WO2014084375A1 - 車両の電動制動装置 - Google Patents

車両の電動制動装置 Download PDF

Info

Publication number
WO2014084375A1
WO2014084375A1 PCT/JP2013/082257 JP2013082257W WO2014084375A1 WO 2014084375 A1 WO2014084375 A1 WO 2014084375A1 JP 2013082257 W JP2013082257 W JP 2013082257W WO 2014084375 A1 WO2014084375 A1 WO 2014084375A1
Authority
WO
WIPO (PCT)
Prior art keywords
electric motor
pressing force
tsu
inp
parking brake
Prior art date
Application number
PCT/JP2013/082257
Other languages
English (en)
French (fr)
Inventor
安井 由行
真一郎 幽谷
尚美 江村
平田 聡
Original Assignee
株式会社アドヴィックス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アドヴィックス filed Critical 株式会社アドヴィックス
Publication of WO2014084375A1 publication Critical patent/WO2014084375A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D65/00Parts or details
    • F16D65/14Actuating mechanisms for brakes; Means for initiating operation at a predetermined position
    • F16D65/16Actuating mechanisms for brakes; Means for initiating operation at a predetermined position arranged in or on the brake
    • F16D65/18Actuating mechanisms for brakes; Means for initiating operation at a predetermined position arranged in or on the brake adapted for drawing members together, e.g. for disc brakes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T1/00Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles
    • B60T1/005Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles by locking of wheel or transmission rotation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2121/00Type of actuator operation force
    • F16D2121/18Electric or magnetic
    • F16D2121/24Electric or magnetic using motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2125/00Components of actuators
    • F16D2125/18Mechanical mechanisms
    • F16D2125/20Mechanical mechanisms converting rotation to linear movement or vice versa
    • F16D2125/34Mechanical mechanisms converting rotation to linear movement or vice versa acting in the direction of the axis of rotation
    • F16D2125/40Screw-and-nut
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2125/00Components of actuators
    • F16D2125/18Mechanical mechanisms
    • F16D2125/44Mechanical mechanisms transmitting rotation
    • F16D2125/46Rotating members in mutual engagement
    • F16D2125/48Rotating members in mutual engagement with parallel stationary axes, e.g. spur gears
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2127/00Auxiliary mechanisms
    • F16D2127/06Locking mechanisms, e.g. acting on actuators, on release mechanisms or on force transmission mechanisms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2129/00Type of operation source for auxiliary mechanisms
    • F16D2129/06Electric or magnetic
    • F16D2129/08Electromagnets

