WO2014086048A1 - 一种调整白泥碳酸钙颗粒形状的高浓度碳酸化方法 - Google Patents

一种调整白泥碳酸钙颗粒形状的高浓度碳酸化方法 Download PDF

Info

Publication number
WO2014086048A1
WO2014086048A1 PCT/CN2012/086241 CN2012086241W WO2014086048A1 WO 2014086048 A1 WO2014086048 A1 WO 2014086048A1 CN 2012086241 W CN2012086241 W CN 2012086241W WO 2014086048 A1 WO2014086048 A1 WO 2014086048A1
Authority
WO
WIPO (PCT)
Prior art keywords
calcium carbonate
reaction tank
carbon dioxide
particles
white mud
Prior art date
Application number
PCT/CN2012/086241
Other languages
English (en)
French (fr)
Inventor
王桂林
王运志
Original Assignee
李广
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 李广 filed Critical 李广
Priority to PCT/CN2012/086241 priority Critical patent/WO2014086048A1/zh
Publication of WO2014086048A1 publication Critical patent/WO2014086048A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F11/00Compounds of calcium, strontium, or barium
    • C01F11/18Carbonates
    • C01F11/181Preparation of calcium carbonate by carbonation of aqueous solutions and characterised by control of the carbonation conditions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/122Lepidoic silicic acid

