WO2014086068A1 - 一种基于液体聚合物在线连续配制的压裂方法 - Google Patents

一种基于液体聚合物在线连续配制的压裂方法 Download PDF

Info

Publication number
WO2014086068A1
WO2014086068A1 PCT/CN2012/087321 CN2012087321W WO2014086068A1 WO 2014086068 A1 WO2014086068 A1 WO 2014086068A1 CN 2012087321 W CN2012087321 W CN 2012087321W WO 2014086068 A1 WO2014086068 A1 WO 2014086068A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
fracturing
sand
water
proppant
Prior art date
Application number
PCT/CN2012/087321
Other languages
English (en)
French (fr)
Inventor
盖海防
Original Assignee
东营盛世石油科技有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东营盛世石油科技有限责任公司 filed Critical 东营盛世石油科技有限责任公司
Publication of WO2014086068A1 publication Critical patent/WO2014086068A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/62Compositions for forming crevices or fractures
    • C09K8/66Compositions based on water or polar solvents
    • C09K8/68Compositions based on water or polar solvents containing organic compounds
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures
    • E21B43/2607Surface equipment specially adapted for fracturing operations

Definitions

  • the invention relates to a water-based fracturing fluid preparation and construction process, in particular to a fracturing method based on online continuous preparation of liquid polymer.
  • Fracturing fluids have undergone tremendous evolution since they were first used for crack growth in 1947.
  • the early stimulation process was to add a viscous fluid sufficient to crush and extend the cracks into the gasoline; later, field engineers began to use silicone and its derivative-based working fluids, as the depth of the well increased and the temperature of the well increased, The viscosity of the fracturing fluid is also higher than that provided by the previously used linear gel.
  • inorganic and organometallic ion-crosslinking linear gels such as boron, zirconium and titanium have begun to be used.
  • foam fracturing fluids were widely studied and applied for their small damage to the formation.
  • fracturing fluids can be divided into: (1) oil-based or water-based, (2) emulsions composed of oil-water mixtures, (3) oil-based or water-based foams (nitrogen or carbon dioxide).
  • An important part of fracturing technology is the key to determining the success or failure of fracturing.
  • Water Base fracturing fluid has the advantages of low cost, high safety and the like, and is most widely used.
  • Water-based fracturing fluid is water as a solvent or dispersion medium, to which a thickener (plant gum, phthalocyanine, konjac; cellulose derivative; synthetic polymer) is added, depending on reservoir needs and fluid needs It is formulated with additional additives.
  • a thickener plant gum, phthalocyanine, konjac; cellulose derivative; synthetic polymer
  • the use of water-based fracturing fluid is the most widely used, accounting for about 90% of the fracturing fluid market, and it has become the main production and increase injection measure for oil and gas reservoirs.
  • the main water-based fracturing fluids include the following methods: 1. Polymer cross-linking fracturing fluid. 2. Viscoelastic fracturing fluid. 3. Clear water fracturing. Polymer Water-based fracturing fluids can be broadly classified into three types: (1) natural vegetable gum fracturing fluids; (2) cellulose fracturing fluids; (3) synthetic polymer fracturing fluids.
  • the polymer cross-linked fracturing fluid is uniformly dissolved by the polymer (mainly solid powder), the additive is added, and various cross-linking agents are added to produce a higher final viscosity and better construction efficiency.
  • the construction process is generally to prepare the main agent polymer of the fracturing fluid in the preparation station with water in advance, pull it to the site with a tanker, or prepare it in a container such as a pool, a tank, etc., which takes a lot of time, Costs, procedures first dissolve the polymer, and then according to the characteristics of the fracturing fluid, add some additives to improve the performance of the fracturing fluid, anti-swelling agent, fungicide, drainage aid, etc., and then in the sand mixer
  • the cross-linked sand-supporting proppant is injected into the reservoir with a pump.
  • the preparation method of the cleaning fracturing fluid and the fresh water fracturing fluid is also prepared in advance by using the agent forming the fracturing fluid together with the clean water in a container such as a preparation station and a preparation tank, and then injected by a pump, and uniformly mixed with the proppant in the sand mixing vehicle. After that, carry the proppant together into the formation.
  • water-based fracturing fluids still have shortcomings in liquid preparation and construction processes: 1.
  • the above fracturing fluids are all prepared first, then constructed, time and process are cumbersome, requiring time and expense, and low efficiency.
  • the water fracturing fluid will not carry too much proppant, generally no more than 5%.
  • the polymer fracturing fluid cannot be constructed due to special circumstances.
  • the prepared fracturing fluid and cross-linking fluid will expire and cause a lot of waste, which will also make the waste liquid difficult to handle and cause pressure on the surrounding environment.
  • the object of the present invention is to provide a fracturing method based on online continuous preparation of a liquid polymer, which can be widely applied to oil wells.
  • Fracturing measures for various wells such as gas wells and water wells can also be used in the fracturing process of shale gas and coalbed methane high sand ratio to improve the current fracturing process;
  • the present invention combines preparation and construction closely, and can be realized Continuously formulated and constructed, the operation is very simple, and can meet the requirements of stable carrying proppant, achieving a sand carrying ratio of more than 15%, up to 100% on site, up to 250% indoors.
  • a fracturing method based on online continuous preparation of liquid polymer comprising the following steps: Step 1: connecting a fracturing construction pipeline, testing water pressure, and pressing the formation;
  • Step 2 Select the polymer, and directly pump the polymer to the sand mixer by means of online addition. At the same time, another proportional pump is used to inject the water into the sand mixer, and the polymer and water are mixed to form a pressure. Cracking fluid, the volume of the polymer in the fracturing fluid is 30%.
  • Step 3 While mixing the polymer and water, the proppant is also mixed in the sand mixing vehicle. The volume ratio of the proppant to the fracturing fluid is the sand ratio. 250%, to ensure that the sand ratio is the volume ratio of proppant to fracturing fluid to meet the needs of the site. Under the stirring of the sand mixer, the polymer, water and proppant are rapidly dispersed with each other, and the polymer dissolution time is 10s-20min. After mixing evenly, pump into the ground;