Definitions

  • the present invention relates to an electric braking device for a vehicle that generates braking torque on wheels by an electric motor, and more particularly, to an electric braking device having a parking brake function for maintaining a stopped state of the vehicle.
  • Patent Literature 1 in an electric braking device using an electric motor, for the purpose of “sufficiently functioning as a parking brake without impairing the original function as an electric brake”
  • a pawl wheel is provided on the peripheral surface, an engaging pawl biased in one direction by a torsion spring is provided on a swing arm arranged around the rotor, and the swing arm is always biased toward the tab wheel by a tension spring.
  • a ball ramp mechanism (rotation-linear motion conversion mechanism) that converts the rotation of the motor into linear motion and transmits it to the piston, and a differential reduction mechanism that decelerates the rotation of the motor and transmits it to the ball ramp mechanism
  • a pad wear compensation mechanism that compensates for pad wear by changing the position of the piston in accordance with wear of the brake pad, and a parking brake lock mechanism that establishes the parking brake.
  • the electric braking device described in Patent Document 1 employs a so-called coaxial configuration (coaxial layout) in which an electric motor, a differential reduction mechanism, a rotation / linear motion conversion mechanism, and a piston are arranged in a row. . Furthermore, a ball ramp mechanism is used as the rotation / linear motion conversion mechanism.
  • a ball ramp mechanism is used as the rotation / linear motion conversion mechanism.
  • new parts such as an electric motor are added to the conventional hydraulic brake device.
  • a pad wear compensation mechanism that compensates for pad wear is also required.
  • it is required to shorten the length in the axial direction in order to optimize the overall weight balance (that is, to make the position of the center of gravity appropriate). For this reason, in the coaxial configuration, there is a restriction that the speed reduction ratio of the speed reduction mechanism is set to be large, and generally a large torque / low speed rotation type electric motor is employed.
  • a pawl wheel (also referred to as a ratchet gear) is integrally formed on the outer peripheral surface of the rotor of the motor, and the parking brake functions by engaging the pawl wheel with the engaging pawl.
  • This meshing is performed by a solenoid mechanism via a swing arm.
  • the torque acting on the motor portion is large.
  • the diameter of the ratchet wheel is increased, a certain stroke is required for meshing with the engagement pawl. When this stroke is increased, the suction force of the solenoid is reduced.
  • the swinging arm is used to amplify the stroke of the solenoid, and the engaging pawl is engaged with the pawl wheel.
  • the number of parts increases, and it is also necessary to secure a movable region (a space in which the swing arm can operate).
  • FIG. 6A shows the pawl shape of the pawl wheel.
  • a mechanism that engages a pawl wheel (ratchet gear) and engages a pawl to prevent reverse rotation is called a pawl brake (also referred to as a ratchet mechanism).
  • FIG. 6B shows the relationship between the stroke and the suction force in the solenoid.
  • the present invention has been made to address the above-described problems, and an object of the present invention is to reduce the size of an electric braking device having both a normal brake function and a parking brake function without increasing the number of parts. It is to provide what you get.
  • a vehicle braking control apparatus includes a pressing member (PSN) that generates a pressing force (Fba) by pressing a friction member (MSB) against a rotating member (KTB) fixed to a vehicle wheel (WHL), An electric motor (MTR) that is a power source for generating the pressing force (Fba), an input member (INP) to which rotational power from the electric motor (MTR) is input, and rotational power of the input member (INP) Of the reduction gear (GSK) having at least two different rotation axes (Jin, Jsf) and the shaft member (SFT) transmitted from the reduction gear (GSK).
  • a solenoid (SOL) that restrains rotation of the input member (INP), an electric motor (MTR), and a control means (CTL) that controls the solenoid (SOL) to maintain the vehicle in a stopped state; Is provided.
  • the reduction gear GSK is configured with at least two different rotating shafts (Jin, Jsf). That is, the rotation axis Jin of the electric motor MTR and the like and the rotation axis Jsf of the shaft member SFT and the like are parallel and have a predetermined inter-axis distance Lj (a value greater than zero). Furthermore, a “screw” is employed as the rotation / linear motion conversion mechanism.
  • the electric motor MTR and the like and the shaft member SFT and the like can be arranged in parallel, and the wear compensation mechanism for the friction member MSB can be made unnecessary. For this reason, a margin is generated in the axial layout of the electric braking device, and a sufficient reduction ratio of the reduction gear GSK can be ensured.
  • the ratchet gear RCH that receives and holds the pressing force from the friction member MSB when the parking brake is operated can be reduced in diameter.
  • the pawl height of the ratchet gear RCH can be lowered, so that the stroke amount of the solenoid SOL can be reduced, and the occlusal pawl can be directly meshed with the ratchet gear RCH without passing through the swing arm.
  • the engagement claw Tsu provided at the plunger end of the solenoid SOL is directly meshed with the ratchet gear RCH. Therefore, in the electric braking device having both the normal brake function and the parking brake function, the size can be reduced without increasing the number of parts.
  • FIG. 1 is a schematic configuration diagram of an electric braking device according to an embodiment of the present invention. It is a fragmentary sectional view for demonstrating the structure of the braking means (brake actuator) shown in FIG. It is a block diagram for demonstrating 1st Embodiment of the restraint mechanism (locking mechanism for parking brakes) shown in FIG. It is a block diagram for demonstrating 2nd Embodiment of the restraint mechanism (locking mechanism for parking brakes) shown in FIG. It is a schematic block diagram for demonstrating the Oldham coupling shown in FIG. It is a figure for demonstrating the problem of the conventional electric braking device.
  • a vehicle including an electric braking device for a vehicle includes a braking operation member (for example, a brake pedal) BP, an acceleration operation member (for example, an accelerator pedal) AP, a braking unit (brake actuator) BRK, and electronic control. It is comprised by unit ECU and the storage battery BAT.
  • Brake operation member for example, brake pedal
  • the acceleration operation member for example, accelerator pedal
  • the braking means (brake actuator) BRK adjusts the braking torque of the wheel WHL to generate a braking force on the wheel WHL.
  • the electronic control unit ECU is programmed with control means (control algorithm) CTL for controlling the BRK, and controls the BRK based on this.
  • the storage battery BAT is a power source that supplies power to the BRK, ECU, and the like.
  • this vehicle is provided with a braking operation amount acquisition means BPA, an acceleration operation amount acquisition means APA, a vehicle speed acquisition means VXA, and a parking brake switch MSW.
  • the braking operation amount acquisition means BPA acquires (detects) an operation amount (braking operation amount) Bpa of the braking operation member BP by the driver.
  • a sensor pressure sensor
  • a sensor for detecting the pressure of a master cylinder not shown
  • an operation force of the braking operation member BP and / or a sensor for detecting a displacement amount (a brake pedal depression force sensor, Brake pedal stroke sensor)
  • the braking operation amount Bpa is calculated based on at least one of the master cylinder pressure, the brake pedal depression force, and the brake pedal stroke.
  • the acceleration operation amount acquisition means APA acquires (detects) an operation amount (acceleration operation amount) Apa of the acceleration operation member AP by the driver.
  • acceleration operation amount acquisition means APA a sensor for detecting the throttle opening of the engine (throttle opening sensor), an operation force of the acceleration operation member AP, and / or a sensor for detecting the displacement (accelerator pedal force sensor, accelerator pedal) Stroke sensor) is adopted. Therefore, the acceleration operation amount Apa is calculated based on at least one of the throttle opening, the accelerator pedal depression force, and the accelerator pedal stroke.
  • Vehicle speed acquisition means VXA acquires (detects) vehicle speed (vehicle speed) Vxa.
  • the vehicle speed Vxa can be calculated based on the detection signal (wheel speed) Vwa of the wheel speed acquisition means VWA and a known method. For example, the fastest speed among the rotation speeds of the wheels can be calculated as the vehicle speed Vxa.
  • the parking brake switch MSW is a manual switch operated by the driver, and outputs an ON / OFF signal Msw of the switch MSW.
  • the driver instructs the operation or release of the parking brake that maintains the vehicle stop state by operating the switch MSW. Specifically, the operation of the parking brake is instructed when the switch Msw is ON, and the release of the parking brake is instructed when the Msw is OFF.
  • the braking operation amount Bpa, the acceleration operation amount Apa, the vehicle speed Vxa, and the parking brake switch signal Msw are input to the electronic control unit ECU. Note that Bpa, Apa, Vxa, and Msw can be calculated or acquired by another electronic control unit, and the calculated values (signals) can be transmitted to the ECU via the communication bus.
  • the braking means BRK includes a brake caliper (floating caliper) CPR, a rotating member KTB, a friction member MSB, an electric motor MTR, a motor drive circuit DRV, an input member INP, a reduction gear GSK, a shaft member SFT, a screw member NJB, a pressing member ( Brake piston) PSN, energization amount acquisition means IMA, position acquisition means MKA, pressing force acquisition means FBA, and parking brake lock mechanism LOK.
  • a brake caliper floating caliper
  • the rotating member KTB is a brake disk
  • the friction member MSB is a brake pad
  • the electric motor MTR is a brush motor or a brushless motor.
  • the input member INP is connected to the output shaft of the electric motor MTR, and inputs (transmits) the power of the MTR to the reduction gear GSK.
  • the reduction gear GSK decelerates the rotational output (torque) of the electric motor MTR and transmits it to the shaft member SFT.
  • the reduction gear GSK is composed of at least two different rotation shafts, and the shaft Jin of the input member INP and the shaft Jsf of the shaft member SFT are parallel to each other and are separate rotation shafts.
  • a gear transmission mechanism spur gear, helical gear, etc.
  • a winding transmission mechanism (belt, chain, etc.)
  • a friction transmission mechanism can be used as the reduction gear GSK.
  • a gear transmission mechanism is employed in the reduction gear GSK
  • a gear having a small diameter is fixed to the input member INP
  • a gear having a large diameter is provided on the shaft member SFT. Is fixed, and the rotational power of the electric motor MTR is decelerated.
  • the shaft member SFT transmits the power transmitted from the reduction gear GSK to the screw member NJB.
  • the screw member NJB is composed of a bolt (male screw) and a nut (female screw), converts the rotational power (rotational motion) from the shaft member SFT into linear power (linear motion), and transmits it to the pressing member PSN.
  • the screw member NJB is a rotation / linear motion conversion mechanism, and is configured by a slide screw (such as a trapezoidal screw) that transmits power by “slip”. Further, a rolling screw (such as a ball screw) in which power transmission is performed by “rolling” may be employed as the screw member NJB.
  • the pressing member PSN presses the friction member (for example, brake pad) MSB against the rotating member (for example, brake disc) KTB by linear power (thrust, pressing force) transmitted by the screw member NJB. That is, the pressing member PSN is advanced or retracted in the direction of the rotating member KTB by the power transmitted from the screw member NJB, and the pressing force Fba of the friction member MSB against the rotating member KTB is adjusted.
  • the motor drive circuit DRV controls the energization amount (finally the current value) to the electric motor MTR based on the target energization amount (target value) Imt commanded from the control means CTL.
  • the motor drive circuit DRV includes a bridge circuit using a switching element (a power transistor, for example, a MOS-FET), and the switching element is driven based on the target energization amount Imt.
  • the output (output torque) of the electric motor MTR is controlled. That is, the rotation direction and the output torque of the electric motor MTR are adjusted by switching the energization / non-energization state of the switching element.
  • the rotation direction of the electric motor corresponds to the direction in which the forward rotation direction approaches the direction in which the friction member MSB approaches the rotation member KTB (the direction in which the pressing force increases and the braking torque increases), and the reverse rotation direction corresponds to the friction direction. This corresponds to the direction in which the member MSB moves away from the rotating member KTB (the direction in which the pressing force decreases and the braking torque decreases).
  • the energization amount acquisition means (for example, current sensor) IMA is provided in the motor drive circuit DRV in order to detect the actual energization amount (for example, the current that actually flows through the electric motor MTR) Ima.
  • the position acquisition means (for example, angle sensor) MKA is provided in the electric motor MTR in order to detect the position (for example, rotation angle) Mka of the rotor of the MTR.
  • the pressing force acquisition means (for example, pressing force sensor) FBA is provided on the shaft member SFT in order to detect the force (actual value of pressing force) Fba that the friction member MSB actually presses the rotating member KTB.
  • the parking brake locking mechanism LOK locks (restrains) the rotation in the reverse direction of the electric motor MTR (rotation corresponding to the direction in which the PSN moves away from the KTB) for the brake function (so-called parking brake) for maintaining the vehicle in a stopped state.
  • the parking brake locking mechanism LOK includes a ratchet gear RCH, a solenoid SOL, and a solenoid drive circuit DRS.
  • ratchet gear RCH (also referred to as a pawl gear), unlike a general gear, teeth are tilted with directivity.
  • the solenoid SOL is driven by a solenoid drive circuit DRS.
  • An occlusal claw (also referred to as a hook claw) Tsu is provided at the tip of the plunger Pln of the solenoid SOL.
  • a ratchet mechanism (a mechanism that restricts the rotational operation direction to one side) is formed by meshing (locking) the occlusal claw Tsu with the ratchet gear RCH.
  • the ratchet gear RCH is rotated in a suitable direction (forward direction of the electric motor)
  • the occlusal claw Tsu can easily get over the teeth and the ratchet gear RCH can be rotated.
  • the ratchet gear RCH is rotated in the reverse direction (the reverse direction of the electric motor)
  • the ratchet gear RCH cannot be rotated because the occlusal claw Tsu bites into the teeth.
  • the solenoid drive circuit DRS controls energization or non-energization to the solenoid SOL based on the command value Spk from the control means CTL.
  • the output (power) of the electric motor MTR is first transmitted to the input member INP.
  • the rotational power is transmitted to the shaft member SFT via a reduction gear GSK composed of at least two rotating shafts.
  • the rotational power (torque) of the shaft member SFT is converted into linear power (thrust) by the screw member NJB, which is a rotation / linear motion conversion mechanism, and is transmitted to the pressing member PSN.
  • the pressing member (brake piston) PSN moves forward toward the rotating member (brake disc) KTB, and the friction member (brake pad) MSB is pressed toward the rotating member KTB. Since the rotating member KTB is fixed to the wheel WHL, a frictional force is generated between the friction member MSB and the rotating member KTB, a braking force is generated on the wheel WHL, and functions as a normal brake.
  • the electric motor MTR When the operation of the parking brake is instructed by the manual switch MSW or the like, the electric motor MTR is driven and the friction member MSB is pressed against the rotating member KTB until the pressing force Fba exceeds the first predetermined value fb1. . After the pressing force Fba exceeds the first predetermined value fb1, the solenoid SOL is energized, and the meshing claw Tsu and the ratchet gear RCH are engaged. Then, after the energization to the electric motor MTR is reduced and the occlusion between the occlusal claw Tsu and the ratchet gear RCH is confirmed, the energization to the solenoid SOL is released.
  • the occlusion confirmation between the occlusal claw Tsu and the ratchet gear RCH can be performed based on the position (rotation angle) Mka of the MTR. Specifically, when the energization to the electric motor MTR is reduced, the rotation angle Mka starts to decrease toward the neutral position (corresponding to the position where the MSB starts to contact the KTB, the zero point position of the MTR). However, occlusion can be confirmed by the fact that Mka does not change in the reverse direction.
  • the electric motor MTR is driven until the pressing force Fba exceeds the second predetermined value fb2 (a value larger than fb1).
