CN113356820A - 一种压裂方法 - Google Patents

一种压裂方法 Download PDF

Info

Publication number
CN113356820A
CN113356820A CN202010152158.6A CN202010152158A CN113356820A CN 113356820 A CN113356820 A CN 113356820A CN 202010152158 A CN202010152158 A CN 202010152158A CN 113356820 A CN113356820 A CN 113356820A
Authority
CN
China
Prior art keywords
fracturing fluid
carbon dioxide
fracturing
proppant
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010152158.6A
Other languages
English (en)
Inventor
贺甲元
王海波
李小龙
李凤霞
周彤
刘长印
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Petroleum and Chemical Corp
Sinopec Exploration and Production Research Institute
Original Assignee
China Petroleum and Chemical Corp
Sinopec Exploration and Production Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Petroleum and Chemical Corp, Sinopec Exploration and Production Research Institute filed Critical China Petroleum and Chemical Corp
Priority to CN202010152158.6A priority Critical patent/CN113356820A/zh
Publication of CN113356820A publication Critical patent/CN113356820A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures
    • E21B43/261Separate steps of (1) cementing, plugging or consolidating and (2) fracturing or attacking the formation
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures
    • E21B43/267Methods for stimulating production by forming crevices or fractures reinforcing fractures by propping

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

本发明提出了一种压裂方法,该压裂方法包括步骤一,利用水基压裂液开启主裂缝,并封填裂缝附近空隙吼道;步骤二,利用二氧化碳压裂液沟通储层中的微裂缝,以形成裂缝网络;步骤三,利用二氧化碳压裂液携带支撑剂以对步骤二中所形成的裂缝网络进行支撑,该压裂方法将水基压裂技术和液态二氧化碳压裂技术这两种压裂技术结合,先造出主裂缝,然后利用二氧化碳压裂液形成裂缝网络,并辅以段塞加砂方式对裂缝网络进行支撑,上述施工方式形成了以主裂缝为主干的纵横“网状缝”系统,扩大了井控面积。

