は、7つ以上の送受信機31を備えていてもよい。同様に、3つ以上の光増幅器10を備えていてもよい。
 上記実施形態では、光増幅器10がアイソレータ13,15、及びラマン励起光源21を有している場合について説明したが、アイソレータ13,15などは、光増幅器10の必須の構成要素ではなく、光増幅器10は、アイソレータ13,15やラマン励起光源21を備えていなくてもよい。
 上記実施形態では、光ファイバ18の内部で、励起光源23から射出されたレーザ光LB2を、多重信号光MS1,MS2と同じ方向に進行させることによって、多重信号光MS1,MS2の増幅を行う前方励起方式の増幅を行った。これに限らず、励起光源23から射出されたレーザ光LB2を、多重信号光MS1,MS2と反対の方向に進行させることによって、多重信号光MS1,MS2の増幅を行う、いわゆる後方励起方式の増幅を行ってもよい。
 上記実施形態に係る光増幅器10の制御装置25は、専用のハードウエアによっても、通常のコンピュータシステムによっても実現することができる。
 上記実施形態では、制御装置25の補助記憶部25cにプログラムが記憶されていることとしたが、当該プログラムを、フレキシブルディスク、CD-ROM(Compact Disk Read-Only Memory)、DVD(Digital Versatile Disk)、MO(Magneto-Optical disk)等のコンピュータで読み取り可能な記録媒体に格納して配布し、そのプログラムをコンピュータにインストールすることにより、上述の処理を実行する制御装置を構成することとしてもよい。
 本発明は、本発明の広義の精神と範囲を逸脱することなく、様々な実施形態及び変形が可能とされるものである。また、上述した実施形態は、本発明を説明するためのものであり、本発明の範囲を限定するものではない。つまり、本発明の範囲は、実施形態ではなく、特許請求の範囲によって示される。そして、特許請求の範囲内及びそれと同等の発明の意義の範囲内で施される様々な変形が、本発明の範囲内とみなされる。
 本発明の光増幅器及びプログラムは、信号光の増幅に適している。本発明の波長光伝送システムは、情報の送受信に適している。
 10 光増幅器、11,14 合波器、12,16 タップカプラ、13,15 アイソレータ、17 可変光減衰器、18 光ファイバ、21 ラマン励起光源、22,24 フォトダイオード、23 励起光源、25 制御装置、25a CPU、25b 主記憶部、25c 補助記憶部、25d インタフェース部、25e システムバス、26 フィルタ、31 送受信機、32 合波装置、33 分波装置、100 波長多重光伝送システム、E1,E2 モニタ信号、LB1,LB2 レーザ光、M1,M2 モニタ光、MS1,MS2 多重信号光、S,Sn,S1~S63 信号光、a1,a2,a3 線

Claims (15)