  • the engagement claw Tsu of the solenoid SOL gets over the teeth of the ratchet gear RCH, so that the parking brake is released.
  • the solenoid SOL incorporates an elastic body (spring) Spr that returns the occlusal claw Tsu to the occlusal release position, the solenoid SOL is not energized when the parking brake is released.
  • the braking means BRK also functions as a parking brake by switching between the occlusal state of the occlusal claw Tsu and the ratchet gear RCH or the non-occlusion state via the electric motor MTR and the solenoid SOL.
  • the control means CTL includes a target pressing force calculation block FBT, an instruction energization amount calculation block IST, a pressing force feedback control block IPT, a parking brake control block IPK, and an energization amount adjustment calculation block IMT.
  • the control means (control program) CTL is programmed in the electronic control unit ECU.
  • the target pressing force Fbt of each wheel WHL is calculated based on the braking operation amount Bpa and the preset target pressing force calculation characteristic (calculation map) CHfb.
  • Fbt is a target value of the pressing force with which the friction member (brake pad) MSB presses the rotating member (brake disc) KTB in the electric braking means BRK.
  • the command energization amount Ist is calculated on the basis of preset calculation characteristics (calculation maps) CHs1 and CHs2 of the command energization amount and the target pressing force Fbt.
  • Ist is a target value of the energization amount to the electric motor MTR for driving the electric motor MTR of the electric braking means BRK and achieving the target pressing force Fbt.
  • the calculation map of Ist is composed of two characteristics CHs1 and CHs2 in consideration of the hysteresis of the electric braking means BRK.
  • the characteristic CHs1 corresponds to the case where the pressing force is increased, and the characteristic CHs2 corresponds to the case where the pressing force is decreased. Therefore, compared with the characteristic CHs2, the characteristic CHs1 is set to output a relatively large command energization amount Ist.
  • the energization amount is a state amount (variable) for controlling the output torque of the electric motor MTR. Since the electric motor MTR outputs a torque substantially proportional to the current, the current target value of the electric motor MTR can be used as the target value of the energization amount. Further, if the supply voltage to the electric motor MTR is increased, the current is increased as a result, so that the supply voltage value can be used as the target energization amount. Furthermore, since the supply voltage value can be adjusted by the duty ratio in pulse width modulation (PWM; Pulse Width Modulation), this duty ratio can be used as the energization amount.
  • PWM pulse width modulation
  • the pressing force feedback energization amount Ipt is calculated based on the target pressing force (target value) Fbt and the actual pressing force (actual value) Fba.
  • the command energization amount Ist is calculated as a value corresponding to the target pressing force Fbt, but an error (steady error) occurs between the target pressing force Fbt and the actual pressing force Fba due to the efficiency variation of the electric braking means BRK.
  • the pressing force feedback energization amount Ipt is calculated based on a deviation (pressing force deviation) ⁇ Fb between the target pressing force Fbt and the actual pressing force Fba and a calculation characteristic (calculation map) CHp so as to reduce the above error. It is determined.
  • the actual pressing force Fba is acquired (detected) by a pressing force acquisition unit FBA described later.
  • the energization amount adjustment calculation block IMT calculates a target energization amount Imt that is a final target value for the electric motor MTR.
  • the command energization amount Ist is adjusted by the pressing force feedback energization amount Ipt, and the target energization amount Imt is calculated.
  • the energization amount adjustment calculation block IMT adds the feedback energization amount Ipt to the command energization amount Ist and calculates the target energization amount Imt.
  • the target energization amount Imt is a final energization target value for controlling the output of the electric motor MTR, and is calculated based on the FBA detection result (Fba).
  • the rotation direction of the electric motor MTR (forward rotation direction in which the pressing force increases or reverse rotation direction in which the pressing force decreases) is determined, and the target energization amount Imt.
  • the output of the electric motor MTR is controlled based on the magnitude of.
  • control algorithm for the normal brake function in the control means CTL has been described above. Next, the control algorithm of the parking brake function in the control means CTL will be described.
  • the parking brake control block IPK control is performed for a parking brake (also referred to as a parking brake) that maintains the vehicle stop state. Specifically, occlusion control for operating the parking brake and release control for releasing the parking brake are executed.
  • the parking brake control block IPK includes an occlusion / release determination block HNT that determines whether the parking brake is started (occlusion) and release, and an occlusion / release control block KKS that performs the occlusion control and release control.
  • the parking brake control block IPK includes a manual switch signal Msw, a vehicle speed Vxa, an acceleration operation amount Apa, a pressing force (FBA detection value) Fba, and an electric motor position (rotation angle) (MKA detection value) Mka. Entered. From the IPK, a parking brake target energization amount Ipk and a solenoid command signal Spk are output.
  • each necessity determination includes a manual mode and an automatic mode.
  • the manual mode the necessity of each is determined based on the operation of the manual switch MSW for parking brake of the driver (operation signal Msw).
  • operation signal Msw operation signal
  • OFF OFF
  • ON ON
  • a signal FLkg is output from the HNT.
  • a signal for releasing the parking brake a control flag and a release instruction signal
  • the operation / release of the parking brake is automatically determined in conjunction with the operation of the acceleration operation member (accelerator pedal) AP, regardless of the driver's operation of the switch MSW. .
  • the automatic mode whether or not the parking brake needs to be operated and whether or not it is necessary to release is determined based on the vehicle speed Vxa and the acceleration operation amount Apa. While the vehicle is traveling (a state in which Vxa is not zero), the release state of the parking brake is determined. When the vehicle stops (when Vxa becomes zero), it is determined that the parking brake is started.
  • the driver operates the acceleration operation member AP and the acceleration operation amount Apa exceeds the predetermined value ap1, it is determined that the parking brake is released.
  • the occlusion instruction signal FLkg is output when it is determined that the parking brake is started, and the release instruction signal FLkj is output when it is determined that the parking brake is released.
  • the occlusion control for operating the parking brake and the parking brake are performed based on the instruction signals FLkg, FLkj, the pressing force Fba, and the rotation angle Mka transmitted from the occlusion / release determination block HNT. Release control to release is executed.
  • the parking brake target energization amount Ipk is gradually increased (with a predetermined amount of change set in advance) based on the preset calculation map based on the occlusion command FLkg and the pressing force Fba.
  • Ipk is a target value of the energization amount of the electric motor MTR in the parking brake control.
  • the pressing force Fba increases. Then, when the pressing force Fba exceeds the predetermined value fb1, a solenoid command signal Spk for instructing energization to the solenoid SOL is output. After a predetermined time tpk when the command signal Spk is instructed, Ipk is gradually reduced to zero. Then, as Ipk decreases, the position Mka of the electric motor changes in the reverse direction of the MTR, but when the change does not occur (that is, when the occlusal claw Tsu is completely engaged with the ratchet gear RCH). The output of the solenoid command signal Spk is stopped.
  • the electric motor MTR is driven by the target energization amount Ipk at the time of parking brake, and the solenoid SOL is driven by the command signal Spk in a state where the friction member MSB is pressed against the rotating member KTB with a pressing force greater than the value fb1.
  • the occlusal claw Tsu provided at the tip of the solenoid SOL is moved in the direction of the ratchet gear RCH (hereinafter referred to as the occlusal direction) and meshed with the RCH.
  • Ipk is decreased, and the rotational power of the electric motor MTR is decreased.
  • the friction member MSB is pressed against the rotation member KTB by the ratchet mechanism, the operation state of the parking brake is continued.
  • the target energization amount Ipk at the time of parking brake is gradually increased (with a predetermined change amount set in advance) based on a preset calculation map. Is done.
  • the pressing force Fba increases with the increase in Ipk
  • energization of the electric motor MTR is continued until the pressing force Fba exceeds a predetermined value fb2.
  • the predetermined value fb2 is a value larger than the predetermined value fb1 by a predetermined value (positive value) fbx.
  • the position of the friction member MSB is locked by the ratchet mechanism at a position where the pressing force is approximately fb1.
  • the electric motor MTR is controlled so that the pressing force Fba is increased to a predetermined value fb2 that is larger than the predetermined value fb1 by the predetermined value fbx.
  • the value fbx is a fixed value set in advance based on the efficiency fluctuation of the braking means BRK.
  • the solenoid SOL is provided with an elastic body (for example, a return spring) Spr that applies a force in the direction opposite to the occlusal direction (hereinafter referred to as the release direction) with respect to the occlusal claw Tsu, the teeth of the ratchet gear RCH are provided.
  • the release direction a force in the direction opposite to the occlusal direction
  • the target energization amount Ipk at the time of parking brake is transmitted to the energization amount adjustment calculation block IMT, and adjustment with the target value (Ist etc.) of the energization amount at the time of normal braking is performed.
  • the solenoid command signal Spk is transmitted to the solenoid drive circuit DRS.
  • energization or de-energization of the solenoid SOL is executed based on the command signal Spk. Specifically, when Spk is transmitted, energization to the solenoid SOL is performed (a predetermined energization amount is supplied). On the other hand, when Spk is not transmitted, the solenoid SOL is not energized (the energization amount is set to zero).
  • the braking means BRK includes a brake caliper CPR, a pressing member (brake piston) PSN, an electric motor MTR, an Oldham coupling OLD, an input member INP, a reduction gear GSK, a shaft member (output shaft member) SFT, and a screw member (rotation / linear motion conversion).
  • the braking means BRK includes a brake caliper CPR, a pressing member (brake piston) PSN, an electric motor MTR, an Oldham coupling OLD, an input member INP, a reduction gear GSK, a shaft member (output shaft member) SFT, and a screw member (rotation / linear motion conversion).
  • Mechanism NJB and pressing force acquisition means (pressing force sensor) FBA, etc.
  • the brake caliper CPR is a floating caliper, and is configured to sandwich a rotating member (brake disc) KTB via two friction members (brake pads) MSB.
  • a pressing member PSN which will be described later, is slid within the caliper CPR and moved forward toward the rotating member KTB, whereby the friction member MSB is pressed against the rotating member KTB. Due to the pressing force at this time, a frictional force is generated between the friction member MSB and the rotating member KTB, and braking torque is applied to the wheels.
  • the electric motor MTR is fixed to the caliper CPR and operates as a power source for pressing the friction member MSB against the rotating member KTB.
  • the output part Mot of the electric motor MTR is connected to the input member INP via the Oldham coupling OLD.
  • the Oldham coupling OLD absorbs the eccentricity between the rotating shaft (hereinafter referred to as motor shaft) Jmt of the electric motor MTR and the rotating shaft (hereinafter referred to as input shaft) Jin of the input member INP.
  • the input member INP is a rotating shaft member.
  • the ratchet gear RCH of the parking brake locking mechanism LOK and the first small-diameter gear SKH1 of the reduction gear GSK are fixed to the input member INP.
  • the parking brake locking mechanism LOK includes a solenoid SOL and a ratchet gear RCH.
  • the solenoid SOL is fixed to the caliper CPR, and includes a fixed coil Col and a movable iron core (plunger) Pln.
  • An occlusal claw Tsu is formed at the tip of the plunger Pln.
  • the ratchet gear RCH is fixed to the input member INP, and meshes with the meshing claw Tsu to lock the rotational movement of the electric motor MTR in the reverse direction. That is, when the pressing member PSN (that is, the friction member MSB) is restrained from moving in a direction away from the rotating member KTB and the rotational power of the electric motor MTR is stopped (when the MTR is not energized). However, the generation of the pressing force is continued. In other words, the parking brake function is exhibited by the engagement of the occlusal claw Tsu and the ratchet gear RCH.
  • the reduction gear GSK includes a first small diameter gear SKH1, a first large diameter gear DKH1, an intermediate shaft member CHU, a second small diameter gear SKH2, and a second large diameter gear DKH2.
  • the reduction gear GSK is a mechanism that reduces the rotational speed of the power of the input member INP and outputs it to the shaft member SFT. As the output power of the shaft member SFT, a rotational force (torque) proportional to the reduction ratio is obtained.
  • a two-stage reduction gear is used as the reduction gear GSK, the first-stage reduction is performed by the first small-diameter gear SKH1 and the first large-diameter gear DKH1, and the second-stage reduction is performed by the second small-diameter gear SKH2. This is performed by the second large-diameter gear DKH2.
  • the first small-diameter gear SKH1 is fixed to the input member INP and rotated integrally with the INP.
  • the first large-diameter gear DKH1 is fixed to the intermediate shaft member CHU and is rotated integrally with the CHU.
  • the bearing of SKH1 (INP) and the bearing of DKH1 (CHU) are fixed to the caliper CPR.
  • the teeth of SKH1 and DKH1 are engaged with each other.
  • the pitch circle diameter of the first large gear DKH1 is larger than the pitch circle diameter of the first small gear SKH1, and the number of teeth of the first large gear DKH1 is larger than the number of teeth of the first small gear SKH1. That is, the power of the first small-diameter gear SKH1 is decelerated and output from the first large-diameter gear DKH1.
  • the second small-diameter gear SKH2 is fixed to the intermediate shaft member CHU and rotated integrally with the CHU.
  • the second large-diameter gear DKH2 is fixed to the shaft member SFT and is rotated integrally with the SFT.
  • the SKH2 (CHU) bearing and the DKH2 (SFT) bearing are fixed to the caliper CPR.
  • the teeth of SKH2 and DKH2 are engaged with each other.
  • the pitch circle diameter of the second large diameter gear DKH2 is larger than the pitch circle diameter of the second small diameter gear SKH2, and the number of teeth of the second large diameter gear DKH2 is larger than the number of teeth of the second small diameter gear SKH2.
  • the power of the second small diameter gear SKH2 is decelerated and output from the second large diameter gear DKH2. Therefore, the rotational power transmitted from the input member INP is input from the first small diameter gear SKH1 to the reduction gear GSK, decelerated in two stages, and output from the second large diameter gear DKH2 to the shaft member SFT.
  • a one-stage reduction gear can be used as the reduction gear GSK. In this case, power from the input member INP is input to the first small-diameter gear SKH1, decelerated by SKH1 and DKH1, and output from the shaft member SFT.
  • the shaft member SFT is a rotating shaft member and transmits the rotational power transmitted from the reduction gear GSK to the screw member NJB.
  • the shaft member SFT is provided with a universal joint mechanism UNV, which absorbs the eccentricity between the rotation axis (hereinafter referred to as the shaft axis) Jsf of the SFT and the pressing axis (hereinafter referred to as the piston axis) Jps of the pressing member PSN.
  • the shaft member SFT swings (swings) due to the bending of the floating caliper CPR, the uneven wear of the friction member MSB, etc., and the two shafts (Jsf, Jps) can be eccentric (shaft misalignment).
  • the universal joint mechanism UNV is a so-called universal joint, and it is not always necessary that the two connected axes (Jsf, Jps) be in a straight line. Can communicate.
  • the screw member NJB is a rotation / linear motion conversion mechanism, and includes a bolt part Blt and a nut part Nut.
  • the bolt part Blt is fixed to the shaft member SFT and is driven to rotate integrally with the SFT.
  • the bolt part Blt is provided with a male thread (also referred to as an outer thread) Onj and is screwed with a female thread (also referred to as an inner thread) Mnj of the nut part Nut.
  • a nut Nut having a female thread Mnj is fixed to the pressing member PSN.
  • the rotational power (torque) transmitted from the shaft member SFT is transmitted as linear power (thrust) of the pressing member PSN via the screw member NJB (male screw Onj and female screw Mnj).