Description

一种压裂方法
技术领域
本发明涉及石油开发工程领域,具体涉及一种水基压裂液-二氧化碳无水增能复合的压裂方法。
背景技术
近年来,二氧化碳压裂在油气开采中得到广泛应用,尤其是,应用于非常规能源的储层改造工艺中,如页岩油储层、致密油储层等。二氧化碳压裂使用液态或超临界态二氧化碳注入地层,利用二氧化碳易造复杂裂缝的特性实现对储层更高程度的改造,同时实现对储层的增能、对原油的将粘等多重功效。如卢义玉(2013)所申请的发明专利“超临界二氧化碳压裂方法及系统(CN201310220539.3)”中,提出了用于开发页岩气的超临界二氧化碳压裂系统,涵盖储罐、增压泵等元件,阐述了该系统的工作流程。在杨延增(2018)所申请的发明专利“液态二氧化碳干法加砂压裂系统及工艺流程(CN201810281566.4)”中,设计了二氧化碳干法加砂压裂工艺的相关设备,如储罐、泵车、密闭混砂装置等,明确了其工艺流程及操作步骤。在冯兴凯(2017)所申请的发明专利“超临界二氧化碳压裂工艺(CN201710272143.1)”中,设计了二氧化碳压裂液体系及其优化配方,配方内包括花生酸、山嵛酸等材料。在张劲(2016)所申请的发明专利“一种二氧化碳-减阻水复合压裂方法(CN201610216886.2)”中,设计了二氧化碳与水力压裂的复合方法及流程步骤,利用不同压裂液的性能实现扩大缝网规模提高油气产能的效果。在李贺(2016)所申请的发明专利“一种微波辅助超临界二氧化碳循环压裂系统及方法(CN201610941193.X)中”,提出使用井下微波设备加热地层,使注入的二氧化碳长期保持超临界态,提高了瓦斯抽采效果。
非常规油气藏(页岩油、页岩气、致密砂岩油气、煤层气)储层致密,不通过压裂几乎没有产能,而在所有低渗透油气藏中几乎均存在天然裂缝,但在开启这些天然裂缝并且使之与水力裂缝连通前,很少能够提供产量。非常规油气藏中原生裂缝和次生裂缝同时存在,并可以开启和保持渗透性,水力裂缝诱导天然裂缝激活形成大规模的连通网络裂缝是非常规油气开发的关键。要达到这一目标,通常采用高排量注入减阻水或滑溜水等水基压裂液进行压裂作业,或是采取二氧化碳压裂技术,然而这两种工艺都存在缺陷。一方面,采用水基压裂技术会造成对水资源的大量浪费,同时水基液体进入微小孔隙吼道后会带来水敏、水锁污染,造成天然裂缝的关闭,给致密储层带来永久性污染。另一方面,二氧化碳压裂液粘度低、携砂效果差,而且单一的二氧化碳压裂液无法造出具有一定长度和宽度的主裂缝。可见,上述传统压裂方式已经无法适应致密油气藏的开发。
由此,设计一种新的压裂方法是亟待解决的技术问题。
发明内容
针对现有技术中所存在的上述技术问题的部分或者全部,本发明提出了一种压裂方法。该压裂方法在于提供一种水基压裂液-二氧化碳无水增能复合压裂方法,以将水基压裂技术和液态二氧化碳压裂技术这两种非常规压裂技术结合,选择在不同阶段注入不同的压裂液体系,合理利用不同压裂液的特殊性能,达到造裂缝网的效果,增大了裂缝的油气运移能力,形成了以主裂缝为主干的纵横“网状缝”系统,扩大了井控面积,同时压裂液破胶后,大量气体溶于原油,增加了地层能量,改善了储层的渗流特征,尤其适用于低渗透、致密、强水敏储层,提高了单井压后产能,解决了低渗透、致密储层压裂改造效果差的难题。
根据本发明,提出了一种压裂方法,包括:
步骤一,利用水基压裂液开启主裂缝,并封填裂缝附近空隙吼道,
步骤二,利用二氧化碳压裂液沟通储层中的微裂缝,以形成裂缝网络,
步骤三,利用二氧化碳压裂液携带支撑剂以对步骤二中所形成的裂缝网络进行支撑。
在一个实施例中,在步骤三之后,还包括步骤四,利用水基压裂液携带支撑剂对主裂缝进行支撑,并顶替步骤三中的携带支撑剂的二氧化碳压裂液。
在一个实施例中,在步骤一之前,还可以先向井筒内注入一定量的水基压裂液,以挤出井筒内的液体,优选地,所注入的水基压裂液的量为1.5~2.0m3