Definitions

  • the invention relates to a high-concentration carbonation method for controlling the shape of white mud calcium carbonate particles and removing a small amount of calcium silicate impurities in the calcium carbonate system, and the high-purity carbon dioxide is introduced into the closed reaction tank, and the carbonization is completed by controlling the pressure and temperature.
  • the shape of the white mud calcium carbonate particles is trimmed, and the calcium silicate impurities are also converted into silicic acid and removed, which is a refining treatment technology in the ATM-WPCC alkali recovery white mud calcium carbonate production technology.
  • the causticized white mud contains 2-5 wt% of excess ash (Ca(OH) 2 ) and 0.5-5 wt% of calcium silicate impurities, and at the same time, due to white mud calcium carbonate.
  • the particles are affected by the generated environment, the surface shape and irregularity of the particles are poor, and the uniformity of the particles is poor, which greatly reduces the physical and chemical properties of the white mud calcium carbonate.
  • the traditional carbonization method uses carbon dioxide to carbonize the white mud, removing the residual ash and lowering its pH.
  • the white mud When the white mud is used for the recovery of calcium carbonate, it must be subjected to carbonation finishing treatment, otherwise the quality of the white mud calcium carbonate product is difficult to meet the requirements for use.
  • An object of the present invention is to provide a high-concentration carbonation method for controlling the shape of white mud calcium carbonate particles, which is characterized in that the shape of the white mud calcium carbonate particles is trimmed while the carbonization reaction is completed, and the calcium silicate impurities are also removed.
  • the high-concentration carbonation method for controlling the shape of white mud calcium carbonate particles of the present invention passes carbon dioxide having a purity of 85% or more into a closed reaction tank, and controls the pressure and temperature to complete the carbonization reaction while the white mud calcium carbonate particles are The shape is trimmed, and calcium silicate is converted into silicic acid to effectively remove calcium silicate.
  • the pressure of the carbonation finishing reactor is controlled to be 0.02 to 2.5 MPa.
  • the pressure of the carbonation finishing reactor is controlled to be 0.2 to 0.8 MPa.
  • the temperature of the carbonation conditioning reactor is controlled at 4 to 50 °C.
  • the material system is a supersaturated carbon dioxide solution
  • the PH value of the feed material of the closed carbonation conditioning reactor is less than 7; when the material exits the reaction tank, the pressure returns to normal pressure, and the excess carbon dioxide is lost.
  • the material PH value is between 8 and 10.
  • the closed reaction tank is provided with a stirring device, and after the carbon dioxide is added, the shape of the calcium carbonate particles is obtained to be trimmed under stirring.
  • the closed reaction tank is provided with a stirring device, and after adding carbon dioxide, the calcium silicate is effectively removed under stirring.
  • the method of the invention can effectively solve the problem that the shape of the white mud calcium carbonate particles is not uniform and the physical and chemical properties of the white mud calcium carbonate product are difficult to be improved; at the same time, the process is simple, the operation is convenient to implement, the cost is low; and the calcium silicate removal rate is high,
  • the calcium silicate in the white mud can be controlled to 0.5 wt% or less.
  • the method of the invention is to add high-purity, for example, 85% or more of carbon dioxide gas or liquid to the white mud calcium carbonate carbonization trimming reaction tank, and to maintain excess saturated carbonic acid in the reaction tank by pressurizing and controlling temperature, thereby producing A low acid environment containing a certain concentration of carbonic acid.
  • the reaction tank here is a closed reaction tank that increases the concentration and solubility of carbon dioxide in a closed environment.
  • excessive saturated carbonic acid is formed, which on the one hand reacts with residual Ca(OH) 2 in the white mud calcium carbonate to rapidly adjust the pH of the white mud calcium carbonate, and the reaction is formed.
  • the new component is a beneficial calcium carbonate component; on the other hand, an excessively saturated carbonic acid environment causes a surface reaction of the white mud calcium carbonate particles to achieve a dressing treatment of the white mud calcium carbonate crystal form, and at the same time, the excessively saturated carbonic acid can also
  • the calcium silicate impurity in the white mud calcium carbonate is acidified and removed, and the new component formed by the reaction is silicic acid (colloid:), and the new component can be retained or washed by the method without affecting the effect of the final product. Its removal improves the quality of white mud calcium carbonate.
  • the washed white mud calcium carbonate is subjected to concentration treatment, and the concentrated white mud calcium carbonate emulsion is pumped into a carbon dioxide absorber and mixed with carbon dioxide, and sent to a carbonation trimming reactor.
  • the temperature of the carbonation conditioning reactor is controlled at 0 to 90 ° C, and the temperature is preferably controlled at 4 to 50 ° C.
  • the amount of carbon dioxide added is adjusted according to the requirement that the pH of the reactor emulsion is controlled to be less than 7.
  • the reaction time of the reactor is stirred for 45-90 minutes, the emulsion after the reaction and the surplus carbon dioxide Calcium enters the subsequent aging process.
  • the washed white mud calcium carbonate was concentrated to 20 wt% (solid content), and the residual ash content was determined to be 5.0 wt%, the calcium silicate content was 2.8 wt%, and the pH value was over 12.
  • the flow rate of the white mud emulsion pump is controlled at 25m 3 /h, the liquid carbon dioxide flowmeter shows a number of 0.2m 3 /h, the pH of the reactor is determined to be 6.85, and the reaction is stirred by the carbonation trimming reactor at a reaction temperature of 38 ° C.
  • the reactor pressure is controlled to 0.10 MPa. After the reaction, the measurement results showed that the emulsion had a pH of 8.6, a residual ash content of 0.4% by weight, and a silicon content of 0.9% by weight.
  • the white mud calcium carbonate was observed to have a uniform surface shape under high magnification.
  • Embodiment 2 Embodiment 2
  • the washed white mud calcium carbonate was concentrated to 18 wt% (solid content), and the residual ash content was determined to be 4.0 wt%, the calcium silicate content was 3.0 wt%, and the pH value was over 12.
  • the flow rate of the white mud emulsion pump is controlled at 28m 3 /h, the liquid carbon dioxide flowmeter shows a number of 0.18m 3 /h, and the pH of the reactor is determined to be 6.80.
  • the reaction is stirred by a carbonation trimming reactor at a reaction temperature of 35 ° C.
  • the reactor pressure is controlled to 0.15 MPa.
  • Embodiment 3 After the reaction, the measurement results showed that the emulsion had a pH of 8.5, a residual ash content of 0.3% by weight, and a silicon content of 1.0% by weight.
  • the white mud calcium carbonate was observed to have a uniform surface shape under high magnification.
  • the washed white mud calcium carbonate was concentrated to 16 wt% (solid content), and the residual ash content was 3.0 wt%, the calcium silicate content was 3.1 wt%, and the pH value was over 12.
  • the flow rate of the white mud emulsion pump is controlled at 22m 3 /h, the liquid carbon dioxide flowmeter shows a number of 0.15m 3 /h, and the pH of the reactor is determined to be 6.75.
  • the reactor was stirred and the reaction was carried out at a reaction temperature of 33 ° C and a reactor pressure of 0.20 MPa. After the reaction, the measurement results were as follows: the pH value of the emulsion was 8.48, the residual ash content was 0.28 wt%, and the silicon content was 1. lwt%.
  • the white mud calcium carbonate was observed to have a uniform surface shape under high magnification.
  • the present invention preferably removes the problem of residual excess ash in the white mud after caustic recovery of caustic wash;
  • the present invention preferably removes the problem that the alkali recovery of the calcium silicate impurities in the white mud after causticization has a negative impact on the use of the product;
  • the invention better solves the problem that the shape of the white mud calcium carbonate particles is not uniform and the physical and chemical indicators of the white mud calcium carbonate product are difficult to be improved;
  • the invention has simple process, convenient operation and low cost
  • the silicon removal rate of the invention can control the silicon in the white mud to less than 0.5 wt%;
  • the present invention achieves a high carbon dioxide utilization rate, and the excess carbon dioxide in the system can be recycled.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

本发明涉及一种控制白泥碳酸钙颗粒形状并除去白泥碳酸钙中硅酸盐杂质的高浓度碳酸化方法。本发明的控制白泥碳酸钙颗粒形状的高浓度碳酸化方法,将纯度85%以上的二氧化碳通入密闭反应罐,通过控制压力和温度,在完成碳酸化反应的同时,将白泥碳酸钙颗粒的形状进行修整,并将硅酸钙转化成硅酸,有效去除硅酸钙。

Description

一种调整白泥碳酸钙颗粒形状的高浓度碳酸化方法 技术领域
本发明是一种控制白泥碳酸钙颗粒形状及去除碳酸钙体系中少量硅酸钙 杂质的高浓度碳酸化方法, 将高纯度的二氧化碳通入密闭反应罐, 通过控制压 力和温度, 在完成碳化反应的同时, 将白泥碳酸钙颗粒的形状进行修整, 也使 硅酸钙杂质转化成硅酸而被去除, 属 ATM-WPCC碱回收白泥碳酸钙生产技术 中的精制处理工艺技术。 背景技术
造纸工业制浆生产过程产生的黑液如果直接排放会造成严重的环境污染, 因此人们采用了诸多处理工艺来解决污染问题。 本申请人在中国专利申请 CN101020182A中提出了一种全新的碱回收固体废渣综合利用的方法, 该方法 对传统的燃烧和苛化工艺进行了改进, 解决了废渣带来的二次污染, 实现了白 泥超细碳酸钙与活性碳酸钙产品化。
然而, 在碱回收苛化生产过程中, 苛化产生的白泥中含有 2-5wt%的过量 灰 (Ca(OH)2) 和 0.5-5wt%的硅酸钙杂质, 同时由于白泥碳酸钙粒子受生成的 环境影响, 粒子表面形状及不规整且粒子的匀一性很差, 使白泥碳酸钙的物化 指标大大降低。
传统的碳化法是用二氧化碳对白泥进行碳化处理, 将残余灰除掉, 降低其 PH值。采用碳化处理白泥碳酸钙, 虽然可以去除大部分的过量灰, 调整好 PH 值, 但对于硅酸钙杂质和碳酸钙粒子形状不能得到有效的处理, 白泥碳酸钙的 物化指标不能得到改善, 产品质量难以提高。
当白泥用于回收生产碳酸钙时, 必须进行碳酸化修整处理, 否则白泥碳酸 钙产品质量很难达到使用要求。
发明内容
本发明的目的是提供一种控制白泥碳酸钙颗粒形状的高浓度碳酸化方法, 在完成碳化反应的同时, 将白泥碳酸钙颗粒的形状进行修整, 也使硅酸钙杂质 获得去除。
本发明的控制白泥碳酸钙颗粒形状的高浓度碳酸化方法,将纯度 85%以上 的二氧化碳通入密闭反应罐, 通过控制压力和温度, 在完成碳化反应的同时, 将白泥碳酸钙颗粒的形状进行修整,并将硅酸钙转化成硅酸,有效去除硅酸钙。
优选地, 碳酸修整反应罐的压力控制在 0.02~2.5MPa。
优选地, 碳酸修整反应罐的压力控制在 0.2~0.8MPa。
优选地, 碳酸修整反应罐温度控制在 4~50°C。
优选地, 通过投加二氧化碳, 物料体系为过饱和二氧化碳溶液, 密闭的碳 酸修整反应罐进料口物料的 PH值小于 7; 物料出反应罐时, 压力恢复至常压, 富余二氧化碳被失放, 物料 PH值在 8~10之间。
优选地, 所述密闭反应罐带有搅拌装置, 加二氧化碳后在搅拌状态下碳酸 钙颗粒的形状获得以修整。
优选地, 所述密闭反应罐带有搅拌装置, 加二氧化碳后在搅拌状态下有效 去除硅酸钙。
通过本发明的方法可以有效地解决白泥碳酸钙粒子形状不匀整及白泥碳 酸钙产品物化指标难以提高的问题; 同时工艺简单、 操作实施方便, 成本低; 并且硅酸钙去除率较高, 可将白泥中的硅酸钙控制到 0.5wt%以下。 具体实施方式
本发明的方法是将高纯度例如 85%以上的二氧化碳气体或液体加入到白 泥碳酸钙碳化修整反应罐中, 通过增压、 控温, 让反应罐中保持过量饱和的碳 酸, 从而, 生产出一个含一定浓度碳酸的低酸性环境。 这里的反应罐为密闭反 应罐, 在密闭环境下可以增加二氧化碳的浓度及溶解度。
在这样的低酸性反应罐中, 会形成过量饱和的碳酸, 这些碳酸一方面会与 白泥碳酸钙中的残余 Ca(OH)2反应, 使白泥碳酸钙的 PH值得到快速调整, 反 应生成的新组份为有益碳酸钙成份; 另一方面, 过量饱和的碳酸环境, 会使白 泥碳酸钙颗粒发生表面反应, 实现白泥碳酸钙晶型的修整处理, 同时, 过量饱 和的碳酸也能将白泥碳酸钙中硅酸钙杂质获得酸性化去除,反应生成的新组份 为硅酸 (胶体:), 此新组份在不影响最终产品使用效果的条件下可保留或通过洗 涤方式将其去除, 使白泥碳酸钙的品质提高。
此过程中发生的化学反应式如下:
C02+H20+Ca(OH)2→CaC03+H20
CaC03+C02+H20 = Ca(HC03)2
CaSi03+ C02+H20→H2Si03+ CaC03
下面结合附图和实施例对本发明作进一歩详细的说明。
如图 1所示, 对洗涤后的白泥碳酸钙进行调浓处理, 调浓后的白泥碳酸钙 乳液通过泵送入二氧化碳吸收器与二氧化碳进行混合反应,并送入碳酸化修整 反应器中进一歩反应, 碳酸修整反应罐温度控制在 0~90°C, 温度优选控制在 4~50°C, 根据进入反应器乳液的 PH值控制在 7以下的要求, 调整二氧化碳的 加入量。 反应器搅拌反应时间为 45-90分钟, 反应后的乳液和富余的二氧化碳 钙进入后续的陈化工序。 实施例一
将洗涤后的白泥碳酸钙浓到 20wt% (固含量),测定其残灰含量为 5.0wt%, 硅酸钙含量为 2.8wt%, PH值超过 12。 白泥乳液泵流量控制在 25m3/h, 液态二 氧化碳流量计显示数了为 0.2m3/h,进反应器 PH值测定为 6.85, 经过碳酸化修 整反应器搅拌反应, 反应温度为 38°C, 反应器压力控制 0.10MPa。反应后测量 结果: 乳液 PH值为 8.6, 残余灰含量 0. 4wt%, 硅含量 0.9wt%, 白泥碳酸钙在 高倍镜下观察其粒子表面形状明显变得匀整。 实施例二
将洗涤后的白泥碳酸钙浓到 18wt% (固含量),测定其残灰含量为 4.0wt%, 硅酸钙含量为 3.0wt%, PH值超过 12。 白泥乳液泵流量控制在 28m3/h, 液态二 氧化碳流量计显示数了为 0.18m3/h, 进反应器 PH值测定为 6.80, 经过碳酸化 修整反应器搅拌反应, 反应温度为 35°C, 反应器压力控制 0.15MPa。反应后测 量结果: 乳液 PH值为 8.5, 残余灰含量 0. 3wt%, 硅含量 1.0wt%, 白泥碳酸钙 在高倍镜下观察其粒子表面形状明显变得匀整。 实施例三
将洗涤后的白泥碳酸钙浓到 16wt% (固含量),测定其残灰含量为 3.0wt%, 硅酸钙含量为 3.1wt%, PH值超过 12。 白泥乳液泵流量控制在 22m3/h, 液态二 氧化碳流量计显示数了为 0.15m3/h, 进反应器 PH值测定为 6.75, 经过碳酸化 修整反应器搅拌反应, 反应温度为 33 °C, 反应器压力控制 0.20MPa。反应后测 量结果: 乳液 PH值为 8.48, 残余灰含量 0. 28wt%, 硅含量 l. lwt%, 白泥碳酸 钙在高倍镜下观察其粒子表面形状明显变得匀整。
本发明将产生如下的有益效果:
1、 本发明较好地去除了碱回收苛化洗后白泥中残余过量灰的问题;
2、 本发明较好地去除了碱回收苛化洗后白泥中硅酸钙杂质对产品使用 带来负面影响的问题;
3、 本发明较好地解决了白泥碳酸钙粒子形状不匀整及白泥碳酸钙产品 物化指标难以提高的问题;
4、 本发明工艺简单、 操作实施方便, 成本低;
5、 本发明除硅率高, 可将白泥中的硅控制到 0.5wt%以下;
6、 本发明获得了较高的二氧化碳利用率, 体系中富余的二氧化碳可以 循环使用。

Claims

权 利 要 求 书
1、 一种控制白泥碳酸钙颗粒形状的高浓度碳酸化方法, 将纯度 85%以上 的二氧化碳通入密闭反应罐, 通过控制压力和温度, 在完成碳化反应的同时, 将白泥碳酸钙颗粒的形状进行修整,并将硅酸钙转化成硅酸,有效去除硅酸钙。
2、 根据权利要求 1所述的方法, 其中, 碳酸修整反应罐的压力控制在 0.02~2.5MPa。
3、 根据权利要求 2所述的方法, 碳酸修整反应罐的最佳压力控制在 0.2~0.8MPa。
4、根据权利要求 1所述的方法,其中,碳酸修整反应罐温度控制在 0~90°C。
5、 根据权利要求 4所述的方法, 碳酸修整反应罐的最佳温度控制在 4~50°C。
6、 根据权利要求 1所述的方法, 其中, 通过投加二氧化碳, 物料体系为 过饱和二氧化碳溶液, 密闭的碳酸修整反应罐进料口物料的 PH值小于 7; 物 料出反应罐时, 压力恢复至常压, 富余二氧化碳被失放, 物料 PH值在 8~10 之间。
7、 根据权利要求 6所述的方法, 其中, 所述密闭反应罐带有搅拌装置.
8、 根据权利要求 6所述的方法, 物料在 pH<7的酸性环境中, 物料中的 碳酸钙颗粒在充分搅拌状态下, 粒子的形状获得以修整。
9、 根据权利要求 6所述的方法, 物料在 pH<7的酸性环境中, 物料中的 硅酸钙转化成硅酸。
10、 根据权利要求 6所述的方法, 富余二氧化碳失放后被回收重新进入反 应体系利用。
PCT/CN2012/086241 2012-12-09 2012-12-09 一种调整白泥碳酸钙颗粒形状的高浓度碳酸化方法 WO2014086048A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/086241 WO2014086048A1 (zh) 2012-12-09 2012-12-09 一种调整白泥碳酸钙颗粒形状的高浓度碳酸化方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/086241 WO2014086048A1 (zh) 2012-12-09 2012-12-09 一种调整白泥碳酸钙颗粒形状的高浓度碳酸化方法