  • the polymer is a polymer in the form of a liquid, including one of a synthetic polymer, a vegetable gum polymer, and a cellulose derivative, or a mixture of any of the above various ratios;
  • the synthetic base polymer is an emulsion or suspension polymer, including polyacrylamide and derivatives, acrylic polymers and derivatives, acrylate polymers and derivatives, acrylic alcohol polymers and derivatives or polyethyleneimine.
  • polyacrylamides and derivatives including nonionic, anionic, cationic or zwitterionic; acrylic polymers and derivatives including acrylic acid-ethyl acrylate polymers.
  • the vegetable gum polymer comprises one of silicone, celery or konjac or a mixture of any of the above.
  • the cellulose derivative includes a cationic or zwitterionic group-containing cellulose derivative.
  • the proppant is quartz sand, ceramsite sand or resin clad sand; the volume ratio of the proppant to the fracturing fluid, that is, the sand ratio is 250%.
  • the additive when water is injected into the sand mixing vehicle, the additive is injected, and the additive can be selectively added according to the site to improve the sand carrying effect and the fracturing effect;
  • the additive includes the water mass concentration of 0- 20% ammonium chloride, mass concentration of 0-20% potassium chloride inorganic substance, mass concentration of 0-20% surfactant such as liquid ⁇ -alkenyl sulfonate, mass concentration of 0-20% breaker
  • the purpose is to promote dissolution efficiency, reduce fracturing resistance, promote better sand transport, improve rock formation, improve drainage and gel breaking, improve fracturing efficiency, and increase production efficiency.
  • the carbon dioxide, nitrogen gas or air can be directly injected into the formation by the pump truck according to the need of fracturing, and the injection amount is 1-200 squares, which matches the fracturing effect.
  • the medicament does not need to be prepared at the preparation station or the on-site preparation tank, and the preparation and carrying of the sand are integrated. It can effectively simplify the process, improve the quality of the liquid, reduce the conditions required for monitoring, reduce the cost, and improve the efficiency by satisfying the ability of the fracturing fluid to stably carry the proppant. Especially for the practical operation of continuously preparing thousands of squares and tens of thousands of square fracturing fluids, it is of great value, which can reduce the cost of operation and improve the fracturing efficiency.
  • a fracturing method based on on-line continuous preparation of liquid polymer adopts the method of online addition and use, which can avoid the construction of the day due to special circumstances.
  • the resulting fracturing fluid waste will not cause environmental stress and will result in good environmental protection.
  • the fracturing fluid absorbs sand by the viscosity of the liquid polymer, which makes the proppant easier to cut in.
  • the addition of proppant can promote the fluid to be more stable, and the ability to carry the proppant is better, so the sand ratio can be effectively improved.
  • the fracturing fluid can ensure that the proppant is continuously added under the conditions, and the indoor experiment can carry up 250%.
  • This process is a process in which the liquid polymer is self-dissolving and diffusing to release viscosity. It can be diluted by water at any ratio, so there is no residue and low damage to the reservoir. For well fracturing, the process does not even have to be reversed.
  • the fluid carrying sand fluid has good rheology and small friction, which can better protect the reservoir.
  • the drawing is a schematic diagram of the construction process flow. detailed description
  • a fracturing method based on continuous serial preparation of a liquid polymer for use in an oil well comprising the following steps:
  • the polymer used in this embodiment is a polyacrylamide derivative in a synthetic base polymer, specifically a chitin graft polymer, which is grafted from ketone and acrylamide, and has a molecular weight of 8 million.
  • the solid content is 35%, and the viscosity of the polymer itself is 102mpa. s (ZNN-D6 six-speed viscometer measured at 170s- 1 )
  • Step 1 Connect the fracturing construction pipeline, test the water, and press the ground;
  • Step 2 Simultaneously pump 1 ton (square) of chitin graft polymer into the sand mixer with a proportional pump, and mix the sand pump with the second proportional pump to inject 100 cubic meters of water.
  • Step 3 Pour 30 cubic proppant at the same time, the proppant is quartz sand, the diameter is 0. 425mm, control the displacement, ensure the volume concentration of liquid polymer in the construction process is 1%, the average sand ratio is 30%, in the mix
  • the sand truck was stirred for 50 seconds and pumped into the formation.
  • the construction pressure is stable during the construction process, and the whole process is 35 minutes. After the construction is completed, the well is shut down.
  • the initial daily production liquid 2. 16 square meters, oil production 1. 47 tons, compared with the conventional melon rubber fracturing in the adjacent well, the output is slightly higher.
  • a fracturing method based on continuous serial preparation of a liquid polymer for use in an oil well comprising the following steps:
  • the polymer used in this example is a polyacrylamide derivative in a synthetic base polymer,
  • the body is a chitin graft polymer, which is grafted from ketone and acrylamide.
  • the coffee emulsion polymer has a molecular weight of 8 million, a solid content of 35%, and the viscosity of the polymer itself is 102mpa. s (ZNN-D6 six-speed Viscometer measured at 170s- 1 )
  • Step 1 Connect the fracturing construction pipeline, test the water, and press the ground;
  • Step 2 Simultaneously pump 1 ton (square) chitin graft polymer into the sand mixer with a proportional pump. Mix the sand mixer and use a second proportional pump to inject 100 cubic meters of water and 80 kg of additives.
  • the additive is liquid ⁇ -ene.
  • Step 3 Pour 30 cubic proppant at the same time, the proppant is quartz sand, the diameter is 0. 425mm, control the displacement, ensure the volume concentration of liquid polymer in the construction process is 1%, the average sand ratio is 30%, in the mix
  • the sand truck was stirred for 30 seconds and pumped into the formation.
  • the construction pressure is stable during the construction process, and the whole process is 35 minutes. After the construction is completed, the well is shut down. After 2 hours, the anti-discharge was not insoluble.
  • the initial daily production liquid 3. 03 side, oil production 2. 12 tons, compared with the conventional melon rubber fracturing in the adjacent well, the output is slightly higher.
