WO2014083698A1 - アブレーションカテーテル - Google Patents

アブレーションカテーテル Download PDF

Info

Publication number
WO2014083698A1
WO2014083698A1 PCT/JP2012/081168 JP2012081168W WO2014083698A1 WO 2014083698 A1 WO2014083698 A1 WO 2014083698A1 JP 2012081168 W JP2012081168 W JP 2012081168W WO 2014083698 A1 WO2014083698 A1 WO 2014083698A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat transfer
transfer body
catheter
peripheral surface
balloon
Prior art date
Application number
PCT/JP2012/081168
Other languages
English (en)
French (fr)
Inventor
義昭 長嶋
内山 靖二郎
達道 藤原
Original Assignee
株式会社グツドマン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社グツドマン filed Critical 株式会社グツドマン
Priority to PCT/JP2012/081168 priority Critical patent/WO2014083698A1/ja
Priority to JP2014549742A priority patent/JP6059737B2/ja
Publication of WO2014083698A1 publication Critical patent/WO2014083698A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1492Probes or electrodes therefor having a flexible, catheter-like structure, e.g. for heart ablation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00053Mechanical features of the instrument of device
    • A61B2018/00214Expandable means emitting energy, e.g. by elements carried thereon
    • A61B2018/0022Balloons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00791Temperature
    • A61B2018/00821Temperature measured by a thermocouple
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B2018/1405Electrodes having a specific shape
    • A61B2018/144Wire

Definitions

  • the present invention relates to an ablation catheter.
  • ablation catheters have been used in the treatment of cardiac arrhythmias and hypertension.
  • the ablation catheter includes an electrode on the distal end side of the catheter.
  • this electrode is provided in close contact with a lesion site such as an arrhythmia source, and the lesion site is burned by energizing the electrode with high frequency in this state.
  • energization with high frequency is performed in the renal artery, thereby performing renal sympathetic denervation (Renak denervation) running around the renal artery in a mesh manner.
  • Patent Document 1 discloses an ablation catheter using a balloon catheter.
  • a plurality of electrode wires are provided on the outer surface of the balloon so as to extend in the axial direction, and by inflating the balloon, each electrode wire is brought into close contact with the lesion site to cause burning. It has become a thing.
  • the incineration is performed while controlling the temperature around the ablation site (incineration temperature) in order to incinerate at an appropriate temperature.
  • a temperature sensor for detecting the temperature around the ablation site is required, and for example, a thermocouple is used as the temperature sensor in this case.
  • thermocouple is provided, for example, with respect to an electrode wire arranged at a fuel part.
  • thermocouple in the catheter of the said patent document 1 which has a some electrode wire, it is possible to provide a thermocouple for every electrode wire, respectively.
  • the outer diameter of the catheter is increased correspondingly, and there is a possibility that the insertion property of the catheter is reduced.
  • the work of providing a thermocouple for each electrode wire is laborious and may increase the number of work steps.
  • a main object of the present invention is to provide an ablation catheter capable of improving the insertion property and reducing the number of work steps when providing a temperature detection line in a configuration including a plurality of electrode wires. To do.
  • an ablation catheter of the first invention includes a tubular catheter body and a plurality of electrode wires provided on the outer peripheral side of the catheter body on the distal end side of the catheter body.
  • the ablation catheter includes a heat transfer body to which each of the electrode wires is connected, and a temperature detection line that is provided on the heat transfer body and has a temperature detection unit that detects the temperature of the heat transfer body.
  • a plurality of electrode wires provided on the outer peripheral side of the catheter body are connected to the heat transfer body, and a temperature detection portion of the temperature detection line is provided for the heat transfer body. ing.
  • ablation cauterization
  • the heat of the ablation site is transferred to the heat transfer body via the electrode wire, and the temperature of the heat transfer body is detected by temperature detection. Detected by the part.
  • the temperature control of the ablation site can be performed based on the detected temperature.
  • one temperature detection line can be shared for a plurality of electrode lines. Therefore, for example, only one temperature detection line needs to be provided, and the number of temperature detection lines can be reduced as compared with the case where a temperature detection line is provided for each electrode line. As a result, the outer diameter of the catheter can be reduced by that amount, so that the insertion property can be improved, and the number of work steps for providing the temperature detection line can be reduced.
  • the ablation catheter of the second invention is characterized in that, in the first invention, the heat transfer body is provided along the outer peripheral surface so as to surround the outer peripheral surface of the catheter body.
  • the heat transfer body is provided so as to surround the outer peripheral surface of the catheter body, it is possible to secure a wide area in the heat transfer body where the electrode wires can be connected in the catheter outer peripheral direction.
  • the several electrode wire is arrange
  • the ablation catheter according to a third aspect of the present invention is the ablation catheter according to the second aspect, wherein the plurality of electrode wires are connected to either the inner peripheral surface side or the outer peripheral surface side of the heat transfer body, and the other side is A temperature detector is provided.
  • the temperature detection section is arranged on the heat transfer body. It can suppress that an electrode wire becomes obstructive. Thereby, the operation
  • An ablation catheter according to a fourth invention is the ablation catheter according to the third invention, wherein the heat transfer body is made of metal, the temperature detection line is a thermocouple, and a hot junction as the temperature detection unit in the thermocouple is provided.
  • the heat transfer body is provided on the other side of the heat transfer body with an insulating layer interposed between the heat transfer body and the heat transfer body.
  • thermocouples detect temperature based on the voltage difference generated between the joints of two different types of metal wires
  • the hot junction is made of a metal that is the object of temperature detection. It is necessary to provide the heat transfer body in a state of being electrically insulated. Therefore, in the present invention, in view of this point, the hot junction of the thermocouple is provided in a state where an insulating layer is interposed with respect to the heat transfer body. Thereby, the temperature of the heat transfer body can be suitably detected without being affected by the power flowing from the electrode wire to the heat transfer body.
  • the ablation catheter of the fifth invention is characterized in that, in any of the second to fourth inventions, the plurality of electrode wires are connected to the outer peripheral surface of the heat transfer body.
  • the electrode wires are transmitted as compared with the configuration in which the plurality of electrode wires are connected to the inner peripheral surface of the heat transfer body. The operation of connecting to the heat body can be facilitated.
  • the ablation catheter according to a sixth aspect of the present invention is the invention according to any one of the second to fifth aspects, wherein the temperature detection unit is sandwiched between the inner peripheral surface of the heat transfer body and the outer peripheral surface of the catheter body. Is provided.
  • the temperature detection unit is provided between the inner peripheral surface of the heat transfer body and the outer peripheral surface of the catheter body, the temperature detection unit can be easily adhered to the heat transfer body side, It becomes possible to detect the temperature of a heat exchanger suitably.
  • An ablation catheter according to a seventh invention is the ablation catheter according to the sixth invention, wherein the heat transfer body is made of metal, the temperature detection line is composed of a thermocouple, and the hot junction as the temperature detection unit in the thermocouple is The outer peripheral surface of the catheter main body is provided in a state of being covered from the outside by an insulating material, and the heat transfer body is disposed outside the insulating material so that the hot junction contacts the heat transfer body. It is sandwiched between the catheter body.
  • the hot junction of the thermocouple is provided on the outer peripheral surface of the catheter body while being covered from the outside by the insulating material, and the metal heat transfer body is disposed outside the insulating material. Therefore, an insulating material is interposed between the hot junction and the heat transfer body. Thereby, the temperature of the heat transfer body can be suitably detected by the hot junction without being affected by the electric power flowing from the electrode wire to the heat transfer body.
  • the hot junction is sandwiched between the heat transfer body and the catheter body, it is easy to make the hot contact close to the heat transfer body side (specifically, an insulating material), and therefore, between the hot contact and the heat transfer body. Even in the configuration in which the insulating material is interposed, the temperature of the heat transfer body can be suitably detected.
  • the ablation catheter according to an eighth aspect of the present invention is the ablation catheter according to any one of the first to seventh aspects, wherein the outer peripheral surface of the catheter body is covered with a cover tube so as to cover the heat transfer body from the outside.
  • the cover tube and the catheter body are joined to each other to prevent blood from entering the heat transfer body.
  • the cover tube is covered so as to cover the heat transfer body on the outer peripheral surface of the catheter main body, and blood enters the heat transfer body side by joining the cover tube and the catheter main body. Is prevented. Accordingly, it is possible to prevent blood from entering the heat transfer body and causing the heat transfer body to be cooled, so that the temperature of the heat transfer body can be suitably detected.
  • An ablation catheter is the ablation catheter according to any one of the first to eighth aspects, wherein the catheter body includes a balloon having an inflating portion that is inflated or deflated using a fluid on a distal end side thereof.
  • the plurality of electrode wires are provided on the outer peripheral side of the balloon so as to straddle at least the expansion portion in the axial direction of the balloon, and the heat transfer body has an annular shape surrounding the outer peripheral surface of the catheter body. And provided on either side of the expansion portion in the axial direction and joined to one end portion of the plurality of electrode wires, and the heat transfer body accompanies expansion of the expansion portion.
  • the annular member can operate following the displacement of the electrode wire accompanying the expansion of the expansion portion. It is characterized by that.
  • the heat transfer body can operate following the displacement of the electrode wire accompanying the expansion of the balloon, or an annular member joined to each of the other end portions of the plurality of electrode wires is provided.
  • the annular member can operate following the displacement of the electrode wire accompanying the inflation of the balloon.
  • An ablation catheter according to a tenth aspect of the present invention is the ablation catheter according to any one of the first to ninth aspects, wherein one end of each of the plurality of electrode wires is connected to the lead wire via the heat transfer body, and the other end also It is connected to a lead wire, and each of the plurality of electrode wires is supplied with electric power from a power supply device through each lead wire.
  • FIG. 1 is a schematic overall side view of a balloon catheter. It is a side view which shows the structure of a balloon and its periphery, (a) shows the inflated state of a balloon, (b) has shown the deflated state of the balloon.
  • A) is a longitudinal cross-sectional view which shows the structure of a balloon and its periphery, (b) is an enlarged view of the area
  • FIG. 4 is a cross-sectional view taken along line AA in FIG. Explanatory drawing for demonstrating the work procedure at the time of providing an electrode wire on a balloon.
  • (A) is a side view showing a configuration of a balloon and its surroundings in another embodiment, and (b) is a cross-sectional view taken along line BB of (a).
  • (A) is a side view which shows the structure of the balloon in other embodiment, and its periphery, (b) is an enlarged view of the area
  • the longitudinal cross-sectional view which shows the state which connected the lead wire to the cyclic
  • FIG. 1 is a schematic overall side view of a balloon catheter 10.
  • a balloon catheter 10 includes a catheter tube 11, a connector 12 attached to the proximal end (base end) of the catheter tube 11, and a distal end (tip end) of the catheter tube 11. ) Attached to the balloon 13.
  • the catheter tube 11 is composed of a plurality of tubes, and has an inner / outer multiple tube structure (inner / outer double tube structure) from at least an intermediate position in the axial direction to the position of the balloon 13.
  • the catheter tube 11 includes an outer tube 15 and an inner tube 16 having an inner diameter and an outer diameter smaller than the outer tube 15, and the inner tube 16 is inserted into the outer tube 15.
  • the above multi-tube structure is used.
  • Both the outer tube 15 and the inner tube 16 are made of polyamide resin so as to have a predetermined flexibility.
  • polyamide resin it is not limited to polyamide resin, and synthetic resin materials such as polyethylene resin, polypropylene resin, polyurethane resin, and polyimide resin can be used.
  • An additive may be mixed with the base material using the synthetic resin materials described above.
  • the outer tube 15 and the inner tube 16 may be formed using different synthetic resin materials.