在一个实施例中,在步骤一中,水基压裂液的注入速度为1~15m3/min,注入量为20~200m3,注入压力控制在20~100MPa,优选地,水基压裂液包括质量含量为0~2%的增稠剂、0~3%的添加剂,其余为纯液态清水。
在一个实施例中,在步骤二中,注入二氧化碳压裂液过程中,注入速度为5~10m3/min,注入压力为20~100MPa。
在一个实施例中,在步骤二中,重复式注入二氧化碳压裂液,并且,每次注入的量为200~400m3,并且,在重复注入过程中,注入的二氧化碳压裂液的注入压力依次阶梯式增加。
在一个实施例中,在步骤二中,二氧化碳压裂液包括质量百分比为0~2%的增稠剂,其余为纯液态二氧化碳。
在一个实施例中,在步骤三中,携带支撑剂的二氧化碳压裂液的注入速度为2~10m3/min,注入量为100~300m3,注入压力控制在20~100MPa,
或/和,在步骤三中,以携带支撑剂的液态二氧化碳压裂液的总重量为基准,其中的支撑剂的含量为10~20%,并且支撑剂可以为低密度或超低密度陶粒支撑剂和覆膜砂支撑剂中的至少一种。
在一个实施例中,在步骤四中,携带支撑剂的水基压裂液的注入速度为2~10m3/min,注入量为40~200m3,注入压力控制在20~100MPa,
或/和,在步骤四中,以携带支撑剂的水基压裂液的总重量为基准,其中的支撑剂的含量为20~25%。
在一个实施例中,还包括步骤五,在生产前回收压裂液,以对注入地层的二氧化碳回收。
与现有技术相比,本发明的优点在于,该压裂方法将水基压裂技术和液态二氧化碳压裂技术这两种压裂技术结合,先造出主裂缝,然后利用二氧化碳压裂液形成裂缝网络,并辅以段塞加砂方式对裂缝网络进行支撑,上述施工方式形成了以主裂缝为主干的纵横“网状缝”系统,扩大了井控面积。同时,压裂液破胶后,大量气体溶于原油,增加了地层能量,改善了储层的渗流特征,尤其适用于低渗透、致密、强水敏储层,提高了单井压后产能,解决了低渗透、致密储层压裂改造效果差的难题。
附图说明
下面将结合附图来对本发明的优选实施例进行详细地描述,在图中:
图1显示了根据本发明的一个实施例的压裂方法的工艺流程图;
图2显示了根据本发明的一个实施例的压裂方法中向地层注入水基压裂液后使地层破裂缠身主裂缝示意图;
图3显示了根据本发明的一个实施例的压裂方法中向地层注入二氧化碳压裂液后形成裂缝网络的示意图;
图4显示了根据本发明的一个实施例的压裂方法中二氧化碳携砂注入以在裂缝网络中进行支撑的示意图;
图5显示了根据本发明的一个实施例的压裂方法中水基压裂液携砂注入以防主裂缝闭合的示意图。
在附图中,相同的部件使用相同的附图标记。附图并未按照实际的比例绘制。
具体实施方式
下面将结合附图对本发明做进一步说明。
图1显示了根据本发明的压裂方法的工艺流程图。该压裂方法目的在于提供一种水基压裂液-二氧化碳无水增能复合压裂方法。具体地,如S1步骤一,利用水基压裂液开启主裂缝,并封填裂缝附近空隙吼道。如S2步骤二,先利用二氧化碳压裂液以沟通储层中的微裂缝,形成裂缝网络。如S3步骤三,利用二氧化碳压裂液携带支撑剂以对步骤三中所形成的裂缝网络进行支撑。
该压裂方法通过多种压裂液体系的组合压裂方式,可以在致密储层中形成主缝与多条分支裂缝相结合的缝网系统,提高裂缝的导流能力、扩大油井的控制面积,减小对储层的污染,提高单井压后产能。此外,同常规水力压裂相比,水基压裂技术在造主缝时,裂缝规模理想,且有效裂缝长,能够沟通更多液态二氧化碳压裂产生的微裂缝,使微裂缝能为主裂缝运移油气。并且,两种压裂技术都最大程度的降低了水锁效应,不会对地层造成永久性伤害。并且,该压裂方法尤其适用于低渗透、致密、水敏储层。