Publications (1)

Publication Number Publication Date
WO2014086048A1 true WO2014086048A1 (zh) 2014-06-12

Family

ID=50882798

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/086241 WO2014086048A1 (zh) 2012-12-09 2012-12-09 一种调整白泥碳酸钙颗粒形状的高浓度碳酸化方法

Country Status (1)

Country Link
WO (1) WO2014086048A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104497633A (zh) * 2014-11-25 2015-04-08 广西华纳新材料科技有限公司 一种纳米碳酸钙的表面处理方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1349861A (zh) * 2001-12-19 2002-05-22 崔木春 白泥回收工艺
CN101003383A (zh) * 2007-01-21 2007-07-25 岳阳纸业股份有限公司 白泥精制填料碳酸钙新工艺
CN101700901A (zh) * 2009-11-25 2010-05-05 王冬生 一种利用造纸工业碱回收白泥制备轻质碳酸钙的新方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1349861A (zh) * 2001-12-19 2002-05-22 崔木春 白泥回收工艺
CN101003383A (zh) * 2007-01-21 2007-07-25 岳阳纸业股份有限公司 白泥精制填料碳酸钙新工艺
CN101700901A (zh) * 2009-11-25 2010-05-05 王冬生 一种利用造纸工业碱回收白泥制备轻质碳酸钙的新方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104497633A (zh) * 2014-11-25 2015-04-08 广西华纳新材料科技有限公司 一种纳米碳酸钙的表面处理方法
CN104497633B (zh) * 2014-11-25 2017-04-19 广西华纳新材料科技有限公司 一种纳米碳酸钙的表面处理方法

Similar Documents

Publication Publication Date Title
JP4537379B2 (ja) 籾殻の灰から沈降シリカを製造するプロセスおよび装置
CN102320615B (zh) 一种以微硅粉为原料碳化制备沉淀白炭黑的方法
CN102424392A (zh) 一种综合利用微硅粉制备白炭黑联产纳米碳酸钙的方法
CN110844911A (zh) 一种利用含氟硅渣直接制备高纯白炭黑的方法
CN113549341A (zh) 一种核壳型二氧化硅包覆纳米碳酸钙的制备方法
CN106186024B (zh) 一种工业副产氟硅酸的利用方法
CN109665549A (zh) 一种利用二氧化碳制备钙铝水滑石的工艺
CN102923722B (zh) 白炭黑的制备方法
CN113353962A (zh) 一种常温高浓度制备活性纳米碳酸钙的方法
CN105347350A (zh) 一种用硅微粉制备白炭黑的方法
CN105271338B (zh) 一种废铝易拉罐生产微米级氢氧化铝的方法
CN101125657A (zh) 高纯二氧化硅生产方法
CN114195315A (zh) 一种酸性和非酸性含铜蚀刻废液、退锡废液及硝酸铜废液合并处理方法
WO2014086048A1 (zh) 一种调整白泥碳酸钙颗粒形状的高浓度碳酸化方法
CN105776967A (zh) 一种纤维针刺毡增强偏铝酸钠改性的气凝胶的制备方法
CN105836784B (zh) 一种利用含氟副产盐酸制备氯化钙的方法
CN112340763A (zh) 一种水性油墨专用纳米碳酸钙的制备方法
CN115536124B (zh) 一种氨酸法烟气脱硫废水生产的硫酸铵产品提质增效的方法
CN104387255A (zh) 一种甲酸钙的制备方法
CN101838005B (zh) 一种生产超细微轻质碳酸钙和白炭黑联产氯化钠和碳粉的方法
CN101734696B (zh) 拜耳法有机物消除的方法
CN101214980A (zh) 用硫酸镁溶液生产大颗粒七水硫酸镁及一水硫酸镁的方法
CN101823737B (zh) 一种用氯碱盐泥生产轻质碳酸镁联产超微细碳酸钙和水玻璃的方法
JP4194288B2 (ja) 炭酸カルシウムの製造方法
CN109224809B (zh) 一种改性苛化白泥及制备脱硫剂的应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12889479

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12889479

Country of ref document: EP

Kind code of ref document: A1