  • the inner tube 16 is provided to extend to the distal end side from the outer tube 15, and the balloon 13 is provided so as to cover the extended region from the outside.
  • the outer tube 15 is formed in a tubular shape having outer tube holes 15a (see FIG. 3) that are continuous over the entire axial direction and open at both ends.
  • the outer tube hole 15a communicates with the inner space of the balloon 13, and functions as a fluid lumen through which a compressed fluid flows when the balloon 13 is inflated or deflated.
  • the inner tube 16 is formed in a tubular shape having inner tube holes 16a (see FIG. 3) that are continuous over the entire axial direction and open at both ends.
  • the catheter tube 11 and the balloon 13 constitute a tubular catheter body.
  • FIGS. 2A and 2B are side views showing the configuration of the balloon 13 and its surroundings.
  • FIG. 2A shows the inflated state of the balloon 13 and
  • FIG. 2B shows the deflated state of the balloon 13.
  • 3A is a longitudinal sectional view showing the configuration of the balloon 13 and its surroundings
  • FIG. 3B is an enlarged view of a region C1 in FIG. 3A
  • FIG. 3C is FIG. It is an enlarged view of the area
  • the balloon 13 is provided so as to cover the region of the inner tube 16 that extends more distally than the outer tube 15 from the outside, as described above.
  • the proximal end is joined to the distal end of the outer tube 15, and the distal end is joined to the distal end of the inner tube 16.
  • the balloon 13 is made of a thermoplastic polyamide elastomer.
  • a thermoplastic polyamide elastomer it is not limited to polyamide elastomer as long as it can expand and contract well with fluid supply and discharge, and other thermoplastic resins may be used, such as polyethylene, polyethylene terephthalate, polypropylene, polyurethane, Polyamide, polyimide, polyimide elastomer, silicon rubber, etc. can also be used.
  • the compound for exhibiting a desired function and another polymer may be added with respect to the said thermoplastic resin.
  • the balloon 13 has joint portions at both ends joined to the catheter tube 11 and an inflating portion between the joint portions. More specifically, the balloon 13 is tapered such that the proximal leg region 13a joined to the distal end of the outer tube 15 and the inner diameter and the outer diameter are continuously expanded toward the distal end side.
  • the proximal cone region 13b having a shape, the straight tube region 13c having the same inner diameter and outer diameter throughout the length direction and forming the maximum outer diameter region of the balloon 13, and the inner and outer diameters toward the distal end side.
  • the distal cone region 13d which is tapered so that the diameter is continuously reduced, and the distal leg region 13e joined to the distal end side of the inner tube 16 are arranged in this order from the proximal side. Have.
  • the joining of the outer tube 15 and the proximal leg region 13a and the joining of the inner tube 16 and the distal leg region 13e are both performed by thermal welding. However, these bondings are not necessarily performed by heat welding, and may be performed using an adhesive or the like.
  • proximal cone region 13b, the straight tube region 13c, and the distal cone region 13d constitute an inflating portion.
  • the balloon 13 When the compressed fluid is supplied into the balloon 13 through the outer tube hole 15 a of the outer tube 15, the balloon 13 is in an inflated state, and a negative pressure is applied to the outer tube hole 15 a so that the compressed fluid is discharged from the balloon 13. When discharged, it is in a contracted state.
  • the balloon 13 As shown in FIG. 2B, the balloon 13 is formed in a plurality of wings (specifically, three wings) having a plurality of wings 26 in the circumferential direction. The inflation region of the balloon 13 is folded so that 26 is formed, and the plurality of wings 26 are wound around the inner tube 16 around the axis.
  • the electrode wire 20 is provided on the outer peripheral side of the balloon 13. In the present balloon catheter 10, ablation (cauterization) is performed by the electrode wire 20, and the configuration of the electrode wire 20 and its surroundings will be described below.
  • a plurality (specifically, three) of electrode wires 20 are provided on the outer peripheral side of the balloon 13.
  • the electrode line 20 is made of a Pt—Ir line, and its length dimension is larger than the length dimension of the balloon 13 in the axial direction.
  • Each electrode line 20 is provided on the outer peripheral surface of the balloon 13 so as to extend in the axial direction, and is disposed so as to straddle the balloon 13 in the axial direction.
  • the electrode lines 20 are arranged at predetermined intervals in the circumferential direction of the balloon 13, and more specifically, are arranged at equal intervals (120 ° intervals). Each electrode line 20 is provided in a one-to-one correspondence on each wing 26 of the balloon 13. When the balloon 13 is contracted, each electrode line 20 is folded at the corresponding wing 26. It goes into the inner part.
  • Each electrode wire 20 is connected to a lead wire 21 at its distal end and is connected to an annular member 22 at its proximal end.
  • the lead wire 21 is made of a stainless steel wire and is inserted into the inner tube hole 16 a of the inner tube 16.
  • the lead wire 21 has its distal end led out from the inner tube hole 16a to the distal side, and the lead-out portion is joined to the distal end of each electrode wire 20 by soldering.
  • the distal end portion of each electrode wire 20 and the distal end portion of the lead wire 21 are electrically connected via the soldering portion 24.
  • a tip tube 25 is provided at the distal end of the inner tube 16 so as to cover the soldering portion 24 from the outside.
  • the tip tube 25 is formed of a heat-shrinkable tube made of a resin material, and is disposed at an extended portion of the inner tube 16 that extends to the distal end side of the balloon 13.
  • the tip tube 25 is provided so as to cover the outer peripheral surface of the tube 16 including the electrode wire 20 extending along the outer peripheral surface of the inner tube 16, and is welded so that the tip opening is closed. Thereby, exposure of the soldering part 24 is prevented and it becomes possible to suppress the damage of the blood vessel at the time of inserting the catheter 10 in a body.
  • the proximal end of the lead wire 21 is connected to the high frequency power supply 30 (see FIG. 1).
  • the high frequency power supply device 30 supplies high frequency power to the electrode wire 20 through the lead wire 21.
  • the frequency of the high frequency power is, for example, in the range of 200 kHz to 1 MHz.
  • the combustion site is heated and the incineration site is burnt. More specifically, when high-frequency power is supplied from the high-frequency power supply device 30 to the electrode wire 20, energization is performed between the electrode wire 20 and the counter electrode plate 31 disposed outside the patient's body, and combustion is accompanied by the energization. The part is heated and cauterization of the part is performed.
  • the counter electrode plate 31 is connected to the high frequency power supply device 30 via a lead wire 32.
  • FIG. 4 is a cross-sectional view taken along the line AA in FIG.
  • the annular member 22 is formed in an annular shape (cylindrical shape) from stainless steel, and more specifically, an endless annular shape.
  • the annular member 22 has an inner diameter slightly larger than the outer diameter of the outer tube 15, and is provided so as to surround the outer peripheral surface of the outer tube 15 on the proximal side of the balloon 13.
  • the annular member 22 corresponds to a heat transfer body.
  • each electrode wire 20 is joined to the outer peripheral surface of the annular member 22 by welding.
  • the electrode wires 20 are arranged at a predetermined interval in the circumferential direction of the annular member 22, and specifically, are arranged at equal intervals (120 ° intervals).
  • the proximal ends of the electrode wires 20 are arranged at substantially the same position in the axial direction of the annular member 22. In this case, when the fuel part is heated by energizing each electrode wire 20, the heat is transmitted to the annular member 22 through the electrode wire 20, and as a result, the temperature of the annular member 22 is equal to the temperature of the fuel part. The temperature is the same or substantially the same.
  • the electrode wire 20 is not necessarily joined to the annular member 22 by welding, and may be joined by other joining methods such as adhesion, soldering, and caulking.
  • thermocouple 27 for detecting the temperature of the annular member 22 is provided on the inner peripheral surface side of the annular member 22.
  • the temperature of the annular portion 22 is detected by the thermocouple 27 so as to indirectly detect the temperature of the combustion part.
  • the thermocouple 27 is a sheathed thermocouple in which a strand is covered with a sheath, and an alumel chromel wire is used as the strand.
  • the strand is exposed in the front-end
  • the warm contact point 27 a is disposed on the inner peripheral surface side of the annular member 22.
  • the thermocouple 27 corresponds to a temperature detection line
  • the hot junction 27a corresponds to a temperature detection unit.
  • the thermocouple 27 extends proximally with the warm junction 27a as a distal end, and the proximal end is connected to the high frequency power supply 30 (see FIG. 1).
  • the high frequency power supply device 30 supplies power to the electrode wire 20 with a frequency corresponding to the input temperature of the annular member 22 (in other words, the temperature of the combustion part). Thereby, it is possible to control the temperature of the combustion part to a predetermined temperature.
  • the hot junction 27 a of the thermocouple 27 is fixed to the outer peripheral surface of the outer tube 15 by an insulating tape 28 on the inner peripheral surface side of the annular member 22.
  • the insulating tape 28 is made of an electrically insulating material, for example, polyimide.
  • the hot junction 27 a is covered by the insulating tape 28 from the outside in a state where the hot junction 27 a is fixed by the insulating tape 28.
  • the annular member 22 is disposed outside the insulating tape 28, and the hot contact 27 a is sandwiched between the inner peripheral surface of the annular member 22 and the outer peripheral surface of the outer tube 15 in the disposed state.
  • the hot junction 27a is in close contact with the inner peripheral surface side (specifically, the insulating tape 28) of the annular member 22, so that the temperature of the annular member 22 can be suitably detected.
  • an insulating tape 28 as an insulating material is interposed between the warm contact point 27 a and the annular member 22. Therefore, the annular member 22 and the hot junction 27a are electrically insulated. Thereby, the temperature of the annular member 22 can be suitably detected by the hot junction 27a without being affected by the electric power flowing from the electrode wire 20 to the annular member 22 side.
  • an insulating layer is constituted by the insulating tape 28.
  • the warm contact point 27a is arranged on the inner peripheral surface side of the annular member 22 as described above, and the proximal end portion of each electrode wire 20 (In other words, the joining end portion) is disposed on the outer peripheral surface of the annular member 22. Further, the hot junction 27 a is disposed closer to the proximal side than the proximal end portion of each electrode line 20 in the axial direction of the annular member 22, and one of the electrode lines 20 in the circumferential direction of the annular member 22.
  • the electrode wire 20 is disposed at the same position as the proximal end of the electrode wire 20.
  • the positional relationship of the warm contact point 27a with respect to the electrode wire 20 is not necessarily limited thereto, and the warm contact point 27a is located at the same position as the proximal end portion of each electrode wire 20 in the axial direction of the annular member 22 or more than that.
  • the outer tube 15 is covered with a cover tube 29 so as to cover the annular member 22 from the outside.
  • the length of the cover tube 29 in the axial direction is longer than the length of the annular member 22 in the same direction, and is arranged so as to cover the entire annular member 22 from the outside.
  • the cover tube 29 is formed of a heat-shrinkable tube made of a contracted material, and is joined to the outer peripheral surface of the outer tube 15 by heat welding in a state of covering the annular member 22.
  • the cover tube 29 is welded to the outer tube 15 on both sides of the annular member 22 in the axial direction.
  • the cover tube 29 is welded to the outer tube 15 with the thermocouple 27 disposed on the inner peripheral side thereof.
  • the thermocouple 27 is embedded in the resin layer 29a of the cover tube 29, and the cover tube 29 and the outer tube 15 are joined in a liquid-tight state in the embedded state.
  • the cover tube 29 is welded to the outer tube 15 in a state where the electrode wires 20 are arranged on the inner peripheral side thereof.
  • each electrode wire 20 is embedded in the resin layer 29a of the cover tube 29, and the cover tube 29 and the outer tube 15 are joined in a liquid-tight state in the embedded state. This prevents blood from entering the annular member 22 side through the space between the outer tube 15 and the cover tube 29 from either the proximal end side or the distal end side of the cover tube 29.
  • cover tube 29 is not necessarily bonded to the outer tube 15 by welding, and may be bonded using other bonding methods such as adhesion.
  • the cover tube 29 is arranged such that the distal end portion thereof is close to the proximal end portion of the balloon 13 (specifically, the proximal leg region 13a).
  • Each electrode wire 20 is led out from the inside of the cover tube 29 to the distal side through a gap (gap) between the distal end portion of the cover tube 29 and the proximal end portion of the proximal leg region 13a.
  • FIG. 5 is an explanatory diagram for explaining the work procedure. This operation is performed after the catheter tube 11 and the balloon 13 are joined and the catheter body 35 is manufactured.
  • the hot junction 27a of the thermocouple 27 is fixed to the outer peripheral surface of the outer tube 15 with an insulating tape 28, and then, as shown in FIG.
  • the joined annular member 22 is disposed on the outer peripheral side of the outer tube 15.
  • the annular member 22 is disposed so as to cover the insulating tape 28 from the outside with the annular member 22.
  • the hot junction 27 a of the thermocouple 27 is disposed between the inner peripheral surface of the annular member 22 and the outer peripheral surface of the outer tube 15. That is, in this case, the hot junction 27 a is disposed on the inner peripheral side of the annular member 22 at the same time as the annular member 22 is disposed.
  • each electrode wire 20 is joined to the outer peripheral surface of the annular member 22, in other words, in the above arrangement of the annular member 22, the hot junction 27 a is connected to the inner peripheral surface of the annular member 22.
  • the electrode wire 20 is unlikely to obstruct the work. Therefore, it is possible to provide the warm contact point 27a on the annular member 22 relatively easily.
  • thermocouple 27 since the annular member 22 is provided with the thermocouple 27 in this way, it is only necessary to provide one thermocouple 27. Therefore, compared to the case where the thermocouple 27 is provided for each electrode wire 20, the thermocouple 27 is provided. It is possible to reduce the number of work steps for providing the pair 27.
  • the outer tube 15 is covered with the cover tube 29 so as to cover the annular member 22 from the outside, and in this state, the cover tube 29 is thermally welded to the outer tube 15. Do work. Thereby, the cover tube 29 and the outer tube 15 are joined in a liquid-tight state on both sides of the annular member 22.
  • the lead wire 21 is inserted into the inner tube hole 16 a of the inner tube 16, and the distal end portion of the lead wire 21 is soldered to the distal end portion of each electrode wire 20.
  • the tip tube 25 is placed on the inner tube 16 so as to cover the soldered portion 24 formed by the soldering from the outside, and in this state, the tip tube 25 is attached to the inner tube 16.
  • a guiding catheter is inserted into a sheath introducer inserted into the blood vessel, and the distal end opening of the guiding catheter is introduced to the coronary artery entrance.
  • the balloon catheter 10 is inserted into the blood vessel while being pushed and pulled along the guide wire G, and the balloon 13 is placed at the lesion site.
  • the temperature of the annular member 22 is detected by the thermocouple 27, so that one thermocouple 27 is shared by the plurality of electrode wires 20. ing.
  • only one thermocouple 27 is required, and the number of thermocouples 27 can be reduced as compared with the case where the thermocouple 27 is provided for each electrode wire 20. Therefore, the outer diameter of the balloon catheter 10 can be reduced correspondingly, and it is possible to improve the penetration when the balloon catheter 10 is introduced into the blood vessel.
  • a compressed fluid is supplied to the balloon 13 from the connector 12 side through the outer tube hole 15a of the outer tube 15 using a pressurizer, and the balloon 13 is inflated.
  • each electrode line 20 is pressed against the lesion site by the balloon 13 and is brought into close contact with the site.
  • high frequency power is supplied to the electrode wire 20 by the high frequency power supply device 30 to cauterize the lesion site (burning site).
  • the high-frequency power supply device 30 controls the frequency of the high-frequency power based on the temperature of the annular member 22 detected by the thermocouple 27 and, consequently, the temperature of the lesion site heated by the flame. Thereby, cauterization can be performed while controlling the temperature of the lesion site to a predetermined temperature.
  • the high-frequency power supply device 30 and the like are provided with a temperature display unit that displays the temperature of the annular member 22 detected by the thermocouple 27, and the temperature display unit confirms the temperature of the annular member 22 (and thus the temperature of the lesion site).
  • the frequency of the high frequency power may be manually adjusted.
  • the compressed fluid in the balloon 13 is discharged and the balloon 13 is deflated. Then, the balloon catheter 10 is extracted along the guide wire G from the blood vessel in the contracted state.
  • the balloon catheter 10 is mainly passed through a blood vessel as described above and used for treating blood vessels such as coronary arteries, femoral arteries, and pulmonary arteries. It can also be applied to “tubes” and “body cavities”.
  • thermocouple 27 Since the hot contact 27 a of the thermocouple 27 is provided on the inner peripheral surface side of the metal annular member 22 and the insulating tape 28 is interposed between the hot contact 27 a and the annular member 22, the electrode wire 20 to the annular member 22.
  • the temperature of the annular member 22 can be suitably detected by the thermocouple 27 without being affected by the flowing power. Further, in this configuration, since each electrode wire 20 is joined to the outer peripheral surface of the annular member 22, it is possible to avoid the joint portion of the electrode wire 20 with respect to the annular member 22 from being narrowed by the insulating tape 28, and as a result. The joining operation of the electrode wire 20 can be facilitated.
  • the warm contact point 27a is provided between the inner peripheral surface of the annular member 22 and the outer peripheral surface of the outer tube 15, the warm contact point 27a is easily brought into close contact with the annular member 22 side. For this reason, even if it is the structure which interposed the insulating tape 28 between the warm junction 27a and the annular member 22, the temperature of the annular member 22 can be detected suitably.
  • the outer tube 15 is covered with a cover tube 29 so as to cover the annular member 22 from the outside, and the cover tube 29 and the outer tube 15 are joined to each other, thereby preventing blood from entering the annular member 22 side. . Thereby, it is possible to prevent blood from entering the annular member 22 side and cooling the annular member 22, and the temperature of the annular member 22 can be suitably detected.
  • the annular member 22 is provided on the outer peripheral side of the catheter body, since the annular member 22 is disposed on the proximal side of the inflating portion of the balloon 13, the annular member 22 is disposed on the distal side of the inflating portion of the balloon 13. Compared to the case, it is possible to suppress a decrease in penetrability.
  • the present invention is not limited to the above embodiment, and may be implemented as follows, for example.
  • FIG. 6A is a side view showing the configuration of the balloon and its surroundings
  • FIG. 6B is a cross-sectional view taken along line BB of FIG. 6A.
  • a plurality (specifically, two) of electrode wires 61 are spirally formed along the axial direction on the outer peripheral surface of the balloon 13. Is provided. These electrode lines 61 are arranged at a predetermined interval in the circumferential direction of the balloon 13, and specifically, are arranged at equal intervals (180 ° intervals).
  • Each electrode wire 61 has a distal end connected to the lead wire 21 and a proximal end fixed to the outer peripheral surface of the outer tube 15 on the proximal side of the balloon 13.
  • the proximal end portion of the electrode wire 61 is covered with the cover tube 62 from the outside on the outer peripheral surface of the outer tube 15, and the cover tube 62 is thermally welded to the outer tube 15. 15 and 62 are fixed.
  • the heat transfer body 63 has an annular shape surrounding the straight tube region 13c, and is formed by evaporating a metal material on the outer peripheral surface of the straight tube region 13c. Further, the heat transfer body 63 is disposed at a substantially central position in the axial direction in the straight pipe region 13c.
  • Each electrode wire 61 is joined to the outer peripheral surface of the heat transfer body 63.
  • Each electrode wire 61 is joined to the outer peripheral surface of the heat transfer body 63 at the center in the length direction. Further, the electrode wires 61 are arranged at a predetermined interval in the circumferential direction of the heat transfer body 63, and specifically, are arranged at equal intervals (180 ° intervals).
  • methods such as welding, soldering, adhesion, and caulking can be cited.
  • thermocouple 65 A hot junction 65 a of the thermocouple 65 is provided on the inner peripheral side of the heat transfer body 63.
  • the hot junction 65a is provided inside the balloon 13, and is joined to the inner peripheral surface of the straight pipe region 13c by adhesion or the like.
  • the hot junction 65 a is disposed at an intermediate position of each electrode line 61 in the circumferential direction of the heat transfer body 63, and specifically, is disposed at a central position of each electrode line 61.
  • the thermocouple 65 is inserted through the outer tube hole 15 a of the outer tube 15.
  • thermocouples 65 By reducing the number of thermocouples 65, the number of thermocouples 65 inserted into the outer tube hole 15a (fluid lumen) of the outer tube 15 can be reduced, so that the thermocouple 65 is connected to the outer tube hole 15a.
  • the thermocouple 65 can prevent the fluid flow in the outer tube hole 15a from being hindered.
  • the balloon 13 (specifically, the film thickness portion of the balloon 13) is interposed between the hot junction 65a and the heat transfer body 63, the balloon 13 can function as an insulating layer. Accordingly, it is possible to suitably detect the temperature of the heat transfer body 63 by the hot junction 65a without being affected by the electric power flowing from the electrode wire 61 to the heat transfer body 63. Moreover, since the warm contact point 65a is provided inside the balloon 13, it is possible to avoid the warm contact point 65a from coming into contact with blood. Thereby, it is possible to suppress erroneous detection of the temperature of the blood, and it is possible to accurately detect the temperature of the heat transfer body 63.
  • the plurality of electrode wires 20 are joined to the outer peripheral surface of the annular member 22, and the thermocouple 27 (specifically, the hot junction 27 a) is provided on the inner peripheral surface side of the annular member 22.
  • a thermocouple 27 may be provided on the outer peripheral surface side of the annular member 22, and the plurality of electrode wires 20 may be joined to the inner peripheral surface of the annular member 22. Even in this case, it is possible to prevent the electrode wire 20 from interfering with the provision of the thermocouple 27 on the annular member 22, so that the operation of providing the thermocouple 27 on the annular member 22 can be facilitated.
  • thermocouple 27 in the outer peripheral surface side of the cyclic
  • the annular member 22 is disposed on the outer peripheral surface of the outer tube 15, but this is changed and the annular member 22 is disposed on the outer peripheral surface of the proximal leg region 13a of the balloon 13, or
  • the outer leg 15a may be disposed across the outer circumferential surface of the proximal leg region 13a and the outer circumferential surface of the outer tube 15.
  • the arrangement position of the annular member 22 may be arbitrary as long as it is closer to the outer peripheral surface of the catheter body 35 than the inflation portion of the balloon 13.
  • annular member 22 heat-transfer body
  • annular member corresponding to a heat transfer body
  • having an annular shape cylindrical shape
  • the said annular member is provided so that the outer peripheral surface of the inner side tube 16 may be enclosed, and each electrode wire 20 and the lead wire 21 are each connected with respect to the said annular member.
  • the hot junction 27a of the thermocouple 27 is provided with respect to the said annular member. Also in this case, since the heat of the combustion part is transmitted to the annular member via the electrode wire 20 and the temperature of the annular member is detected by the thermocouple 27, the temperature of the combustion part is determined by the electrode wire 20 and the relevant part. It can be indirectly detected via an annular member.
  • a heat transfer body may be provided in the inflating portion of the balloon 13 (see FIG. 6).
  • the annular member 22 (corresponding to a heat transfer body) is formed in an endless annular shape, but instead, the annular member may be formed in an endless annular shape such as a C-shaped cross section. . Further, the annular member 22 may be an elliptical ring instead of an annular ring.
  • the heat transfer body is not necessarily formed in an annular shape, and for example, two heat transfer bodies having a semicircular (semi-arc) cross section may be provided so as to surround the outer peripheral surface of the outer tube 15.
  • a thermocouple hot contact
  • the number of thermocouples can be reduced as compared to the case where thermocouples are provided for each of the plurality of electrode wires, so that the outer diameter of the catheter can be reduced, and the insertion property can be improved. it can.
  • the number of work steps can be reduced when performing the work of providing the thermocouple.
  • the lead wire 21 and the annular member 22 are made of stainless steel, but may be made of other metal materials such as copper, platinum, platinum-iridium, and brass.
  • the annular member 22 is not necessarily formed of a metal material, and may be formed using other materials such as a resin material and a ceramic material as long as the material has excellent thermal conductivity.
  • the annular member 22 may be formed integrally with the electrode wire 20. For example, it is conceivable that the annular member 22 and the electrode wire 20 are formed by cutting out from the same material (material).
  • the lead wire 21 and the electrode wire 20 may be formed of the same metal material. In that case, the lead wire 21 and the electrode wire 20 may be integrally formed.
  • the insulating tape 28 is affixed to the outer peripheral surface of the outer tube 15 so as to fix the hot junction 27a.
  • the insulating tape 28 may be affixed to the inner peripheral surface of the annular member 22. Even in this case, since the insulating tape 28 can be interposed between the annular member 22 and the warm contact point 27a, the annular member 22 and the warm contact point 27a can be electrically insulated.
  • the insulating layer is not necessarily formed by the insulating tape 28, and may be formed by a sheet material (insulating sheet) having electrical insulating properties, a tube material (insulating tube), or the like.
  • the insulating tube may be provided on the hot junction 27a.
  • the hot contact 27a is fixed to the outer peripheral surface of the outer tube 15 with a sealing material or an adhesive excellent in electrical insulation without exposing the hot contact 27a to the outside, and an insulating layer is formed by the sealing material or the adhesive. May be.
  • FIG. 7 shows a specific example of this displacement absorbing structure.
  • FIG. 7A is a side view showing the configuration of the balloon 13 and its surroundings
  • FIG. 7B is an enlarged view of the region C3 in FIG.
  • annular member 40 to which the distal end portions of the electrode wires 20 are joined is provided on the distal side of the inflating portion of the balloon 13.
  • the annular member 40 includes a resin layer 41 formed in an annular shape (cylindrical shape) and a metal coil spring 42 embedded in the resin layer 41.
  • the resin layer 41 is provided in a portion of the inner tube 16 that extends further to the distal side than the balloon 13, and is joined to the outer peripheral surface of the portion by welding.
  • the coil spring 42 is embedded in the resin layer 41 with both end portions in the axial direction thereof being exposed from the resin layer 41.
  • the proximal end portion 42a exposed to the proximal side in the coil spring 42 is joined to the distal end portion of each electrode wire 20 by welding, and the distal end portion 42b exposed to the distal side in the coil spring 42. Is joined to the distal end of the lead wire 21 by welding. In this case, each electrode wire 20 and the lead wire 21 are electrically connected via the coil spring 42.
  • the electrode wires 20 and the lead wires 21 are not necessarily joined to the coil spring 42 by welding, and may be performed by other joining methods such as adhesion, soldering, and caulking.
  • a hole portion 45 penetrating the peripheral wall portion is formed in the peripheral wall portion of the inner tube 16, and the distal end portion of the lead wire 21 is drawn out from the inner tube hole 16 a through the hole portion 45.
  • the distal end portion 42b of the coil spring 42 is joined.
  • the annular member 40 including the coil spring 42 may be formed of a material such as rubber having elasticity. Even in that case, the annular member can be elastically deformed by following the displacement of the electrode wire 20.
  • the displacement absorbing structure of the electrode wire 20 is configured by elastically deforming the annular member. However, this is changed and the annular member is displaced by being provided so as to be movable in the axial direction. You may comprise an absorption structure.
  • the annular member 40 instead of the annular member 40 in the configuration of FIG. 7, it is conceivable to provide an annular (cylindrical) metal annular member that is movable in the axial direction. Specifically, in this case, the annular member is provided in a state where it is not fixed to the outer peripheral side of the inner tube 16, so that the annular member can be moved along the axial direction of the inner tube 16.
  • each electrode wire 20 is joined to the annular member movably provided and the coil spring 42 of FIG. 7, the annular member or coil spring 42 (hereinafter referred to as “movable”).
  • the temperature contact point 27a of the thermocouple 27 may be provided to the movable annular member or the like, and the temperature of the movable annular member or the like may be detected by the warm contact point 27a. That is, the movable annular member or the like may be used as a heat transfer body.
  • three electrode wires 20 are provided on the outer peripheral surface of the balloon 13, but two or four or more electrode wires 20 may be provided.
  • the plurality of electrode wires 20 are not necessarily arranged at equal intervals in the circumferential direction of the balloon 13 and may be arranged at unequal intervals.
  • Pt—Ir platinum iridium alloy
  • an electrode wire 50 having a core 51 made of Ni—Ti (nickel titanium alloy) and an outer layer 52 made of Pt (platinum) formed outside the core 51 is used. Also good. Ni—Ti is a superelastic alloy and has a shape restoring effect. For this reason, when the balloon 13 is deflated after the balloon 13 is inflated and the electrode wire 50 is in close contact with the lesion site, and then the balloon 13 is deflated, the electrode wire 50 is restored to its original shape (before the balloon 13 is inflated). It is easy to restore to (shape).
  • the core 51 may be formed of Pt and the outer layer 52 may be formed of Ni—Ti.
  • the lead wire 21 is connected only to the distal end portions of the plurality of electrode wires 20, and power is supplied to the electrode wire 20 only from the distal end portions. 20, it is assumed that the voltage gradually decreases from the distal end side toward the proximal end side. Then, it is assumed that the amount of heat generated from the distal end side to the proximal end side in the electrode wire 20 is reduced, and it is difficult to cauterize the electrode wire 20 at a uniform temperature. It is done.
  • the lead wire 55 is connected to the proximal end portion in addition to the distal end portions of the plurality of electrode wires 20, and the electrodes are connected through the lead wires 21 and 55.
  • one end of the lead wire 55 is connected to the high frequency power supply device 30 and the other end is joined to the outer peripheral surface of the annular member 22.
  • the lead wire 55 (the other end thereof) is connected to the proximal ends of the plurality of electrode wires 20 via the annular member 22. According to this configuration, the amount of heat generated in the entire electrode wire 20 can be easily made uniform, and the temperature can be made uniform in the entire electrode wire 20.
  • thermocouple is used as the temperature detection line, but other temperature detection lines such as a resistance temperature detector may be used.
  • a temperature detection part sensor part provided at the tip thereof is provided in contact with the annular member 22.
  • the inflatable portion is configured by the balloon 13, but the inflatable portion may be configured by something other than a balloon, such as a stent or a net-like basket.
  • the catheter tube 11 includes a plurality of outer tubes 15 having a fluid lumen (outer tube hole 15a) and inner tubes 16 having a lumen for inserting the lead wire 21 (inner tube hole 16a).
  • the catheter tube is composed of a multi-lumen tube having a plurality of lumens, and any two of the plurality of lumens are used as a fluid lumen and a lead insertion lumen.
  • any one of the plurality of lumens of the multi-lumen tube may be used for inserting the thermocouple 27 or may be used for inserting the guide wire G.
  • the ablation catheter of the present invention is applied to a balloon catheter.
  • the present invention may be applied to another catheter having a plurality of electrode wires on the outer peripheral side of the catheter body. Good.
  • (A-1) Comprising a tubular catheter body,
  • the catheter body includes a balloon having an inflating portion that is inflated or deflated using a fluid on a distal end side thereof,
  • the electrode wire is provided on the outer peripheral side of the balloon so as to straddle the inflatable portion at least in the axial direction of the balloon,
  • An annular member provided on at least one of both sides of the inflating portion in the axial direction and disposed so as to surround a part of the outer peripheral surface of the catheter body, and having the electrode wire joined thereto,
  • the ablation catheter characterized in that the annular member can operate following the displacement of the electrode wire accompanying the expansion of the expansion portion.
  • the annular member can operate following the displacement of the electrode wire accompanying the inflation of the balloon, it is possible to absorb the load applied to the electrode wire during the displacement. As a result, it is possible to suppress inconveniences in which an excessive pulling force is applied to the electrode wire and the electrode wire is disconnected or the inflation of the balloon is inhibited.
  • the annular member is formed including a coil spring, The ablation catheter according to (A-2), wherein the coil spring is elastically deformed following the displacement of the electrode wire accompanying the inflation of the balloon.
  • (B-1) A tubular catheter body; An electrode wire provided on the outer peripheral side of the catheter body, The electrode wire includes a core and an outer layer formed outside the core, One of the core and the outer layer is made of Ni—Ti, and the other is made of Pt.
  • the electrode wire is displaced (deformed) as the balloon is inflated and pressed against the lesion site, and cauterization with the electrode wire is performed in the pressed state. After the cauterization is completed, the balloon is deflated and the catheter is pulled out of the body.
  • the electrode wire does not return to its original shape from the state of being deformed by the inflation of the balloon, and in that case, when the balloon is pulled out of the body There is a possibility that the electrode wire becomes the resistance of the lead and the operability is lowered.
  • the electrode wire is formed by a two-layer structure of Ni—Ti and Pt.
  • the shape restoration effect of Ni—Ti which is a superelastic alloy, makes it easy to return the shape of the electrode wire to the original shape when the balloon is in a deflated state. For this reason, when the balloon is pulled out of the body, it can be suppressed that the electrode wire becomes a resistance and the operability is deteriorated.
  • the outer layer made of Pt platinum
  • Ni—Ti nickel titanium alloy
  • C-1) A tubular catheter body; An electrode wire provided on the outer peripheral side of the catheter body, Lead wires are connected to both ends of the electrode wires, respectively, and power is supplied to the electrode wires from the power supply device through the lead wires.

Abstract

 複数の電極線を備える構成において、挿通性の向上を図ることができるとともに、温度検知線を設ける際の作業工数の低減を図ることができるアブレーションカテーテルを提供することを目的とする。 バルーンカテーテル10は、カテーテルチューブ11と、その遠位端側に設けられたバルーン13とを備える。バルーン13の外周面には複数の電極線20が設けられている。外側チューブ15の外周面においてバルーン13よりも近位側には、外側チューブ15の外周面を囲むように環状部材22が設けられている。環状部材22の外周面には、複数の電極線20がそれぞれ接合されている。環状部材22の内周面側には、熱電対27の温接点27aが設けられている。

Description

アブレーションカテーテル
 本発明は、アブレーションカテーテルに関する。
 近年、心臓不整脈や高血圧等の治療においては、アブレーション(燃灼)カテーテルが用いられている。アブレーションカテーテルは、カテーテルの先端側に電極を備えている。アブレーションカテーテルでは、この電極が不整脈発生源等の病変部位に密着させた状態で設けられ、その状態で電極に高周波による通電を行うことで病変部位を燃灼するものとなっている。また、高血圧の治療においては、心臓不整脈に対するアブレーションと同様に高周波による通電を腎動脈内で行うことによって、腎動脈周囲を網目状走行する腎交感神経の除神経(Renak Denervation)を行う。
 特許文献1には、アブレーションカテーテルとして、バルーンカテーテルを用いたものが開示されている。この特許文献1のカテーテルでは、バルーンの外表面上に複数の電極線が軸線方向に延びる向きで設けられており、バルーンを膨張させることにより各電極線を病変部位に密着させて燃灼を行うものとなっている。
特表2010-507404号公報
 ところで、アブレーションカテーテルを用いて焼灼部位の燃灼を行う際には、適切な温度で燃灼を行うために焼灼部位周辺の温度(燃灼温度)を制御しながら燃灼を行うことになる。この制御を行うにあたっては、焼灼部位周辺の温度を検知するための温度センサが必要であり、この場合の温度センサとしては例えば熱電対が用いられる。
 かかる熱電対は、例えば燃灼部位に配置される電極線に対して設けることが考えられる。ここで、複数の電極線を有する上記特許文献1のカテーテルに熱電対を設ける場合、各電極線ごとにそれぞれ熱電対を設けることが考えられる。しかしながら、その場合、熱電対が複数本存在することになるため、その分カテーテルの外径が大きくなってしまい、カテーテルの挿通性の低下を招いてしまうおそれがある。また、各電極線ごとにそれぞれ熱電対を設ける作業は手間が大きく作業工数の増大を招くおそれもある。
 本発明は、複数の電極線を備える構成において、挿通性の向上を図ることができるとともに、温度検知線を設ける際の作業工数の低減を図ることができるアブレーションカテーテルを提供することを主たる目的とする。
 上記課題を解決すべく、第1の発明のアブレーションカテーテルは、管状をなすカテーテル本体と、当該カテーテル本体の遠位端側において当該カテーテル本体の外周側に設けられた複数の電極線と、を備えるアブレーションカテーテルにおいて、前記各電極線がそれぞれ接続された伝熱体と、前記伝熱体に設けられて当該伝熱体の温度を検知する温度検知部を有する温度検知線と、を備えることを特徴とする。
 本発明のアブレーションカテーテルによれば、カテーテル本体の外周側に設けられた複数の電極線が伝熱体にそれぞれ接続されており、その伝熱体に対して温度検知線の温度検知部が設けられている。この場合、アブレーション(焼灼)を行うにあたって電極線への通電により焼灼部位が加熱されると、焼灼部位の熱が電極線を介して伝熱体に伝達され、その伝熱体の温度が温度検知部によって検知される。この場合、焼灼部位の温度を電極線及び伝熱体を介して間接的に検知することができるため、当該検知した温度に基づき焼灼部位の温度制御を行うことが可能となる。
 そして、本発明では、温度検知線によって伝熱体の温度を検知するようにしているため、複数の電極線に対して1つの温度検知線を共用することができる。したがって、例えば温度検知線を1本だけ設ければよいことになり、各電極線ごとにそれぞれ温度検知線を設ける場合と比べ、温度検知線の本数を少なくすることができる。これにより、カテーテルの外径をその分小さくすることができ挿通性の向上を図ることができるとともに、温度検知線を設ける上での作業工数の低減を図ることができる。
 第2の発明のアブレーションカテーテルは、第1の発明において、前記伝熱体は、前記カテーテル本体の外周面を囲むように当該外周面に沿って設けられていることを特徴とする。
 本発明によれば、伝熱体がカテーテル本体の外周面を囲むように設けられているため、伝熱体において電極線を接続できる箇所をカテーテル外周方向に広く確保することができる。これにより、複数の電極線がカテーテル外周方向に所定の間隔で配置されている構成において、それら複数の電極線を伝熱体に好適に接続することができる。
 第3の発明のアブレーションカテーテルは、第2の発明において、前記伝熱体の内周面側及び外周面側のうちいずれか一方側に前記複数の電極線が接続されており、他方側に前記温度検知部が設けられていることを特徴とする。
 伝熱体の内周面側及び外周面側のうちいずれか一方に複数の電極線が接続され、他方に温度検知部が設けられているため、温度検知部を伝熱体に配設するにあたり電極線が邪魔となるのを抑制することができる。これにより、温度検知部を伝熱体に設ける作業を容易とすることができる。
 第4の発明のアブレーションカテーテルは、第3の発明において、前記伝熱体は、金属製であり、前記温度検知線は、熱電対からなり、前記熱電対における前記温度検知部としての温接点が、前記伝熱体の前記他方側において当該伝熱体との間に絶縁層を介在させた状態で設けられていることを特徴とする。
 ところで、温度検知線としては比較的安価でかつ熱応答性に優れた熱電対が用いられることが考えられる。熱電対は、異なる二種の金属線の接合部同士の間に生じた電圧差に基づき温度を検知するものであるため、熱電対を用いる場合には温接点を温度検知対象となる金属製の伝熱体に電気的に絶縁させた状態で設ける必要がある。そこで、本発明では、この点に鑑みて、熱電対の温接点を伝熱体に対して絶縁層を介在させた状態で設けている。これにより、電極線から伝熱体へ流れる電力の影響を受けることなく、伝熱体の温度を好適に検知することができる。
 また、かかる構成において、伝熱体の内周面側及び外周面側のうちいずれか一方側に複数の電極線を配置し、他方側に熱電対を配置しているため、伝熱体に対する電極線の接続箇所が絶縁層により狭められるのを回避することができ、その結果電極線の接続作業をし易くすることができる。
 第5の発明のアブレーションカテーテルは、第2乃至第4のいずれかの発明において、前記伝熱体の外周面に前記複数の電極線が接続されていることを特徴とする。
 本発明によれば、伝熱体の外周面に複数の電極線が接続されているため、伝熱体の内周面に複数の電極線が接続されている構成と比べて、電極線を伝熱体に接続する作業をし易くすることができる。
 第6の発明のアブレーションカテーテルは、第2乃至第5のいずれかの発明において、前記温度検知部は、前記伝熱体の内周面と前記カテーテル本体の外周面との間に挟み込まれた状態で設けられていることを特徴とする。
 本発明によれば、伝熱体の内周面とカテーテル本体の外周面との間に温度検知部が挟み込まれた状態で設けられているため、温度検知部を伝熱体側に密着させ易く、伝熱体の温度を好適に検知することが可能となる。
 第7の発明のアブレーションカテーテルは、第6の発明において、前記伝熱体は、金属製であり、前記温度検知線は、熱電対からなり、前記熱電対における前記温度検知部としての温接点は、前記カテーテル本体の外周面に絶縁材により外側から覆われた状態で設けられており、その絶縁材の外側に前記伝熱体が配設されることで、前記温接点が前記伝熱体と前記カテーテル本体との間に挟み込まれていることを特徴とする。
 本発明によれば、熱電対の温接点がカテーテル本体の外周面上において絶縁材により外側から覆われた状態で設けられ、その絶縁材の外側に金属製の伝熱体が配設されているため、温接点と伝熱体との間には絶縁材が介在されている。これにより、電極線から伝熱体へ流れる電力の影響を受けることなく、伝熱体の温度を温接点により好適に検知することができる。
 また、温接点が伝熱体とカテーテル本体との間で挟み込まれているため、温接点を伝熱体側(詳しくは絶縁材)に密着させ易く、そのため、温接点と伝熱体との間に絶縁材が介在する構成にあっても伝熱体の温度を好適に検知することができる。
 第8の発明のアブレーションカテーテルは、第1乃至第7のいずれかの発明において、前記カテーテル本体の外周面には、前記伝熱体を外側から覆うようにしてカバーチューブが被せられており、前記カバーチューブと前記カテーテル本体とが互いに接合されることにより、前記伝熱体側への血液の入り込みが防止されていることを特徴とする。
 本発明によれば、カテーテル本体の外周面に伝熱体を覆うようにしてカバーチューブが被せられており、そのカバーチューブとカテーテル本体とが接合されることにより、伝熱体側に血液が入り込むことが防止されている。これにより、伝熱体側に血液が入り込んで伝熱体が冷やされてしまうのを防止することができるため、伝熱体の温度を好適に検知することが可能となる。
 第9の発明のアブレーションカテーテルは、第1乃至第8のいずれかの発明において、前記カテーテル本体は、その遠位端側に流体を利用して膨張又は収縮される膨張部を有するバルーンを備えており、前記複数の電極線は、前記バルーンの外周側において少なくとも前記膨張部を前記バルーンの軸線方向に跨ぐように設けられており、前記伝熱体は、前記カテーテル本体の外周面を囲む環状をなすとともに、前記軸線方向における前記膨張部を挟んだ両側のうちいずれかに設けられ、かつ前記複数の電極線の一端部とそれぞれ接合されており、当該伝熱体が前記膨張部の膨張に伴う前記電極線の変位に追従して動作可能とされているか、又は、前記膨張部を挟んで前記伝熱体とは反対側において前記カテーテル本体の外周面を囲む環状をなし前記複数の電極線の他端部とそれぞれ接合された環状部材が設けられている場合に当該環状部材が前記膨張部の膨張に伴う前記電極線の変位に追従して動作可能とされていることを特徴とする。
 本発明によれば、伝熱体がバルーンの膨張に伴う電極線の変位に追従して動作可能となっているか、又は、複数の電極線の他端部にそれぞれ接合された環状部材が設けられている場合に当該環状部材がバルーンの膨張に伴う電極線の変位に追従して動作可能となっている。この場合、電極線の変位に際し当該電極線にかかる負荷を吸収することができるため、電極線に無理な引っ張り力が加わって電極線が断線したりバルーンの膨張が阻害されたりする不都合を抑制することができる。
 第10の発明のアブレーションカテーテルは、第1乃至第9のいずれかの発明において、前記複数の電極線はそれぞれ一端部が前記伝熱体を介してリード線と接続されており、他端部もリード線と接続されており、前記複数の電極線にはそれぞれ、前記各リード線を通じて電源装置から電力が供給されることを特徴とする。
 各電極線に対して一端部側からのみ電力を供給する構成では、電極線において当該一端部側から他端部側に向けて電圧が低くなっていくことが想定され、その場合、電極線において当該一端部側から他端部側に向けて発生する熱量も小さくなっていくことが想定される。そうなると、電極線全体において均一の温度で焼灼することが困難になると考えられる。その点本発明によれば、電極線の両端部からそれぞれリード線を通じて電極線に電力が供給されるため、電極線全体において発生する熱量を均一にし易く、電極線全体において温度の均一化を図ることが可能となる。
バルーンカテーテルの概略全体側面図。 バルーン及びその周辺の構成を示す側面図であり、(a)がバルーンの膨張状態を示し、(b)がバルーンの収縮状態を示している。 (a)はバルーン及びその周辺の構成を示す縦断面図であり、(b)は(a)における領域C1の拡大図、(c)は(a)における領域C2の拡大図である。 図3(a)のA-A線断面図。 バルーン上に電極線を設ける際の作業手順を説明するための説明図。 (a)は他の実施形態におけるバルーン及びその周辺の構成を示す側面図であり、(b)は(a)のB-B線断面図である。 (a)は他の実施形態におけるバルーン及びその周辺の構成を示す側面図であり、(b)は(a)における領域C3の拡大図である。 他の実施形態における電極線を示す横断面図。 他の実施形態における環状部材にリード線を接続した状態を示す縦断面図。
 以下に、本発明を具体化した一実施の形態について図面を参照しつつ説明する。本実施形態では、アブレーションカテーテルをバルーンカテーテルとして具体化している。図1はバルーンカテーテル10の概略全体側面図である。
 図1に示すように、バルーンカテーテル10は、カテーテルチューブ11と、当該カテーテルチューブ11の近位端部(基端部)に取り付けられたコネクタ12と、カテーテルチューブ11の遠位端部(先端部)に取り付けられたバルーン13とを備えている。
 カテーテルチューブ11は、複数のチューブから構成されており、少なくとも軸線方向の途中位置からバルーン13の位置まで内外複数管構造(内外2重管構造)となっている。具体的には、カテーテルチューブ11は、外側チューブ15と、当該外側チューブ15よりも内径及び外径が小さい内側チューブ16とを備えており、外側チューブ15に内側チューブ16が内挿されていることで上記複数管構造となっている。
 外側チューブ15及び内側チューブ16は共に、所定の可撓性を有するようにポリアミド系樹脂により形成されている。但し、可撓性を有するのであれば、ポリアミド系樹脂に限定されることはなく、ポリエチレン系樹脂、ポリプロピレン系樹脂、ポリウレタン系樹脂、ポリイミド系樹脂などの合成樹脂材料を用いることができ、さらには上記各合成樹脂材料を基材として当該基材に対して添加剤が混合されていてもよい。また、外側チューブ15と内側チューブ16とを、それぞれ異なる合成樹脂材料を用いて形成してもよい。
 内側チューブ16は外側チューブ15よりも遠位端側に延出させて設けられており、この延出させた領域を外側から覆うようにしてバルーン13が設けられている。
 外側チューブ15は、軸線方向の全体に亘って連続するとともに両端にて開放された外側管孔15a(図3参照)を有する管状に形成されている。外側管孔15aは、バルーン13の内側空間と連通しており、バルーン13を膨張又は収縮させる際に圧縮流体を流通させる流体用ルーメンとして機能する。また、内側チューブ16は、軸線方向の全体に亘って連続するとともに両端にて開放された内側管孔16a(図3参照)を有する管状に形成されている。
 なお、本バルーンカテーテル10では、カテーテルチューブ11とバルーン13とにより管状をなすカテーテル本体が構成されている。
 次に、バルーン13及びその周辺の構成について図2及び図3を用いて詳細に説明する。図2は、バルーン13及びその周辺の構成を示す側面図であり、(a)がバルーン13の膨張状態を示しており、(b)がバルーン13の収縮状態を示している。また、図3(a)はバルーン13及びその周辺の構成を示す縦断面図であり、図3(b)は図3(a)における領域C1の拡大図、図3(c)は図3(a)における領域C2の拡大図である。
 図2及び図3に示すように、バルーン13は、上述したように、内側チューブ16において外側チューブ15よりも遠位側に延出された領域を外側から覆うように設けられており、その状態において近位端部が外側チューブ15の遠位端部に接合され、遠位端部が内側チューブ16の遠位端側に接合されている。
 バルーン13は、熱可塑性のポリアミドエラストマにより形成されている。但し、流体の供給及び排出に伴って良好に膨張及び収縮可能であれば、ポリアミドエラストマに限定されることはなく、他の熱可塑性樹脂を用いてもよく、ポリエチレン、ポリエチレンテレフタレート、ポリプロピレン、ポリウレタン、ポリアミド、ポリイミド、ポリイミドエラストマ、シリコンゴムなどを用いることもできる。また、上記熱可塑性樹脂に対して、所望の機能を発揮させるための化合物や他の重合体が添加されていてもよい。
 バルーン13は、カテーテルチューブ11に対して接合される両端の接合部と、それら接合部の間の膨張部とを有している。より具体的には、バルーン13は、外側チューブ15の遠位端部に接合される近位側レッグ領域13aと、先端側に向けて内径及び外径が連続的に拡径されるようにテーパ状をなす近位側コーン領域13bと、長さ方向の全体に亘って内径及び外径が同一でありバルーン13の最大外径領域をなす直管領域13cと、先端側に向けて内径及び外径が連続的に縮径されるようにテーパ状をなす遠位側コーン領域13dと、内側チューブ16の遠位端側に接合される遠位側レッグ領域13eとを、近位側からこの順で有している。外側チューブ15と近位側レッグ領域13aとの接合、及び内側チューブ16と遠位側レッグ領域13eとの接合はともに熱溶着により行われている。但し、これらの接合は必ずしも熱溶着により行う必要はなく、接着剤などを用いて行ってもよい。
 なお、近位側コーン領域13b、直管領域13c及び遠位側コーン領域13dにより膨張部が構成されている。
 バルーン13は、外側チューブ15の外側管孔15aを通じて圧縮流体が当該バルーン13内に供給されると膨張状態となり、外側管孔15aに対して陰圧が付与されて圧縮流体が当該バルーン13内から排出されると収縮状態となる。なお、図2(b)に示すように、バルーン13は周方向に複数の羽26を有する複数羽式(具体的には3枚羽式)に形成されており、収縮状態においては複数の羽26が形成されるようにバルーン13の膨張領域が折り畳まれ、さらにそれら複数の羽26が内側チューブ16に対して軸周りに巻きついた状態となる。
 バルーン13の外周側には電極線20が設けられている。本バルーンカテーテル10では、この電極線20によりアブレーション(焼灼)を行うものとなっており、以下においては電極線20とその周辺の構成について説明する。
 図2及び図3に示すように、バルーン13の外周側には複数(具体的には3つ)の電極線20が設けられている。電極線20は、Pt-Ir線からなり、その長さ寸法がバルーン13の軸線方向の長さ寸法よりも大きくなっている。各電極線20はそれぞれ、バルーン13の外周面上において軸線方向に延びるように設けられ、バルーン13を軸線方向に跨ぐように配置されている。
 各電極線20はそれぞれバルーン13の周方向に所定の間隔で配置されており、詳しくは等間隔(120°間隔)で配置されている。各電極線20はそれぞれバルーン13の各羽26上に1対1で対応させて設けられており、バルーン13の収縮状態では各電極線20がそれぞれ対応する羽26において当該羽26の折り畳まれた内側部分に入り込んでいる。
 各電極線20はそれぞれ、その遠位端部においてリード線21と接続され、その近位端部において環状部材22と接続されている。リード線21は、図3(b)及び(c)に示すように、ステンレス線よりなり、内側チューブ16の内側管孔16aに挿通されている。リード線21は、その遠位端部が内側管孔16aから遠位側に導出しており、その導出した部分が各電極線20の遠位端部と半田付けにより接合されている。この場合、各電極線20の遠位端部とリード線21の遠位端部とが半田付け部24を介して電気的に接続されている。
 内側チューブ16の遠位端部には、半田付け部24を外側から覆うようにしてチップチューブ25が設けられている。チップチューブ25は、樹脂材料よりなる熱収縮チューブにより形成されており、内側チューブ16においてバルーン13よりも遠位端側に延出した延出部分に配置されている。チップチューブ25は、内側チューブ16の外周面に沿って延びる電極線20を含めて同チューブ16の外周面を被覆するように設けられ、その先端開口が閉塞されるようにして溶着されている。これにより、半田付け部24の露出が防止されており、カテーテル10を体内へ挿入する際の血管の損傷を抑制することが可能となっている。
 リード線21の近位端部は高周波電源装置30と接続されている(図1参照)。高周波電源装置30は、リード線21を通じて電極線20に高周波電力を供給するものである。高周波電力の周波数は例えば200kHz~1MHzの範囲とされている。電極線20を体内の燃灼対象部位に接触させた状態で、高周波電源装置30により電極線20に高周波電力が供給されると、燃灼部位が加熱され当該焼却部位の燃灼が行われる。より詳しくは、高周波電源装置30より電極線20に高周波電力が供給されると、電極線20と患者の体外に配置された対極板31との間で通電が行われ、その通電に伴い燃灼部位が加熱され当該部位の焼灼が行われるようになっている。なお、対極板31はリード線32を介して高周波電源装置30と接続されている。
 次に、環状部材22及びその周辺の構成について図3に加え図4を用いながら説明する。なお、図4は図3(a)のA-A線断面図である。
 図3(c)及び図4に示すように、環状部材22は、ステンレスにより円環状(円筒状)に形成されており、より詳しくは無端の環状をなしている。環状部材22は、その内径が外側チューブ15の外径よりも若干大きくされており、バルーン13よりも近位側において外側チューブ15の外周面を囲むようにして設けられている。なおここで、環状部材22が伝熱体に相当する。
 環状部材22の外周面には、各電極線20の近位端部が溶接により接合されている。各電極線20は、環状部材22の周方向に所定の間隔で配置されており、詳しくは等間隔(120°間隔)で配置されている。また、各電極線20はそれぞれ、その近位端部が環状部材22の軸線方向においてほぼ同位置に配置されている。この場合、各電極線20への通電によって燃灼部位が加熱されると、その熱が電極線20を介して環状部材22に伝達され、その結果環状部材22の温度が燃灼部位の温度と同じ又は略同じ温度となるようになっている。
 なお、電極線20は必ずしも溶接により環状部材22に接合する必要はなく、接着や半田付け、かしめ等他の接合方法により接合してもよい。
 環状部材22の内周面側には、当該環状部材22の温度を検知するための熱電対27が設けられている。本実施形態では、この熱電対27により環状部材22の温度を検知することで燃灼部位の温度を間接的に検知するようにしている。熱電対27は、素線がシースによって被覆されたシース型熱電対よりなり、素線としてアルメル・クロメル線が用いられている。熱電対27は、その先端部において素線が露出されており、その露出された部分が温接点27aとなっている。そして、この温接点27aが環状部材22の内周面側に配置されている。なおここで、熱電対27が温度検知線に相当し、温接点27aが温度検知部に相当する。
 熱電対27は、その温接点27aを遠位端部として近位側に延びており、その近位側の端部が高周波電源装置30と接続されている(図1参照)。温接点27aにより環状部材22の温度が検知されると、その検知された温度情報が高周波電源装置30に入力される。そして、高周波電源装置30はその入力された環状部材22の温度(換言すると燃灼部位の温度)に応じた周波数の電力を電極線20に供給する。これにより、燃灼部位の温度を所定の温度に制御することが可能となっている。
 熱電対27の温接点27aは、環状部材22の内周面側において外側チューブ15の外周面に絶縁テープ28により固定されている。絶縁テープ28は、電気絶縁性を有する材料により形成されており、例えばポリイミドにより形成されている。温接点27aは、絶縁テープ28により固定された状態において、その全体が絶縁テープ28により外側から覆われている。
 環状部材22は、上記絶縁テープ28の外側に配設されており、その配設状態において温接点27aが環状部材22の内周面と外側チューブ15の外周面との間で挟み込まれている。この場合、温接点27aが環状部材22の内周面側(詳しくは絶縁テープ28)に密着されており、環状部材22の温度を好適に検知することが可能となっている。
 また、かかる環状部材22の配設状態では、温接点27aと環状部材22との間に絶縁材としての絶縁テープ28が介在されている。したがって、環状部材22と温接点27aとは電気的に絶縁された状態となっている。これにより、電極線20から環状部材22側へ流れる電力の影響を受けることなく環状部材22の温度を温接点27aにより好適に検知することが可能となっている。なお、この場合、絶縁テープ28により絶縁層が構成されている。
 ここで、環状部材22における温接点27aの電極線20に対する位置関係について説明すると、温接点27aは上述したように環状部材22の内周面側に配置され、各電極線20の近位端部(換言すると接合端部)は環状部材22の外周面に配置されている。また、温接点27aは、環状部材22の軸線方向においては各電極線20の近位端部よりも近位側に配置されており、環状部材22の周方向においては各電極線20のうち一の電極線20の近位端部と同じ位置に配置されている。但し、温接点27aの電極線20に対する位置関係は必ずしもこれに限定されることなく、温接点27aを、環状部材22の軸線方向において各電極線20の近位端部と同じ位置又はそれよりも遠位側に配置してもよいし、環状部材22の周方向において各電極線20の近位端部と位置をずらして配置してもよい。
 外側チューブ15の外周面には、環状部材22を外側から覆うようにしてカバーチューブ29が被せられている。カバーチューブ29は、その軸線方向の長さが環状部材22の同方向の長さよりも長くなっており、環状部材22全体を外側から覆うように配置されている。カバーチューブ29は、縮脂材料よりなる熱収縮チューブにより形成されており、環状部材22を覆った状態で外側チューブ15の外周面と熱溶着により接合されている。
 より具体的には、カバーチューブ29は、軸線方向における環状部材22を挟んだ両側において外側チューブ15と溶着されている。環状部材22よりも近位側では、カバーチューブ29がその内周側に熱電対27を配置した状態で外側チューブ15と溶着されている。この場合、熱電対27がカバーチューブ29の樹脂層29aに埋設されており、その埋設状態でカバーチューブ29と外側チューブ15とが液密状態で接合されている。一方、環状部材22よりも遠位側では、カバーチューブ29がその内周側に各電極線20を配置した状態で外側チューブ15と溶着されている。この場合、各電極線20がそれぞれカバーチューブ29の樹脂層29aに埋設されており、その埋設状態でカバーチューブ29と外側チューブ15とが液密状態で接合されている。これにより、カバーチューブ29の近位端側及び遠位端側のいずれの側からも、外側チューブ15とカバーチューブ29との間を通じて血液が環状部材22側に入り込むことが防止されている。
 なお、カバーチューブ29は必ずしも溶着により外側チューブ15と接合する必要はなく、接着等その他の接合方法を用いて接合してもよい。
 また、カバーチューブ29は、その遠位端部がバルーン13(詳しくは近位側レッグ領域13a)の近位端部と近接した位置に配置されている。そして、カバーチューブ29の遠位端部と近位側レッグ領域13aの近位端部との間(隙間)を通じて各電極線20がカバーチューブ29内から遠位側に導出されている。
 次に、バルーンカテーテル10を製造する際の作業手順について説明する。ここでは特に、バルーン13上に電極線20を設ける際の作業手順について説明する。図5は、かかる作業手順を説明するための説明図である。なお、かかる作業は、カテーテルチューブ11とバルーン13とを接合し、カテーテル本体35を製造した後に行う。
 まず図5(a)に示すように、環状部材22の外周面に各電極線20をそれぞれ溶接により接合する作業を行う。この場合、各電極線20を環状部材22の内周面に溶接する場合と比べ溶接し易く、かかる接合作業を容易に行うことができる。
 次に図5(b)に示すように、外側チューブ15の外周面に熱電対27の温接点27aを絶縁テープ28により固定し、それから図5(c)に示すように、各電極線20が接合された環状部材22を外側チューブ15の外周側に配置する。この場合、環状部材22により絶縁テープ28を外側から覆うように環状部材22を配置する。これにより、環状部材22の内周面と外側チューブ15の外周面との間に熱電対27の温接点27aが挟み込まれた状態で配置される。つまり、この場合、環状部材22の配置と同時に、温接点27aが環状部材22の内周側に配設されることとなる。
 ここで、上述したように、各電極線20はいずれも環状部材22の外周面に接合されているため、環状部材22の上記配置にあたっては、換言すると温接点27aが環状部材22の内周面側に配設されるにあたっては、電極線20が作業の邪魔となりにくい。そのため、温接点27aを環状部材22に比較的容易に設けることが可能となっている。
 また、このように環状部材22に熱電対27を設けるようにしたことで、熱電対27を1本だけ設ければよいため、各電極線20ごとにそれぞれ熱電対27を設ける場合と比べ、熱電対27を設ける上での作業工数の低減を図ることができる。
 次に、図5(d)に示すように、外側チューブ15の外周面に環状部材22を外側から覆うようにしてカバーチューブ29を被せ、その状態でカバーチューブ29を外側チューブ15と熱溶着する作業を行う。これにより、カバーチューブ29と外側チューブ15とが環状部材22を挟んだ両側において液密状態で接合される。
 次に、図5(e)に示すように、内側チューブ16の内側管孔16aにリード線21を挿通し、リード線21の遠位端部を各電極線20の遠位端部と半田付けにより接合する。その後、図5(f)に示すように、その半田付けにより形成された半田付け部24を外側から覆うようにチップチューブ25を内側チューブ16に被せ、その状態でチップチューブ25を内側チューブ16の外周面に熱溶着により接合する。これにより、チップチューブ25の先端開口が閉塞され、半田付け部24の露出が防止された状態となる。
 その後、後工程として、カテーテル本体35にコネクタ12を接合する等の作業を行うことで、一連の作業が終了する。
 次に、バルーンカテーテル10の使用方法について説明する。ここでは、不整脈発生源となる病変部位(病変組織)を燃灼対象として電極線20への通電によるアブレ-ション(焼灼)を行う際の作業手順について説明する。
 先ず血管内に挿入されたシースイントロディーサにガイディングカテーテルを挿通し、ガイディングカテーテルの先端開口部を冠動脈入口部まで導入する。次いでバルーンカテーテル10をガイドワイヤGに沿って押引操作を加えながら血管内に挿入し、バルーン13を病変部位に配置する。ここで、上述したように本バルーンカテーテル10では、熱電対27により環状部材22の温度を検知するようにしているため、複数の電極線20に対して1つの熱電対27を共用する構成となっている。この場合、熱電対27が1本だけあればよく、各電極線20ごとに熱電対27を設ける場合と比べ、熱電対27の本数を少なくすることができる。そのため、バルーンカテーテル10の外径をその分小さくすることができ、バルーンカテーテル10の血管内への導入に際し、挿通性の向上を図ることが可能となっている。
 次に、加圧器を用いてコネクタ12側から外側チューブ15の外側管孔15aを介してバルーン13に圧縮流体を供給し、バルーン13を膨張させる。これにより、各電極線20がバルーン13により病変部位に押し当てられ当該部位に密着される。
 次に、高周波電源装置30により電極線20に高周波電力を供給し病変部位(燃灼部位)の焼灼を行う。この際、高周波電源装置30は、熱電対27により検知される環状部材22の温度、ひいては燃灼によって加熱される病変部位の温度に基づき高周波電力の周波数を制御する。これにより、病変部位の温度を所定の温度に制御しながら焼灼を行うことができる。
 なお、高周波電源装置30等に、熱電対27により検知される環状部材22の温度を表示する温度表示部を設け、その温度表示部で環状部材22の温度(ひいては病変部位の温度)を確認しながら、高周波電力の周波数を手動で調整するようにしてもよい。
 病変部位の焼灼が終了した後、バルーン13内の圧縮流体を排出しバルーン13を収縮させる。そして、その収縮状態でバルーンカテーテル10を血管内からガイドワイヤGに沿って抜き取る。
 なお、バルーンカテーテル10は上記のように主として血管内を通されて、例えば冠状動脈、大腿動脈、肺動脈などの血管を治療するために用いられるが、血管以外の尿管や消化管などの生体内の「管」や、「体腔」にも適用可能である。
 以上、詳述した本実施形態の構成によれば、以下の優れた効果が得られる。
 金属製の環状部材22の内周面側に熱電対27の温接点27aを設け、その温接点27aと環状部材22との間に絶縁テープ28を介在させたため、電極線20から環状部材22へ流れる電力の影響を受けることなく、環状部材22の温度を熱電対27により好適に検知することができる。また、かかる構成において、各電極線20をいずれも環状部材22の外周面に接合したため、環状部材22に対する電極線20の接合箇所が絶縁テープ28により狭められるのを回避することができ、その結果電極線20の接合作業をし易くすることができる。
 また、温接点27aを環状部材22の内周面と外側チューブ15の外周面との間に挟み込んで設けたため、温接点27aを環状部材22側に密着させ易い。このため、温接点27aと環状部材22との間に絶縁テープ28を介在させた構成にあっても、環状部材22の温度を好適に検知することができる。
 外側チューブ15の外周面に環状部材22を外側から覆うようにカバーチューブ29を被せ、そのカバーチューブ29と外側チューブ15とを互いに接合することで、環状部材22側への血液の入り込みを防止した。これにより、環状部材22側に血液が入り込んで環状部材22が冷やされてしまうのを防止することができ、環状部材22の温度を好適に検知することが可能となる。
 環状部材22をカテーテル本体の外周側に設ける構成において、当該環状部材22をバルーン13の膨張部よりも近位側に配置したため、環状部材22をバルーン13の膨張部よりも遠位側に配置する場合と比べ、挿通性の低下を抑制することができる。
 本発明は上記実施形態に限らず、例えば次のように実施されてもよい。
 (1)アブレーションカテーテル(バルーンカテーテル)の変形例を図6に示す。図6は(a)がバルーン及びその周辺の構成を示す側面図であり、(b)が(a)のB-B線断面図である。
 図6(a)及び(b)に示すように、本例のバルーンカテーテル60では、バルーン13の外周面上に複数(具体的には2つ)の電極線61が軸線方向に沿って螺旋状に設けられている。これら各電極線61は、バルーン13の周方向において所定間隔を隔てて配置されており、詳しくは等間隔(180°間隔)に配置されている。各電極線61はそれぞれ、その遠位端部がリード線21に接続されており、その近位端部がバルーン13よりも近位側において外側チューブ15の外周面上に固定されている。具体的には、電極線61の近位端部は、外側チューブ15の外周面上において外側からカバーチューブ62が被せられるとともにそのカバーチューブ62が外側チューブ15に熱溶着されることで、両チューブ15,62の間で固定されている。
 バルーン13の外周面詳しくはその直管領域13cの外周面には、ステンレス等の金属材料からなる伝熱体63が設けられている。伝熱体63は、直管領域13cを囲む円環状をなしており、直管領域13cの外周面に金属材料を蒸着させることで形成されている。また、伝熱体63は、直管領域13cにおいて軸線方向の略中央位置に配置されている。
 伝熱体63の外周面には各電極線61が接合されている。各電極線61は、その長さ方向の中央部において伝熱体63の外周面に接合されている。また、各電極線61は、伝熱体63の周方向において所定の間隔で配置されており、詳しくは等間隔(180°間隔)で配置されている。なお、電極線61を伝熱体63に接合する方法としては、溶接、半田付け、接着、かしめ等の方法が挙げられる。
 伝熱体63の内周側には、熱電対65の温接点65aが設けられている。温接点65aは、バルーン13内部に設けられ、直管領域13cの内周面に接着等により接合されている。温接点65aは、伝熱体63の周方向において各電極線61の中間位置に配置されており、詳しくは各電極線61の中央位置に配置されている。なお本例では、熱電対65が外側チューブ15の外側管孔15aに挿通されている。
 かかる構成においても、電極線61への通電によって燃灼部位が加熱されると、その熱が電極線61を介して伝熱体63に伝達され、その伝熱体63の温度が温接点65aにより検知される。したがって、焼却部位の温度を間接的に検知することができ、当該検知した温度に基づく焼却部位の温度制御が可能となる。そして、このように伝熱体63の温度を検知する構成としたことで、各電極線61ごとに熱電対65を設ける構成と比べて、熱電対65の本数を少なくすることができる。これにより、バルーンカテーテル60の外径をその分小さくすることができ、挿通性の向上を図ることができる。また、熱電対65の本数を少なくすることで、外側チューブ15の外側管孔15a(流体用ルーメン)に挿通する熱電対65の本数も少なくすることができるため、熱電対65を外側管孔15aに挿通させる構成にあって、熱電対65により外側管孔15aにおける流体の流通が妨げられるのを抑制することができる。