  1.  多重化された波長が相互に異なる複数の信号光を入力光とする光増幅器であって、
     前記入力光のパワーを検出する第1検出手段と、
     前記入力光を増幅するための励起光を出力する励起光出力手段と、
     増幅された入力光のパワーを検出する第2検出手段と、
     前記第1検出手段の検出結果に基づいて、前記入力光のパワーが大きいと判断した場合に、前記第1検出手段の検出結果に対する前記第2検出手段の検出結果の比が一定となるように、前記励起光出力手段を制御し、
     前記第1検出手段の検出結果に基づいて、前記入射光のパワーが小さいと判断した場合に、前記第2検出手段の検出結果がほぼ一定となるように、前記励起光出力手段を制御する制御手段と、
     を備える光増幅器。
  2.  前記制御手段は、
     前記第1検出手段の検出結果に基づいて、前記入力光のパワーが大きいと判断した場合に、特定の波長の信号光についての前記第1検出手段の検出結果に対する前記第2検出手段の検出結果の比が一定となるように、前記励起光出力手段を制御する請求項1に記載の光増幅器。
  3.  前記第1検出手段の検出結果に基づいて、前記入力光のパワーが大きいと判断された場合に、雑音光による誤差を補正する補正手段を備える請求項1又は2に記載の光増幅器。
  4.  前記制御装置は、
     前記第1検出手段の検出結果に基づいて、前記入力光のパワーが小さいと判断した場合に、前記励起光の強度が一定となるように、前記励起光出力手段を制御する請求項1乃至3のいずれか一項に記載の光増幅器。
  5.  前記励起光出力手段は、半導体レーザを有し、
     前記制御装置は、
     前記第1検出手段の検出結果に基づいて、前記入力光のパワーが小さいと判断した場合に、前記半導体レーザへ供給される電流を一定に維持する制御を行う請求項1乃至3のいずれか一項に記載の光増幅器。
  6.  前記制御装置は、
     前記第1検出手段の検出結果に基づいて、前記入力光のパワーが小さいと判断した場合に、前記第2検出手段の検出結果が一定になるように、前記励起光出力手段を制御する請求項1乃至3のいずれか一項に記載の光増幅器。
  7.  前記制御手段は、
     前記第1検出手段の検出結果に基づいて、前記入力光のパワーが小さいと判断した場合に、特定の波長の信号光についての前記第2検出手段の検出結果が一定になるように、前記励起光出力手段を制御する請求項1乃至3のいずれか一項に記載の光増幅器。
  8.  前記制御手段は、
     前記第1の検出手段によって検出された前記入力光のパワーが、第1の閾値以上の場合に、前記入力光のパワーが大きいと判断し、
     前記第1の検出手段によって検出された前記入力光のパワーが、前記第1の閾値よりも小さい第2の閾値以下の場合に、前記入力光のパワーが小さいと判断する請求項1乃至7のいずれか一項に記載の光増幅器。
  9.  前記励起光のパワーを検出する第3の検出手段を備え、
     前記制御装置は、
     前記第3の検出手段によって検出された前記励起光のパワーが、第1の閾値以上の場合に、前記入力光のパワーが大きいと判断し、
     前記第3の検出手段によって検出された前記励起光のパワーが、前記第1の閾値よりも小さい第2の閾値以下の場合に、前記入力光のパワーが小さいと判断する請求項1乃至7のいずれか一項に記載の光増幅器。
  10.  前記励起光出力手段は半導体レーザを有し、
     前記制御手段は、
     前記半導体レーザへ供給される電流が、第1の閾値以上の場合に、前記入力光のパワーが大きいと判断し
     前記半導体レーザへ供給される電流が、前記第1の閾値よりも小さい第2の閾値以下の場合に、前記入力光のパワーが小さいと判断する請求項1乃至7のいずれか一項に記載の光増幅器。
  11.  前記制御装置は、
     前記入力光のパワー、前記励起光のパワー、前記励起光出力手段の半導体レーザの電流のいずれかが、所定値を下回らない範囲で、制御を行う請求項1に記載の光増幅器。
  12.  前記制御手段は、
     前記第1検出手段の検出結果に基づいて、前記入力光のパワーが小さいと判断した場合に、波長が所定の範囲に属する入力光を増幅する請求項1乃至11のいずれか一項に記載の光増幅器。
  13.  増幅された入力光のパワーを調整する調整手段を備える請求項1乃至12のいずれか一項に記載の光増幅器。
  14.  送信情報によって変調された信号光を出力する送信装置と、
     前記送信装置からの信号光を受信する受信装置と、
     前記送信装置から出力される信号光を増幅して、前記受信装置へ出力する請求項1乃至13のいずれか一項に記載の光増幅器と
     を備える波長多重光伝送システム。
  15.  請求項1に記載の光増幅器の制御装置に、
     前記第1検出手段の検出結果に基づいて、前記入力光のパワーが大きいと判断した場合に、前記第1検出手段の検出結果に対する前記第2検出手段の検出結果の比が一定となるように、前記励起光出力手段を制御する手順と、
     前記第1検出手段の検出結果に基づいて、前記入射光のパワーが小さいと判断した場合に、前記第2検出手段の検出結果がほぼ一定となるように、前記励起光出力手段を制御する手順と、
     を実行させるプログラム。
PCT/JP2012/081552 2012-12-05 2012-12-05 光増幅器、波長多重光伝送システム及びプログラム WO2014087505A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/412,816 US9478935B2 (en) 2012-12-05 2012-12-05 Optical amplifier, wavelength multiplexing optical transmission system, and program
JP2014550850A JP5847332B2 (ja) 2012-12-05 2012-12-05 光増幅器、波長多重光伝送システム及びプログラム
EP12889712.1A EP2930800B1 (en) 2012-12-05 2012-12-05 Optical amplifier, wavelength multiplexing optical transmission system, and program
PCT/JP2012/081552 WO2014087505A1 (ja) 2012-12-05 2012-12-05 光増幅器、波長多重光伝送システム及びプログラム
CN201280076247.0A CN104704690A (zh) 2012-12-05 2012-12-05 光放大器、波分复用光传输系统以及程序