在利用水基压裂液开启主裂缝前,还利用未添加支撑剂的水基压裂液挤出井筒内的液体,以防止污染地层。具体地,在操作过程中,由压裂管柱注入水基压裂液,油套环空排出,该水基压裂液液体未进入地层。另外,该步骤注入的水基压裂液的量较小,职位排空井筒内的液体。比如,根据井筒体积的大小,注入的水基压裂液的量可以控制在1.5~2.0m3
并且在该压裂方法中,优选地还包括步骤四,利用水基压裂液携带支撑剂对主裂缝进行支撑,并顶替步骤三中的携带支撑剂的二氧化碳压裂液。
更加详细地,在步骤一中,未添加支撑剂的水基压裂液的注入速度为1~15m3/min,注入量为20~200m3,注入压力控制在20~100MPa。更优选地,步骤一中,未添加支撑剂的水基压裂液的注入速度为2~10m3/min,注入量为20~200m3,注入压力控制在20~100MPa。需要注意的是,可以根据现场的施工条件不同,具体的施工数值可以调整。例如,注入量的大小主要考虑井深的影响,井深越大则注入量越大。
在步骤一中,未添加支撑剂的水基压裂液的成分组成包括(以该压裂液的总重量为基准):0~2%的增稠剂、0~3%的添加剂,以及其余为纯液态清水。其中,所述增稠剂可以包括表活剂清洁压裂液。添加剂包括各种交联剂、防膨剂、杀菌剂、助排剂。也就是说,本申请中的未添加支撑剂的水基压裂液可以为纯液态清水,也可以为由增稠剂和/或添加剂以及纯液态清水组成。
该步骤一中以比较高的排量注入未添加支撑剂的水基压裂液,在储层憋起高压,使地层破裂,产生具有一定缝宽的主裂缝,如图2所示。
步骤二中,注入未添加支撑剂的液态二氧化碳压裂液。在注入二氧化碳压裂液后,监控注入效果。如果注入为达到预期效果,可以进行重复性注入。例如,当注入压力低、延伸效果较差时(注入压力远低于预期延伸压力,比如,低于10%,或注入压力远低于破裂压力,比如,低于10%,),表明近井滤失较大,难以开启远端缝网,进行重复注入。根据施工的需要,例如,重复的次数可以为1-2次(即共注入2-3次)。通过重复性注入可以开启远端缝网,提高沟通效率。
步骤二中,每次未添加支撑剂的液态二氧化碳压裂液的注入速度为5~10m3/min,注入量为200~400m3,注入压力控制在20~100MPa。更优选地,该步骤中,每次未添加支撑剂的液态二氧化碳压裂液的注入速度为6~9m3/min,注入量为200~400m3,注入压力控制20~100MPa。但是,在重复施工过程中,相对于上一次施工,该次施工的注入压力要逐渐提高比如5-15MPa,并且,提高的具体值也要逐渐增加。例如,第一次注入的注入压力为30MPa,第二次则为35MPa,第三次为45MPa,第四次为60MPa。
步骤二中,未添加支撑剂的液态二氧化碳压裂液的成分组成包括(以该压裂液的总重量为基准):0~2%的增稠剂,以及98%或以上的纯液态二氧化碳。优选地,所述增稠剂的含量为1.5~2wt%。其中,增稠剂可以包括高度氟化的丙烯酸酯与部分磺化的苯乙烯的嵌段共聚物。该嵌段共聚物的具体组成及制备方法可以参考以下文献:Enhancement ofthe Viscosity of Carbon Dioxide Using Styrene/Fluoroacrylate Copolymers(Z.H.Huang,C.M.Shi,J.H.Xu,Kilic and E.J.Beckman:Maromolecules Vol.33(2000),p.5437)。也就是说,本申请中的未添加支撑剂的液态二氧化碳压裂液可以为纯液态二氧化碳,也可以为由1.5~2%的增稠剂以及纯液态二氧化碳余量组成的。
在该步骤二中,以较高排量注入未添加支撑剂的液态二氧化碳压裂液,利用了液态二氧化碳压裂液的流动性,沟通微裂缝能力强的特点,最大限度的形成裂缝网络,并可通过重复注入(可以重复注入1-2次,即共注入2-3次)液态二氧化碳压裂液使网络缝进一步延伸,缝网更长、缝宽更宽,如图3所示。该步骤使上一步骤的水基压裂液充分进入地层,起到一定地层增能的效果。