  • JB male screw Onj and female screw Mnj
  • Blt is fixed to SFT and Nut is fixed to PSN, but nut portion (female screw Mnj) Nut is fixed to shaft member SFT, and bolt portion (male thread Onj) Blt is fixed to pressing member PSN. It is fixed and Mnj and Onj can be screwed together.
  • a sliding screw such as a trapezoidal screw
  • a rolling screw such as a ball screw
  • the nut portion Nut is replaced with a “ball grooved nut”
  • the bolt portion Blt is replaced with a “(ball grooved) screw shaft”.
  • a plurality of balls are arranged in the ball grooves of Nut and Blt, and the rotational motion is converted into linear motion.
  • the pressing member (piston) PSN presses the friction member MSB against the rotating member KTB to generate a frictional force.
  • the movement of the pressing member PSN with respect to the brake caliper CPR is limited by the key member KYB and the key groove KYM.
  • a key groove KYM is formed in the brake caliper CPR so as to extend in the direction of the rotation axis Jsf (shaft axis Jsf) of the shaft member SFT. Then, the key member KYB fixed to the pressing member PSN is fitted into the key groove KYM. For this reason, the pressing member PSN is restricted from rotating around the shaft axis Jsf, and is allowed to move linearly in the shaft axis direction (key groove KYM direction).
  • a pressing force acquisition means (pressing force sensor) FBA is provided between the shaft member SFT and the caliper CPR, and the reaction force (reaction) of the force (pressing force) Fba that the pressing member PSN presses the friction member MSB is detected.
  • the pressing force Fba acquired (detected) by the pressing force acquisition means FBA is transmitted to the electronic control unit ECU.
  • the pressing force acquisition means FBA is fixed to the caliper CRP.
  • the bearings of the input member INP, the intermediate shaft member CHU, and the shaft member SFT are also fixed to the caliper CPR.
  • the electric motor MTR and the solenoid SOL are also fixed to the caliper CPR.
  • the rotational power (the work rate, the work amount per unit time) of the electric motor MTR is passed through the Oldham coupling OLD that absorbs the axial deviation (eccentricity) between Jmt and Jin. Are transmitted to the input member INP. Then, the rotational power of the input member INP is transmitted to the shaft member SFT via a reduction gear GSK having a two-axis configuration having two rotation axes Jin and Jsf (a three-axis configuration including the intermediate shaft member CHU). .
  • the rotational force (torque) of the input member INP is multiplied by Rg to be the rotational force of the shaft member SFT, and the rotational speed of the input member INP is 1 / Rg.
  • the rotational speed of the shaft member SFT is set.
  • the rotational power of the shaft member SFT is converted into linear power by the screw member NJB and transmitted to the pressing member PSN.
  • the pressing member PSN presses the friction member MSB against the rotating member KTB, and a braking torque is generated on the wheel WHL.
  • the reduction gear GSK has a so-called two-axis configuration having at least two different rotation axes.
  • the input shaft and the output shaft are parallel, and the distance Lj between the two shafts is set to be larger than “0” (Lj is a predetermined value that is not “0”).
  • Lj is a predetermined value that is not “0”.
  • the reduction ratio of the reduction gear GSK can be set relatively large.
  • the intermediate shaft member CHU and decelerating in two stages a larger reduction ratio can be obtained and the inter-axis distance Lj can be shortened.
  • the pressing member PSN needs to be brought closer to the rotating member KTB. Since “screws” are employed in the rotation / linear motion conversion mechanism, a special mechanism for compensating for the change in the PSN position is not required (that is, the wear compensation mechanism is not required). This is because the positional change caused by the wear is absorbed by the relative positional change between the bolt part Blt and the nut part Nut in the screw member NJB. This further increases the degree of freedom in the axial layout.
  • the parking brake is constituted by the parking brake locking mechanism LOK provided in the vicinity of the output portion of the electric motor MTR. Specifically, the ratchet gear RCH is fixed to the input member INP, the meshing claw Tsu of the solenoid SOL is engaged, and the friction member MBS is pressed against the rotating member KTB.
  • the force transmission path is opposite to that in the case of normal braking (braking function for decelerating a running vehicle).
  • a force (pressing force) acting on the pressing member PSN from the friction member MSB is transmitted as a rotational force to the shaft member SFT via the screw member NJB.
  • the rotational force of the shaft member SFT is transmitted as the rotational force of the input member INP via the speed reducer GSK.
  • the reduction gear GSK acts as a speed increaser, the rotational force of the shaft member SFT is transmitted to the input member INP as a reduction ratio Rg.
  • the reduction gear ratio Rg is set to be large by the reduction gear GSK constituted by the two axes, the rotational force borne by the parking brake lock mechanism LOK can be reduced.
  • the tooth shape (particularly the pawl height) of the ratchet gear RCH of the parking brake locking mechanism LOK can be reduced, and the stroke amount of the solenoid SOL is not so required.
  • the occlusal claw Tsu is directly meshed with the ratchet gear RCH by the solenoid SOL without using a swing arm or the like, and can function as a parking brake.
  • the parking brake locking mechanism LOK includes a solenoid SOL, a ratchet gear RCH, and a support member SPT.
  • the lock mechanism LOK is configured as a ratchet mechanism (claw brake) and allows rotation in one direction (the direction indicated by the solid line arrow in the direction in which the pressing force increases), but rotation in the other direction (indicated by the broken line arrow). Direction in which the pressing force decreases).
  • the solenoid SOL is driven by the solenoid drive circuit DRS, and engages the engagement claw Tsu with the ratchet gear RCH to prevent the input member INP from rotating.
  • the solenoid drive circuit DRS is controlled based on the command value Spk from the control means CTL.
  • a solenoid SOL (in particular, a solenoid case Cas) is fixed to the caliper CRP.
  • the solenoid SOL is composed of a fixed coil Col and a movable iron core (plunger) Pln.
  • a force (attraction force) by which the plunger Pln is drawn into the fixed coil Col when the fixed coil Col is energized (current is supplied) is used, and the direction of the Pln ratchet gear RCH (white arrow) Motion in the direction of).
  • the elastic force (spring force) generated by the elastic body (for example, spring) Spr is used to pull out the plunger Pln from the fixed coil Col, and the plate Plt. Is returned to the position where it contacts the case Cas.
  • An occlusal claw Tsu is formed at the end of the plunger Pln.
  • the solenoid SOL When the solenoid SOL is energized, the occlusal claw Tsu is moved in a direction toward the ratchet gear RCH (hereinafter referred to as an occlusal direction).
  • the occlusal claw Tsu is provided with a protrusion (protrusion) having a height (length) Lts, and this protrusion engages with the ratchet gear RCH.
  • the ratchet gear RCH is fixed to the input member INP and rotates together with the INP.
  • the ratchet gear RCH is formed with sawtooth teeth, and this “sawtooth” shape may cause directionality to rotation.
  • the tooth profile of the ratchet has an overhang portion (a portion protruding like an eave) having a height (length) Lrc, and this portion is used to engage with the protrusion portion (height Lts) of the occlusal claw Tsu. Note that, in the shape and dimension, the length Lts is shorter than the length Lrc.
  • the support member SPT fixed to the caliper CPR is provided on the opposite side (rear side) to the protrusion of the occlusal claw Tsu.
  • the occlusal claw Tsu is in contact with the support member SPT and can slide with the support member SPT (can slide and move).
  • a force by the pressing force Fba acts on the occlusal claw Tsu, and a bending moment acts. Since the occlusal claw Tsu is supported by the support member SPT, the bending deformation of the occlusal claw Tsu (or Pln) can be suppressed. As a result, sufficient strength can be ensured and smooth movement of the occlusal claw Tsu can be maintained.
  • the braking means BRK is decelerated by a reduction gear GSK having two different axes, it has a relatively large reduction ratio.
  • a parking brake locking mechanism LOK is provided on the input member INP, and the input member INP can be locked with a relatively small rotational force. For this reason, a small-diameter ratchet gear RCH is used, and the pawl height h (see FIG. 6) can be lowered.
  • the stroke amount of the solenoid SOL can be reduced, and the engagement claw can be directly meshed with the ratchet gear RCH by the solenoid SOL without using the swing arm.
  • the occlusal claw Tsu receives a force corresponding to the pressing force from the ratchet gear RCH, but the bending of Tsu and Pln is suppressed by the support member SPT provided behind the occlusal claw Tsu. obtain.
  • FIG. 4 corresponding to FIG.
  • the ratchet gear RCH and the input member INP are omitted, and the same reference numerals are given to constituent members having the same functions as the members shown in FIG. 3, and descriptions thereof are omitted.
  • the plunger Pln and the occlusal claw Tsu are divided as different members. Further, a guide member GUI fixed to the caliper CPR is provided, and the GUI is formed so as to surround the occlusal claw Tsu, and the GUI and Tsu are in sliding contact with each other.
  • the guide member GUI guides the movement of the occlusal claw Tsu in the occlusal direction (direction engaged with the RCH). Since the ratchet gear RCH is miniaturized by the two-axis configuration of the reduction gear GSK, positional accuracy is required for the engagement between the ratchet gear RCH and the engagement claw Tsu.
  • the bearing of the ratchet gear RCH (ie, INP) and the guide member GUI are fixed to the caliper CPR with high accuracy in the mutual positional relationship, and the occlusal claw Tsu is slid along the guide member GUI in the occlusion direction. For this reason, when the parking brake is operated, the occlusal claw Tsu slides on the guide surface of the guide member GUI and is securely engaged with the ratchet gear RCH. When the parking brake is released, the occlusion pawl Tsu is slid back in the release direction (opposite to the occlusion direction) by the elastic body (spring) SPG.
  • the guide member GUI can provide an effect similar to the effect of the support member SPT.
  • a force corresponding to the pressing force is applied to the occlusal claw Tsu from the ratchet gear RCH.
  • the bending deformation of the occlusal claw Tsu caused by this force can be suppressed by the guide member GUI.
  • the occlusal claw Tsu is separated from the plunger Pln, but may be configured as the same member. Even in this case, the same effect can be obtained by the guide member GUI.
  • the Oldham coupling OLD is a coupling that transmits power when the protrusions (keys) of the disk and the grooves (key grooves) of the slider slip.
  • the input disk Hbm, the slider (intermediate disk) Sld, and the output It is composed of a disk Hbi. That is, when the disk protrusion slides along the groove of the slider, the eccentricity of two shafts (motor shaft Jmt and input shaft Jin) having different shaft centers is absorbed, and rotational power (rotational motion) is transmitted. .
  • the Oldham coupling OLD is provided between the electric motor MTR and the input member INP.
  • the input disk Hbm of the Oldham coupling OLD is fixed to the output part Mot of the electric motor MTR.
  • a key is provided on the surface of the input disk Hbm opposite to the surface connected to the motor output unit Mot.
  • the slider Sld is provided with a key groove (depression) so as to engage with the key of the input disk Hbm.
  • a separate key groove is provided on the surface opposite to the surface on which the key groove of the slider Sld is provided, perpendicular to the key groove.
  • a key is provided on the output disk Hbi so as to engage with the key groove (depression) of the slider Sld.
  • the back side of the surface having the key is fixed to the input member INP. That is, Hbm, Sld, and Hbi are engaged via the key and the key groove so that the protrusion of the input disk Hbm and the protrusion of the output disk Hbi intersect perpendicularly.
  • the keys of Hbm and Hbi slide along the key groove of the slider Sld, so that the shaft between the output portion Mot of the MTR (motor shaft Jmt) and the shaft of the input member INP (input shaft Jin) Eccentricity is absorbed.
  • FIG. 5B is a cross-sectional view of a fitting portion between the input disk Hbm and the slider Sld.
  • the key and the key groove are fitted with a broken line New.
  • an invalid rotation angle for example, an angle at which the input member INP does not rotate even when the motor output unit Mot rotates
  • the parking brake functions by restraining (locking) the reverse rotation of the electric motor by the ratchet gear.
  • the ratchet gear is provided on the output shaft of the electric motor, the ratchet gear is rotated by the invalid rotation angle described above, so that the pressing force to be held is reduced.
  • the Oldham coupling OLD is disposed between the input member INP to which the ratchet gear RCH is fixed and the output part Mot of the electric motor MTR. That is, when the parking brake is operated, the pressing force Fba is transmitted to the ratchet gear RCH via the speed reducer GSK, but the Oldham coupling OLD is provided between the electric motor MTR and the input member INP. The influence of the invalid rotation angle caused by deformation, wear, etc. of the OLD is not exerted, and the reduction of the pressing force Fba (loosening of the MSB) can be avoided.
  • an electric braking device using a floating caliper an electric motor, a rotation / linear motion conversion mechanism, a reduction gear, and the like are provided so as to be biased to one side (inside the vehicle body) with respect to a rotating member (brake disc).
  • a rotating member a rotating member
  • the speed reducer GSK is configured with at least two different rotating shafts. That is, the rotation axis Jmt (that is, Jin) such as the electric motor MTR and the axis Jps (that is, Jsf) such as the pressing member PSN are parallel and have a predetermined inter-axis distance Lj ( ⁇ 0). Furthermore, a “screw mechanism” is used for the rotation / linear motion conversion mechanism. For this reason, the MTR or the like and the pressing member PSN or the like are arranged in parallel, and the wear compensation mechanism of the friction member MSB is not required, so that there is a margin in the axial layout.
  • the reduction ratio of the reduction gear GSK is sufficiently secured, and the ratchet gear RCH constituting the parking brake function can be reduced in diameter. Since the pawl height can be lowered in the ratchet gear RCH, the stroke amount of the solenoid SOL can be reduced, and the occlusal pawl can be directly meshed with the ratchet gear RCH without using the swing arm. Since the electric braking means is configured as described above, it has both a normal brake function and a parking brake function, and the size can be reduced without increasing the number of parts.
  • the configuration of the electric braking device BRK includes an Oldham coupling OLD that absorbs eccentricity (that is, shaft misalignment) between the two shafts, and the Oldham coupling OLD is provided between the electric motor MTR and the input member INP.
  • an invalid rotation angle may occur due to deformation and wear of the key and key groove (when the output shaft does not rotate even if the input shaft rotates).
  • a ratchet gear is fixed to an electric motor (specifically, a ratchet gear is provided on a rotor of the electric motor), an output portion of the electric motor, and a reduction gear
  • the Oldham coupling is provided between the two, the pressing force when the ratchet gear is locked is reduced by the invalid rotation angle.
  • a support member SPT slidable with the occlusion claw Tsu is provided behind the occlusion claw Tsu provided in the solenoid SOL, and the support member SPT is fixed to a caliper member CPR that fixes the solenoid SOL. The That is, the occlusal claw Tsu can be slid and moved toward the ratchet gear RCH along the support member SPT.
  • a guide member GUI that is slidable with the engagement claw Tsu is provided around the engagement claw Tsu provided in the solenoid SOL, and the guide member GUI is fixed to a caliper member CPR that fixes the solenoid SOL.
  • the occlusal claw Tsu is surrounded by the guide member GUI and can be slid and moved along the GUI toward the ratchet gear RCH.
  • the ratchet gear RCH When the diameter of the ratchet gear RCH is reduced, high positional accuracy is required in the occlusion between the RCH and the occlusal claw Tsu. Since the ratchet gear RCH is fixed to the caliper CPR via the input member INP, the ratchet gear RCH and the engagement claw Tsu can be positioned with high accuracy by the guide member GUI fixed to the caliper CPR. As a result, the engagement between the occlusal claw Tsu and the ratchet gear RCH can be reliably performed.
  • BRK ... braking means ECU ... electronic control unit, CTL ... control means, MTR ... electric motor, INP ... input member, GSK ... speed reducer, SFT ... shaft member, NJB ... screw member, PSN ... pressing member, MSB ... friction member , KTB ... rotating member, LOK ... parking brake locking mechanism, SOL ... solenoid, RCH ... ratchet gear, Tsu ... occlusion nail, Jin ... rotating shaft of input member, Jsf ... rotating shaft of shaft member, OLD ... Oldham coupling, Mot ... Output section of electric motor, SPT ... Support member, GUI ... Guide member