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/081552 WO2014087505A1 (ja) 2012-12-05 2012-12-05 光増幅器、波長多重光伝送システム及びプログラム

Publications (1)

Publication Number Publication Date
WO2014087505A1 true WO2014087505A1 (ja) 2014-06-12

Family

ID=50882955

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/081552 WO2014087505A1 (ja) 2012-12-05 2012-12-05 光増幅器、波長多重光伝送システム及びプログラム

Country Status (5)

Country Link
US (1) US9478935B2 (ja)
EP (1) EP2930800B1 (ja)
JP (1) JP5847332B2 (ja)
CN (1) CN104704690A (ja)
WO (1) WO2014087505A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023017585A1 (ja) * 2021-08-11 2023-02-16 日本電気株式会社 光増幅システム、光増幅方法及び記憶媒体

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104704690A (zh) * 2012-12-05 2015-06-10 三菱电机株式会社 光放大器、波分复用光传输系统以及程序
US10917172B2 (en) * 2017-07-14 2021-02-09 Nec Corporation Pluggable optical module, optical communication system, and control method of pluggable optical module

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2674071A1 (fr) * 1991-03-15 1992-09-18 Mitsubishi Electric Corp Amplificateur pour fibre optique et procede d'amplification.
JPH0541624A (ja) * 1991-08-06 1993-02-19 Mitsubishi Electric Corp フアイバ形光増幅器
JPH05136499A (ja) * 1991-11-12 1993-06-01 Nec Corp 光フアイバ増幅器
JPH08248455A (ja) 1995-03-09 1996-09-27 Fujitsu Ltd 波長多重用光増幅器
JP2000349718A (ja) * 1999-06-08 2000-12-15 Nec Corp 光ファイバ増幅器
JP2003318831A (ja) * 2002-04-23 2003-11-07 Furukawa Electric Co Ltd:The 光増幅器およびその光増幅器を用いた光通信システム
US20050105170A1 (en) * 2003-11-17 2005-05-19 Fujitsu Limited Optical amplifier and control method for optical amplifier

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2725109B2 (ja) * 1992-03-06 1998-03-09 富士通株式会社 光増幅装置
US5374973A (en) * 1993-09-21 1994-12-20 Alcatel Network Systems, Inc. Optical amplifier
JPH0961862A (ja) * 1995-08-23 1997-03-07 Fujitsu Ltd 光増幅器の制御装置
US6583899B1 (en) * 1998-12-31 2003-06-24 Cisco Photonics Italy S.R.L. Automatic protection system for an optical transmission system
JP3802992B2 (ja) * 1999-02-08 2006-08-02 富士通株式会社 波長多重光通信システム
AU2001238687A1 (en) * 2000-04-13 2001-10-30 Corning Incorporated Optical amplifiers with a simple gain/output control device
US6522461B1 (en) * 2000-12-22 2003-02-18 Ciena Corporation Optical pre-amplifier apparatus and method for receiver performing gain control according to LOS declaration
JP2002250947A (ja) * 2001-02-23 2002-09-06 Fujitsu Ltd ラマン励起制御方法及び、これを用いる光伝送装置
US20030067671A1 (en) * 2001-10-05 2003-04-10 Islam Mohammed N. High reliability optical amplification
GB2389957A (en) * 2002-06-19 2003-12-24 Kamelian Ltd Automatic power control of a semiconductor optical amplifier
US7031050B2 (en) * 2002-08-14 2006-04-18 Tropic Networds Inc. Method and system for precision cross-talk cancellation in optical amplifiers
US20040197105A1 (en) * 2003-02-14 2004-10-07 Jds Uniphase Corporation Variable gain multi-stage optical amplifier
JP4222855B2 (ja) * 2003-03-05 2009-02-12 富士通株式会社 光増幅装置
US20070103766A1 (en) * 2004-10-26 2007-05-10 Frriedrich Lars Method for monitoring an optical transmission line by means of an optical amplifier and optical amplifier therefor
CN101141204B (zh) * 2007-09-27 2011-12-28 中兴通讯股份有限公司 一种光传输系统中光放大器增益控制的方法及装置
CN101820320B (zh) * 2009-02-27 2012-08-01 中国移动通信集团公司 控制光放大器对光信号进行放大处理的方法及其装置
US8284479B2 (en) * 2009-08-18 2012-10-09 Fujitsu Limited Optical amplifier card with pluggable pump laser modules
JP5556358B2 (ja) 2010-05-19 2014-07-23 富士通株式会社 光増幅装置
JP2012043934A (ja) 2010-08-18 2012-03-01 Fujitsu Ltd 増幅装置、通信システムおよび増幅方法
CN104704690A (zh) * 2012-12-05 2015-06-10 三菱电机株式会社 光放大器、波分复用光传输系统以及程序