  • a fracturing method based on continuous serial preparation of a liquid polymer for use in an oil well comprising the following steps:
  • the polymer used in this example is an anionic emulsion polyacrylamide in a synthetic base polymer, a brown emulsion polymer having a molecular weight of 10 million, a solid content of 35%, and a viscosity of the polymer itself of 99 mPa. s (ZNN-D6 six-speed viscometer) Tested at 170s- 1 )
  • Step 1 Connect the fracturing construction pipeline, test the water, and press the ground;
  • Step 2 At the same time, use a proportional pump to extract 1.2 tons of anionic emulsion polyacrylamide to the sand mixer, and mix the sand mixer with a second proportional pump to inject 100 cubic meters of water.
  • the average sand ratio is 50%
  • the volume ratio of the liquid polymer is 1.2%
  • the volume ratio of the liquid polymer is 1. 2%
  • the average sand ratio is 50%. Pumped into the formation after mixing for 50s in the sand mixer.
  • the construction pressure is stable during the construction process, and the whole process is 35 minutes. After the construction is completed, the well is shut down.
  • a fracturing method based on continuous online preparation of a liquid polymer for use in a well comprising the following steps:
  • the polymer used in this example is a cationic emulsion polyacrylamide in a synthetic base polymer, which is a brown emulsion polymer having a molecular weight of 8 million, a viscosity of 80 mPa ⁇ s, a solid content of 40%, and a viscosity of the polymer itself of 102 mpa.
  • s ZNN_D6 six-speed viscometer in 170s - 1 step one, connect the fracturing construction pipeline, clean water pressure test, pressurize the formation; Step 2, simultaneously use the proportional pump to extract 2 tons of (square) cationic polyacrylamide to the sand mixer, While mixing the sand mixer, inject 200 cubic meters of water with a second proportional pump.
  • Step 3 Inject 100 cubic proppant at the same time, the proppant is ceramsite sand, the diameter is 0. 84mm, and the mixture is pumped into the formation for 40s in the sand mixer to control the displacement to ensure the volume concentration of the liquid polymer during the construction process is 1 %, the sand ratio is 50%, and the sand mixer is pumped into the formation for 30s.
  • Embodiment 5 During the construction process, the construction pressure is stable. The whole process is 40min. After the construction is completed, the water is injected directly, and the starting pressure of the injected water is reduced. Embodiment 5
  • a fracturing method based on continuous online preparation of a liquid polymer for use in a well comprising the following steps:
  • the polymer used in this example is a cationic emulsion polyacrylamide in a synthetic base polymer, which is a brown emulsion polymer having a molecular weight of 8 million, a viscosity of 80 mPa ⁇ s, a solid content of 40%, and a viscosity of the polymer itself of 102 mpa.
  • s ZNN_D6 six-speed viscometer in 170s- 1 step 1, connect the fracturing construction pipeline, clean water pressure test, pressurize the formation;
  • Step 2 simultaneously use a proportional pump to extract 1 ton (square) cationic emulsion polymer to the sand mixer, While mixing the sand mixer, inject 100 cubic meters of water with a second proportional pump.
  • Step 3 Inject 100 cubic proppant at the same time, the proppant is ceramsite sand, the diameter is 0. 84mm, and the mixture is pumped into the formation for 40s in the sand mixer to control the displacement to ensure the volume concentration of the liquid polymer during the construction process is 1 %, sand ratio is 100%, the sand mixer is stirred for 30s and pumped into the ground.
  • the construction pressure is stable, and the whole process is 40 minutes.
  • the water is injected directly, and the starting pressure of the injected water is reduced.
  • a fracturing method based on continuous online preparation of a liquid polymer for use in a gas well comprising the following steps:
  • the polymer used in this embodiment is a polyacrylamide derivative in a synthetic base polymer, specifically a starch-AM graft polymer, which is a milky white emulsion polymer having a molecular weight of 12 million and a viscosity of 93 mPa.s ( ZNN-D6 six-speed viscometer measured at 170s- 1 ), Step 1. Connect the fracturing construction pipeline, test the water, and press the ground;
  • Step 2 At the same time, use a proportional pump to extract 15 tons of (square) starch-AM graft polymer into the sand mixer, and mix the sand mixer with a second proportional pump to inject 3000 cubic meters;
  • the 5%, the sand ratio is 10%, mixed.
  • the volume of the liquid polymer is 0. 5%, the sand ratio is 10%, and the mixing ratio is 0. 84mm.
  • the sand truck is stirred for 30s and pumped into the ground.
  • the construction pressure is stable.
  • the whole process is reversed after 30h and 5h, and there is no insoluble matter in the anti-discharge.
  • the initial daily gas production is 4. 2 square meters, and the conventional fracturing output is increased.
  • a fracturing method based on continuous serial preparation of a liquid polymer for use in an oil well comprising the following steps:
  • the polymer used in this embodiment is a polyacrylamide derivative in a synthetic base polymer, specifically a chitin graft polymer, which is grafted from ketone and acrylamide. It is a brown emulsion polymer with a molecular weight of 8 million, effective content 35%, the viscosity of the polymer itself is 102mpa.s (ZNN-D6 six-speed viscometer measured at 170s-1),
  • Step 1 Connect the fracturing construction pipeline, test the water, and press the ground;
  • Step 2 Simultaneously pump 1 ton (square) of chitin graft polymer into the sand mixer with a proportional pump. Mix the sand mixer and use a second proportional pump to inject 100 cubic meters of water, 80 kg of active agent, and the active agent is ⁇ - Sodium alkenyl sulfonate,
  • Step 3 Pour 30 cubic proppant at the same time, the proppant is quartz sand, the diameter is 0.425mm, and the displacement is controlled to ensure the volume concentration of the liquid polymer during the construction process is 1%.
  • the average sand ratio is 30%.
  • the construction pressure is stable during the construction process, the whole process is 50min, and the well is closed after the construction is completed. After the pressure, the forced closing measures were taken. After 2 hours, the liquid was discharged from the liquid, and the reverse liquid was free of insoluble matter.
  • the initial daily production of liquid is 3.02 square meters, and the oil production is 1.67 tons. Compared with the conventional melon rubber fracturing in the adjacent well, the output is slightly higher.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Physics & Mathematics (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