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Braking Arrangements (AREA)
  • Braking Systems And Boosters (AREA)

Abstract

 電動制動装置では、電気モータMTRの回転動力が入力部材INPに入力され、減速機GSK、シャフト部材SFT、及び、ねじ部材NJBを介して、押圧部材PSNに伝達される。押圧部材PSNは、摩擦部材MSBを回転部材KTBに押し付け、車輪に制動トルクを発生させる。ここで、減速機GSKは、少なくとも2つの異なる回転軸Jin、Jsfをもって、入力部材INPの回転動力を減速する。入力部材INPには、ラチェット歯車RCHが固定されていて、これがソレノイドSOLの咬合つめTsuとかみ合うことによって、押圧部材PSNが回転部材KTBから離れる方向に相当する入力部材INPの回転が拘束される。

Description

車両の電動制動装置
 本発明は、電気モータによって車輪に制動トルクを発生させる車両の電動制動装置に係わり、特に車両の停止状態を維持する駐車ブレーキ機能を備える電動制動装置に関する。
 特許文献1には、電気モータを利用する電動制動装置において、「電動ブレーキとしての本来的な機能を損なうことなく駐車ブレーキとしての機能を十分に発揮させる」ことを目的として、「モータのロータの周面につめ車を設け、ロータの周りに配置した揺動アームにねじりばねにより一方向へ付勢された係合つめを設け、揺動アームを引張ばねにより常時はつめ車側へ付勢する。駐車ブレーキ作動時には、ロータの制動方向への回転により制動力を発生すると同時にモータへの通電を遮断することにより、係合つめとつめ車との係合によりロータの戻りを規制する。」ことが記載されている。この具体的な構成として、「モータの回転を直線運動に変換してピストンに伝えるボールランプ機構(回転-直動変換機構)と、モータの回転を減速してボールランプ機構に伝える差動減速機構と、ブレーキパッドの摩耗に応じてピストンの位置を変更してパッド摩耗を補償するパッド摩耗補償機構と、駐車ブレーキを確立する駐車ブレーキロック機構とが配設される。」旨が記載されている。
特開2003-42199号公報
 特許文献1に記載される電動制動装置では、電気モータ、差動減速機構、回転・直動変換機構、及び、ピストンが一列に配置される、所謂、同軸構成(同軸レイアウト)が採用されている。さらに、回転・直動変換機構として、ボールランプ機構が用いられる。このような電動制動装置は、従来の液圧制動装置に電気モータ等の新たな部品が追加される。また、ボールランプ機構を採用する場合には、パッド摩耗を補償するパッド摩耗補償機構も必要となる。新規部品が追加される電動制動装置では、全体の重量バランスを適正化するため(即ち、重心位置を適正にするため)、軸方向の長さを短縮することが要求される。このため、同軸構成では、減速機構の減速比が大きく設定されることに制約があり、一般的に、大トルク・低速回転型の電気モータが採用される。
 特許文献1に記載される電動制動装置では、つめ車(ラチェット歯車ともいう。)がモータのロータ外周面に一体で形成され、駐車ブレーキは、つめ車に係合つめがかみ合うことによって機能する。そして、このかみ合いは、揺動アームを介したソレノイド機構によって行われている。上記の電動制動装置の構成(同軸レイアウト)では、ブレーキパッド側から力を受ける場合に、モータ部に作用するトルクが大きいので、強度確保のため、つめ車が相対的に大きくされる必要がある。つめ車が大径化されると係合つめとのかみ合いに或る程度のストロークが必要となるが、このストロークが大きくなるとソレノイドの吸引力は小さくなる。このため、揺動アームが利用されて、ソレノイドのストロークが増幅されて、係合つめがつめ車にかみ合わされている。しかしながら、揺動アーム等の付加的な部品を設ける必要があるため、部品点数が増加するとともに、その可動領域(揺動アームが作動し得る空間)を確保することも必要となってくる。
 以下、この点について、図6を参照しながら詳細に説明する。図6(a)には、つめ車のつめ形状が示されている。つめ車(ラチェット歯車)に掛けつめをかみ合わせ逆転止めをする機構は、つめブレーキ(ラチェット機構ともいう。)と称呼されている。つめブレーキについては、ある範囲の設計値が推奨されている。例えば、「機械設計便覧(1978年1月30日に日刊工業新聞社から発行)」には、「つめ数は普通6~25、つめ部分の寸法は、h=0.35t、e=0.5t(ここで、hはつめの高さ、tはつめ車のつめのピッチ、eはつめの根元の厚さ)」等が記載されている。ここからも分かるように、つめ車の直径が大きくなると、つめのピッチが大きくなり、つめの高さが増加する。このため、つめ車が大径化される場合には、つめとつめ車との咬合に必要なつめの移動量が増加する。
 図6(b)には、ソレノイドにおけるストロークと吸引力との関係が示されている。ストローク(移動量)が増加すると、吸引力は急減する。このため、掛けつめの所定移動量を確保するためには、「てこ」を利用してストロークが増大される。この結果、揺動アーム等の付加的な部品が必要となってくる。
 本発明は、上記の問題点に対処するためになされたものであり、その目的は、通常ブレーキ機能と駐車ブレーキ機能とを兼ね備える電動制動装置において、部品点数が増加されることなく、小型化され得るものを提供することにある。
 本発明に係る車両の制動制御装置は、車両の車輪(WHL)に固定された回転部材(KTB)に摩擦部材(MSB)を押し付けて押圧力(Fba)を発生させる押圧部材(PSN)と、前記押圧力(Fba)を発生させる動力源である電気モータ(MTR)と、前記電気モータ(MTR)からの回転動力が入力される入力部材(INP)と、前記入力部材(INP)の回転動力を減速してシャフト部材(SFT)に伝達し、少なくとも2つの異なる回転軸(Jin、Jsf)をもつ減速機(GSK)と、前記減速機(GSK)から伝達される前記シャフト部材(SFT)の回転動力を前記押圧力(Fba)に変換するねじ部材(NJB)と、前記入力部材(INP)に固定されるラチェット歯車(RCH)と、前記ラチェット歯車(RCH)とかみ合うことができる咬合つめ(Tsu)をもち、前記咬合つめ(Tsu)を前記ラチェット歯車(RCH)にかみ合わせることで前記押圧部材(PSN)が前記回転部材(KTB)から離れる方向に相当する前記入力部材(INP)の回転を拘束するソレノイド(SOL)と、前記電気モータ(MTR)、及び、前記ソレノイド(SOL)を制御して前記車両の停止状態を維持する制御手段(CTL)と、を備える。
 これによれば、減速機GSKが少なくとも異なる2つの回転軸(Jin、Jsf)をもって構成される。即ち、電気モータMTR等の回転軸Jinとシャフト部材SFT等の回転軸Jsfとが、平行、且つ、所定軸間距離Lj(ゼロより大きい値)をもって構成される。さらに、回転・直動変換機構として、「ねじ」が採用される。電気モータMTR等と、シャフト部材SFT等とが並行して配置され得るとともに、摩擦部材MSBの摩耗補償機構が不要とされ得る。このため、電動制動装置の軸方向のレイアウトに余裕が生じ、減速機GSKの減速比が十分に確保され得る。この結果、駐車ブレーキ作動時に、摩擦部材MSBからの押圧力を受け、これを保持するラチェット歯車RCHが小径化され得る。この小径化にともない、ラチェット歯車RCHのつめ高さが低くされ得るため、ソレノイドSOLのストローク量が小さくでき、咬合つめが揺動アームを介することなく、ラチェット歯車RCHに直接かみ合わされ得る。具体的には、ソレノイドSOLのプランジャ端に設けられた咬合つめ部Tsuが、ラチェット歯車RCHに、直にかみ合わされる。したがって、通常ブレーキ機能と駐車ブレーキ機能とを兼ね備える電動制動装置において、部品点数が増加されることなく、小型化され得る。
本発明の実施形態に係る電動制動装置の概略構成図である。 図1に示した制動手段(ブレーキアクチュエータ)の構成を説明するための部分断面図である。 図2に示した拘束機構(駐車ブレーキ用ロック機構)の第1の実施形態を説明するための構成図である。 図2に示した拘束機構(駐車ブレーキ用ロック機構)の第2の実施形態を説明するための構成図である。 図2に示したオルダム継手を説明するための概略構成図である。 従来の電動制動装置の問題点を説明するための図である。
 以下、本発明に係る車両の電動制動装置の実施形態について、図面を参照しつつ説明する。
<本発明に係る車両の電動制動装置の全体構成>
 図1に示すように、車両の電動制動装置を備える車両には、制動操作部材(例えば、ブレーキペダル)BP、加速操作部材(例えば、アクセルペダル)AP、制動手段(ブレーキアクチュエータ)BRK、電子制御ユニットECU、及び、蓄電池BATにて構成される。
 制動操作部材(例えば、ブレーキペダル)BPは、運転者が車両を減速するために操作する部材である。加速操作部材(例えば、アクセルペダル)APは、運転者が車両を加速するために操作する部材である。制動手段(ブレーキアクチュエータ)BRKは、車輪WHLの制動トルクを調整して車輪WHLに制動力を発生させる。電子制御ユニットECUは、その内部にBRKを制御するための制御手段(制御アルゴリズム)CTLがプログラムされており、これに基づいてBRKを制御する。蓄電池BATは、BRK、ECU等に電力を供給する電源である。
 また、この車両には、制動操作量取得手段BPA、加速操作量取得手段APA、車速取得手段VXA、及び、駐車ブレーキ用スイッチMSWが備えられる。
 制動操作量取得手段BPAは、運転者による制動操作部材BPの操作量(制動操作量)Bpaを取得(検出)する。制動操作量取得手段BPAとして、マスタシリンダ(図示せず)の圧力を検出するセンサ(圧力センサ)、制動操作部材BPの操作力、及び/又は、変位量を検出するセンサ(ブレーキペダル踏力センサ、ブレーキペダルストロークセンサ)が採用される。したがって、制動操作量Bpaは、マスタシリンダ圧、ブレーキペダル踏力、及び、ブレーキペダルストロークのうちの少なくとも何れか1つに基づいて演算される。
 加速操作量取得手段APAは、運転者による加速操作部材APの操作量(加速操作量)Apaを取得(検出)する。加速操作量取得手段APAとして、エンジンのスロットル開度を検出するセンサ(スロットル開度センサ)、加速操作部材APの操作力、及び/又は、変位量を検出するセンサ(アクセルペダル踏力センサ、アクセルペダルストロークセンサ)が採用される。したがって、加速操作量Apaは、スロットル開度、アクセルペダル踏力、及び、アクセルペダルストロークのうちの少なくとも何れか1つに基づいて演算される。
 車速取得手段VXAは、車両の速度(車速)Vxaを取得(検出)する。車速Vxaは、車輪速度取得手段VWAの検出信号(車輪速度)Vwa、及び、公知の方法に基づいて演算され得る。例えば、各車輪の回転速度のうちで最速のものが車両速度Vxaとして演算され得る。
 駐車ブレーキ用スイッチMSWは、運転者によって操作されるマニュアルスイッチであり、スイッチMSWのON/OFFの信号Mswを出力する。運転者は、車両の停止状態を維持する駐車ブレーキの作動又は解除を、スイッチMSWの操作によって指示する。具体的には、スイッチMswのON状態で駐車ブレーキの作動が指示され、MswのOFF状態で駐車ブレーキの解除が指示される。
 制動操作量Bpa、加速操作量Apa、車両速度Vxa、及び、駐車ブレーキ用スイッチ信号Mswは、電子制御ユニットECUに入力される。なお、Bpa、Apa、Vxa、及び、Mswは他の電子制御ユニットにて演算、又は、取得され、その演算値(信号)が通信バスを介して、ECUに送信され得る。
〔制動手段(ブレーキアクチュエータ)BRK〕
 制動手段BRKは、ブレーキキャリパ(浮動型キャリパ)CPR、回転部材KTB、摩擦部材MSB、電気モータMTR、モータ駆動回路DRV、入力部材INP、減速機GSK、シャフト部材SFT、ねじ部材NJB、押圧部材(ブレーキピストン)PSN、通電量取得手段IMA、位置取得手段MKA、押圧力取得手段FBA、及び、駐車ブレーキ用ロック機構LOKにて構成されている。
 例えば、回転部材KTBはブレーキディスク、摩擦部材MSBはブレーキパッド、電気モータMTRは、ブラシモータ、又は、ブラシレスモータである。
 入力部材INPは、電気モータMTRの出力軸に接続され、MTRの動力を減速機GSKに入力(伝達)する。減速機GSKは、電気モータMTRの回転出力(トルク)を減速して、シャフト部材SFTに伝達する。ここで、減速機GSKは少なくとも異なる2つの回転軸で構成されていて、入力部材INPの軸Jinと、シャフト部材SFTの軸Jsfとが、互いに平行で、別個の回転軸となっている。減速機GSKとしては、歯車伝達機構(平歯車、はすば歯車等)、巻き掛け伝達機構(ベルト、チェーン等)、及び、摩擦伝達機構のうちの少なくとも1つが用いられ得る。例えば、減速機GSKに歯車伝達機構が採用される場合には、入力部材INPに小径の歯車が固定され、シャフト部材SFTに大径(小径よりもピッチ径が大きく、歯数が多い)の歯車が固定されて、電気モータMTRの回転動力が減速される。
 シャフト部材SFTは、減速機GSKから伝達された動力をねじ部材NJBに伝達する。ねじ部材NJBは、ボルト(おねじ)及びナット(めねじ)にて構成され、シャフト部材SFTからの回転動力(回転運動)を直線動力(直線運動)に変換し、押圧部材PSNに伝達する。ねじ部材NJBは、回転・直動変換機構であり、「滑り」によって動力伝達が行われる滑りねじ(台形ねじ等)によって構成されている。また、ねじ部材NJBには、「転がり」によって動力伝達が行われる転がりねじ(ボールねじ等)が採用され得る。
 押圧部材PSNは、ねじ部材NJBによって伝達される直線動力(推力、押圧力)によって摩擦部材(例えば、ブレーキパッド)MSBを回転部材(例えば、ブレーキディスク)KTBに押し付ける。即ち、ねじ部材NJBから伝達される動力によって、押圧部材PSNが回転部材KTBの方向に前進又は後退され、摩擦部材MSBの回転部材KTBに対する押圧力Fbaが調整される。
 モータ駆動回路DRVは、制御手段CTLから指令される目標通電量(目標値)Imtに基づいて、電気モータMTRへの通電量(最終的には電流値)を制御する。具体的には、モータ駆動回路DRVには、スイッチング素子(パワートランジスタであって、例えば、MOS-FET)が用いられたブリッジ回路が構成され、目標通電量Imtに基づいてスイッチング素子が駆動され、電気モータMTRの出力(出力トルク)が制御される。即ち、スイッチング素子の通電/非通電の状態が切り替えられることによって、電気モータMTRの回転方向と出力トルクとが調整される。ここで、電気モータの回転方向は、正転方向が、摩擦部材MSBが回転部材KTBに近づいていく方向(押圧力が増加し、制動トルクが増加する方向)に相当し、逆転方向が、摩擦部材MSBが回転部材KTBから離れていく方向(押圧力が減少し、制動トルクが減少する方向)に相当する。
 通電量取得手段(例えば、電流センサ)IMAは、実際の通電量(例えば、実際に電気モータMTRに流れる電流)Imaを検出するために、モータ駆動回路DRVに設けられている。位置取得手段(例えば、角度センサ)MKAは、MTRのロータの位置(例えば、回転角)Mkaを検出するために、電気モータMTRに設けられている。押圧力取得手段(例えば、押圧力センサ)FBAは、摩擦部材MSBが回転部材KTBを実際に押す力(押圧力の実際値)Fbaを検出するために、シャフト部材SFTに設けられている。
 駐車ブレーキ用ロック機構LOKは、車両の停止状態を維持するブレーキ機能(所謂、駐車ブレーキ)のため、電気モータMTRの逆転方向の回転(PSNがKTBから離れる方向に相当する回転)をロック(拘束)する。駐車ブレーキ用ロック機構LOKは、ラチェット歯車RCH、ソレノイドSOL、及び、ソレノイド駆動回路DRSにて構成されている。
 ラチェット歯車RCH(つめ歯車ともいう。)では、一般的な歯車とは異なり、歯が方向性をもって傾けられている。ソレノイドSOLは、ソレノイド駆動回路DRSによって駆動される。ソレノイドSOLのプランジャPlnの先端には、咬合つめ(掛けつめともいう。)Tsuが設けられている。ソレノイドSOLによって、咬合つめTsuとラチェット歯車RCHとの咬合(RCHのロック状態)、又は、非咬合(RCHのフリー状態)が制御される。咬合つめTsuがラチェット歯車RCHとかみ合うこと(ロック状態にされること)によって、ラチェット機構(回転動作方向を一方に制限する機構)が形成される。ラチェット歯車RCHが適する方向(電気モータの正転方向)に回転される場合には、咬合つめTsuは容易に歯を乗り越え、ラチェット歯車RCHは回転され得る。しかし、ラチェット歯車RCHが逆方向(電気モータの逆転方向)に回転される場合には、咬合つめTsuが歯に食い込むため、ラチェット歯車RCHは回転され得ない。なお、ソレノイド駆動回路DRSは、制御手段CTLからの指令値Spkに基づいて、ソレノイドSOLへの通電、又は、非通電を制御する。
 以上のような構成の制動手段BRKによれば、電気モータMTRの出力(動力)は、先ず、入力部材INPに伝達される。そして、回転動力は、少なくとも2つの回転軸で構成される減速機GSKを介して、シャフト部材SFTに伝達される。回転・直動変換機構であるねじ部材NJBによって、シャフト部材SFTの回転動力(トルク)は直線動力(推力)に変換され、押圧部材PSNに伝達される。これにより、押圧部材(ブレーキピストン)PSNが回転部材(ブレーキディスク)KTBに向かって前進し、摩擦部材(ブレーキパッド)MSBが回転部材KTBに向かって押圧される。回転部材KTBは車輪WHLに固定されているため、摩擦部材MSBと回転部材KTBとの間に摩擦力が発生し、車輪WHLに制動力が発生し、通常ブレーキとして機能する。