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2674071A1 (fr) * 1991-03-15 1992-09-18 Mitsubishi Electric Corp Amplificateur pour fibre optique et procede d'amplification.
GB2255683A (en) * 1991-03-15 1992-11-11 Mitsubishi Electric Corp Optical fiber amplifier and its amplification method
US5268786A (en) * 1991-03-15 1993-12-07 Mitsubishi Denki Kabushiki Kaisha Optical fiber amplifier and its amplification method
JPH0541624A (ja) * 1991-08-06 1993-02-19 Mitsubishi Electric Corp フアイバ形光増幅器
JPH05136499A (ja) * 1991-11-12 1993-06-01 Nec Corp 光フアイバ増幅器
JPH08248455A (ja) 1995-03-09 1996-09-27 Fujitsu Ltd 波長多重用光増幅器
JP2000349718A (ja) * 1999-06-08 2000-12-15 Nec Corp 光ファイバ増幅器
JP2003318831A (ja) * 2002-04-23 2003-11-07 Furukawa Electric Co Ltd:The 光増幅器およびその光増幅器を用いた光通信システム
US20050105170A1 (en) * 2003-11-17 2005-05-19 Fujitsu Limited Optical amplifier and control method for optical amplifier
JP2005150435A (ja) * 2003-11-17 2005-06-09 Fujitsu Ltd 光増幅器および光増幅器の制御方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023017585A1 (ja) * 2021-08-11 2023-02-16 日本電気株式会社 光増幅システム、光増幅方法及び記憶媒体

Also Published As

Publication number Publication date
EP2930800A1 (en) 2015-10-14
US9478935B2 (en) 2016-10-25
CN104704690A (zh) 2015-06-10
JPWO2014087505A1 (ja) 2017-01-05
US20150188286A1 (en) 2015-07-02
EP2930800B1 (en) 2020-02-19
EP2930800A4 (en) 2016-08-10
JP5847332B2 (ja) 2016-01-20

Similar Documents

Publication Publication Date Title
US7068421B2 (en) Raman amplifier and optical relay transmission system
JP4459277B2 (ja) ラマン増幅による雑音光のモニタ方法および装置、並びに、それを用いた光通信システム
JP2000299518A (ja) 光ファイバ増幅器及びその制御方法
US9065570B2 (en) Optical amplifier with feedback to obtain set gain and gain tilt
JP5847332B2 (ja) 光増幅器、波長多重光伝送システム及びプログラム
US8351112B2 (en) Optical amplifier
JP5584143B2 (ja) 光増幅器
EP2974082B1 (en) Tilt control through optical pump power adjustment
US9520694B2 (en) Optical amplifier with loss adjustment unit based on gain
JP2001094181A (ja) 光増幅器
JP3790240B2 (ja) 長波長光ファイバ増幅器
JP2008042096A (ja) 光増幅器および光伝送システム
JP6020640B2 (ja) 光増幅装置
JP4101155B2 (ja) 光増幅装置
US20120002270A1 (en) Optical transmission system
US20170170624A1 (en) Optical amplifier and method of controlling excitation light
US11711160B2 (en) Transmission device and transmission system
WO2017141423A1 (ja) 励起光源装置及び光伝送システム
US20240089007A1 (en) Mitigation of anomaly loss in an optical transmission system
US20210111800A1 (en) Optical amplifier, optical transmission device, and optical transmission system
JP4859651B2 (ja) 光増幅器および光通信システム
JP4133951B2 (ja) 光増幅装置の入力光強度推定方法及び光増幅装置
WO2016009638A1 (ja) 光伝送装置及び光伝送方法
JP2006253782A (ja) 分布増幅を用いた光ファイバ通信システム
JP2008251717A (ja) 光増幅器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12889712

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014550850

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14412816

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012889712

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE