WO2014084270A1 - 有機エレクトロルミネッセンス素子用の薄膜形成装置と薄膜形成方法 - Google Patents

有機エレクトロルミネッセンス素子用の薄膜形成装置と薄膜形成方法 Download PDF

Info

Publication number
WO2014084270A1
WO2014084270A1 PCT/JP2013/081942 JP2013081942W WO2014084270A1 WO 2014084270 A1 WO2014084270 A1 WO 2014084270A1 JP 2013081942 W JP2013081942 W JP 2013081942W WO 2014084270 A1 WO2014084270 A1 WO 2014084270A1
Authority
WO
WIPO (PCT)
Prior art keywords
mask
thin film
film forming
cooling
film formation
Prior art date
Application number
PCT/JP2013/081942
Other languages
English (en)
French (fr)
Inventor
福田 和浩
伸明 高橋
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2014549870A priority Critical patent/JPWO2014084270A1/ja
Publication of WO2014084270A1 publication Critical patent/WO2014084270A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/042Coating on selected surface areas, e.g. using masks using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/12Organic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/166Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using selective deposition, e.g. using a mask

Definitions

  • the present invention relates to a thin film forming apparatus for an organic electroluminescence element and a thin film forming method thereof.
  • organic electroluminescence elements (hereinafter referred to as organic EL elements). The use of) is progressing.
  • the electrode layer of such an organic EL element is formed by, for example, a vapor phase thin film forming method such as an evaporation method or a sputtering method, and the organic layer is formed by, for example, a vapor phase thin film forming method such as an evaporation method.
  • a vapor phase thin film forming method such as an evaporation method or a sputtering method
  • the organic layer is formed by, for example, a vapor phase thin film forming method such as an evaporation method.
  • FIG. 6 is a schematic cross-sectional view showing the configuration of a thin film forming apparatus for forming a thin film on the element substrate by vapor deposition.
  • the thin film forming apparatus 300 includes a film such as a substrate holding plate 311, an element substrate 302, a film forming material container 304 containing a film forming material 303, a heater 305 for heating, a shutter 306, and a crystal resonator in a vacuum chamber 301.
  • a thickness monitor 307 and a mask 320 for pattern formation are provided.
  • the thin film forming apparatus 300 includes an exhaust pump 308, a controller 309 for the heater 305, a control device 310 for the film thickness monitor 307, and the like in addition to the vacuum chamber 301.
  • the inside of the vacuum chamber 301 is evacuated to vacuum using an exhaust pump 308.
  • the heater 305 When the heater 305 is energized, the film forming material container 304 and the film forming material 303 inside thereof are heated and heated. At this time, the output of the heater 305 is feedback-controlled using the film thickness monitor 307 so that the film forming material 303 is stably evaporated at a specified evaporation rate.
  • the mask 320 for forming the pattern receives radiant heat or the like by the vapor deposition source. Therefore, when the mask 320 is repeatedly used, heat is stored, and thermal expansion and deformation occur. As a result, there is a problem that a patterning position shift occurs in the formed thin film, and a color shift or a short circuit occurs between a pair of electrodes when a device is formed.
  • a method of cooling the mask through the substrate by pressing the mask against the substrate holding plate through the substrate for example, see Patent Document 1
  • a method of cooling by flowing cooling water through the mask itself for example, patents
  • a method for cooling the frame of the mask for example, see Patent Document 3
  • a method for cooling the shutter by flowing a coolant through the shutter for example, see Patent Document 4
  • the mask is prevented from being deformed by being heated by the heat source of the thin film forming apparatus such as an evaporation source or sputtering particles during film formation, and the film formation pattern
  • the heat source of the thin film forming apparatus such as an evaporation source or sputtering particles during film formation
  • the organic EL element generally includes a first electrode layer formed on an element substrate, various organic layers formed on the first electrode layer and including a light emitting layer, and a second electrode layer formed on the organic layer.
  • the structure has a thin film. Further, in order to block and protect from the external environment, the laminated structure of the organic EL element is hermetically sealed with a sealing substrate.
  • the thin film forming method for an organic EL element of the present invention is a method of forming a thin film on an element substrate in a vacuum chamber by a vapor thin film forming method using a mask having a shape pattern, Forming the thin film on the element substrate in a thin film forming section in a vacuum chamber; moving the mask from the thin film forming section to a mask cooling section in the vacuum chamber; and cooling the mask to the mask And a step of moving the cooled mask from the mask cooling unit to the thin film forming unit.
  • FIG. 1A is a schematic cross-sectional view showing the configuration of the thin film forming apparatus of the first embodiment.
  • the thin film forming apparatus 100 includes a substrate holding plate 111, an element substrate 102, a film forming material container 104 containing a film forming material 103, a heater 105 for heating, a shutter 106, and a crystal vibration in a vacuum chamber 101.
  • a film thickness monitor 107 such as a child, a mask 120 for pattern formation, a chamber partition plate 130, and a cooling plate 150 as a mask cooling device are arranged.
  • the thin film is formed by each component of the substrate holding plate 111, the element substrate 102, the film forming material container 104, the heater 105 for heating, the shutter 106, the film thickness monitor 107, and the mask 120.
  • the mask cooling part is a part that exists in a space that does not affect the formation of the thin film on the element substrate 102 and that cools the mask, and exists in a space that is outside the thin film formation part 700.
  • the mask cooling unit is installed in the cooling chamber unit 101B.
  • a temperature sensor is preferably attached to the mask 120 (not shown).
  • the temperature sensor is not particularly limited and may be a known sensor such as a sensor that directly measures temperature or a sensor that indirectly measures temperature.
  • a thermocouple or the like can be used.
  • the film forming material 103 to be formed is loaded into the film forming material container 104 in the vacuum chamber 101 (step S1).
  • the inside of the vacuum chamber 101 of the thin film forming apparatus 100 is evacuated by the exhaust pump 108, and the inside of the vacuum chamber 101 is depressurized to a predetermined degree of vacuum (step S2).
  • a vacuum degree of 3 ⁇ 10 ⁇ 5 to 8 ⁇ 10 ⁇ 5 Pa is preferably used.
  • step S3 By energizing the heater 105, the film forming material container 104 and the film forming material 103 inside thereof are heated and the temperature is raised (step S3). At this time, the film formation rate during film formation is monitored using the film thickness monitor 107 so that the film formation material 103 is stably evaporated at a specified evaporation rate, and the result is fed back to the controller 109 of the heater 105. Thus, the output of the heater 105 is controlled (step S4, step S5).
  • the shutter 106 is opened (step S9), and a thin film is formed in a pattern formed by the mask 120 on the element substrate 102 disposed on the substrate holding plate 111.
  • a thin film is formed in the part (step S10).
  • the film thickness measured by the film thickness monitor 107 is converted into a film formation speed and monitored as a film formation speed during film formation.
  • the film forming speed is fed back to the controller 109 of the heater 105, and the output of the heater 105 is controlled.
  • the film thickness is calculated by calculating the film forming speed and the film forming time by the film thickness monitor so as to obtain a predetermined film thickness (step S11).
  • the temperature of the mask 120 is measured (step S16).
  • the temperature of the mask 120 can be measured by moving the thermocouple to the mask position after lowering the mask 120 with the shutter 106 closed after the film formation is completed.
  • step S15 when the number of formed element substrates 102 reaches a predetermined number, the process proceeds to the next step S21.
  • FIG. 4A and FIG. 4B are schematic cross-sectional views showing the configuration of the thin film forming apparatus and the moving state of the mask according to the second embodiment of the present invention.
  • the thin film forming apparatus 200 includes a substrate holding plate 211, an element substrate 202, a sputtering target 224 as a film forming material, a shutter 206, a mask 220 for pattern formation, a chamber partition plate 230, and a vacuum holding chamber 211.
  • a cooling plate 250 which is a device for cooling the mask, is disposed.
  • the thin film is formed by the constituent articles of the substrate holding plate 211, the element substrate 202, the sputtering target 224, the shutter 206, and the mask 220.
  • the inside of the vacuum chamber 201 is divided into a film forming chamber portion 201A and a cooling chamber portion 201B, and is partitioned by a chamber partition plate 230.
  • the chamber partition plate 230 has a horizontally long hole in the vicinity of the upper center, through which the mask 220 can move between the film forming chamber portion 201A and the cooling chamber portion 201B.
  • the thin film forming unit is installed in the film forming chamber unit 201A.
  • the mask cooling unit is installed in the cooling chamber unit 201B.
  • a voltage is applied between a sputtering target 224 as a film forming material and a substrate holding plate 211 using a sputtering controller 219 to generate plasma on the surface of the sputtering target.
  • the particles emitted from the surface of the sputtering target by the plasma are sent out to the element substrate 202 side, whereby film formation is performed in the thin film forming portion.
  • step S1 is changed to step S1a
  • step S3 is changed to step S3a
  • step S4 and step S5 do not exist.
  • Step S11 is changed to Step S11a
  • Step S21 is changed to Step S21a
  • Step S22 is changed to Step S22a.
  • a sputtering target 224 to be used for film formation is installed in the vacuum chamber 201 (step S1a).
  • the inside of the vacuum chamber 201 of the thin film forming apparatus 200 is evacuated by the exhaust pump 208, and the inside of the vacuum chamber 201 is depressurized to a predetermined degree of vacuum (step S2).
  • a vacuum degree of 5 ⁇ 10 ⁇ 4 to 5 ⁇ 10 ⁇ 3 Pa is preferably used.
  • Ar gas is introduced into the film forming chamber and the pressure is increased to a predetermined degree of vacuum.
  • 0.1 to 1 Pa can be preferably used.
  • a voltage is applied by the sputtering controller 219 to generate plasma on the surface of the sputtering target 224, and particles emitted from the surface of the sputtering target by the plasma are sent to the element substrate 202 side (step S3a).
  • FIG. 5A is a schematic cross-sectional view showing the operation of the mask at this time.
  • Step S9 After the sputtering target 224 stably emits particles, the shutter 206 is opened (Step S9), and the thin film is formed in a pattern formed by the mask 220 on the element substrate 202 arranged on the substrate holding plate 211. A thin film is formed in the formation part (step S10).