 また、マニュアルスイッチMSW等によって駐車ブレーキの作動が指示される場合には、電気モータMTRが駆動されて、押圧力Fbaが第1所定値fb1を超過するまで摩擦部材MSBが回転部材KTBに押し付けられる。押圧力Fbaが第1所定値fb1を越えた後に、ソレノイドSOLに通電が行われ、咬合つめTsuとラチェット歯車RCHとがかみ合わされる。そして、電気モータMTRへの通電が減少されて、咬合つめTsuとラチェット歯車RCHとの咬合が確認された後に、ソレノイドSOLへの通電が解除される。なお、咬合つめTsuとラチェット歯車RCHとの咬合確認は、MTRの位置(回転角)Mkaに基づいて行われ得る。具体的には、電気モータMTRへの通電が減少されると、回転角Mkaは中立位置(MSBがKTBに接触を開始する位置に相当し、MTRのゼロ点位置)に向けて減少を開始するが、Mkaが逆転方向に変化しなくなることで咬合が確認され得る。
 MSW等によって駐車ブレーキの解除が指示される場合には、押圧力Fbaが第2所定値fb2(fb1よりも大きい値)を超過するまで、電気モータMTRが駆動される。これにより、ソレノイドSOLの咬合つめTsuがラチェット歯車RCHの歯を乗り越えるため、駐車ブレーキが解除される。ソレノイドSOLには、咬合つめTsuを咬合解除位置に戻す弾性体(ばね)Sprが内蔵されているため、駐車ブレーキ解除時にはソレノイドSOLには通電されない。電気モータMTR、及び、ソレノイドSOLを介して、咬合つめTsuとラチェット歯車RCHとの咬合状態、又は、非咬合状態が切り替えられることで、制動手段BRKは駐車ブレーキとしても機能する。
〔制御手段CTL〕
 制御手段CTLは、目標押圧力演算ブロックFBT、指示通電量演算ブロックIST、押圧力フィードバック制御ブロックIPT、駐車ブレーキ制御ブロックIPK、及び、通電量調整演算ブロックIMTにて構成される。制御手段(制御プログラム)CTLは、電子制御ユニットECU内にプログラムされている。
 目標押圧力演算ブロックFBTでは、制動操作量Bpa、及び、予め設定された目標押圧力演算特性(演算マップ)CHfbに基づいて、各車輪WHLの目標押圧力Fbtが演算される。Fbtは、電動制動手段BRKにおいて、摩擦部材(ブレーキパッド)MSBが回転部材(ブレーキディスク)KTBを押す押圧力の目標値である。
 指示通電量演算ブロックISTでは、予め設定された指示通電量の演算特性(演算マップ)CHs1、CHs2、及び、目標押圧力Fbtに基づいて、指示通電量Istが演算される。Istは、電動制動手段BRKの電気モータMTRを駆動し、目標押圧力Fbtを達成するための、電気モータMTRへの通電量の目標値である。Istの演算マップは、電動制動手段BRKのヒステリシスを考慮して、2つの特性CHs1、CHs2で構成される。特性CHs1は押圧力を増加する場合に対応し、特性CHs2は押圧力を減少する場合に対応する。そのため、特性CHs2に比較して、特性CHs1は相対的に大きい指示通電量Istを出力するように設定されている。
 ここで、通電量とは、電気モータMTRの出力トルクを制御するための状態量(変数)である。電気モータMTRは電流に概ね比例するトルクを出力するため、通電量の目標値として電気モータMTRの電流目標値が用いられ得る。また、電気モータMTRへの供給電圧を増加すれば、結果として電流が増加されるため、目標通電量として供給電圧値が用いられ得る。さらに、パルス幅変調(PWM;Pulse Width Modulation)におけるデューティ比によって供給電圧値が調整され得るため、このデューティ比が通電量として用いられ得る。
 押圧力フィードバック制御ブロックIPTでは、目標押圧力(目標値)Fbt、及び、実押圧力(実際値)Fbaに基づいて、押圧力フィードバック通電量Iptが演算される。指示通電量Istは目標押圧力Fbtに相当する値として演算されるが、電動制動手段BRKの効率変動により目標押圧力Fbtと実押圧力Fbaとの間に誤差(定常的な誤差)が生じる場合がある。押圧力フィードバック通電量Iptは、目標押圧力Fbtと実押圧力Fbaとの偏差(押圧力偏差)ΔFb、及び、演算特性(演算マップ)CHpに基づいて演算され、上記の誤差を減少するように決定される。なお、実押圧力Fbaは、後述する押圧力取得手段FBAによって取得(検出)される。
 通電量調整演算ブロックIMTは、電気モータMTRへの最終的な目標値である目標通電量Imtを演算する。指示通電量Istが押圧力フィードバック通電量Iptによって調整され、目標通電量Imtが演算される。具体的には、通電量調整演算ブロックIMTは、指示通電量Istに対してフィードバック通電量Iptを加え、目標通電量Imtとして演算する。目標通電量Imtは、電気モータMTRの出力を制御するための最終的な通電量の目標値であり、FBAの検出結果(Fba)に基づいて演算される。そして、目標通電量Imtの符号(値の正負)に基づいて電気モータMTRの回転方向(押圧力が増加する正転方向、又は、押圧力が減少する逆転方向)が決定され、目標通電量Imtの大きさに基づいて電気モータMTRの出力が制御される。
 以上、制御手段CTLにおける通常ブレーキ機能の制御アルゴリズムについて説明した。次に、制御手段CTLにおける駐車ブレーキ機能の制御アルゴリズムについて説明する。
 駐車ブレーキ制御ブロックIPKでは、車両の停止状態を維持する駐車ブレーキ(パーキングブレーキともいう。)についての制御が実行される。具体的には、駐車ブレーキを作動させる咬合制御、及び、駐車ブレーキを解除する解除制御が実行される。駐車ブレーキ制御ブロックIPKは、駐車ブレーキの作動開始(咬合)、及び、解除を判定する咬合・解除判定ブロックHNTと、咬合制御、及び、解除制御を実行する咬合・解除制御ブロックKKSとで構成される。駐車ブレーキ制御ブロックIPKには、マニュアルスイッチ信号Msw、車両速度Vxa、加速操作量Apa、押圧力(FBAの検出値)Fba、及び、電気モータの位置(回転角)(MKAの検出値)Mkaが入力される。そして、IPKからは、駐車ブレーキ時目標通電量Ipk、及び、ソレノイド指令信号Spkが出力される。
 咬合・解除判定ブロックHNTでは、駐車ブレーキの作動の要否、及び、解除の要否が判定される。夫々の要否判定には、マニュアルモードと、自動モードとがある。マニュアルモードでは、運転者の駐車ブレーキ用のマニュアルスイッチMSWの操作(操作信号Msw)に基づいて、夫々の要否が判定される。スイッチMSWのオフ(OFF)状態(駐車ブレーキが非作動状態)で、MSWのオン(ON)状態を示す信号が送信された時点で、駐車ブレーキの作動を開始する信号(制御フラグであって、咬合指示信号)FLkgがHNTから出力される。また、MSWのオン(ON)状態にあるときに、MSWのオフ(OFF)状態を示す信号が送信された時点で、駐車ブレーキを解除する信号(制御フラグであって、解除指示信号)FLkjがHNTから出力される。
 咬合・解除判定ブロックHNTの自動モードでは、運転者のスイッチMSWの操作には依らず、加速操作部材(アクセルペダル)APの操作に連動して、自動で駐車ブレーキの作動・解除が判定される。自動モードでは、車両速度Vxa、及び、加速操作量Apaに基づいて、駐車ブレーキの作動の要否、及び、解除の要否が判定される。車両の走行中(Vxaがゼロではない状態)には、駐車ブレーキの解除状態が判定されている。車両が停止すると(Vxaがゼロになった時点で)、駐車ブレーキの作動開始が判定される。そして、運転者が加速操作部材APを操作し、加速操作量Apaが所定値ap1を超過したときに、駐車ブレーキの解除が判定される。マニュアルモードと同様に、駐車ブレーキの作動開始が判定された時点で咬合指示信号FLkgが出力され、駐車ブレーキの解除が判定された時点で解除指示信号FLkjが出力される。
 咬合・解除制御ブロックKKSでは、咬合・解除判定ブロックHNTから送信される指示信号FLkg、FLkj、押圧力Fba、及び、回転角Mkaに基づいて、駐車ブレーキを作動させる咬合制御、及び、駐車ブレーキを解除する解除制御が実行される。咬合制御では、咬合指令FLkg、及び、押圧力Fbaに基づいて、予め設定された演算マップに基づいて、徐々に(予め設定された所定変化量で)駐車ブレーキ時目標通電量Ipkが増加される。ここで、Ipkは、駐車ブレーキ制御における電気モータMTRの通電量の目標値である。目標通電量Ipkの増加にともなって押圧力Fbaが増加される。そして、押圧力Fbaが所定値fb1を超過した時点で、ソレノイドSOLへの通電を指示するソレノイド指令信号Spkが出力される。指令信号Spkが指示された所定時間tpkの後に、Ipkは緩やかにゼロにまで減少される。そして、Ipkが減少するにともなって、電気モータの位置MkaがMTRの逆転方向に変化するが、その変化が生じなくなった時点(即ち、咬合つめTsuがラチェット歯車RCHと完全にかみ合った時点)で、ソレノイド指令信号Spkの出力が停止される。
 咬合制御では、駐車ブレーキ時目標通電量Ipkによって電気モータMTRが駆動され、摩擦部材MSBが回転部材KTBに値fb1以上に押圧力で押し付けられている状態で、指令信号SpkによってソレノイドSOLが駆動され、ソレノイドSOLの先端部に設けられた咬合つめTsuがラチェット歯車RCHの方向(以下、咬合方向という。)に移動され、RCHにかみ合わされる。その後、Ipkが減少されて、電気モータMTRの回転動力は減少するが、ラチェット機構によって摩擦部材MSBが回転部材KTBに押し付けられた状態が維持されるため、駐車ブレーキの作動状態が継続される。
 解除制御では、解除指令FLkj、及び、押圧力Fbaに基づいて、予め設定された演算マップに基づいて、徐々に(予め設定された所定の変化量をもって)駐車ブレーキ時の目標通電量Ipkが増加される。Ipkの増加にともなって押圧力Fbaが増加されるが、押圧力Fbaが所定値fb2を超過するまで電気モータMTRへの通電が継続される。ここで、所定値fb2は、所定値fb1よりも所定値(正の値)fbxだけ大きい値である。摩擦部材MSBの位置は、ラチェット機構によって、押圧力が概ねfb1となる位置でロックされている。押圧力の増加に相当する回転方向は、ラチェット機構によって拘束されない方向であるため、押圧力がfb1よりも大きくなった場合には、咬合つめTsuはラチェット歯車RCHの歯を既に乗り越えている。このため、所定値fb1よりも所定値fbxだけ大きい所定値fb2まで、押圧力Fbaが増加されるように、電気モータMTRが制御される。なお、値fbxは、制動手段BRKの効率変動等に基づいて予め設定される固定値である。ソレノイドSOLには、咬合つめTsuに対して咬合方向とは逆方向(以下、解除方向という。)に力を加える弾性体(例えば、戻しばね)Sprが設けられているため、ラチェット歯車RCHの歯を乗り越えた時点で咬合状態は解消され、駐車ブレーキは解除される。
 駐車ブレーキ時の目標通電量Ipkは、通電量調整演算ブロックIMTに送信され、通常ブレーキ時の通電量の目標値(Ist等)との調整が行われる。また、ソレノイド指令信号Spkは、ソレノイド駆動回路DRSに送信される。ソレノイド駆動回路DRSでは、指令信号Spkに基づいて、ソレノイドSOLへの通電又は非通電が実行される。具体的には、Spkが送信されている場合には、ソレノイドSOLへの通電が行われる(予め決定されている通電量が供給される)。一方、Spkが送信されていない場合には、ソレノイドSOLへの通電が行われない(通電量がゼロとされる)。
<制動手段BRKの構成>
 制動手段(ブレーキアクチュエータ)BRKの実施形態について、図2を参照して説明する。制動手段BRKは、ブレーキキャリパCPR、押圧部材(ブレーキピストン)PSN、電気モータMTR、オルダム継手OLD、入力部材INP、減速機GSK、シャフト部材(出力軸部材)SFT、ねじ部材(回転・直動変換機構)NJB、及び、押圧力取得手段(押圧力センサ)FBA等にて構成されている。
 ブレーキキャリパCPRは、浮動型キャリパであり、2つの摩擦部材(ブレーキパッド)MSBを介して、回転部材(ブレーキディスク)KTBを挟み込むように構成されている。後述する押圧部材PSNが、キャリパCPR内でスライドされ、回転部材KTBに向けて前進されることによって、摩擦部材MSBが回転部材KTBに押圧される。このときの押圧力によって、摩擦部材MSBと回転部材KTBとの間で摩擦力が発生し、車輪に制動トルクが加えられる。
 電気モータMTRは、キャリパCPRに固定され、摩擦部材MSBを回転部材KTBに押圧するための動力源として作動する。電気モータMTRの出力部Motは、オルダム継手OLDを介して、入力部材INPに接続されている。オルダム継手OLDは、電気モータMTRの回転軸(以下、モータ軸という。)Jmtと、入力部材INPの回転軸(以下、入力軸という。)Jinとの偏心を吸収する。入力部材INPは、回転軸部材である。入力部材INPには、駐車ブレーキ用ロック機構LOKのラチェット歯車RCH、及び、減速機GSKの第1小径歯車SKH1が固定されている。
 駐車ブレーキ用ロック機構LOKは、ソレノイドSOL、及び、ラチェット歯車RCHにて構成されている。ソレノイドSOLは、キャリパCPRに固定され、固定コイルColと、可動鉄心(プランジャ)Plnから構成される。プランジャPlnの先端には咬合つめTsuが形成され、固定コイルColに電流を流したときに、プランジャPlnを固定コイルCol内に引き込む力(吸引力)が利用され、咬合つめTsuがラチェット歯車RCHにかみ合わされる。ラチェット歯車RCHは、入力部材INPに固定され、咬合つめTsuとかみ合うことによって、電気モータMTRの逆転方向への回転運動をロックする。即ち、押圧部材PSN(即ち、摩擦部材MSB)が回転部材KTBから離れる方向の動きが拘束され、電気モータMTRの回転動力が停止された場合(MTRへの通電が行われない場合)であっても、押圧力の発生が継続される。換言すれば、咬合つめTsuとラチェット歯車RCHとがかみ合うことによって、駐車ブレーキ機能が発揮される。
 減速機GSKは、第1小径歯車SKH1、第1大径歯車DKH1、中間軸部材CHU、第2小径歯車SKH2、及び、第2大径歯車DKH2にて構成されている。減速機GSKは、入力部材INPの動力の回転速度を減じて、シャフト部材SFTに出力する機構であり、シャフト部材SFTの出力動力として、減速比に比例した回転力(トルク)が得られる。例えば、減速機GSKには、2段の減速機が利用され、第1段減速が第1小径歯車SKH1と第1大径歯車DKH1とによって行われ、第2段減速が第2小径歯車SKH2と第2大径歯車DKH2とによって行われる。
 第1小径歯車SKH1は、入力部材INPに固定され、INPと一体となって回転される。また、第1大径歯車DKH1は、中間軸部材CHUに固定され、CHUと一体となって回転される。SKH1(INP)の軸受け、及び、DKH1(CHU)の軸受けは、キャリパCPRに固定されている。そして、SKH1とDKH1とは、互いの歯がかみ合っている。第1大径歯車DKH1のピッチ円直径は、第1小径歯車SKH1のピッチ円直径よりも大きく、第1大径歯車DKH1の歯数は、第1小径歯車SKH1の歯数よりも多い。即ち、第1小径歯車SKH1の動力が減速されて、第1大径歯車DKH1から出力される。
 第2小径歯車SKH2は中間軸部材CHUに固定され、CHUと一体となって回転される。また、第2大径歯車DKH2は、シャフト部材SFTに固定され、SFTと一体となって回転される。SKH2(CHU)の軸受け、及び、DKH2(SFT)の軸受けは、キャリパCPRに固定されている。そして、SKH2とDKH2とは、互いの歯がかみ合っている。第2大径歯車DKH2のピッチ円直径は、第2小径歯車SKH2のピッチ円直径よりも大きく、第2大径歯車DKH2の歯数は、第2小径歯車SKH2の歯数よりも多い。即ち、第2小径歯車SKH2の動力が減速されて、第2大径歯車DKH2から出力される。したがって、入力部材INPから伝達される回転動力は、第1小径歯車SKH1から減速機GSKに入力され、2段で減速されて、第2大径歯車DKH2からシャフト部材SFTに出力される。減速機GSKとして、1段の減速機が用いられ得る。この場合、入力部材INPからの動力は、第1小径歯車SKH1に入力され、SKH1及びDKH1によって減速されて、シャフト部材SFTから出力される。
 シャフト部材SFTは、回転軸部材であって、減速機GSKから伝達された回転動力をねじ部材NJBに伝達する。シャフト部材SFTには、自在継手機構UNVが設けられ、SFTの回転軸(以下、シャフト軸という。)Jsfと押圧部材PSNの押圧軸(以下、ピストン軸という。)Jpsとの偏心を吸収する。浮動型キャリパCPRの撓み、摩擦部材MSBの偏摩耗等によってシャフト部材SFTの揺動(首振り)が生じ、2つの軸(Jsf、Jps)には偏心(軸ズレ)が発生し得る。自在継手機構UNVは、所謂、ユニバーサルジョイントであり、接続された2つの軸(Jsf、Jps)が必ずしも一直線上にあることを必要とせず、2つの軸間の相対的な角度を吸収して動力を伝達し得る。
 シャフト部材SFTの回転動力は、ねじ部材NJBに伝達され、回転動力から直線動力に変換される。即ち、ねじ部材NJBは、回転・直動変換機構であって、ボルト部Bltとナット部Nutとで構成される。ボルト部Bltは、シャフト部材SFTに固定され、SFTと一体となって回転駆動される。ボルト部Bltには、おねじ(外側ねじともいう。)Onjが設けられ、ナット部Nutのめねじ(内側ねじともいう。)Mnjと螺合されている。めねじMnjをもつナットNutは、押圧部材PSNに固定されている。したがって、シャフト部材SFTから伝達された回転動力(トルク)は、ねじ部材NJB(おねじOnjとめねじMnj)を介して、押圧部材PSNの直線動力(推力)として伝達される。以上の構成では、SFTにBltが固定され、PSNにNutが固定されるが、シャフト部材SFTにナット部(めねじMnj)Nutが固定され、押圧部材PSNにボルト部(おねじOnj)Bltが固定され、MnjとOnjとが螺合され得る。
 ねじ部材NJBに、台形ねじ等の滑りねじが採用された場合について説明したが、滑りねじに代えて、ボールねじ等の転がりねじが採用され得る。この構成では、ナット部Nutが、「ボール溝付きナット」に、ボルト部Bltが「(ボール溝付き)ねじシャフト」に夫々、置き換えられる。そして、複数のボールが、Nut及びBltのボール溝に配置されて、回転運動が直線運動に変換される。