在步骤三中,携带支撑剂的液态二氧化碳压裂液的注入速度为2~10m3/min,注入量为100~300m3,注入压力控制在20~100MPa。优选地,步骤三中,携带支撑剂的液态二氧化碳压裂液的注入速度为4~10m3/min,注入量为200~300m3,注入压力控制在20~100MPa。
在步骤三中,携带支撑剂的液态二氧化碳压裂液的总重量为基准,其中的支撑剂的含量为10~20%。优选地,支撑剂包括低密度或超低密度陶粒和/或覆膜砂等。更优选地,支撑剂包括低密度或超低密度陶粒支撑剂和/或覆膜砂支撑剂等,并且这些支撑剂的密度范围可以为0.8~2.6g/cm3。这种抗破碎能力强的低密度支撑剂配合液态二氧化碳压裂液能够更有利于产生更多有效支撑裂缝。该携带支撑剂的液态二氧化碳压裂液中的液态二氧化碳压裂液的成分组成可以与步骤二中的相同,在此不再赘述。
通过注入携带支撑剂的液态二氧化碳压裂液,进而进一步在主裂缝周围造网络缝,沟通天然裂缝。同时,在微裂缝闭合前将支撑剂携带进裂缝网络中并进入微小裂缝远端,实现对缝网的支撑,如图4所示。
在步骤四中,携带支撑剂的水基压裂液的注入速度为2~10m3/min,注入量为40~200m3,注入压力控制在20~100MPa。优选地,步骤四中,携带支撑剂的水基压裂液的注入速度为2~10m3/min,注入量为40~100m3,注入压力控制在20~100MPa。
在步骤四中,以携带支撑剂的水基压裂液的总重量为基准,其中的支撑剂的含量为20~25%。更优选地,支撑剂包括陶粒和/或覆膜砂等。优选地,支撑剂包括低密度陶粒支撑剂和/或低密度覆膜砂支撑剂等,并且这些支撑剂的粒径范围可以为20~70目、密度范围可以为0.8~2.9g/cm3。这种抗破碎能力强且具导流能力的大粒径、低密度支撑剂配合水基压裂液能够更有利于防止主裂缝闭合,更有助于形成油气运移最主要的通道。该携带支撑剂的水基压裂液中的水基压裂液的成分组成可以与步骤一中的相同。
通过注入携带支撑剂的水基压裂液,进而将支撑剂带到主裂缝中并进入主裂缝远端,防止主裂缝闭合,形成油气运移最主要的通道。同时,对上一步骤的携带支撑剂的液态二氧化碳压裂液进行顶替,使支撑剂进一步进入微裂缝远端,如图5所示。
该压裂施工,还可以在压裂一段时间后,在生产前回收压裂液,对注入地层的二氧化碳和丙烷再次回收利用。上述设置提高了二氧化碳的利用效率,节省施工成本。
本发明提供的上述复合压裂工艺通过多种压裂液体系的组合压裂方式,可以在致密储层中形成主缝与多条分支裂缝相结合的缝网系统,提高裂缝的导流能力、扩大油井的控制面积,减小对储层的污染,提高单井压后产能。同时,上述施工方法能通过工作液的后期回收,节约成本,提高压裂液的利用率,解决了非常规储层开采难度大、储层伤害大,开采效果差的难题。此外,同常规水力压裂相比,水基压裂技术在造主缝时,裂缝规模理想,且有效裂缝长,能够沟通更多液态二氧化碳压裂产生的微裂缝,使微裂缝能为主裂缝运移油气。并且,两种压裂技术都最大程度的降低了水锁效应,不会对地层造成永久性伤害。本发明提供的水基压裂液-二氧化碳无水增能复合压裂方法将水基压裂技术和液态二氧化碳压裂技术这两种非常规压裂技术结合,选择在不同阶段注入不同的压裂液体系,合理利用不同压裂液的特殊性能,达到造缝网的效果,增大了裂缝的油气运移能力,形成了以主裂缝为主干的纵横“网状缝”系统,扩大了井控面积,同时压裂液破胶后,大量气体溶于原油,增加了地层能量,改善了储层的渗流特征,尤其适用于低渗透、致密、强水敏储层,提高了单井压后产能,解决了低渗透、致密储层压裂改造效果差的难题。
以上仅为本发明的优选实施方式,但本发明保护范围并不局限于此,任何本领域的技术人员在本发明公开的技术范围内,可容易地进行改变或变化,而这种改变或变化都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求书的保护范围为准。

Claims (10)

1.一种压裂方法,其特征在于,包括:
步骤一,利用水基压裂液开启主裂缝,并封填裂缝附近空隙吼道,
步骤二,利用二氧化碳压裂液沟通储层中的微裂缝,以形成裂缝网络,
步骤三,利用二氧化碳压裂液携带支撑剂以对步骤二中所形成的裂缝网络进行支撑。
2.根据权利要求1所述的压裂方法,其特征在于,在步骤三之后,还包括步骤四,利用水基压裂液携带支撑剂对主裂缝进行支撑,并顶替步骤三中的携带支撑剂的二氧化碳压裂液。
3.根据权利要求1或2所述的压裂方法,其特征在于,在步骤一之前,还可以先向井筒内注入一定量的水基压裂液,以挤出井筒内的液体,优选地,所注入的水基压裂液的量为1.5~2.0m3
4.根据权利要求1到3中任一项所述的压裂方法,其特征在于,在步骤一中,水基压裂液的注入速度为1~15m3/min,注入量为20~200m3,注入压力控制在20~100MPa,优选地,水基压裂液包括质量含量为0~2%的增稠剂、0~3%的添加剂,其余为纯液态清水。
5.根据权利要求1到4中任一项所述的压裂方法,其特征在于,在步骤二中,注入二氧化碳压裂液过程中,注入速度为5~10m3/min,注入压力为20~100MPa。
6.根据权利要求5所述的压裂方法,其特征在于,在步骤二中,重复式注入二氧化碳压裂液,并且,每次注入的量为200~400m3,并且,在重复注入过程中,注入的二氧化碳压裂液的注入压力依次阶梯式增加。
7.根据权利要求6所述的压裂方法,其特征在于,在步骤二中,二氧化碳压裂液包括质量百分比为0~2%的增稠剂,其余为纯液态二氧化碳。
8.根据权利要求1到7中任一项所述的压裂方法,其特征在于,在步骤三中,携带支撑剂的二氧化碳压裂液的注入速度为2~10m3/min,注入量为100~300m3,注入压力控制在20~100MPa,
或/和,在步骤三中,以携带支撑剂的液态二氧化碳压裂液的总重量为基准,其中的支撑剂的含量为10~20%,并且支撑剂可以为低密度或超低密度陶粒支撑剂和覆膜砂支撑剂中的至少一种。
9.根据权利要求2所述的压裂方法,其特征在于,在步骤四中,携带支撑剂的水基压裂液的注入速度为2~10m3/min,注入量为40~200m3,注入压力控制在20~100MPa,
或/和,在步骤四中,以携带支撑剂的水基压裂液的总重量为基准,其中的支撑剂的含量为20~25%。
10.根据权利要求2所述的压裂方法,其特征在于,还包括步骤五,在生产前回收压裂液,以对注入地层的二氧化碳回收。
CN202010152158.6A 2020-03-06 2020-03-06 一种压裂方法 Pending CN113356820A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010152158.6A CN113356820A (zh) 2020-03-06 2020-03-06 一种压裂方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010152158.6A CN113356820A (zh) 2020-03-06 2020-03-06 一种压裂方法