  • the shutter 206 is closed (step S12), and the mask 220 is moved away from the element substrate 202 (step S13).
  • the element substrate 202 on which the film has been formed is unloaded from the film forming chamber 201A (step S14).
  • step S15 the number of formed element substrates 102 is calculated, and it is confirmed whether or not the predetermined number has been reached.
  • the process proceeds to the next step S16.
  • steps S16 to S20 are the same as the corresponding steps in the first embodiment, description thereof is omitted.
  • FIGS. 3A and 3B of the first embodiment correspond to FIGS. 4A and 4B of the second embodiment, respectively.
  • the sputtering target 224 is exchanged for a different type, and the above-described steps S1 to S23 are repeated.
  • this element substrate into a long sheet shape
  • the above steps are carried into a process of carrying a long roll having elements formed on the surface thereof in the film forming chamber portion of the vacuum chamber, The step of placing the element substrate at a predetermined position of the substrate holding plate, and the step of carrying out the formed element substrate as a long roll from the film forming chamber section to the outside.
  • FIG. 7 is a schematic cross-sectional view showing a configuration of a comparative example of an apparatus for forming a thin film by vapor deposition.
  • this thin film forming apparatus 300 ⁇ / b> A
  • the substrate holding plate 331 is cooled using a cooling pump 330.
  • This is a method of cooling the mask 320 by pressing the mask 320 against the substrate holding plate 331 via the element substrate 302, but with this method, it is difficult to obtain sufficient heat conduction. The heat conduction is further deteriorated and it cannot withstand repeated use.
  • FIG. 11 is a schematic cross-sectional view showing a configuration of a comparative example of an apparatus for forming a thin film by a sputtering method.
  • the substrate holding plate 511 is cooled using a cooling pump 530 as in FIG.
  • the problems of this apparatus and method are the same as in FIG.
  • FIG. 10 is a schematic cross-sectional view showing a configuration of a comparative example of a thin film forming apparatus using a vapor deposition method.
  • a cooling plate 451 for cooling the mask 420 can be moved between the film forming chamber 401A and the cooling chamber 401B.
  • the ambient temperature in the film forming chamber 401A varies due to repeated movement of the cooling plate 451 having a large heat capacity. Therefore, when the organic EL element is formed, the formed film receives a thermal history from the surface, so that the surface performance changes. Particularly in the organic layer, performance, particularly chromaticity, varies.
  • the thin film forming apparatus of the present invention and the thin film forming method using the thin film forming apparatus of the present invention will be specifically described with reference to examples, but the present invention is not limited thereto.
  • a UV curable organic / inorganic hybrid hard coating material OPSTARZ7501 manufactured by JSR Corporation was applied to the easily adhesive surface of the substrate of the element substrate with a wire bar so that the film thickness after drying was 4 ⁇ m. After drying at 80 ° C. for 3 minutes, it was cured by irradiation with 1.0 J / cm 2 using a high-pressure mercury lamp in an air atmosphere to form an underlayer.
  • first electrode layer An ITO film (indium tin oxide) having a thickness of 150 nm was formed by sputtering on the base layer of the base material of the element substrate, and patterned by photolithography to form a first electrode (anode) layer. The pattern was formed as a pattern having a light emitting area of 50 mm square.
  • the thin film forming apparatus 100 including a plurality of film forming material containers is used to reduce the vacuum to 5 ⁇ 10 ⁇ 5 Pa, and then the element substrate.
  • Compound HT-1 was deposited thereon at a deposition rate of 0.1 nm / second to provide a 20 nm hole transport layer (HTL).
  • HTL hole transport layer
  • the film was formed while appropriately cooling the mask in the mask cooling section so that the temperature of the mask was 30 to 50 ° C.
  • the temperature of the mask was similarly controlled when forming the following layers.
  • a film forming material container containing the host material H-1, phosphorescent compound A-3 (blue light emitting dopant), compound A-1 (green light emitting dopant), compound A-2 (red light emitting dopant) Each film forming material container containing was energized independently, and a light emitting layer composed of the host material H-1 and the phosphorescent compound of each color was formed on the hole transport layer.
  • the energization of the film forming material container was adjusted so as to be (volume ratio).
  • the film thickness was 30 nm.
  • the sealing process is connected to the film forming process, and the measured cleanliness is class 100 and the dew point temperature is ⁇ 80 ° C. in accordance with JIS B 9920 under a nitrogen atmosphere with a moisture content of 1 ppm or less under atmospheric pressure. Hereinafter, it was performed at atmospheric pressure with an oxygen concentration of 0.8 ppm or less.
  • the operation for producing the organic EL element 1 is continuously performed 10 times or more, and for the first organic EL element (first batch) and the tenth organic EL element (10th batch), the mask temperature and the substrate temperature
  • the light emission efficiency, drive voltage, and chromaticity variation (chromaticity stability) were evaluated by the following methods. The results are shown in Table 1.
  • thermocouple was moved to the mask position to measure the mask temperature (° C.).
  • the chromaticity fluctuation range during dimming is small, and it is preferable that the chromaticity fluctuation is large. This is because, when an illumination device is formed by connecting a drive circuit with variable power to an organic EL element, the illumination color is stable even if the brightness of the illumination device is adjusted. Can be maintained stably.
  • Example 2 In Example 2, in the organic EL element 1 manufactured in Example 1, a sample before sealing was used to form an Al—Nd alloy as a lead-out wiring using the thin film forming apparatus 200 shown in FIG. .
  • the description regarding formation of an anode, a cathode, etc. is the same as that of Example 1, the description is abbreviate
  • the cross-sectional structure of the mask is set so that the mask does not contact the element.
  • the film formation conditions by the sputtering method at this time were an Ar gas flow rate of 50 cc / min, a pressure of 0.5 Pa, an output of 1 kW, and a film thickness of 500 nm.
  • the mask was moved out of the film formation space, cooled, and then returned to the film formation space again to repeat the continuous film formation.
  • the organic EL element 2 was produced.
  • the operation for producing the organic EL device 2 was continuously performed 10 times or more, and the first organic EL device (first batch) and the tenth organic EL device (10th batch). was evaluated.
  • the extraction electrode the rectification ratio was evaluated in order to evaluate the current leakage caused by the contact between the electrodes due to the pattern accuracy.
  • the adhesiveness with a barrier base material was also evaluated. The results are shown in Table 2.
  • the rectification ratio was calculated from a forward voltage flowing through the organic EL element at room temperature and a reverse voltage of 500 ⁇ A / cm 2 .
  • Table 2 as a numerical value of the rectification ratio, for example, what is described as “10 ⁇ 5” means that it is 10 to the fifth power.
  • Cross-cut adhesion is evaluated according to the description in 5.6 (2004 edition) of JIS K 5600, using a cutter knife from one side of the film-forming surface with a 1 mm square cross-cut shape that penetrates the extraction electrode and reaches the substrate. Using a cutter guide, attach a cellophane adhesive tape ("CT405AP-18" manufactured by Nichiban Co., Ltd .; 18mm width) to the cut surface, rub it with an eraser from the top, and attach the tape completely. The amount of the extraction electrode remaining on the surface of the substrate was visually confirmed. The number of peels in 100 pieces was examined and evaluated according to the following criteria. ⁇ : No peeling at cross cut test ⁇ : Peeling area is 1 to 10% by cross cut test ⁇ : Stripping area is 11% or more in the cross cut test
  • Comparative Example 1 In Comparative Example 1, only the production conditions of the light emitting layer in Example 1 were changed. Specifically, using the vapor deposition apparatus 300 ⁇ / b> A shown in FIG. 7, the mask 320 was attracted by a magnet provided on the substrate holding plate 331 during film formation, and cooling was performed through the element substrate 302. In the same manner as in Example 1, the mask temperature, the substrate temperature, the light emission efficiency, the driving voltage, and the chromaticity variation during dimming were evaluated. The results are shown in Table 1.
  • Comparative Example 2 In Comparative Example 2, only the production conditions of the light emitting layer in Example 1 were changed. Specifically, using the thin film forming apparatus 400 shown in FIG. 10, the cooling plate 451 is inserted into the film forming chamber 401A in a state where the shutter 406 that does not perform film formation is closed, and the mask 420 is cooled. A sample was prepared in the same manner as in Example 1 except for the above. In the same manner as in Example 1, the mask temperature, the substrate temperature, the light emission efficiency, the drive voltage, and the chromaticity variation during dimming were evaluated. The results are shown in Table 1.
  • Comparative Example 3 In Comparative Example 3, in the film formation by sputtering of the Al—Nd extraction electrode in Example 2, the thin film forming apparatus 500 shown in FIG. 11 was used, and the mask 520 was pressed against the substrate holding plate 511 at the time of film formation. Cooling was performed through the substrate 502. In the same manner as in Example 2, the mask temperature, the substrate temperature, the rectification ratio, and the adhesion with the barrier substrate were evaluated. The results are shown in Table 2.
  • Comparative Example 4 In Comparative Example 4, in the film formation by sputtering of the Al—Nd extraction electrode in Example 2, the cooling plate 651 was used with the thin film forming apparatus 600 shown in FIG. Was inserted into the film forming chamber section 601A and the mask 620 was cooled, and a sample was manufactured in the same manner as in Example 2. In the same manner as in Example 2, the mask temperature, the substrate temperature, the rectification ratio, and the adhesion with the barrier substrate were evaluated. The results are shown in Table 2.
  • the organic EL device 1 of Example 1 obtained by the embodiment of the present invention has a low mask temperature and a low substrate temperature in the first batch and the tenth batch, and the luminous efficiency. It has excellent performance in driving voltage and chromaticity variation.
  • the organic EL device 2 of Example 2 had a low mask temperature and a low substrate temperature in the first batch and the tenth batch, and had excellent performance in the rectification ratio and the adhesion to the barrier substrate. It was.

Abstract

薄膜形成装置の熱源によって加熱されることによって、マスクが変形することを抑制し、成膜パターンの形状精度を保持し、薄膜を継続して安定的に製造することが可能な有機EL素子用の薄膜形成装置と薄膜形成方法を提供する。形状パターンを有したマスク(120)を用いて、気相薄膜形成法によって、真空雰囲気下で素子基板(102)上に薄膜を形成する装置(100)であって、内部に薄膜形成部(101A)とマスク冷却部(101B)とを有する真空チャンバ(101)と、マスク冷却部(101B)内のマスクの冷却装置(150)と、素子基板(102)上に薄膜の形状パターン形成させるためのマスク(120)と、マスク(120)を薄膜形成部(101A)とマスク冷却部(101B)との間を相互に移動させる移動装置とを備えることを特徴とする有機エレクトロルミネッセンス素子用の薄膜形成装置(100)とこの装置を用いた薄膜形成方法である。

Description

有機エレクトロルミネッセンス素子用の薄膜形成装置と薄膜形成方法
 本発明は、有機エレクトロルミネッセンス素子用の薄膜形成装置とその薄膜形成方法に関する。
 各種情報産業機器の表示ディスプレイや発光素子等の分野においては、薄型化を図ることができるとともに、視認性や耐衝撃性等に優れていることから、有機エレクトロルミネッセンス素子(以下、有機EL素子と記載することがある。)の利用が進んでいる。
 有機EL素子は、基板上で一対の電極層によって挟持された有機層を含む構成を有している。一対の電極層としては、可視光域に対して光透過性のある透明電極と金属電極等が用いられる。有機層は、機能の異なる複数の層が積層されており、例えば、正孔注入層、正孔輸送層、発光層、電子輸送層及び電子注入層を備えた構成を有している。
 このような有機EL素子の電極層は、例えば、蒸着法やスパッタリング法等の気相薄膜形成法によって成膜され、また有機層は、例えば、蒸着法等の気相薄膜形成法によって成膜される。
 図6は、素子基板上に蒸着法によって薄膜形成を行う薄膜形成装置の構成を示す断面模式図である。この薄膜形成装置300は、真空チャンバ301内に、基板保持プレート311、素子基板302、成膜材料303を入れた成膜材料容器304、加熱用のヒータ305、シャッタ306、水晶振動子等の膜厚モニタ307及びパターン形成用のマスク320を備えている。また、この薄膜形成装置300は、真空チャンバ301外に、排気ポンプ308、ヒータ305の制御器309及び膜厚モニタ307の制御装置310等を備えている。
 上記のように構成された薄膜形成装置300においては、真空チャンバ301内は排気ポンプ308を用いて真空に排気されている。ヒータ305に通電されることによって、成膜材料容器304とその内部の成膜材料303は、加熱され、昇温される。このとき、成膜材料303が規定の蒸発速度で安定して蒸発するように、膜厚モニタ307を用いて、ヒータ305の出力はフィードバック制御される。
 そして、成膜材料303が安定して蒸発するようになった後に、シャッタ306を開けることによって、基板保持プレート311上に設置された素子基板302上に、マスク320に形成されている形状パターンで薄膜が形成される。この際、膜厚モニタ307で計測された膜厚は、成膜速度に換算され、成膜中の成膜速度として監視されることによって、ヒータ305の出力はフィードバック制御される。
 ところが、上記の様な薄膜形成装置300にあっては、パターンを形成するマスク320は、蒸着源によって輻射熱等を受けている。そのため、マスク320は、繰り返し使用されることにより、熱が蓄熱され、熱膨張や変形が生じる。その結果、形成された薄膜にパターニングの位置ズレが生じ、デバイス化した際に色ズレや一対の電極間にショートが発生するといった問題があった。
 これらの課題に対して、幾つかの対策方法が検討されている。
 例えば、マスクを基板を介して基板保持プレートに押し当てることによって、基板を介してマスクを冷却する方法(例えば、特許文献1参照)、マスク自体に冷却水を流して冷却する方法(例えば、特許文献2参照)、マスクの枠を冷却する方法(例えば、特許文献3参照)、シャッタに冷媒を流し冷却する方法(例えば、特許文献4参照)等がある。
特開2011-231343号公報 特開平8-104979号公報 特開2012-140671号公報 特開平6-17238号公報
 しかしながら、特許文献1に記載された様な、基板を基板保持プレートに押し当てて、更にその上からマスクを押し当てることにより、基板を介してマスクを冷却する方法では、充分な熱伝導を得ることが難しく、マスク自体の効果的な冷却が困難である。特に、プラスチック基板等では熱伝導が更に悪くなるため、マスク自体の効果的な冷却が困難である。
 特許文献2に記載された様な、マスク自体に冷却水を流し冷却する方法では、マスクの厚さが厚くなり、精細なパターン形成が困難である。また特許文献3に記載された様な、マスクの枠を冷却する方法では、マスク自体の効果的な冷却が困難である。
 さらに、特許文献4に記載された様な、シャッタに冷却機能を持たせ、成膜面側から冷却する方法では、マスク自体の冷却は可能であるが、薄膜形成部に冷却手段が出し入れされ、その結果、薄膜形成部に温度変化領域が生ずる。そのため、有機EL素子形成時に、形成された膜の表面が熱履歴を受ける為、膜の表面性能が変わってしまう。特に有機層に於いては、性能、特に色度の変動が確認され、安定生産には堪えないことが判明している。
 本発明は、上記状況に鑑みてなされたものであり、その課題は、成膜時にマスクが蒸着源やスパッタリング粒子等の薄膜形成装置の熱源によって加熱されることによって、マスクが変形することを抑制し、成膜パターンの形状精度を保持し、薄膜を継続して安定的に製造することが可能な有機EL素子用の薄膜形成装置と薄膜形成方法を提供することである。
 本発明は、上記課題を解決するために、以下の構成を有するものである。
1.形状パターンを有したマスクを用いて、気相薄膜形成法によって、真空雰囲気下で素子基板上に薄膜を形成する装置であって、内部に薄膜形成部とマスク冷却部とを有する真空チャンバと、前記マスク冷却部内のマスクの冷却装置と、前記素子基板上に薄膜の形状パターン形成させるためのマスクと、前記マスクを前記薄膜形成部と前記マスク冷却部との間を相互に移動させる移動装置とを備えることを特徴とする有機エレクトロルミネッセンス素子用の薄膜形成装置。
2.形状パターンを有したマスクを用いて、気相薄膜形成法によって、真空チャンバ内で素子基板上に薄膜を形成する方法であって、前記真空チャンバ内の薄膜形成部にて前記素子基板上に前記薄膜を形成する工程と、前記マスクを前記薄膜形成部から前記真空チャンバ内のマスク冷却部へ移動する工程と、前記マスクを前記マスク冷却部にて冷却する工程と、冷却された前記マスクを前記マスク冷却部から前記薄膜形成部へ移動する工程とを有することを特徴とする有機エレクトロルミネッセンス素子用の薄膜形成方法。
 本発明の薄膜形成装置と薄膜形成方法によれば、成膜時にマスクが蒸着源やスパッタリング粒子等の薄膜形成装置の熱源によって加熱されることによって、マスクが変形することを抑制し、成膜パターンの形状精度を保持し、有機EL素子用の薄膜を継続して安定的に製造することが可能である。
図1(a)は、第1実施形態の薄膜形成装置の構成を示す断面模式図である。図1(b)は、薄膜形成部700を示す断面模式図である。 第1実施形態の薄膜形成装置のマスクの動作を示す断面模式図である。 図3(a)と図3(b)は、第1実施形態の薄膜形成装置のマスクの移動状態を示す断面模式図である。 図4(a)と図4(b)は、第2実施形態の薄膜形成装置の構成とマスクの移動状態を示す断面模式図である。 図5(a)は、第2実施形態の薄膜形成装置のマスクの動作を示す断面模式図である。図5(b)は、マスクの一部の構造を示す断面模式図である。 一般的な蒸着法による薄膜形成装置の構成を示す断面模式図である。 蒸着法による薄膜形成装置の比較例の構成を示す断面模式図である。 蒸着法による薄膜形成装置の比較例の構成を示す断面模式図である。 蒸着法による薄膜形成装置の比較例の構成を示す断面模式図である。 蒸着法による薄膜形成装置の比較例の構成を示す断面模式図である。 スパッタリング法による薄膜形成装置の比較例の構成を示す断面模式図である。 スパッタリング法による薄膜形成装置の比較例の構成を示す断面模式図である。 実施形態の薄膜形成方法のフローチャートの一例である。
 以下、本発明の実施形態について図面を参照して説明する。ただし、本発明の範囲は、以下に説明する具体的な実施形態例としての実施形態や図面に限定されるわけではない。
 有機EL素子は一般に、素子基板上に形成された第1電極層、当該第1電極層上に形成されかつ発光層を含む各種有機層及び当該有機層上に形成された第2電極層等の薄膜を有した構成をしている。また、外部環境から遮断・保護するために、有機EL素子の当該積層構造は、封止基板によって密閉・封止されている。
 本発明の有機EL素子用の薄膜形成装置は、形状パターンを有したマスクを用いて、気相薄膜形成法によって、真空雰囲気下で素子基板上に薄膜を形成する装置であって、内部に薄膜形成部とマスク冷却部とを有する真空チャンバと、前記マスク冷却部内のマスクの冷却装置と、前記素子基板上に薄膜の形状パターン形成させるためのマスクと、前記マスクを前記薄膜形成部と前記マスク冷却部との間を相互に移動させる移動装置とを備えることを特徴としている。
 また、本発明の有機EL素子用の薄膜形成方法は、形状パターンを有したマスクを用いて、気相薄膜形成法によって、真空チャンバ内で素子基板上に薄膜を形成する方法であって、前記真空チャンバ内の薄膜形成部にて前記素子基板上に前記薄膜を形成する工程と、前記マスクを前記薄膜形成部から前記真空チャンバ内のマスク冷却部へ移動する工程と、前記マスクを前記マスク冷却部にて冷却する工程と、冷却された前記マスクを前記マスク冷却部から前記薄膜形成部へ移動する工程とを有することを特徴としている。
 本発明において、素子基板上の電極層及び有機層等の薄膜は、気相薄膜形成法によって形成される。気相薄膜形成法には、(真空)蒸着法、スパッタリング法、CVD(Chemical Vapor Deposition)法、分子線エピタキシー法、イオンプレーティング法、レーザー堆積(アブレーション)法等がある。電極層は一般に、蒸着法やスパッタリング法によって成膜され、また有機層は一般に、蒸着法によって成膜されることが多い。そのため、以下の本実施形態においては、この両方の気相薄膜形成法について説明するが、これらの気相薄膜形成法に限定されるわけではない。
[第1実施形態]
 まず最初に、気相薄膜形成法として蒸着法を用いた第1実施形態について説明する。第1実施形態の薄膜形成装置について、図面を参照しつつ説明する。
[第1実施形態の薄膜形成装置]
 図1(a)は、第1実施形態の薄膜形成装置の構成を示す断面模式図である。
 第1実施形態の薄膜形成装置100は、真空チャンバ101内に、基板保持プレート111、素子基板102、成膜材料103を入れた成膜材料容器104、加熱用のヒータ105、シャッタ106、水晶振動子等の膜厚モニタ107、パターン形成用のマスク120、チャンバ仕切り板130及びマスクの冷却装置としての冷却プレート150が配置されている。薄膜は、基板保持プレート111、素子基板102、成膜材料容器104、加熱用のヒータ105、シャッタ106、膜厚モニタ107及びマスク120の各構成物品によって、形成されることとなる。
 図1(b)は、薄膜形成部700を示す断面模式図である。本実施形態において、薄膜形成部700とは、マスク120と成膜材料103に挟まれた空間部分であり、マスク120の周囲の最端部から垂直に伸ばした線によって囲まれる部分である。この空間には、成膜材料103が、気相となって存在し、マスク120を通して、素子基板102に付着することによって、薄膜が形成される。
 基板保持プレート111と成膜材料容器104との相互の位置関係は、必ずしも、基板保持プレート111が上方で、成膜材料容器104が下方の位置関係に限定されるわけではない。逆に、成膜材料容器104が上方で基板保持プレート111が下方の位置関係であってもよい。また、両者が同一高さで、左右に相対していてもよい。
 基板保持プレート111は、成膜中に素子基板102を保持するためのものである。基板保持プレート111は、素子基板102を成膜中に所定の温度範囲に保つために、温度制御装置によって冷却したりして温度管理することができる(不図示)。
 マスク120は、素子基板102上に所定の形状の薄膜を形成することができるような形状パターンを有している。マスク120の材質としては、線熱膨張係数の小さい金属を好ましく用いることができる。マスク120の材質としては、例えば、インバーや42アロイの合金等がある。これらの金属マスクとしては、マスクフレームにスポット溶接等で接合したものが好ましく用いられる。
 また、薄膜形成装置100は、真空チャンバ101外には、排気ポンプ108、ヒータ105の制御器109及び膜厚モニタ107の制御装置110等を備えている。排気ポンプ108は、真空チャンバ101内を減圧して、真空状態にする能力を有したものである。
 真空チャンバ101は、内部が、成膜チャンバ部101Aと冷却チャンバ部101Bとに分かれており、チャンバ仕切り板130によって仕切られている。チャンバ仕切り板130には、上部中央付近に横長の孔が開いており、この孔を通して、マスク120が成膜チャンバ部101Aと冷却チャンバ部101Bとを相互に移動できるようになっている。本実施形態では、チャンバ仕切り板130で真空チャンバ101は分割されて、薄膜形成部700とマスク冷却部とは分かれており、マスク120が両部間を移動することを特徴とするものである。但し、必ずしもチャンバ仕切り板130を必要とするものではない。本実施形態においては、薄膜形成部700は、成膜チャンバ部101A内に設置されている。
 本実施形態において、マスク冷却部とは、素子基板102上の薄膜形成に影響を与えない空間部分に存在し、マスクを冷却する部分であり、薄膜形成部700の外側にある空間部分に存在する。本実施形態では、マスク冷却部は、冷却チャンバ部101B内に設置されている。
 マスク冷却部内には、マスク120の冷却装置としての冷却プレート150が存在する。冷却プレート150は、冷却チャンバ部101B内に存在し、マスク120が冷却チャンバ部101Bに移動してきたときに、マスク120を冷却することができるような位置に設置されている。冷却プレート150は、マスク120を冷却することができるものであれば冷却方式は問わない。冷却プレート150を所定の温度に冷却するための外部装置は図示されていない。
 冷却プレート150によるマスク120の冷却方式には、以下に説明する方法がある。マスク120の冷却方式には、一般に、非接触式で輻射冷却を用いる方法と接触式にて熱交換を行う方法とがある。非接触式で輻射冷却を用いる方法では、冷却プレート150としては、冷媒を通すステンレス等の母材の表面に放射率の高い材質をコーティングしたものが好ましく用いられる。例えば、アルミナ等の溶射皮膜がある。溶射皮膜としては、数十μm程度の厚さで形成すれば充分である。また真空中での輻射冷却では、伝熱係数が低いため、-70℃程度まで冷却することが好ましい。それ以上冷却すると逆に、冷却プレート表面に水がトラップされる可能性があり、特に有機EL素子の製作上、性能劣化が生じる場合があり、好ましくない。一方、接触式で熱交換を行う方法では、冷却プレート150としては、ステンレス等の熱伝導性の良い母材が好ましく用いられる。冷却プレート150に冷媒を通し、該冷却プレート150又はマスク120の何れかを昇降させて両者を接触させることによって、マスク120は冷却される。
 マスク120の温度を測定して、マスク120の温度を正確に管理するために、マスク120には温度センサが取り付けられていることが好ましい(不図示)。温度センサとしては、直接的に温度測定するセンサや間接的に温度測定するセンサ等、特に限定されず、公知のものを使用することができる。例えば、熱電対等を使用することが可能である。
 真空チャンバ101内部を成膜チャンバ部101Aと冷却チャンバ部101Bとに仕切ることにより、成膜チャンバ部101A内で発生する各種気体状物質によって、冷却チャンバ部101B内に存在するマスク120や冷却プレート150が汚染されることを抑制することができる。また、成膜チャンバ部101A内の熱が冷却チャンバ部101B内に影響することも抑制することが可能となる。
 マスク120を成膜チャンバ部101Aと冷却チャンバ部101Bとの間を相互に移動させる移動装置は図示されていない。マスク120は、両チャンバの間を、ロボットアームや直線運動案内装置等による往復運動によってスライドさせてもよく、回転運動によって移動させてもよい。
 また、使用中のマスク120とは別に、同等のマスクを常時1式以上待機させておき、使用中のマスクを待機中のマスクと高速に取り換えることによって、マスクの交換に要する時間を節約することができ、装置の稼働率を下げずに安定生産することが可能となる。そして、マスク120を用いて成膜チャンバ部101Aにて成膜する工程とマスク120を冷却チャンバ部101Bにて冷却する工程とを同時並行して行うことができる。また、後述する素子基板102の入れ替えと並行してマスク120の交換をすることもできる。
 さらに、この薄膜形成装置100を用いて、大量の素子基板102を用意し、未成膜の素子基板102を搬入し、成膜後の素子基板102を搬出する操作を繰り返し連続して行うことができる。そのためには、素子基板102を真空チャンバ101内に搬入する装置(不図示)と素子基板102を真空チャンバ101内から搬出する装置(不図示)とを備えていることが好ましい。
 また、この薄膜形成装置100を用いて、大量の素子基板102を成膜する場合、成膜前後の素子基板102の枚数を算出する装置(不図示)を備えていることが好ましい。
[第1実施形態の薄膜形成方法]
 次に、気相薄膜形成法として蒸着法を用いた第1実施形態の薄膜形成方法について、図1~3及び図13を参照しつつ、順を追って工程について説明する。図13は、本実施形態の薄膜形成方法のフローチャートの一例である。
 まず、真空チャンバ101内の成膜材料容器104に、これから成膜しようとする成膜材料103が投入される(工程S1)。次に、薄膜形成装置100の真空チャンバ101内を排気ポンプ108によって排気して、真空チャンバ101内を所定の真空度まで減圧させる(工程S2)。有機EL素子においては、3×10-5~8×10-5Paの真空度が好ましく用いられる。
 ヒータ105に通電することで、成膜材料容器104とその内部の成膜材料103を加熱し、昇温させる(工程S3)。このとき、成膜材料103が規定の蒸発速度で安定して蒸発するように、膜厚モニタ107を用いて成膜中の成膜速度を監視し、その結果がヒータ105の制御器109にフィードバックされて、ヒータ105の出力が制御される(工程S4、工程S5)。
 一方、真空チャンバ101の成膜チャンバ部101A内に、成膜される素子基板102が搬入される(工程S6)。搬入された素子基板102は、基板保持プレート111の所定の位置に設置される(工程S7)。その後、マスク120を上昇させて、素子基板102にマスク120を接触させる(工程S8)。図2は、このときのマスク120の動作を示す断面模式図である。
 成膜材料103が安定して蒸発するようになった後に、シャッタ106が開き(工程S9)、基板保持プレート111に配置された素子基板102上に、マスク120により形成されるパターンで、薄膜形成部において薄膜が形成される(工程S10)。この際、膜厚モニタ107で計測された膜厚は、成膜速度に換算され、成膜中の成膜速度として監視される。その結果、成膜速度は、ヒータ105の制御器109にフィードバックされて、ヒータ105の出力が制御される。そして、膜厚モニタによる成膜速度と成膜時間との演算によって膜厚が計算され、所定の膜厚となるようにする(工程S11)。
 薄膜形成部にて所定の膜厚が形成された後、シャッタ106が閉められ(工程S12)、マスク120を素子基板102から離して、降下させる(工程S13)。成膜された素子基板102は、成膜チャンバ部101Aから外部へ搬出される(工程S14)。
 ここで、成膜された素子基板102の枚数を算出して、所定の枚数に到達したかどうかが確認される(工程S15)。所定の枚数に到達していないときは、次の工程S16へ進む。
 マスク120の温度の測定が行われる(工程S16)。マスク120の温度の測定は、成膜終了後、シャッタ106を閉じた状態でマスク120を降下させた後、熱電対をマスク位置まで移動させて行うことができる。
 マスク120は、繰り返し使用されることによって、成膜材料容器104から蒸発する成膜材料103によって輻射熱を受けたり、凝結時の潜熱が蓄熱されて、加熱され、熱膨張や変形が生じてしまう。その結果、形状パターンの位置ズレを生じ、有機EL素子とした際に色ズレや一対の電極間にショートが発生するといった問題を引き起こす原因となり得る。成膜材料容器104と素子基板102間の距離及び成膜材料容器104の温度と成膜時間によって、マスク120の上昇温度は異なる
 マスク120の温度の測定を行った結果、マスク120の温度が管理温度範囲の上限値を超えたときには、マスク120を薄膜形成部が存在する成膜チャンバ部101Aとマスク冷却部が存在する冷却チャンバ部101Bとの間を相互に移動させる移動装置によって、マスク120を成膜チャンバ部101Aから冷却チャンバ部101Bへ移動させる(工程S17)。図3(a)は、このときのマスク120の移動状態を示す断面模式図である。
 マスク120の管理温度範囲としては、0~50℃の範囲が望ましい。更に好ましくは10~40℃である。上限値の温度以下であると、マスク120の熱膨張や変形に伴う形状パターンの位置ズレを抑制することができる。特に有機EL素子では、膜構造に対して影響を及ぼすことを抑え、色度等の微妙な性能が変動することを防止することができる。一方、下限値の温度以上であると、有機EL素子の成膜において、マスク近傍の薄膜がマスク温度の影響を受け難くなり、成膜される膜の構造が変化して素子性能に影響が出ることを抑えることができる。
 冷却チャンバ部101B内のマスク冷却部に移動されたマスク120は、冷却チャンバ部101B内のマスク冷却部にて冷却される(工程S18)。冷却チャンバ部101B内に存在する冷却プレート150が、マスク120を冷却することができるような位置に設置されており、冷却プレート150によってマスク120が冷却される。冷却プレート150によるマスク120の冷却方式には、非接触式で輻射冷却を用いる方法と接触式にて熱交換を行う方法とがあるが、いずれでも構わない。
 冷却プレート150によるマスク120の冷却後、マスク120の温度が測定される(工程S19)。マスク120の温度が上記したマスク120の管理温度範囲内に入っていないときは、さらにマスク120の冷却工程S18が繰り返される。マスク120の温度が管理温度範囲内に入っているときは、次の工程へ進む。
 冷却されたマスク120は、マスク冷却部が存在する冷却チャンバ部101Bから薄膜形成部が存在する成膜チャンバ部101Aへ移動される(工程S20)。図3(b)は、このときのマスク120の移動状態を示す断面模式図である。このようにして、マスク120の温度を、管理したい温度範囲に維持するために、適宜マスク120を成膜空間外へ排出して、マスク120を冷却プレート150が配置された位置にて冷却させるという操作が行われる。
 冷却されたマスク120が成膜チャンバ部101Aへ移動された後、再び、真空チャンバ101の成膜チャンバ部101A内に、成膜される素子基板102が新たに搬入され(工程S6)、成膜した素子基板102の枚数が所定の枚数に到達するまで、工程S6~工程S20の工程が繰り返し行われる。
 工程S15において、成膜された素子基板102の枚数が所定の枚数に到達したときは、次の工程S21へ進む。
 当該成膜材料を用いた成膜工程を終了させるため、成膜材料容器104のヒータ105がOFFとされる(工程S21)。成膜材料容器104が規定の温度以下に低下したことを確認してから(工程S22)、真空チャンバ101内は復圧される(工程S23)。
 その後、必要に応じて、成膜材料を異なる種類のものに交換して投入することによって、上記した工程S1~工程S23が繰り返し行われることとなる。
[第2実施形態]
 次に、気相薄膜形成法としてスパッタリング法を用いた第2実施形態について説明する。第2実施形態の薄膜形成装置について、図面を参照しつつ、第1実施形態と異なる点を中心に説明する。
[第2実施形態の薄膜形成装置]
 図4(a)、図4(b)は、本発明の第2実施形態の薄膜形成装置の構成とマスクの移動状態を示す断面模式図である。
 第2実施形態の薄膜形成装置200は、真空チャンバ201内に、基板保持プレート211、素子基板202、成膜材料としてのスパッタリングターゲット224、シャッタ206、パターン形成用のマスク220、チャンバ仕切り板230及びマスクを冷却する装置である冷却プレート250が配置されている。薄膜は、基板保持プレート211、素子基板202、スパッタリングターゲット224、シャッタ206及びマスク220の各構成物品によって、形成されることとなる。
 本実施形態において、薄膜形成部(不図示)とは、マスク220とスパッタリングターゲット224に挟まれた空間部分であり、マスク220の周囲の最端部から垂直に伸ばした線によって囲まれる部分である。この空間には、スパッタリングターゲット224の成膜材料が、気相となって存在し、マスク220を通して、素子基板202に付着することによって、薄膜が形成される。
 また、薄膜形成装置200は、真空チャンバ201外には、排気ポンプ208、スパッタリングターゲットに電圧を印加するスパッタリングの制御器219等を備えている。
 真空チャンバ201は、内部が、成膜チャンバ部201Aと冷却チャンバ部201Bとに分かれており、チャンバ仕切り板230によって仕切られている。チャンバ仕切り板230には、上部中央付近に横長の孔が開いており、この孔を通して、マスク220が成膜チャンバ部201Aと冷却チャンバ部201Bとを相互に移動できるようになっている。本実施形態においては、薄膜形成部は、成膜チャンバ部201A内に設置されている。また、マスク冷却部は、冷却チャンバ部201B内に設置されている。
 真空チャンバ201、基板保持プレート211、素子基板202、シャッタ206、パターン形成用のマスク220、チャンバ仕切り板230、マスクを冷却する冷却プレート250、マスクの温度センサ、成膜チャンバ部201A、冷却チャンバ部201B、マスクを成膜チャンバ部201Aと冷却チャンバ部201Bとの間を相互に移動させる移動装置、素子基板202を真空チャンバ201内に搬入する装置、素子基板202を真空チャンバ201内から搬出する装置、成膜前後の素子基板202の枚数を算出する装置については、第1実施形態の対応する装置や治具と同様であるので、その説明を省略する。
 スパッタリング法においては、成膜材料としてのスパッタリングターゲット224と基板保持プレート211との間にスパッタリングの制御器219を用いて電圧を印加して、スパッタリングターゲット表面でプラズマを発生させる。該プラズマによってスパッタリングターゲット表面から放出された粒子を素子基板202側へ送り出すことによって、薄膜形成部において成膜が行なわれる。
[第2実施形態の薄膜形成方法]
 次に、気相薄膜形成法としてスパッタリング法を用いた第2実施形態の薄膜形成方法について、図4~5及び図13を参照しつつ、順を追って工程について説明する。
 但し、第2実施形態の薄膜形成方法においては、図13に記載された工程のうち、工程S1は工程S1aに変更し、工程S3は工程S3aに変更し、工程S4及び工程S5は存在せず、工程S11は工程S11aに変更し、工程S21は工程S21aに変更し、工程S22は工程S22aに変更する。
 まず、真空チャンバ201内に、これから成膜に用いられるスパッタリングターゲット224が設置される(工程S1a)。次に、薄膜形成装置200の真空チャンバ201内を排気ポンプ208によって排気して、真空チャンバ201内を減圧し、所定の真空度まで減圧させる(工程S2)。有機EL素子においては、5×10-4~5×10-3Paの真空度が好ましく用いられる。
 次に、Arガスを成膜チャンバーに導入し、所定の真空度まで昇圧させる。この時の真空度としては、0.1~1Paが好ましく用いることができる。
 次に、スパッタリングの制御器219によって電圧を印加して、スパッタリングターゲット224の表面でプラズマを発生させ、該プラズマによってスパッタリングターゲット表面から放出された粒子を素子基板202側へ送り出す(工程S3a)。
 一方、真空チャンバ201の成膜チャンバ部201A内に、成膜される素子基板202が搬入される(工程S6)。搬入された素子基板202は、基板保持プレート211の所定の位置に設置される(工程S7)。その後、マスク220を上昇させて、素子基板202にマスク220を接触させる(工程S8)。図5(a)は、このときのマスクの動作を示す断面模式図である。
 スパッタリングターゲット224が安定して粒子を放出するようになった後に、シャッタ206が開き(工程S9)、基板保持プレート211に配置された素子基板202上に、マスク220により形成されるパターンで、薄膜形成部において薄膜が形成される(工程S10)。
 この際、スパッタリングターゲット224と素子基板202間の距離、ターゲットに印加する電源周波数、電力及び成膜時間によって、成膜の膜厚が計算され、所定の膜厚となるようにする(工程S11a)。
 スパッタリング法を用いた気相薄膜形成法は、電極層の形成に適している。図5(b)は、第2実施形態の薄膜形成装置200のマスク220の構造を示す断面模式図である。図5(a)の一部240を拡大して示している。図5(b)におけるマスク220は、第1電極層上に引き出し電極を形成するための形状パターンの一例を示したものである。引き出し電極は、有機層及び電極層の形成後に形成する為、マスク220は有機層及び電極層との接触によるダメージを阻止するために、非接触構造となっている。そのため、マスク220は蓄熱し易い。素子基板202上には素子基板202に近い方から、第1電極層(陽極)241、有機層242、第2電極層(陰極)243の各層が形成されている。マスク220は、隙間244を有している。この隙間244からスパッタリングされた粒子が取り込まれ、膜となって、素子基板202と第1電極層241上に引き出し電極を形成することができる。
 所定の膜厚が形成された後、シャッタ206を閉め(工程S12)、マスク220を素子基板202から離して、降下させる(工程S13)。成膜された素子基板202は、成膜チャンバ部201Aから外部へ搬出される(工程S14)。
 ここで、成膜された素子基板102の枚数を算出して、所定の枚数に到達したかどうかが確認される(工程S15)。所定の枚数に到達していないときは、次の工程S16へ進む。
 工程S16~工程S20については、第1実施形態の対応する工程と同様であるので、その説明を省略する。但し、第1実施形態の図3(a)、図3(b)はそれぞれ、第2実施形態の図4(a)、図4(b)に対応している。
 工程S15において、成膜された素子基板202の枚数が所定の枚数に到達したときは、次の工程S21へ進む。
 当該成膜材料を用いた成膜工程を終了させるため、スパッタリングの制御器219がOFFとされる(工程S21a)。スパッタリングターゲット224が規定の温度以下に低下したことを確認してから(工程S22a)、真空チャンバ内は復圧される(工程S23)。
 その後、必要に応じて、スパッタリングターゲット224を異なる種類のものに交換して投入することによって、上記した工程S1~工程S23が繰り返し行われることとなる。
[第1実施形態と第2実施形態の変形例1]
 第1実施形態及び第2実施形態において、真空チャンバの成膜チャンバ部内に成膜される素子基板を搬入する工程(工程S6)、搬入された素子基板を基板保持プレートの所定の位置に設置する工程(工程S7)及び成膜された素子基板を成膜チャンバ部から外部へ搬出する工程(工程S14)は、枚葉式に素子基板を1枚毎に取り換える方法を前提に説明してきた。しかし、この素子基板を長尺のシート状とすることによって、上記工程はそれぞれ、真空チャンバの成膜チャンバ部内に素子が表面に形成された長尺のロールを搬入する工程、搬入されたロール上の素子基板を基板保持プレートの所定の位置に設置する工程、成膜された素子基板を長尺のロールとして成膜チャンバ部から外部へ搬出する工程とすることができる。このようにすることによって、これらの工程をロールツーロール方式で行うことととなり、工程時間の短縮化が図れ、より効率的に薄膜形成をすることが可能となる。
[第1実施形態と第2実施形態の変形例2]
 第1実施形態及び第2実施形態においては、真空チャンバ内は、チャンバ仕切り板によって内部が、成膜チャンバ部と冷却チャンバ部とに仕切られている。しかし、真空チャンバ内をチャンバ仕切り板によって仕切らずに、成膜を行うことも可能である。薄膜形成部とマスク冷却部とを距離を置いて、相互に影響を及ぼすことがないように切り離すことによって、同一のチャンバ空間内に薄膜形成部とマスク冷却部とを置いて、本発明の薄膜形成をすることが可能である。
[比較例]
 以下、本発明の比較例となる形態について、図7~図12を参照しつつ説明する。
 図7は、蒸着法による薄膜形成装置の比較例の構成を示す断面模式図である。この薄膜形成装置300Aでは、基板保持プレート331は冷却ポンプ330を用いて冷却されるようになっている。マスク320を素子基板302を介して基板保持プレート331に押し当てることによって、マスク320を冷却する方法であるが、この方法では、充分な熱伝導を得ることが困難であり、特にプラスチック基板等では熱伝導が更に悪くなり、繰り返し使用には耐えることができない。
 図11は、スパッタリング法による薄膜形成装置の比較例の構成を示す断面模式図である。この薄膜形成装置500も図7と同様に基板保持プレート511は冷却ポンプ530を用いて冷却されるようになっている。この装置及び方法の問題点は図7の場合と同様であるので、説明を省略する。
 図8は、蒸着法による薄膜形成装置の比較例の構成を示す断面模式図である。この薄膜形成装置300Bでは、マスクの枠342は冷却ポンプ341を用いて冷却されるようになっている。マスクの枠を冷却する方法では、マスク自体の効果的な冷却が困難である。
 図9は、蒸着法による薄膜形成装置の比較例の構成を示す断面模式図である。この薄膜形成装置300Cでは、シャッタ356は冷却ポンプ352を用いて冷却されるようになっている。シャッタ356に冷却機能を持たせ、成膜面側から冷却する方法では、マスク356自体の冷却は可能である。しかし、有機EL素子を形成する上で、形成された膜が表面から熱履歴を受けるため、表面性能が変わる。特に有機層においては、性能、特に色度の変動が生じる。
 図10は、蒸着法による薄膜形成装置の比較例の構成を示す断面模式図である。この薄膜形成装置400では、マスク420を冷却するための冷却プレート451が、成膜チャンバ部401Aと冷却チャンバ部401Bとの間を相互に移動させることができるようになっている。しかし、この方法では、成膜チャンバ部401A内の雰囲気温度が、熱容量が大きい冷却プレート451の繰り返し移動によって変動する。そのため、有機EL素子を形成する上で、形成された膜が表面から熱履歴を受けるため、表面性能が変わる。特に有機層においては、性能、特に色度の変動が生じる。
 図12は、スパッタリング法による薄膜形成装置の比較例の構成を示す断面模式図である。この薄膜形成装置600では、マスク620を冷却するための冷却プレート651が、成膜チャンバ部601Aと冷却チャンバ部601Bとの間を相互に移動させることができるようになっている。この装置及び方法の問題点は図10の場合と同様であるので、説明を省略する。
 以上、説明してきたように、本発明の実施形態の薄膜形成装置と薄膜形成方法によれば、成膜時にマスクの温度を所定の温度範囲に管理することが可能であり、マスクが変形することを抑制し、成膜パターンの形状精度を保持し、有機EL素子用の薄膜を継続して安定的に製造することが可能である。
 本発明の電極層及び有機層の具体的な成膜材料、素子基板の具体的な材質等は、公知の材料等を適用することが可能であるため、その説明を省略する。
 以下、実施例により、本発明の薄膜形成装置及びこの薄膜形成装置を用いた薄膜形成方法について、比較例も含めて具体的に説明するが、本発明はこれらに限定されるものではない。
[実施例1]
(基材の準備)
 素子基板の基材として、2軸延伸ポリエチレンナフタレートフィルム(PENフィルム、厚さ:100μm、幅:350mm、帝人デュポンフィルム(株)製、商品名「テオネックスQ65FA」)を用いた。
(下地層の形成)
 素子基板の基材の易接着面に、UV硬化型有機/無機ハイブリッドハードコート材 OPSTARZ7501(JSR株式会社製)を乾燥後の膜厚が4μmになるようにワイヤーバーで塗布した。80℃で3分乾燥した後、空気雰囲気下にて高圧水銀ランプ使用して1.0J/cmの照射を行って硬化させ、下地層を形成した。
(第1電極層の形成)
 上記素子基板の基材の下地層上に、厚さ150nmのITO膜(インジウムチンオキシド)をスパッタリング法により成膜し、フォトリソグラフィー法によりパターニングを行い、第1電極(陽極)層を形成した。なお、パターンは、発光面積が50mm平方になるようなパターンとして形成した。
(発光ユニットの形成)
 引き続き、図1(a)に示す薄膜形成装置100に図示していないが複数の成膜材料容器を備えた薄膜形成装置100を用い、真空度5×10-5Paまで減圧した後、素子基板上に化合物HT-1を、蒸着速度0.1nm/秒で蒸着し、20nmの正孔輸送層(HTL)を設けた。このとき、マスクの温度は、30~50℃となるように、適宜マスク冷却部において、マスクを冷却しつつ成膜を行った。以下の各層を成膜するときも、同様にマスクの温度制御を行った。
 次いで、ホスト材料H-1が入った成膜材料容器と、リン光発光性の化合物A-3(青色発光ドーパント)、化合物A-1(緑色発光ドーパント)、化合物A-2(赤色発光ドーパント)が入ったそれぞれの成膜材料容器を独立に通電し、ホスト材料H-1と各色のリン光発光性化合物とからなる発光層を、正孔輸送層上に成膜した。この際、蒸着速度が、ホスト化合物H-1:化合物A-3(青色発光ドーパント):化合物A-1(緑色発光ドーパント):化合物A-2(赤色発光ドーパント)=88:7:4:1(体積比)となるように、成膜材料容器の通電を調節した。また膜厚30nmとした。
 その後、化合物ET-1を膜厚30nmに蒸着して電子輸送層(ETL)を形成した。
 なお、上記化合物HT-1、化合物A-1~3、化合物H-1、及び化合物ET-1は、下式(化1)に示す化合物である。
 
Figure JPOXMLDOC01-appb-C000001
(第2電極層の形成)
 次いで、フッ化カリウム(KF)層を厚さ2nmで形成した後、アルミニウムを厚さ110nmで蒸着して第2電極(陰極)層を形成した。
 (封止)
 第2電極(陰極)層まで作製した試料を、厚さ100μmのアルミ箔の片面に熱硬化型の液状接着剤(エポキシ系樹脂)を厚さ30μmで塗設してある封止部材を用いて、有機EL素子の第1電極層、第2電極層の引き出し電極の端部が外に出るように、封止部材の接着剤面と、有機EL素子の有機層面を連続的に重ね合わせ、ドライラミネート法により接着を行って、封止済みの有機EL素子1を作製した。
 上記封止工程は成膜工程と連結しており、大気圧下、含水率1ppm以下の窒素雰囲気下で、JIS B 9920に準拠し、測定した清浄度がクラス100で、露点温度が-80℃以下、酸素濃度0.8ppm以下の大気圧で行った。
 上記有機EL素子1を製造する操作を10回以上連続して行い、第1回目の有機EL素子(1バッチ目)と第10回目の有機EL素子(10バッチ目)について、マスク温度、基板温度、発光効率、駆動電圧、色度変動(色度安定性)を以下の方法で評価した。その結果は、表1に示す。
(マスク温度)
 成膜終了後、シャッタを閉じた状態でマスクを降下させた後、熱電対をマスク位置まで移動させ、マスクの温度計測(℃)を行った。
(基板温度)
 素子基板表面にサーモラベル(日油技研工業製)を貼り付け、更にその上からポリイミド粘着テープ60μm厚(日東電工製)を貼り付け、成膜後ポリイミド粘着テープを剥がし、サーモラベルの変色温度を読み取り、基板温度(℃)とした。
(発光効率)
 有機EL素子1を室温(25℃)下、2.5mA/cm定電流を印加したときの発光輝度(cd/m)を、CS-1000(コニカミノルタオプティクス社製)を用いて測定し、外部量子効率を求めた。下記式から、比較例1の1バッチ目の外部量子効率を基準として、実施例又は比較例の各外部量子効率の相対値を求め、発光効率(%)とした。
 発光効率(%)=100×(実施例又は比較例の各外部量子効率)/(比較例1の1バッチ目の外部量子効率)
(駆動電圧)
 有機EL素子1を室温下、1,000cd/mの定輝度条件下による点灯を行い、点灯開始直後の駆動電圧(V)を測定した。下記式から、比較例1の1バッチ目の1,000cd/m発光時の駆動電圧(V)を基準として、実施例又は比較例の各1,000cd/m発光時の駆動電圧(V)の相対値を求め、相対的な駆動電圧(%)とした。なお、相対的な駆動電圧(%)は、大きい方が省エネルギー上好ましい。
 相対的な駆動電圧(%)=100×(比較例1の1バッチ目の駆動電圧)/(実施例又は比較例の駆動電圧)
(調光時の色度変動)
 有機EL素子を室温下、輝度を200cd/cmから5,000cd/cmまで駆動し、その間の色度x値及びy値で表される座標上での直線距離、すなわち色度変動幅の絶対値を測定した。色度変動幅の絶対値は、各有機EL素子毎に50回測定し、その色度標準偏差を求めた。下記式から、比較例1の1バッチ目の色度標準偏差を基準として、実施例と比較例の各色度標準偏差の相対値を求め、色度変動(%)とした。
 色度変動(%)=100×(比較例1の1バッチ目の色度標準偏差)/(実施例又は比較例の色度標準偏差)
 調光時の色度変動幅は小さく、上記色度変動としては大きいことが好ましい。これは、有機EL素子に電力可変の駆動回路を接続して照明装置を形成した場合に、照明装置の明るさを調整してもその照明色が安定しているので、照明対象物の演色性を安定に維持できることを意味している。
[実施例2]
 実施例2では、実施例1で作製する有機EL素子1において、封止前の試料を用いて、引き出し配線としてAl-Nd合金を図4に示す薄膜形成装置200を用いて成膜を行った。なお、陽極、陰極等の形成に関する記載は、実施例1と同様であるので、その説明を省略する。
 この際、引き出し電極を成膜しない部分には、既に有機EL素子が形成されており、マスクとの接触による素子ダメージが懸念されるため、マスクが素子に対し接触しない様に、マスクの断面構造を図5(b)に示す非接触構造とした。この時のスパッタリング法による成膜条件は、Arガス流量50cc/min、圧力0.5Pa、出力1kWとし、厚さ500nmを成膜した。
 また上記成膜を3バッチ行う毎にマスクを成膜空間外へ移動させ冷却後、再度成膜空間へ戻し連続成膜を繰り返した。
 陽極、陰極から引き出し電極を形成した後、前記封止工程で封止を行い、有機EL素子2を作製した。実施例1と同様に、上記有機EL素子2を製造する操作を10回以上連続して行い、第1回目の有機EL素子(1バッチ目)と第10回目の有機EL素子(10バッチ目)について評価を行った。引き出し電極に関しては、パターン精度から来る電極間接触に伴う電流リークを評価するため、整流比を評価した。またバリア基材との密着性も評価した。その結果を表2に示す。
(整流比)
 有機EL素子を室温下、500μA/cm流れる順電圧とその逆電圧による電流値より整流比を算出した。表2において、整流比の数値として、例えば「10^5」と記載したものは、10の5乗であることを意味している。
(密着性)
 碁盤目密着性の評価は、JIS K 5600の5.6(2004年度版)の記載に準じ、成膜面の片側からカッターナイフで、引き出し電極を貫通し基材に達する1mm角の碁盤目状の切り傷をカッターガイドを用いて付け、セロハン粘着テープ(ニチバン社製「CT405AP-18」;18mm幅)を切り傷面に貼り付け、消しゴムで上からこすって完全にテープを付着させた後、垂直方向に引き剥がして、引き出し電極が基板表面にどのくらい残存しているかを目視で確認して行った。
 100個中の剥離数を調べ、下記の基準で評価した。
 ○:碁盤目試験にて全く剥離無し
 △:碁盤目試験にて剥離面積が1~10%
 ×:碁盤目試験にて剥離面積が11%以上
[比較例1]
 比較例1は、実施例1において、発光層の作製条件のみを変更した。具体的には、図7に示す蒸着装置300Aを用い、成膜時にマスク320を基板保持プレート331に設けたマグネットで引き付けて、素子基板302越しに冷却を行った。実施例1と同様に、マスク温度、基板温度、発光効率、駆動電圧、調光時の色度変動を評価した。その結果を表1に示す。
[比較例2]
 比較例2は、実施例1において、発光層の作製条件のみを変更した。具体的には、図10に示す薄膜形成装置400を用い、成膜を行わないシャッタ406を閉じた状態において、冷却プレート451を成膜チャンバ部401Aに挿入して、マスク420の冷却を行った以外は、実施例1と同様に行って試料を作製した。実施例1と同様に、マスク温度、基板温度、発光効率、駆動電圧、調光時の色度変動を評価した。その結果を表1に示す。
[比較例3]
 比較例3は、実施例2において、Al-Nd引き出し電極のスパッタリング法による成膜において、図11に示す薄膜形成装置500を用い、成膜時にマスク520を基板保持プレート511に押し当てて、素子基板502越しに冷却を行った。実施例2と同様に、マスク温度、基板温度、整流比、バリア基材との密着性を評価した。その結果を表2に示す。
[比較例4]
 比較例4は、実施例2において、Al-Nd引き出し電極のスパッタリング法による成膜において、図12に示す薄膜形成装置600を用い、成膜を行わないシャッタ606を閉じた状態において、冷却プレート651を成膜チャンバ部601Aに挿入して、マスク620の冷却を行った以外は、実施例2と同様に行って試料を作製した。実施例2と同様に、マスク温度、基板温度、整流比、バリア基材との密着性を評価した。その結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表1及び表2の結果から分かるように、本発明の実施形態によって得られた実施例1の有機EL素子1は、1バッチ目及び10バッチ目において、マスク温度及び基板温度が低く、発光効率、駆動電圧及び色度変動において優れた性能を有したものであった。また、実施例2の有機EL素子2は、1バッチ目及び10バッチ目において、マスク温度及び基板温度が低く、整流比及びバリア基材との密着性において、優れた性能を有したものであった。
 一方、比較例1及び2は、1バッチ目に比べて10バッチ目の性能が低下し、発光効率、駆動電圧及び色度変動のいずれかの性能において劣るものであった。また、比較例3及び4は、1バッチ目に比べて10バッチ目の性能が低下し、整流比及びバリア基材との密着性のいずれかの性能において、劣るものであった。
 100、200、300、400、500、600 薄膜形成装置
 101、201、301、401、501、601 真空チャンバ
 101A、201A、301A、401A、591A、601A 成膜チャンバ部
 101B、201B、301B、401B、591B、601B 冷却チャンバ部
 102、202、302、402、502、602 素子基板
 103、203、303、403 成膜材料
 104、204、304、404 成膜材料容器
 105、205、305、405 ヒータ
 106、206、306、406、506、606 シャッタ
 107、207、307、407 膜厚モニタ
 108、208、308、408、508、608 排気ポンプ
 109、209、309、409、509、609 ヒータの制御器
 110、210、310、410 膜厚モニタの制御装置
 111、211、311、411、511、611 基板保持プレート
 120、220、320 マスク
 130、230、430、630 チャンバ仕切り板
 150、250、451、651 冷却プレート
 219、519、619 スパッタリングの制御器
 224、524、624 スパッタリングターゲット
 330、341、352、530 ポンプ
 700 薄膜形成部

Claims (2)

  1.  形状パターンを有したマスクを用いて、気相薄膜形成法によって、真空雰囲気下で素子基板上に薄膜を形成する装置であって、
     内部に薄膜形成部とマスク冷却部とを有する真空チャンバと、
     前記マスク冷却部内のマスクの冷却装置と、
     前記素子基板上に薄膜の形状パターン形成させるためのマスクと、
     前記マスクを前記薄膜形成部と前記マスク冷却部との間を相互に移動させる移動装置と
     を備えることを特徴とする有機エレクトロルミネッセンス素子用の薄膜形成装置。
  2.  形状パターンを有したマスクを用いて、気相薄膜形成法によって、真空チャンバ内で素子基板上に薄膜を形成する方法であって、
     前記真空チャンバ内の薄膜形成部にて前記素子基板上に前記薄膜を形成する工程と、
     前記マスクを前記薄膜形成部から前記真空チャンバ内のマスク冷却部へ移動する工程と、
     前記マスクを前記マスク冷却部にて冷却する工程と、
     冷却された前記マスクを前記マスク冷却部から前記薄膜形成部へ移動する工程と
     を有することを特徴とする有機エレクトロルミネッセンス素子用の薄膜形成方法。
PCT/JP2013/081942 2012-11-28 2013-11-27 有機エレクトロルミネッセンス素子用の薄膜形成装置と薄膜形成方法 WO2014084270A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014549870A JPWO2014084270A1 (ja) 2012-11-28 2013-11-27 有機エレクトロルミネッセンス素子用の薄膜形成装置と薄膜形成方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012260362 2012-11-28
JP2012-260362 2012-11-28

Publications (1)

Publication Number Publication Date
WO2014084270A1 true WO2014084270A1 (ja) 2014-06-05

Family

ID=50827902

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/081942 WO2014084270A1 (ja) 2012-11-28 2013-11-27 有機エレクトロルミネッセンス素子用の薄膜形成装置と薄膜形成方法

Country Status (2)

Country Link
JP (1) JPWO2014084270A1 (ja)
WO (1) WO2014084270A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018073309A1 (de) * 2016-10-20 2018-04-26 Aixtron Se Beschichtungsvorrichtung mit in schwerkraftrichtung unter dem substrat angeordnetem gaseinlassorgan
CN112289711A (zh) * 2020-10-23 2021-01-29 西北工业大学 用于生长半导体薄膜的低温型衬底加热台及其制作方法
CN112813388A (zh) * 2019-11-18 2021-05-18 佳能特机株式会社 成膜装置、使用其的成膜方法及电子器件的制造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07188914A (ja) * 1993-12-28 1995-07-25 Shin Etsu Chem Co Ltd 成膜方法およびスパッター装置
JP2009215625A (ja) * 2008-03-12 2009-09-24 Seiko Epson Corp 蒸着用マスク部材、マスク蒸着方法、および有機エレクトロルミネッセンス装置の製造方法
JP2010265497A (ja) * 2009-05-13 2010-11-25 Canon Inc 蒸着方法及び蒸着装置
WO2012053430A1 (ja) * 2010-10-19 2012-04-26 株式会社アルバック 蒸着装置及び蒸着方法
WO2013118764A1 (ja) * 2012-02-06 2013-08-15 東京エレクトロン株式会社 成膜装置及び成膜方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07188914A (ja) * 1993-12-28 1995-07-25 Shin Etsu Chem Co Ltd 成膜方法およびスパッター装置
JP2009215625A (ja) * 2008-03-12 2009-09-24 Seiko Epson Corp 蒸着用マスク部材、マスク蒸着方法、および有機エレクトロルミネッセンス装置の製造方法
JP2010265497A (ja) * 2009-05-13 2010-11-25 Canon Inc 蒸着方法及び蒸着装置
WO2012053430A1 (ja) * 2010-10-19 2012-04-26 株式会社アルバック 蒸着装置及び蒸着方法
TW201219585A (en) * 2010-10-19 2012-05-16 Ulvac Inc Deposition apparatus and deposition method
WO2013118764A1 (ja) * 2012-02-06 2013-08-15 東京エレクトロン株式会社 成膜装置及び成膜方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018073309A1 (de) * 2016-10-20 2018-04-26 Aixtron Se Beschichtungsvorrichtung mit in schwerkraftrichtung unter dem substrat angeordnetem gaseinlassorgan
CN112813388A (zh) * 2019-11-18 2021-05-18 佳能特机株式会社 成膜装置、使用其的成膜方法及电子器件的制造方法
CN112813388B (zh) * 2019-11-18 2023-07-25 佳能特机株式会社 成膜装置、使用其的成膜方法及电子器件的制造方法
CN112289711A (zh) * 2020-10-23 2021-01-29 西北工业大学 用于生长半导体薄膜的低温型衬底加热台及其制作方法
CN112289711B (zh) * 2020-10-23 2024-04-26 西北工业大学 用于生长半导体薄膜的低温型衬底加热台及其制作方法

Also Published As

Publication number Publication date
JPWO2014084270A1 (ja) 2017-01-05

Similar Documents

Publication Publication Date Title
JP4526776B2 (ja) 発光装置及び電子機器
JP5322354B2 (ja) 製造装置
US20050153472A1 (en) Thin film formation method, thin film formation equipment, method of manufacturing organic electroluminescence device, organic electroluminescence device, and electronic apparatus
JP2003115387A (ja) 有機発光素子及びその製造方法
JP2004307976A (ja) マスク、容器、および製造装置
JP2008270187A (ja) 成膜装置、製造装置、成膜方法、および発光装置の作製方法
JP2006085933A (ja) 表示装置の製造方法及び製造装置
CN1596048A (zh) 有机发光显示器、阴极复合层及其制造方法
WO2014084270A1 (ja) 有機エレクトロルミネッセンス素子用の薄膜形成装置と薄膜形成方法
KR101570072B1 (ko) 박막 증착장치
JP2010505257A (ja) 有機発光ディスプレイ及びその製造方法
JP2002124379A (ja) 有機el装置の製造方法
US20090051280A1 (en) Light-emitting device, method for manufacturing light-emitting device, and substrate processing apparatus
JP2002313567A (ja) 有機電界発光素子及びその製造方法
JP4515060B2 (ja) 製造装置および有機化合物を含む層の作製方法
JP5729749B2 (ja) 有機エレクトロルミネッセンス素子の製造方法
JP4589346B2 (ja) 有機エレクトロルミネッセンス素子及びパネルの製造方法と製造装置
JP2001085164A (ja) 有機エレクトロルミネッセンス素子及びパネルの製造方法と製造装置
Tam et al. Low-temperature conformal vacuum deposition of OLED devices using close-space sublimation
JP2007109592A (ja) 有機エレクトロルミネッセンスパネルの製造方法
WO2018133143A1 (zh) Oled封装方法
WO2012121238A1 (ja) 蒸着用シート、蒸着装置、及び蒸着用シートの製造方法
WO2012121237A1 (ja) 蒸着装置及び薄膜形成方法
KR101514214B1 (ko) 기판과 마스크의 어태치 장치
JP2014509050A (ja) 薄膜により封止された有機発光ダイオード及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13858317

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014549870

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13858317

Country of ref document: EP

Kind code of ref document: A1