 押圧部材(ピストン)PSNは、回転部材KTBに摩擦部材MSBを押し付けて摩擦力を発生させる。ブレーキキャリパCPRに対する押圧部材PSNの動きは、キー部材KYB及びキー溝KYMによって制限されている。ブレーキキャリパCPRには、シャフト部材SFTの回転軸Jsf(シャフト軸Jsf)方向に延びるように、キー溝KYMが形成されている。そして、押圧部材PSNに固定されたキー部材KYBは、キー溝KYMに嵌合される。このため、押圧部材PSNは、シャフト軸Jsfまわりの回転運動が制限され、シャフト軸方向(キー溝KYM方向)の直線運動は許容される。
 シャフト部材SFTとキャリパCPRとの間には、押圧力取得手段(押圧力センサ)FBAが設けられ、押圧部材PSNが摩擦部材MSBを押す力(押圧力)Fbaの反力(反作用)が検出される。押圧力取得手段FBAにて取得(検出)された押圧力Fbaは、電子制御ユニットECUに送信される。ここで、押圧力取得手段FBAはキャリパCRPに固定されている。また、入力部材INP、中間軸部材CHU、及び、シャフト部材SFTの夫々の軸受けもキャリパCPRに固定されている。さらに、電気モータMTR、及び、ソレノイドSOLも、キャリパCPRに固定されている。
 以上の構成のBRKによれば、電気モータMTRの回転動力(仕事率であって、単位時間当たりの仕事量)は、JmtとJinとの軸ズレ(偏心)を吸収するオルダム継手OLDを介して、入力部材INPに伝達される。そして、入力部材INPの回転動力は、Jin及びJsfの2つの回転軸をもつ2軸構成(中間軸部材CHUを含めると3軸構成)の減速機GSKを介して、シャフト部材SFTに伝達される。ここで、減速機GSKの減速比を値Rgとすると、入力部材INPの回転力(トルク)はRg倍されてシャフト部材SFTの回転力とされ、入力部材INPの回転速度はRg分の1とされてシャフト部材SFTの回転速度とされる。シャフト部材SFTの回転動力は、ねじ部材NJBで直線動力に変換され、押圧部材PSNに伝達される。押圧部材PSNは摩擦部材MSBを回転部材KTBに対して押し付け、車輪WHLに制動トルクが発生される。
 ここで、減速機GSKは、少なくとも2つの異なる回転軸をもつ、所謂、2軸構成である。換言すれば、減速機GSKにおいては、入力軸と出力軸とが平行であり、2つの軸間の距離Ljが「0」よりも大きく設定されている(Ljは「0」ではない所定値)。このため、制動手段BRKの入力部位(MTR、INP等)と出力部位(PSN、NJB、SFT等)とを並べて配置することが可能となり、軸方向のレイアウトの自由度が増加する。その結果、減速機GSKの減速比が、相対的に大きく設定され得る。さらに、減速機GSKにおいて、中間軸部材CHUを設け、2段で減速することによって、より大きい減速比が得られるとともに、軸間距離Ljが短縮され得る。
 摩擦部材MSBが摩耗するにつれて、押圧部材PSNが回転部材KTBに近づけられていく必要が生じる。回転・直動変換機構に「ねじ」が採用されるため、PSN位置の変化を補償するための特殊な機構が必要とされなくなる(即ち、摩耗補償機構が不要となる)。これは、ねじ部材NJBにおけるボルト部Bltとナット部Nutとの相対的な位置変化によって、上記の摩耗に起因する位置変化が吸収されるためである。これにより、更に、軸方向のレイアウトの自由度が増す。
 また、以上の構成の制動手段BRKによれば、駐車ブレーキは、電気モータMTRの出力部近傍に設けられた駐車ブレーキ用ロック機構LOKによって構成される。具体的には、入力部材INPにラチェット歯車RCHが固定され、ソレノイドSOLの咬合つめTsuがかみ合わされて、摩擦部材MBSが回転部材KTBに押し付けられた状態が維持される。
 駐車ブレーキでは、押圧部材PSNの動きが固定(ロック)されることが必要となる。この場合の力の伝達経路は、通常ブレーキ(走行中の車両を減速するためのブレーキ機能)の場合とは逆になる。摩擦部材MSBから押圧部材PSNに作用する力(押圧力)は、ねじ部材NJBを介して、シャフト部材SFTに回転力として伝えられる。シャフト部材SFTの回転力は、減速機GSKを介して、入力部材INPの回転力として伝達される。この場合、減速機GSKは増速機として作用するため、シャフト部材SFTの回転力は、減速比Rg分の1となって、入力部材INPに伝達される。したがって、上記の2軸で構成された減速機GSKによって、減速比Rgが大きく設定されているため、駐車ブレーキ用ロック機構LOKにて負担する回転力は減少され得る。駐車ブレーキ用ロック機構LOKのラチェット歯車RCHの歯形状(特に、つめ高さ)が小さくでき、ソレノイドSOLのストローク量が然程必要とはされなくなる。この結果、揺動アーム等が用いられることなく、ソレノイドSOLにて直接、咬合つめTsuがラチェット歯車RCHにかみ合わされ、駐車ブレーキとして機能し得る。
<駐車ブレーキ用ロック機構LOKの第1の実施形態>
 図3を参照して、駐車ブレーキ用ロック機構LOKの第1の実施形態について説明する。駐車ブレーキ用ロック機構LOKは、ソレノイドSOL、ラチェット歯車RCH、及び、支持部材SPTにて構成される。ロック機構LOKは、ラチェット機構(つめブレーキ)として構成され、一方向の回転(実線矢印で示す方向であって、押圧力が増加する方向)を許容するが、他方向の回転(破線矢印で示す方向であって、押圧力が減少する方向)を拘束する。
 ソレノイドSOLは、ソレノイド駆動回路DRSによって駆動され、咬合つめTsuをラチェット歯車RCHに咬合させて、入力部材INPの回転を阻止する。ここで、ソレノイド駆動回路DRSは、制御手段CTLからの指令値Spkに基づいて制御される。ソレノイドSOL(特に、ソレノイドケースCas)が、キャリパCRPに固定されている。ソレノイドSOLは、固定コイルColと、可動鉄心(プランジャ)Plnから構成されている。ソレノイドSOLでは、固定コイルColに通電された(電流が流された)ときの、プランジャPlnが固定コイルCol内に引き込まれる力(吸引力)が利用され、Plnのラチェット歯車RCH方向(白抜き矢印の方向)への運動が得られる。通電が停止された(電流が流れなくなった)ときには、弾性体(例えば、ばね)Sprが発生する弾性力(ばね力)が利用されて、プランジャPlnが、固定コイルCol内から引き出され、プレートPltがケースCasに当接する位置まで戻される。
 プランジャPlnの端部には咬合つめTsuが形成されている。ソレノイドSOLが通電されると咬合つめTsuがラチェット歯車RCHに向かう方向(以下、咬合方向という。)に移動される。咬合つめTsuには、高さ(長さ)Ltsの突起(凸部)が設けられ、この突起部分が、ラチェット歯車RCHとかみ合わされる。
 ラチェット歯車RCHは、入力部材INPに固定され、INPと一体となって回転する。ラチェット歯車RCHには、のこぎり状の歯が形成され、この「のこ歯」形状によって、回転に対する方向性が生じ得る。ラチェットの歯形は、高さ(長さ)Lrcのオーバハング部(ひさしのように突き出た部分)をもち、この部分が利用されて、咬合つめTsuの突起部(高さLts)とかみ合わされる。なお、形状寸法においては、長さLtsは、長さLrcよりも短い。ラチェット歯車RCHと咬合つめTsuとがかみ合うと、押圧部材PSN(即ち、摩擦部材MSB)が回転部材KTBから離れる方向(Fbaが減少する方向)に相当する入力部材INPの回転(破線矢印で示す時計まわりの回転)がロックされる。即ち、電気モータMTRの逆転が防止される。
 キャリパCPRに固定された支持部材SPTが、咬合つめTsuの突起部とは反対側(背面側)に設けられる。咬合つめTsuは、支持部材SPTと当接しており、これと摺動が可能である(滑って移動することができる)。入力部材INPがロックされた場合、咬合つめTsuには押圧力Fbaによる力が作用し、曲げモーメントが作用する。咬合つめTsuは支持部材SPTによって支えられるため、咬合つめTsu(又は、Pln)の屈曲変形が抑制され得る。この結果、十分な強度が確保されるとともに、円滑な咬合つめTsuの動きが維持され得る。
 制動手段BRKは、異なる2軸を備える減速機GSKによって減速されるため、相対的に大きい減速比をもつ。駐車ブレーキ用ロック機構LOKが入力部材INPに設けられ、相対的に小さい回転力で入力部材INPがロックされ得る。このため、小径のラチェット歯車RCHが利用され、つめ高さh(図6を参照)が低くされ得る。この結果、ソレノイドSOLのストローク量が小さくでき、咬合つめが揺動アームを介することなく、ソレノイドSOLによって直接的にラチェット歯車RCHにかみ合わされ得る。また、入力部材INPがロックされるときには、咬合つめTsuはラチェット歯車RCHから押圧力相当の力を受けるが、咬合つめTsuの背後に設けられた支持部材SPTによって、Tsu及びPlnの曲げが抑制され得る。
<駐車ブレーキ用ロック機構LOKの第2の実施形態>
 駐車ブレーキ用ロック機構LOKの第2の実施形態について、図3に対応した図4を参照して説明する。なお、図4において、ラチェット歯車RCH、及び、入力部材INPは省略され、図3に示す部材と同一機能の構成部材には同一符号が付され、その説明は省略されている。
 駐車ブレーキ用ロック機構LOKの第2の実施形態では、プランジャPlnと咬合つめTsuとが異なる部材として分割されている。さらに、キャリパCPRに固定されたガイド部材GUIが設けられ、GUIは咬合つめTsuを取り囲むように形成され、GUIとTsuとは摺接している。ガイド部材GUIによって、咬合つめTsuの咬合方向(RCHにかみ合う方向)への移動が導かれる。減速機GSKの2軸構成等によってラチェット歯車RCHが小型化されるため、ラチェット歯車RCHと咬合つめTsuとの咬合には位置精度が要求される。ラチェット歯車RCH(即ち、INP)の軸受けとガイド部材GUIとが、相互の位置関係において高い精度でキャリパCPRに固定され、咬合つめTsuがガイド部材GUIに沿って咬合方向に摺動される。このため、駐車ブレーキの作動時には、咬合つめTsuはガイド部材GUIの案内面を滑って移動し、ラチェット歯車RCHと確実にかみ合わされる。駐車ブレーキが解除される場合には、咬合つめTsuは弾性体(ばね)SPGによって、解除方向(咬合方向の逆方向)に滑り移動して戻される。
 また、ガイド部材GUIによって、上記の支持部材SPTの効果と同様の効果も得られる。駐車ブレーキ作動時には、咬合つめTsuには、ラチェット歯車RCHから押圧力相当の力が作用するが、この力によって生じる咬合つめTsuの曲げ変形は、ガイド部材GUIによって抑制され得る。第2の実施形態では、咬合つめTsuはプランジャPlnと分離されているが、同一部材として構成され得る。この場合においても、ガイド部材GUIによって同様の効果が得られる。
<オルダム継手OLDの構成>
 図5を参照して、オルダム継手OLDについて説明する。オルダム継手OLDは、ディスクの突起(キー)とスライダの溝(キー溝)との嵌合が滑ることによって、動力を伝達する継手であり、入力ディスクHbm、スライダ(中間ディスク)Sld、及び、出力ディスクHbiにて構成される。即ち、ディスクの突起が、スライダの溝に沿って滑ることによって、軸心が異なる2つの軸(モータ軸Jmtと入力軸Jin)の偏心が吸収されて、回転動力(回転運動)が伝達される。
 図5(a)に示すように、オルダム継手OLDは、電気モータMTRと入力部材INPとの間に設けられる。オルダム継手OLDの入力ディスクHbmが、電気モータMTRの出力部Motに固定される。入力ディスクHbmのモータ出力部Motと接続される面の反対側の面には、キー(突起)が設けられている。そして、入力ディスクHbmのキーにかみ合うように、スライダSldにはキー溝(窪み)が設けられる。スライダSldのキー溝が設けられる面の反対側の面には、このキー溝とは垂直に、別個のキー溝が設けられる。出力ディスクHbiには、スライダSldのキー溝(窪み)とかみ合うように、キー(突起)が設けられる。そのキーをもつ面の裏側面が、入力部材INPに固定されている。即ち、入力ディスクHbmの突起と、出力ディスクHbiの突起とが垂直に交わるように、Hbm、Sld、及び、Hbiが、キー及びキー溝を介して、かみ合わされている。オルダム継手OLDでは、Hbm及びHbiのキーが、スライダSldのキー溝に沿って滑ることでMTRの出力部Motの軸(モータ軸Jmt)と入力部材INPの軸(入力軸Jin)との間の偏心が吸収される。
 オルダム継手OLDに、比較的大きなトルクが負荷されると、Hbm及びHbiのキー、Sldのキー溝が変形、或いは、磨耗し、バックラッシュ(回転運動方向における機械要素間の接触面の隙間)が増大することが生じ得る。図5(b)は、入力ディスクHbmとスライダSldとの嵌合部の断面図である。変形・摩耗等が生じていない場合には、キー及びキー溝は破線Newにてはめ合わされている。しかしながら、変形・摩耗等によってバックラッシュが生じると、オルダム継手OLDの回転方向において、無効回転角(例えば、モータ出力部Motが回転しても入力部材INPが回転しない角度)が発生する。ラチェット歯車によって電気モータの逆転が拘束(ロック)されることによって、駐車ブレーキは機能する。しかし、ラチェット歯車が、電気モータの出力軸に設けられる場合、ラチェット歯車は上記の無効回転角によって回転されるため、保持されるべき押圧力が減少される。したがって、オルダム継手OLDは、ラチェット歯車RCHが固定される入力部材INPと、電気モータMTRの出力部Motとの間に配置される。即ち、駐車ブレーキ作動時には、押圧力Fbaは、減速機GSKを介して、ラチェット歯車RCHに伝えられるが、オルダム継手OLDが電気モータMTRと入力部材INPとの間に設けられているため、オルダム継手OLDの変形・摩耗等によって生じる無効回転角の影響が及ばず、押圧力Fbaの減少(MSBの緩み)が回避され得る。
<作用・効果>
 次に、本発明の作用・効果について説明する。浮動型キャリパを用いる電動制動装置では、電気モータ、回転・直動変換機構、減速機等が、回転部材(ブレーキディスク)に対して一方側(車体の内側)に偏って設けられる。このような電動制動装置では、軸方向に長くとなると、装置全体の重量バランスが取れなくなり、路面からの振動入力に対して性能、信頼性の低下が懸念される。このため、軸方向への延長が困難であり、減速比等の制約が存在する。
 本発明に係わる電動制動装置では、減速機GSKが少なくとも異なる2つの回転軸をもって構成される。即ち、電気モータMTR等の回転軸Jmt(即ち、Jin)と押圧部材PSN等の軸Jps(即ち、Jsf)とが、平行、且つ、所定の軸間距離Lj(≠0)をもって構成される。さらに、回転・直動変換機構に「ねじ機構」が用いられる。このため、MTR等と、押圧部材PSN等とが並行して配置されるとともに、摩擦部材MSBの摩耗補償機構が不要とされ、軸方向のレイアウトに余裕が生じ得る。この結果、減速機GSKの減速比が十分に確保され、駐車ブレーキ機能を構成するラチェット歯車RCHが小径化され得る。そして、ラチェット歯車RCHにおいて、つめ高さが低くされ得るため、ソレノイドSOLのストローク量が小さくでき、咬合つめが揺動アームを介することなく、直接的にラチェット歯車RCHにかみ合わされ得る。電動制動手段が以上のように構成されるため、通常ブレーキ機能と駐車ブレーキ機能とを兼ね備えるとともに、部品点数が増加されることなく、そのサイズが小型化され得る。
 電動制動装置BRKの構成において、2つの軸間の偏心(即ち、軸ズレ)を吸収するオルダム継手OLDを備え、オルダム継手OLDは、電気モータMTRと入力部材INPとの間に設けられる。
 オルダム継手OLDには、キー及びキー溝の変形・摩耗によって無効回転角が生じる場合(入力軸が回転しても出力軸が回転しない場合)がある。例えば、特許文献1に記載されるように、ラチェット歯車が電気モータに固定され(具体的には、電気モータのロータにラチェット歯車が設けられている。)、電気モータの出力部と、減速機との間にオルダム継手が設けられると、ラチェット歯車がロックされた時点の押圧力が、上記の無効回転角によって減少される。しかしながら、ラチェット歯車RCHが入力部材INPに固定され、オルダム継手OLDが、電気モータMTRの入力部Motと入力部材INPとの間に設けられることによって、オルダム継手OLDの無効回転角が生じた場合であっても、駐車ブレーキに必要な押圧力が確実に保持され得る。
 電動制動装置BRKの構成において、ソレノイドSOLに設けられた咬合つめTsuの背後に、咬合つめTsuと摺動可能な支持部材SPTを備え、支持部材SPTはソレノイドSOLを固定するキャリパ部材CPRに固定される。即ち、咬合つめTsuは支持部材SPTに沿って、ラチェット歯車RCHに向けて滑って移動され得る。
 ラチェット歯車RCHと咬合つめTsuとがかみ合っている場合には、咬合つめTsuには押圧力Fbaに相当する力が作用している。咬合つめTsuの背面側(SOLのプランジャにおいてTsuが形成されている面に対して反対側)に、支持部材SPTが設けられることによって、咬合つめTsuの曲げ変形が抑制され、滑らかな咬合つめTsuの移動が確保され得る。
 電動制動装置BRKの構成において、ソレノイドSOLに設けられた咬合つめTsuの周囲に、咬合つめTsuと摺動可能なガイド部材GUIを備え、ガイド部材GUIはソレノイドSOLを固定するキャリパ部材CPRに固定される。即ち、咬合つめTsuはガイド部材GUIに取り囲まれて、GUIに沿って、ラチェット歯車RCHに向けて滑って移動され得る。
 ラチェット歯車RCHが小径化されると、RCHと咬合つめTsuとの咬合において、高い位置精度が求められる。ラチェット歯車RCHは入力部材INPを介してキャリパCPRに固定されているため、キャリパCPRに固定されるガイド部材GUIによって、ラチェット歯車RCHと咬合つめTsuとが高精度で位置決めされ得る。この結果、咬合つめTsuとラチェット歯車RCHとのかみ合わせが確実に行われ得る。
 BRK…制動手段、ECU…電子制御ユニット、CTL…制御手段、MTR…電気モータ、INP…入力部材、GSK…減速機、SFT…シャフト部材、NJB…ねじ部材、PSN…押圧部材、MSB…摩擦部材、KTB…回転部材、LOK…駐車ブレーキ用ロック機構、SOL…ソレノイド、RCH…ラチェット歯車、Tsu…咬合つめ、Jin…入力部材の回転軸、Jsf…シャフト部材の回転軸、OLD…オルダム継手、Mot…電気モータの出力部、SPT…支持部材、GUI…ガイド部材