Publications (1)

Publication Number Publication Date
CN113356820A true CN113356820A (zh) 2021-09-07

Family

ID=77524147

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010152158.6A Pending CN113356820A (zh) 2020-03-06 2020-03-06 一种压裂方法

Country Status (1)

Country Link
CN (1) CN113356820A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117662229A (zh) * 2023-12-21 2024-03-08 辽阳正阳机械设备制造有限公司 煤层三相压裂增透新方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3368627A (en) * 1966-03-21 1968-02-13 Dow Chemical Co Method of well treatment employing volatile fluid composition
WO2014086068A1 (zh) * 2012-12-07 2014-06-12 东营盛世石油科技有限责任公司 一种基于液体聚合物在线连续配制的压裂方法
CN103924955A (zh) * 2014-04-21 2014-07-16 陕西延长石油(集团)有限责任公司研究院 一种页岩气井co2及滑溜水混合压裂工艺
CN105176510A (zh) * 2015-09-06 2015-12-23 四川省贝特石油技术有限公司 无水有机暂堵转向压裂的压裂液配制方法
CN105888641A (zh) * 2016-04-08 2016-08-24 北京纽荷瑞晨能源技术有限公司 一种二氧化碳-减阻水复合压裂方法
CN107842351A (zh) * 2016-09-20 2018-03-27 中国石油大学(北京) 一种液化石油气‑二氧化碳无水增能复合压裂方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3368627A (en) * 1966-03-21 1968-02-13 Dow Chemical Co Method of well treatment employing volatile fluid composition
WO2014086068A1 (zh) * 2012-12-07 2014-06-12 东营盛世石油科技有限责任公司 一种基于液体聚合物在线连续配制的压裂方法
CN103924955A (zh) * 2014-04-21 2014-07-16 陕西延长石油(集团)有限责任公司研究院 一种页岩气井co2及滑溜水混合压裂工艺
CN105176510A (zh) * 2015-09-06 2015-12-23 四川省贝特石油技术有限公司 无水有机暂堵转向压裂的压裂液配制方法
CN105888641A (zh) * 2016-04-08 2016-08-24 北京纽荷瑞晨能源技术有限公司 一种二氧化碳-减阻水复合压裂方法
CN107842351A (zh) * 2016-09-20 2018-03-27 中国石油大学(北京) 一种液化石油气‑二氧化碳无水增能复合压裂方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117662229A (zh) * 2023-12-21 2024-03-08 辽阳正阳机械设备制造有限公司 煤层三相压裂增透新方法

Similar Documents

Publication Publication Date Title
CN108661617B (zh) 一种增加高温地层人工缝网复杂程度的压裂方法
CN107255027B (zh) 一种碳酸盐岩储层复合改造方法
US3136361A (en) Fracturing formations in wells
US20150345268A1 (en) Applications of ultra-low viscosity fluids to stimulate ultra-tight hydrocarbon-bearing formations
CN105971579A (zh) 一种相变水力压裂工艺
CN110318674B (zh) 一种巷道顶板致裂防突的方法
CN107387053A (zh) 一种大通道主裂缝与复杂缝网协同压裂的方法
CN107313762A (zh) 一种页岩水力压裂方法
CN105089603A (zh) 一种裂缝内暂堵转向形成缝网的储层改造方法
CN101333922A (zh) 解除压裂液污染的压裂工艺
CN110552656B (zh) 一种水淹井低渗层定点起裂的方法
CN110295878B (zh) 用于在致密油油藏中执行压裂和提高石油采收率的方法
CN110159239B (zh) 一种直井大规模水力压裂油套同注压裂方法
US6935426B1 (en) System and method for polymer filter cake removal
CN104265254A (zh) 深层超稠油多段塞注油溶性降粘剂和液态co2采油工艺方法
CN109826590A (zh) 一种低渗油气田高含水老井堵水压裂方法
CN106753299A (zh) 一种稀油井选择性堵水剂及其制备方法与应用
CN107387049A (zh) 重复压裂方法及系统
US5474129A (en) Cavity induced stimulation of coal degasification wells using foam
US20160076351A1 (en) Method For Hydraulic Fracking Of An Underground Formation
CN110593806A (zh) 一种大剂量多段塞的堵水方法
CN113356820A (zh) 一种压裂方法
CN111663930B (zh) 一种浅层致密油藏水平缝的压裂方法
CN112443305B (zh) 一种通过两次注酸及簇间暂堵促进缝高延伸的水平井压裂方法
CN108949132A (zh) 一种用于细粉砂油藏油井防砂的固砂解堵处理液、防砂处理液体系和用其防砂的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20210907

RJ01 Rejection of invention patent application after publication