一种基于液体聚合物在线连续配制的压裂方法,通过现场在线添加的方式,通过比例泵按照比例,将高含量的液体聚合物直接抽汲到混砂车,通过加入支撑剂,水,在混砂车的搅拌下,根据配比,将水,支撑剂,增稠聚合物混合在一起,砂比可达15%-100%,甚至可达250%;该方法不需在配液站或配制池中配制,可以实现连续配制和施工,将配制和施工紧密的结合在一起,真正的实现了操作简便、降低施工成本,节约环保、保护油藏,增产增效的目的。

Description

说明书 一种基于液体聚合物在线连续配制的压裂方法 技术领域
本发明涉及一种水基压裂液配制及施工工艺,具体涉及一种基于 液体聚合物在线连续配制的压裂方法。
背景技术
压裂液自从 1947 年首次用于裂缝增产以来已经历了巨大的演 变。早期的增产处理是通过向汽油中添加形成足以压开和延伸裂缝的 黏性流体;后来,现场工程师开始采用胍胶及其衍生物基工作液,随着 井深的增加和井温的升高,对压裂液黏度的要求也比以前使用的线性 凝胶所能提供的黏度要高。为了在高温储层中达到足够的黏度和提高 其高温稳定性能,开始采用硼、 锆、 钛等无机和有机金属离子交联线 性凝胶。上世纪 80 年代,泡沬压裂液因其对地层伤害小而受到广泛研 究和应用。 20 世纪 90 年代,人们通过使用高效化学破胶剂和降低聚 合物浓度的方法来减少胍胶对地层的伤害。选择何种压裂液时主要考 虑的因素包括安全、 易得,混配和使用方便,和地层的相容性,返排能 力以及成本。按照组成不同,压裂液可分为: (1) 油基或水基, (2) 油 水混合物组成的乳状液, (3) 油基或水基泡沬 (氮气或二氧化碳) 体 压裂液是压裂技术的重要组成部分, 是决定压裂成败的关键。水 基压裂液具有成本低、 安全性高等优点, 使用最为广泛。 水基压裂液 是以水作溶剂或分散介质, 向其中加入稠化剂(植物胶一胍胶、田菁、 魔芋; 纤维素衍生物; 合成聚合物)、 根据油藏需要和流体需要还要 补充添加剂配制而成。当前水基压裂液的使用最为广泛普及, 约占压 裂液市场的 90%, 成为油气藏的主要增产、 增注措施。
从压裂发展历史和过程看, 主要的水基压裂液包括如下几种方 式: 1. 聚合物交联压裂液。 2.粘弹性压裂液。 3. 清水压裂。 聚合物 水基压裂液 ,其大致可分为 3 种类型:(1) 天然植物胶压裂液; (2) 纤维素压裂液; (3) 合成聚合物压裂液。
其中聚合物交联的压裂液都是通过聚合物(主要是固体粉剂)溶 解均匀后, 加入添加剂, 并采取添加各种交联剂, 产生较高的井下最 终粘度和更好的施工效率。施工过程是, 一般要提前将压裂液的主剂 聚合物在配制站用清水配制好, 用罐车拉到现场, 或者在现场池子、 罐等容器中配制好, 这样就需要花费很多的时间、 费用、 程序先将聚 合物溶解好, 然后要根据压裂液特性需要, 溶解过程中加入一些提高 压裂液性能的添加剂, 防膨剂, 杀菌剂, 助排剂等, 然后在混砂车中 交联裹砂支撑剂用泵注入油气藏,
清洁压裂液和清水压裂液配制方法也是提前用形成压裂液的药 剂和清水一起在配制站和配制池等容器中配制好, 然后用泵注入, 在 混砂车中和支撑剂均匀混合后, 携带支撑剂一起进入地层。
综合上述的水基压裂液的配制和施工工艺描述, 水基压裂液在 配液及施工工艺方面仍存在不足: 1.上述压裂液都是先配制好, 再施工, 时间和工序比较繁琐, 需 要时间和费用大, 效率低。
2.清水压裂液携带支撑剂不会太多, 一般不超过 5%。
3. 采取交联压裂液体系施工的缺陷 ,还有破胶不完全 ,凝胶易 存在油藏中, 破胶不彻底, 残渣残留在裂缝内, 严重降低支撑剂充填 层的渗透率 ,从而伤害产层 ,油藏保护性不好, 导致压裂效果变差。
4.聚合物压裂液, 因特殊情况无法施工, 配制好的压裂液、 交 联液等会过期变质导致大量的浪费, 还会造成废液处理困难, 给周边 环境造成压力。
随着油田发展压裂措施的规模越来越大, 几千方到上万方的压 裂液进行大规模高水平的压裂施工, 配制时间长, 管理程序复杂, 如 采取常规压裂液配制施工, 施工成本非常大。如何实现快速配制并有 高水平的携带支撑剂的能力的压裂操作方式的发明迫在眉睫。
发明内容
为了克服现有常规压裂液配制和施工工艺的缺点,满足压裂工艺 发展的需求,本发明的目的在于提供一种基于液体聚合物在线连续配 制的压裂方法, 该发明可以广泛应用于油井、气井、 水井等各种井的 压裂措施, 也可用于页岩气、 煤层气高砂比的压裂工艺中, 完善现压 裂工艺; 本发明将配制和施工紧密的结合在一起, 可实现连续配制和 施工, 操作十分简便, 并能够满足稳定携带支撑剂, 达到携砂比高于 15%的能力, 现场可达 100%, 室内直至 250%。 为了达到上述目的, 本发明的技术方案是这样实现的: 一种基于液体聚合物在线连续配制的压裂方法, 包括以下步骤: 步骤一、 连接压裂施工管线, 清水试压, 压开地层;
步骤二、 选取聚合物, 通过在线添加的方式, 将聚合物用比例 泵直接抽汲到混砂车, 同时用另一台比例泵将水注入到混砂车中,聚 合物和水混合形成压裂液, 压裂液中聚合物的体积使用浓度 30%, 步骤三、在混入聚合物和水的同时,在混砂车中也混入支撑剂, 支撑剂与压裂液的体积比即砂比 250%,保证砂比即支撑剂与压裂液 的体积比达到现场需求, 在混砂车的搅拌下, 聚合物、 水、 支撑剂相 互之间迅速分散, 聚合物溶解时间是 10s-20min, 混合均匀后泵入地 层;
所述的聚合物为以液体为形式存在的聚合物, 包括合成基聚合 物、植物胶聚合物和纤维素衍生物中的一种或上述多种任意比例的混 合物;
所述的合成基聚合物为乳液或悬浮液聚合物, 包括聚丙烯酰胺 及衍生物、 丙烯酸聚合物及衍生物、 丙烯酸酯聚合物及衍生物、 丙烯 酸醇聚合物及衍生物或聚乙烯亚胺中的一种或上述多种任意比例的 混合物; 聚丙烯酰胺及衍生物包括非离子、 阴离子、 阳离子或两性离 子; 丙烯酸聚合物及衍生物包括丙烯酸-丙烯酸乙酯聚合物。
所述的植物胶聚合物包括胍胶、 田菁或魔芋中的一种或上述多 种任意比例的混合物。
所述的纤维素衍生物包括含阳离子或两性离子基团纤维素衍生 物。 所述的支撑剂为石英砂、陶粒砂或树脂包层砂; 支撑剂与压裂液 的体积比, 即砂比 250%。
所述的步骤二中, 将水注入到混砂车中时, 注入添加剂, 添加剂 可根据现场选择性加入, 来提高携砂效果和压裂效果; 所述的添加剂 包括占水质量浓度为 0-20%氯化铵、质量浓度为 0-20%氯化钾无机物、 质量浓度为 0-20%表面活性剂如液体 α -烯基磺酸钠、 质量浓度为 0-20%破胶剂如酶或氧化剂、 质量浓度为 0-20%交联剂如有机锆、 质 量浓度为 0-50%酸如盐酸或质量浓度为 0-20%碱如碳酸钠中的一种或 上述多种任意比例的混合物。 目的是促进溶解效率、 降低压裂阻力、 促进更好携砂、 改善岩层, 提高助排及破胶、 提高压裂效能, 提高增 产效率。
所述的步骤三中, 可根据压裂需要, 用泵车直接将二氧化碳, 氮 气或空气注入地层, 注入量为 1-200方, 匹配提高压裂效果。
本发明的优势是:
( 1 ) 减少施工设备, 降低作业成本, 操作简易, 缩短工作时间, 提高效率。 药剂无需在配制站或现场配制池配制, 将配制、 携砂一体 化。在满足压裂液稳定携带支撑剂能力下, 可有效的简化工序, 提高 液体质量、 减少监控所需的条件、 降低成本、 提高效率。 特别是对于 连续配制几千方和上万方压裂液的实际操作更具有重要的价值,可减 少大量的作业成本, 提高压裂效率。
(2) 节约环保。 一种基于液体聚合物在线连续配制的压裂方法 采取在线添加、 随用随配的方式, 可以避免当天因特殊情况无法施工 造成的压裂液浪费现象, 不会造成环境压力, 会产生很好的节约环保 效果。
( 3 ) 压裂液靠液体聚合物溶解后的本身粘度携砂, 使得支撑剂 更容易切入, 支撑剂的添加能够促进流体更加稳定, 携带支撑剂的能 力更加优良, 因此可以有效的提高砂比。压裂液在条件允许下, 可以 保证支撑剂持续添加, 室内实验携砂比可达 250%。
(4 ) 油藏保护, 该工艺是液体聚合物遇水自我溶解扩散释放增 粘的过程, 可被水任意比稀释, 所以无残渣, 对油藏伤害低。 对于水 井压裂, 该工艺甚至不用反排。
( 5 ) 为了提高快速反排能力, 也可以采取加入破胶剂 (酶或者 氧化剂, 如过硫酸铵) , 让聚合物大分子降解为小分子, 成为水状, 或更低的粘度, 从而实现快速反排。
(6 ) 携砂液流体流变性好, 摩阻小, 可以更好的保护油藏。
( 7 ) 增产作用好。
(8 ) 适用范围广, 可应用于常规油井、 水井、 气井压裂, 也可 用于页岩气、 煤层气高砂比的压裂工艺中, 完善现有压裂工艺。适用 于各种支撑剂, 包括石英砂, 陶粒砂, 树脂包层砂等不同类型规格的 支撑剂。
( 9 )采用步骤二的方案在混砂过程中, 流体流变性好, 降阻好, 同时能够保证支撑剂沉降速度符合压裂的要求。
附图说明
附图是施工工艺流程示意图。 具体实施方式
下面结合具体实施例对本发明做详细描述。
实施例一
一种基于液体聚合物在线连续配制的压裂方法, 用于油井, 包括 以下步骤:
本实施例所用聚合物是合成基聚合物中的聚丙烯酰胺衍生物,具 体为甲壳素接枝聚合物, 由甲克素和丙烯酰胺接枝而成, 咖啡色乳液 聚合物, 分子量为 800万, 固含量 35%, 聚合物本身粘度为 102mpa. s ( ZNN-D6六速粘度计在 170s— 1下所测)
步骤一、 连接压裂施工管线, 清水试压, 压开地层;
步骤二、 同时用比例泵抽取 1吨(方) 甲壳素接枝聚合物到混砂 车, 混砂车搅拌同时用第二台比例泵注入 100立方水,
步骤三、 同时倒入 30 立方支撑剂, 支撑剂为石英砂, 直径为 0. 425mm, 控制排量, 保证施工过程中液体聚合物的体积浓度为 1%, 平均砂比为 30%, 在混砂车搅拌 50s后泵入地层。
施工过程中施工压力平稳, 整个过程 35min, 施工完毕后关井。
2h后反排, 反排液无不溶物。 初期日产液 2. 16方, 产油 1. 47吨, 与邻井常规瓜胶压裂相比, 产量略有高出。
实施例二
一种基于液体聚合物在线连续配制的压裂方法, 用于油井, 包括 以下步骤:
本实施例所用聚合物是合成基聚合物中的聚丙烯酰胺衍生物,具 体为甲壳素接枝聚合物, 由甲克素和丙烯酰胺接枝而成, 咖啡色乳液 聚合物, 分子量为 800万, 固含量 35%, 聚合物本身粘度为 102mpa. s ( ZNN-D6六速粘度计在 170s— 1下所测)
步骤一、 连接压裂施工管线, 清水试压, 压开地层;
步骤二、 同时用比例泵抽取 1吨(方) 甲壳素接枝聚合物到混砂 车, 混砂车搅拌同时用第二台比例泵注入 100立方水、 80公斤添加 剂, 添加剂为液体 α -烯基磺酸钠,
步骤三、 同时倒入 30 立方支撑剂, 支撑剂为石英砂, 直径为 0. 425mm, 控制排量, 保证施工过程中液体聚合物的体积浓度为 1%, 平均砂比为 30%, 在混砂车搅拌 30s后泵入地层。
施工过程中施工压力平稳, 整个过程 35min, 施工完毕后关井。 2h后反排, 反排液无不溶物。 初期日产液 3. 03方, 产油 2. 12吨, 与邻井常规瓜胶压裂相比, 产量略有高出。
实施例三
一种基于液体聚合物在线连续配制的压裂方法, 用于油井, 包括 以下步骤:
本实施例所用聚合物是合成基聚合物中的阴离子乳液聚丙烯酰 胺, 咖啡色乳液聚合物, 分子量为 1000万, 固含量 35%, 聚合物本 身粘度为 99mpa. s (ZNN-D6六速粘度计在 170s— 1下所测)
步骤一、 连接压裂施工管线, 清水试压, 压开地层;
步骤二、 同时用比例泵抽取 1. 2吨(方) 阴离子乳液聚丙烯酰胺 到混砂车, 混砂车搅拌同时用第二台比例泵注入 100立方水, 步骤三、 同时倒入 50 立方支撑剂, 支撑剂为石英砂, 直径为 0. 425mm,控制排量,保证施工过程中液体聚合物的体积浓度为 1. 2%, 平均砂比为 50%, 在混砂车搅拌 50s后泵入地层。
施工过程中施工压力平稳, 整个过程 35min, 施工完毕后关井。
2h后反排, 反排液无不溶物。 初期日产液 3方, 产油 2. 12吨, 与邻 井常规瓜胶压裂相比, 产量略有高出。
实施例四
一种基于液体聚合物在线连续配制的压裂方法, 用于水井, 包括 以下步骤:
本实施例所用聚合物是合成基聚合物中的阳离子乳液聚丙烯酰 胺为例, 其为咖啡色乳液聚合物, 分子量 800万, 粘度为 80mpa. s, 固含量 40%,聚合物本身粘度为 102mpa. s(ZNN_D6六速粘度计在 170s— 1 步骤一、 连接压裂施工管线, 清水试压, 压开地层; 步骤二、 同时用比例泵抽取 2 吨 (方) 阳离子聚丙烯酰胺到 混砂车, 混砂车搅拌同时, 用第二台比例泵注入 200立方水,
步骤三、 同时注入 100立方支撑剂, 支撑剂为陶粒砂, 直径 为 0. 84mm, , 在混砂车搅拌 40s泵入地层, 控制排量, 保证施工过 程中液体聚合物的体积浓度为 1%, 砂比为 50%, 混砂车搅拌 30s泵 入地层。
施工过程中施工压力平稳, 整个过程 40min, 施工完毕后直接 注水, 注入水的启动压力减小。 实施例五
一种基于液体聚合物在线连续配制的压裂方法, 用于水井, 包括 以下步骤:
本实施例所用聚合物是合成基聚合物中的阳离子乳液聚丙烯酰 胺为例, 其为咖啡色乳液聚合物, 分子量 800万, 粘度为 80mpa. s, 固含量 40%,聚合物本身粘度为 102mpa. s(ZNN_D6六速粘度计在 170s— 1 步骤一、 连接压裂施工管线, 清水试压, 压开地层; 步骤二、 同时用比例泵抽取 1 吨 (方) 阳离子乳液聚合物到 混砂车, 混砂车搅拌同时, 用第二台比例泵注入 100立方水,
步骤三、 同时注入 100立方支撑剂, 支撑剂为陶粒砂, 直径 为 0. 84mm, , 在混砂车搅拌 40s泵入地层, 控制排量, 保证施工过 程中液体聚合物的体积浓度为 1%, 砂比为 100%, 混砂车搅拌 30s 泵入地层。
施工过程中施工压力平稳, 整个过程 40min, 施工完毕后直接 注水, 注入水的启动压力减小。
实施例六
一种基于液体聚合物在线连续配制的压裂方法, 用于气井, 包括 以下步骤:
本实施例所用聚合物是合成基聚合物中的聚丙烯酰胺衍生物,具 体为以淀粉 -AM 接枝聚合物为例, 其为乳白色乳液聚合物, 分子量 为 1200万,粘度为 93mpa.s (ZNN-D6六速粘度计在 170s— 1下所测), 步骤一、 连接压裂施工管线, 清水试压, 压开地层;
步骤二、 同时用比例泵抽取 15吨 (方) 淀粉 -AM接枝聚合物到 混砂车, 混砂车搅拌同时用第二台比例泵注入 3000立方水;
步骤三、 同时混入 300立方支撑剂, 支撑剂为陶粒砂, 直径 为 0. 84mm, 控制排量, 保证施工过程中液体聚合物的体积浓度为 0. 5%, 砂比为 10%, 混砂车搅拌 30s泵入地层。
施工过程中施工压力平稳, 整个过程 30h, 5h后反排, 反排液无 不溶物。 初期日产气 4. 2方, 比邻井常规压裂产量提高。
实施例七
一种基于液体聚合物在线连续配制的压裂方法, 用于油井, 包括 以下步骤:
本实施例所用聚合物是合成基聚合物中的聚丙烯酰胺衍生物,具 体为甲壳素接枝聚合物, 由甲克素和丙烯酰胺接枝而成, 是一种咖啡 色乳液聚合物, 分子量为 800万, 有效含量 35%, 聚合物本身粘度 为 102mpa.s (ZNN-D6六速粘度计在 170s-1下所测) ,
步骤一、 连接压裂施工管线, 清水试压, 压开地层;
步骤二、 同时用比例泵抽取 1吨(方) 甲壳素接枝聚合物到混砂 车, 混砂车搅拌同时用第二台比例泵注入 100立方水, 80公斤活性 剂, 活性剂为 α -烯基磺酸钠,
步骤三、 同时倒入 30立方支撑剂, 支撑剂为石英砂, 直径为 0.425mm,控制排量,保证施工过程中液体聚合物的体积浓度为 1 %, 平均砂比为 30%, 在混砂车中搅拌 40s后, 携砂液与液氮 50方在地 面三通汇合经油管泵入地层。
施工过程中施工压力平稳, 整个过程 50min, 施工完毕后关井。 压后采取强制闭合措施, 2h后自喷排液, 反排液无不溶物。 初期日 产液 3.02方, 产油 1.67吨, 与邻井常规瓜胶压裂相比, 产量略有高 出。

Claims

权利要求书
1、一种基于液体聚合物在线连续配制的压裂方法, 其特征在于, 包括以下步骤:
步骤一、 连接压裂施工管线, 清水试压, 压开地层;
步骤二、 选取聚合物, 通过在线添加的方式, 将聚合物用比例 泵直接抽汲到混砂车, 同时用另一台比例泵将水注入到混砂车中,聚 合物和水混合形成压裂液, 压裂液中聚合物的体积使用浓度 30%, 步骤三、在混入聚合物和水的同时,在混砂车中也混入支撑剂, 支撑剂与压裂液的体积比即砂比 250%,保证砂比即支撑剂与压裂液 的体积比达到现场需求, 在混砂车的搅拌下, 聚合物、 水、 支撑剂相 互之间迅速分散, 聚合物溶解时间是 10s-20min, 混合均匀后泵入地 层;
所述的聚合物为以液体为形式存在的聚合物, 包括合成基聚合 物、植物胶聚合物和纤维素衍生物中的一种或上述多种任意比例的混 合物;
所述的合成基聚合物为乳液或悬浮液聚合物, 包括聚丙烯酰胺 及衍生物、 丙烯酸聚合物及衍生物、 丙烯酸酯聚合物及衍生物、 丙烯 酸醇聚合物及衍生物或聚乙烯亚胺中的一种或上述多种任意比例的 混合物; 聚丙烯酰胺及衍生物包括非离子、 阴离子、 阳离子或两性离 子; 丙烯酸聚合物及衍生物包括丙烯酸-丙烯酸乙酯聚合物;
所述的植物胶聚合物包括胍胶、 田菁或魔芋中的一种或上述多 种任意比例的混合物。 所述的纤维素衍生物包括含阳离子或两性离子基团纤维素衍生 物。
所述的支撑剂为石英砂、陶粒砂或树脂包层砂; 支撑剂与压裂液 的体积比, 即砂比 250%。
2、 根据权利要求 1所述的压裂方法, 其特征在于, 所述的步骤 二中, 将水注入到混砂车中时, 注入添加剂, 添加剂可根据现场选择 性加入, 来提高携砂效果和压裂效果; 所述的添加剂包括占水质量浓 度为 0-20%氯化铵、 质量浓度为 0-20%氯化钾无机物、 质量浓度为 0-20%表面活性剂如液体 α -烯基磺酸钠、质量浓度为 0-20%破胶剂如 酶或氧化剂、 质量浓度为 0-20%交联剂如有机锆、 质量浓度为 0-50% 酸如盐酸或质量浓度为 0-20%碱如碳酸钠中的一种或上述多种任意比 例的混合物。 目的是促进溶解效率、 降低压裂阻力、 促进更好携砂、 改善岩层, 提高助排及破胶、 提高压裂效能, 提高增产效率。
3、 根据权利要求 1所述的压裂方法, 其特征在于, 所述的步骤 三中, 可根据压裂需要, 用泵车直接将二氧化碳, 氮气或空气注入地 层, 注入量为 1 -200方, 匹配提高压裂效果。
PCT/CN2012/087321 2012-12-07 2012-12-24 一种基于液体聚合物在线连续配制的压裂方法 WO2014086068A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210524560.8 2012-12-07
CN2012105245608A CN102996107A (zh) 2012-12-07 2012-12-07 一种基于液体聚合物在线连续配制的压裂方法

Publications (1)

Publication Number Publication Date
WO2014086068A1 true WO2014086068A1 (zh) 2014-06-12

Family

ID=47925152

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/087321 WO2014086068A1 (zh) 2012-12-07 2012-12-24 一种基于液体聚合物在线连续配制的压裂方法

Country Status (2)

Country Link
CN (1) CN102996107A (zh)
WO (1) WO2014086068A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105672970A (zh) * 2015-12-31 2016-06-15 中国石油天然气股份有限公司 一种实现水平井段内暂堵转向多缝压裂的方法
CN105888641A (zh) * 2016-04-08 2016-08-24 北京纽荷瑞晨能源技术有限公司 一种二氧化碳-减阻水复合压裂方法
CN111005710A (zh) * 2019-12-19 2020-04-14 中石化四机石油机械有限公司 输砂混排系统及控制方法
CN113356820A (zh) * 2020-03-06 2021-09-07 中国石油化工股份有限公司 一种压裂方法
CN116426264A (zh) * 2023-04-23 2023-07-14 延长油田股份有限公司 自生热超临界二氧化碳胍胶压裂液及其制备方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103754108B (zh) * 2013-12-30 2017-04-26 三一石油智能装备有限公司 压裂车及压裂设备组
CN103726821B (zh) * 2014-01-08 2016-08-17 北京神州卓越石油科技有限公司 酸化压裂液连续混配供送装置
CN104481490A (zh) * 2014-11-18 2015-04-01 河南方舟新能源股份有限公司 一种煤层气井氮气泡沫压裂液体系
CN104405359A (zh) * 2014-11-18 2015-03-11 河南理工大学 低压低渗透储层煤层气井氮气泡沫压裂降污染方法和设备
CN104449652A (zh) * 2014-12-05 2015-03-25 奥菲(北京)石油技术有限公司 一种页岩气新型环保压裂液
CN105199707A (zh) * 2015-11-02 2015-12-30 天津中海油服化学有限公司 水基压裂用预混砂增稠剂及其制备方法
CN105778883A (zh) * 2016-04-21 2016-07-20 成都劳恩普斯科技有限公司 全悬浮清洁聚合物压裂液及其制备方法
CN105670597A (zh) * 2016-04-21 2016-06-15 成都劳恩普斯科技有限公司 使水基压裂液中的支撑剂在输送过程中不沉降的方法
CN108559479B (zh) * 2018-05-30 2020-05-22 西南石油大学 一种可在线施工的反相微乳液聚合物压裂液体系
CN109209322A (zh) * 2018-09-05 2019-01-15 大庆油田有限责任公司 一种满足高排量压裂注入需求的聚合物自动化供液方法
CN110792420B (zh) * 2019-10-30 2022-04-01 中国石油天然气集团有限公司 一种漏失气井修井在线配制堵漏工艺
CN112126419A (zh) * 2020-09-04 2020-12-25 四川省威沃敦化工有限公司 一种可连续配制的携砂液及其配制工艺
CN113638726A (zh) * 2021-09-14 2021-11-12 北京中海沃邦能源投资有限公司石楼分公司 一种基液粘度自动校准装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1313563C (zh) * 2004-09-23 2007-05-02 中国石油天然气股份有限公司 一种清洁压裂液添加剂的组成和压裂地层的方法
CN101434836A (zh) * 2008-12-12 2009-05-20 中国石油集团川庆钻探工程有限公司 压裂液连续混配方法
CN201843595U (zh) * 2010-10-22 2011-05-25 中国石油天然气股份有限公司 聚合物凝胶微球在线注入装置
WO2011145965A1 (en) * 2010-05-17 2011-11-24 Schlumberger Canada Limited Methods for providing proppant slugs in fracturing treatments