Claims (1)

  1.  車両の車輪に固定された回転部材に摩擦部材を押し付けて押圧力を発生させる押圧部材と、
     前記押圧力を発生させる動力源である電気モータと、
     前記電気モータからの回転動力が入力される入力部材と、
     前記入力部材の回転動力を減速してシャフト部材に伝達し、少なくとも2つの異なる回転軸にて構成される減速機と、
     前記減速機から伝達される前記シャフト部材の回転動力を前記押圧力に変換するねじ部材と、
     前記入力部材に固定されるラチェット歯車と、
     前記ラチェット歯車とかみ合うことができる咬合つめをもち、前記咬合つめを前記ラチェット歯車にかみ合わせることによって前記押圧部材が前記回転部材から離れる方向に相当する前記入力部材の回転を拘束するソレノイドと、
     前記電気モータ、及び、前記ソレノイドを制御して前記車両の停止状態を維持する制御手段と、を備える、車両の電動制動装置。
PCT/JP2013/082257 2012-11-30 2013-11-29 車両の電動制動装置 WO2014084375A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012263563A JP5928723B2 (ja) 2012-11-30 2012-11-30 車両の電動制動装置
JP2012-263563 2012-11-30

Publications (1)

Publication Number Publication Date
WO2014084375A1 true WO2014084375A1 (ja) 2014-06-05

Family

ID=50828003

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/082257 WO2014084375A1 (ja) 2012-11-30 2013-11-29 車両の電動制動装置

Country Status (2)

Country Link
JP (1) JP5928723B2 (ja)
WO (1) WO2014084375A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3078876A4 (en) * 2013-12-05 2017-07-26 Advics Co., Ltd Electronic braking device for vehicle
JP2017172722A (ja) * 2016-03-24 2017-09-28 トヨタ自動車株式会社 電動ブレーキキャリパ
CN107355496A (zh) * 2016-05-10 2017-11-17 现代自动车株式会社 能够自动解除停车制动的机电制动器
CN109424668A (zh) * 2017-08-29 2019-03-05 比亚迪股份有限公司 盘式制动器及车辆
CN111550507A (zh) * 2020-05-14 2020-08-18 贵州航天林泉电机有限公司 一种无人机刹车用机电作动器
JP2021049880A (ja) * 2019-09-25 2021-04-01 日立Astemo株式会社 ディスクブレーキ
TWI738230B (zh) * 2020-02-27 2021-09-01 光陽工業股份有限公司 電子駐車裝置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6373188B2 (ja) * 2014-12-26 2018-08-15 日立オートモティブシステムズ株式会社 ディスクブレーキ
WO2018110687A1 (ja) 2016-12-15 2018-06-21 株式会社アドヴィックス 車両の電動制動装置
CN109424665B (zh) * 2017-08-29 2020-10-20 比亚迪股份有限公司 盘式制动器及车辆
JP7131330B2 (ja) 2018-11-21 2022-09-06 トヨタ自動車株式会社 減速装置、および、それを用いたブレーキアクチュエータ
WO2020149695A1 (ko) * 2019-01-18 2020-07-23 주식회사 만도 전기기계식 브레이크 시스템
KR102692627B1 (ko) * 2019-04-01 2024-08-06 에이치엘만도 주식회사 엑츄에이터 및 이를 갖는 전기 기계식 브레이크 시스템

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050077782A1 (en) * 2003-10-08 2005-04-14 Honda Motor Co., Ltd. Electrically driven parking brake device
JP2005291353A (ja) * 2004-03-31 2005-10-20 Hitachi Ltd 電動ブレーキ装置
JP2005331022A (ja) * 2004-05-19 2005-12-02 Hitachi Ltd 電動ディスクブレーキ装置
JP2010236658A (ja) * 2009-03-31 2010-10-21 Hitachi Automotive Systems Ltd ディスクブレーキ
JP2012002316A (ja) * 2010-06-18 2012-01-05 Advics Co Ltd 電動ブレーキ装置
JP2012007632A (ja) * 2010-06-22 2012-01-12 Hitachi Automotive Systems Ltd ディスクブレーキ

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012193805A (ja) * 2011-03-17 2012-10-11 Akebono Brake Ind Co Ltd パーキング機構付電動式ブレーキ装置
JP5637067B2 (ja) * 2011-05-24 2014-12-10 株式会社アドヴィックス 電動ブレーキ装置および電動ブレーキ装置の制御方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050077782A1 (en) * 2003-10-08 2005-04-14 Honda Motor Co., Ltd. Electrically driven parking brake device
JP2005114042A (ja) * 2003-10-08 2005-04-28 Honda Motor Co Ltd 電動駐車ブレーキ装置
DE102004048674A1 (de) * 2003-10-08 2005-06-02 Honda Motor Co., Ltd. Elektrisch betriebene Feststellbremsvorrichtung
JP2005291353A (ja) * 2004-03-31 2005-10-20 Hitachi Ltd 電動ブレーキ装置
JP2005331022A (ja) * 2004-05-19 2005-12-02 Hitachi Ltd 電動ディスクブレーキ装置
JP2010236658A (ja) * 2009-03-31 2010-10-21 Hitachi Automotive Systems Ltd ディスクブレーキ
JP2012002316A (ja) * 2010-06-18 2012-01-05 Advics Co Ltd 電動ブレーキ装置
JP2012007632A (ja) * 2010-06-22 2012-01-12 Hitachi Automotive Systems Ltd ディスクブレーキ

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3078876A4 (en) * 2013-12-05 2017-07-26 Advics Co., Ltd Electronic braking device for vehicle
US10138960B2 (en) 2013-12-05 2018-11-27 Advics Co., Ltd. Electric braking device for vehicle
CN107228141B (zh) * 2016-03-24 2019-08-27 丰田自动车株式会社 电动制动钳
JP2017172722A (ja) * 2016-03-24 2017-09-28 トヨタ自動車株式会社 電動ブレーキキャリパ
DE102017106306A1 (de) 2016-03-24 2017-09-28 Toyota Jidosha Kabushiki Kaisha Elektrobremsen-Bremssattel
CN107228141A (zh) * 2016-03-24 2017-10-03 丰田自动车株式会社 电动制动钳
US10100892B2 (en) 2016-03-24 2018-10-16 Toyota Jidosha Kabushiki Kaisha Electric brake caliper
DE102017106306B4 (de) 2016-03-24 2020-07-02 Toyota Jidosha Kabushiki Kaisha Elektrobremsen-Bremssattel
CN107355496A (zh) * 2016-05-10 2017-11-17 现代自动车株式会社 能够自动解除停车制动的机电制动器
CN107355496B (zh) * 2016-05-10 2020-05-12 现代自动车株式会社 能够自动解除停车制动的机电制动器
CN109424668A (zh) * 2017-08-29 2019-03-05 比亚迪股份有限公司 盘式制动器及车辆
CN109424668B (zh) * 2017-08-29 2020-08-25 比亚迪股份有限公司 盘式制动器及车辆
JP2021049880A (ja) * 2019-09-25 2021-04-01 日立Astemo株式会社 ディスクブレーキ
JP7257302B2 (ja) 2019-09-25 2023-04-13 日立Astemo株式会社 ディスクブレーキ
TWI738230B (zh) * 2020-02-27 2021-09-01 光陽工業股份有限公司 電子駐車裝置
CN111550507A (zh) * 2020-05-14 2020-08-18 贵州航天林泉电机有限公司 一种无人机刹车用机电作动器

Also Published As

Publication number Publication date
JP2014109315A (ja) 2014-06-12
JP5928723B2 (ja) 2016-06-01

Similar Documents

Publication Publication Date Title
JP5928723B2 (ja) 車両の電動制動装置
US10351117B2 (en) Brake unit
JP4390560B2 (ja) 車両パラメータの目標値偏差に依存してアクセルペダルの付加的な戻し力を有する装置
JP6248588B2 (ja) 車両の電動制動装置
KR101511437B1 (ko) 전자기계식 브레이크 장치
CN111183077A (zh) 机械制动装置
JP6150080B2 (ja) 車両の電動制動装置
CN106402205A (zh) 汽车电子机械制动系统轮边自供电式制动执行机构
JP5892049B2 (ja) 車両の電動制動装置
JP6152863B2 (ja) 車両の電動制動装置
JP2007321862A (ja) 電動ディスクブレーキ
JP2019038302A (ja) 電動ブレーキ装置
US11187291B2 (en) Electric brake device and vehicular brake system including electric brake device
JP6260238B2 (ja) 車両の電動制動装置
JP6164071B2 (ja) 車両の電動制動装置
US11097705B2 (en) Electric parking brake system
WO2018135614A1 (ja) 車両の制動制御装置
JP4556650B2 (ja) 車両用ブレーキ装置
CN111412234A (zh) 一种电子刹车/驻车机构
JP6183192B2 (ja) 車両の電動制動装置
KR102719877B1 (ko) 전자식 주차 브레이크
KR20240045812A (ko) 전자식 주차 브레이크
KR20240044988A (ko) 전자식 주차 브레이크
JP6160829B2 (ja) 車両の電動制動装置
JP6278179B2 (ja) 車両の電動制動装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13858868

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13858868

Country of ref document: EP

Kind code of ref document: A1