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8412500B2 (en) * 2007-01-29 2013-04-02 Schlumberger Technology Corporation Simulations for hydraulic fracturing treatments and methods of fracturing naturally fractured formation
CN101994504B (zh) * 2009-10-12 2013-05-29 中国石油集团川庆钻探工程有限公司工程技术研究院 连续混配型酸化压裂联作工艺
CN102003167B (zh) * 2010-11-18 2011-12-28 四机赛瓦石油钻采设备有限公司 油田压裂液的自动混配控制方法
CN102031102B (zh) * 2010-11-18 2013-04-24 陕西延长石油(集团)有限责任公司研究院 就地连续混配清洁压裂液添加剂的制备及压裂施工的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1313563C (zh) * 2004-09-23 2007-05-02 中国石油天然气股份有限公司 一种清洁压裂液添加剂的组成和压裂地层的方法
CN101434836A (zh) * 2008-12-12 2009-05-20 中国石油集团川庆钻探工程有限公司 压裂液连续混配方法
WO2011145965A1 (en) * 2010-05-17 2011-11-24 Schlumberger Canada Limited Methods for providing proppant slugs in fracturing treatments
CN201843595U (zh) * 2010-10-22 2011-05-25 中国石油天然气股份有限公司 聚合物凝胶微球在线注入装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105672970A (zh) * 2015-12-31 2016-06-15 中国石油天然气股份有限公司 一种实现水平井段内暂堵转向多缝压裂的方法
CN105672970B (zh) * 2015-12-31 2019-04-09 中国石油天然气股份有限公司 一种实现水平井段内暂堵转向多缝压裂的方法
CN105888641A (zh) * 2016-04-08 2016-08-24 北京纽荷瑞晨能源技术有限公司 一种二氧化碳-减阻水复合压裂方法
CN111005710A (zh) * 2019-12-19 2020-04-14 中石化四机石油机械有限公司 输砂混排系统及控制方法
CN113356820A (zh) * 2020-03-06 2021-09-07 中国石油化工股份有限公司 一种压裂方法
CN116426264A (zh) * 2023-04-23 2023-07-14 延长油田股份有限公司 自生热超临界二氧化碳胍胶压裂液及其制备方法

Also Published As

Publication number Publication date
CN102996107A (zh) 2013-03-27

Similar Documents

Publication Publication Date Title
WO2014086068A1 (zh) 一种基于液体聚合物在线连续配制的压裂方法
WO2015109917A1 (zh) 页岩气压裂液用稠化剂、压裂液及其制备方法与应用
CA2671204C (en) Non-toxic, green fracturing fluid compositions, methods of preparation and methods of use
CN108559479B (zh) 一种可在线施工的反相微乳液聚合物压裂液体系
US20100186959A1 (en) Methods for treating a well by simultaneously introducing into a mixer streams of water, a viscosity-increasing agent, and a particulate and introducing the mixture into the well
CN105916959A (zh) 使用液氨的压裂方法
CN1309798C (zh) 一种随钻堵漏剂及其制备方法和应用
CN104119853B (zh) 一种空气泡沫压裂液的制备方法
CN109294539B (zh) 一种火驱井环保封窜剂及其制备方法与应用
CN103525393B (zh) 一种速溶型酸液稠化剂及其制备方法与应用
CA3090866C (en) Polyamine polyethers as nonemulsifier components
CN106010492A (zh) 可降解高强度暂堵剂及其制备方法
CN106753299B (zh) 一种稀油井选择性堵水剂及其制备方法与应用
CN104610940A (zh) 一种低伤害储层保护钻井液及其制备方法
Cao et al. Self-suspending proppant manufacturing method and its property evaluation
CN106590560A (zh) 一种冻胶暂堵剂
CN112876612B (zh) 一种封堵裂缝用温敏性低滤失地下交联堵剂及其应用
CN102434125A (zh) 一种钻井用双液法堵漏施工方法
CN106244131A (zh) 一种压裂用高温微乳液助排剂及其制备方法
US3766986A (en) Method of treating a well using a volatile hydrocarbon liquid
CN104403655B (zh) 一种油田用压裂液及其制备方法
CN108913115B (zh) 一种低伤害复合压裂液及应用方法
CN111394078A (zh) 一种泡沫均匀酸及其制备方法和使用方法
CN103387680B (zh) 利用地层温度生成封隔阀封堵气层的流体凝胶的制备方法
CN106854463B (zh) 可回收压裂液及其制备方法和使用方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12889611

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12889611

Country of ref document: EP

Kind code of ref document: A1