 また、温接点65aと伝熱体63との間にはバルーン13(詳細にはバルーン13の膜厚部分)が介在されているため、バルーン13を絶縁層として機能させることができる。これにより、電極線61から伝熱体63へ流れる電力の影響を受けることなく、温接点65aにより伝熱体63の温度を好適に検出することが可能となる。また、温接点65aがバルーン13内部に設けられているため、温接点65aが血液に接触するのを回避することができる。これにより、血液の温度を誤検知してしまうのを抑制することができ、伝熱体63の温度検出を精度よく行うことが可能となる。
 (2)上記実施形態では、環状部材22の外周面に複数の電極線20を接合し、環状部材22の内周面側に熱電対27(詳しくは温接点27a)を設けたが、これを逆にして、環状部材22の外周面側に熱電対27を設け、環状部材22の内周面に複数の電極線20を接合してもよい。この場合でも、環状部材22に熱電対27を設けるにあたって電極線20が邪魔となるのを抑制することができるため、熱電対27を環状部材22に設ける作業を容易とすることができる。
 また、環状部材22の外周面側に複数の電極線20と熱電対27とをそれぞれ設けるようにしてもよいし、それとは逆に、環状部材22の内周面側に複数の電極線20と熱電対27とをそれぞれ設けるようにしてもよい。さらに、複数の電極線20のうち一部の電極線20を環状部材22の外周面に接合し、残りの電極線20を環状部材22の内周面に接合するようにしてもよい。
 (3)上記実施形態では、環状部材22を外側チューブ15の外周面に配置したが、これを変更し、環状部材22をバルーン13の近位側レッグ領域13aの外周面に配置するか、又は、近位側レッグ領域13aの外周面と外側チューブ15の外周面とに跨がって配置してもよい。要するに、カテーテル本体35の外周面においてバルーン13の膨張部よりも近位側であれば、環状部材22の配置箇所は任意でよい。
 また、上記実施形態では、環状部材22(伝熱体)を、外側チューブ15の外周面においてバルーン13(膨張部)よりも近位側に配置したが、これに代えて又は加えて、環状部材(伝熱体)をバルーン13の膨張部よりも遠位側に配置してもよい。例えば、内側チューブ16においてバルーン13よりも遠位側に延出した部分に円環状(円筒状)をなす金属製の環状部材(伝熱体に相当)を設けることが考えられる。この場合、当該環状部材は内側チューブ16の外周面を囲むように設けられ、当該環状部材に対して各電極線20とリード線21とがそれぞれ接続される。そして、当該環状部材に対して熱電対27の温接点27aが設けられる。この場合にも、燃灼部位の熱が電極線20を介して当該環状部材に伝達され、その環状部材の温度が熱電対27により検知されるため、燃灼部位の温度を電極線20及び当該環状部材を介して間接的に検知することができる。
 さらに、上記(1)において説明したように、バルーン13の膨張部に伝熱体を設けるようにしてもよい(図6参照)。
 (4)上記実施形態では、環状部材22(伝熱体に相当)を無端の環状に形成したが、これに代えて、環状部材を例えば断面C型といった有端の環状に形成してもよい。また、環状部材22を、円環状とすることに代えて、楕円環状としてもよい。
 また、伝熱体は必ずしも環状に形成する必要はなく、例えば半円形状(半円弧状)の横断面を有する2つの伝熱体を外側チューブ15の外周面を囲むように設けてもよい。この場合、それら各伝熱体にそれぞれ複数の電極線を接合するとともに熱電対(温接点)を設けることが考えられる。かかる構成においても、複数の電極線それぞれに熱電対を設ける場合と比べて、熱電対の本数を減らすことができるため、カテーテルの外径を小さくすることができ、挿通性の向上を図ることができる。その上、熱電対を設ける作業を行うに際し作業工数の削減を図ることができる。
 なお、かかる構成において、各伝熱体を固定するにあたっては、各伝熱体をそれぞれ一部露出させた状態で外側チューブ15(詳しくはその樹脂層)に埋設することで固定することが考えられる。
 (5)上記実施形態では、リード線21、環状部材22(伝熱体)をステンレスにより形成したが、銅やプラチナ、プラチナ―イリジウム、真鍮等その他の金属材料により形成してもよい。また、環状部材22は必ずしも金属材料で形成する必要はなく、熱伝導性に優れた材料であれば、樹脂材料やセラミックス材料等他の材料を用いて形成してもよい。さらに、環状部材22を電極線20と一体形成してもよく、例えば環状部材22と電極線20とを同一素材(材料)からの削り出しにより形成することが考えられる。
 また、リード線21と電極線20とを同じ金属材料により形成してもよい。その場合、リード線21と電極線20とを一体形成してもよい。
 (6)上記実施形態では、絶縁テープ28を温接点27aを固定すべく外側チューブ15の外周面に貼り付けたが、絶縁テープ28を環状部材22の内周面に貼り付けてもよい。この場合でも、絶縁テープ28を環状部材22と温接点27aとの間に介在させることができるため、環状部材22と温接点27aとを電気的に絶縁させることが可能となる。
 また、絶縁層(絶縁材)は必ずしも絶縁テープ28により形成する必要はなく、電気絶縁性を有するシート材(絶縁シート)やチューブ材(絶縁チューブ)等により形成してもよい。絶縁チューブにより絶縁層を形成する場合には、温接点27aに絶縁チューブを被せて設ければよい。また、温接点27aを外側チューブ15の外周面に電気絶縁性に優れたシーリング材や接着剤により当該温接点27aが外部に露出しない状態で固定し、そのシーリング材や接着剤により絶縁層を形成してもよい。
 (7)ところで、電極線20がバルーン13の膨張に伴い変位する際には当該電極線20に無理な負荷が加わる場合が想定される。そこでこの点に鑑みて、バルーン13の膨張に伴う電極線20の変位を吸収する変位吸収構造を設けてもよい。図7に、この変位吸収構造の具体例を示す。なお、図7(a)はバルーン13及びその周辺の構成を示す側面図であり、(b)は(a)における領域C3の拡大図である。
 図7(a)及び(b)に示すように、バルーン13の膨張部よりも遠位側には、各電極線20の遠位端部が接合された環状部材40が設けられている。環状部材40は、円環状(円筒状)に形成された樹脂層41と、その樹脂層41に埋設された金属製のコイルばね42とを備える。樹脂層41は、内側チューブ16においてバルーン13よりも遠位側に延出した部分に設けられ、当該部分の外周面に溶着により接合されている。
 コイルばね42は、その軸線方向の両端部がそれぞれ樹脂層41から露出された状態で樹脂層41に埋設されている。コイルばね42において近位側に露出された近位端部42aは各電極線20の遠位端部に溶接により接合されており、コイルばね42において遠位側に露出された遠位端部42bはリード線21の遠位端部と溶接により接合されている。この場合、各電極線20とリード線21とがコイルばね42を介して電気的に接続された状態となっている。なお、コイルばね42に対する各電極線20及びリード線21の接合は必ずしも溶接により行う必要はなく、接着や半田付け、かしめ等他の接合方法により行ってもよい。また、より詳しくは、内側チューブ16の周壁部には当該周壁部を貫通する孔部45が形成されており、その孔部45を通じてリード線21の遠位端部が内側管孔16aから引き出されコイルばね42の遠位端部42bと接合されている。
 かかる構成では、バルーン13の膨張に伴い電極線20が変位する際、その変位に追従してコイルばね42が軸線方向に弾性変形する。これにより、電極線20の変位に際し電極線20にかかる負荷を吸収することができるため、電極線20に無理な引っ張り力が加わって電極線20が断線したりバルーン13の膨張が阻害されたりする不都合を抑制することができる。
 また、環状部材40をコイルばね42を含んで形成することに代えて、環状部材を弾性を有するゴム等の材料により形成してもよい。その場合でも、電極線20の変位に追従させて環状部材を弾性変形させることが可能である。
 (8)上記(7)の構成では、環状部材を弾性変形することにより、電極線20の変位吸収構造を構成したが、これを変更し、環状部材を軸線方向に移動可能に設けることで変位吸収構造を構成してもよい。例えば、図7の構成において環状部材40に代えて、円環状(円筒状)をなす金属製の環状部材を軸線方向に移動可能に設けることが考えられる。具体的にはこの場合、環状部材を内側チューブ16の外周側に固定しない状態で設け、これにより環状部材を内側チューブ16の軸線方向に沿って移動可能とする。かかる構成では、バルーン13の膨張に伴い電極線20が変位する際、その変位に追従して環状部材が軸線方向に移動し、これによって電極線20にかかる負荷を吸収することができる。なお、このように環状部材を移動可能に設ける場合にも、図7の環状部材40の場合と同様に、当該環状部材の外周面に複数の電極線20を接合し、内周面にリード線21を接合すればよい。
 ここで、かかる移動可能に設けられた環状部材、及び、図7の上記コイルばね42にはそれぞれ各電極線20が接合されているため、当該移動可能とされた環状部材又はコイルばね42(以下、当該移動可能とされた環状部材等という)に対して熱電対27の温接点27aを設け、当該移動可能とされた環状部材等の温度を温接点27aにより検知するようにしてもよい。すなわち、当該移動可能とされた環状部材等を伝熱体として利用するようにしてもよい。
 (9)上記実施形態では、バルーン13の外周面に電極線20を3つ設けたが、電極線20を2つ又は4つ以上設けてもよい。また、複数の電極線20は必ずしもバルーン13の周方向に等間隔で配置する必要はなく、不均等な間隔で配置してもよい。
 (10)上記実施形態では、電極線20の材料としてPt-Ir(白金イリジウム合金)を用いたが、その他の材料を用いてもよい。例えば、金、銀、白金、銅等の材料を用いることが考えられる。
 また、図8に示すように、電極線50として、Ni-Ti(ニッケルチタン合金)からなるコア51と、コア51の外側に形成されPt(白金)よりなる外層52とを備えるものを用いてもよい。Ni-Tiは超弾性合金であり、形状復元効果を有している。このため、バルーン13を膨張させ電極線50を病変部位に密着させた状態でアブレ-ションを行った後、バルーン13を収縮させた場合に、電極線50が元の形状(バルーン13膨張前の形状)に復元し易い。そのため、バルーン13を収縮状態で体外に引き出す際、電極線50が引き出しの抵抗となるのを抑制することができ、引き出しの際の操作性の低下を抑制することができる。また、Ni-Tiがコア51に設けられているため、焼灼性の点でも好ましい。
 一方、Ptは造影機能を有しているため、X線投影下において電極線50の視認性向上を図ることが可能となる。これにより、電極線50を目標の病変部位に配置する作業をし易くすることができる。また、Ptが外層52に設けられているため、造影性を高める効果も期待できる。
 なお、図8の例とは逆に、コア51をPtにより形成し、外層52をNi-Tiにより形成してもよい。
 (11)上記実施形態では、複数の電極線20の遠位端部にのみリード線21を接続し、当該遠位端部からのみ電極線20に対する電力の供給を行ったが、この場合電極線20において遠位端部側から近位端部側に向けて徐々に電圧が低くなっていくことが想定される。そうすると、電極線20において遠位端部側から近位端部側に向けて発生する熱量が小さくなっていくことが想定され、電極線20全体において均一の温度で焼灼することが困難になると考えられる。そこで、この点に鑑みて、例えば図9に示すように、複数の電極線20の遠位端部に加えて近位端部にもリード線55を接続し、各リード線21,55を通じて電極線20の両端部からそれぞれ電極線20に電力を供給するようにしてもよい。図9の例では、リード線55の一端部が高周波電源装置30に接続され、他端部が環状部材22の外周面に接合されている。この場合、リード線55(の他端部)は環状部材22を介して複数の電極線20の近位端部と接続されている。かかる構成によれば、電極線20全体において発生する熱量を均一にし易くすることができ、電極線20全体において温度の均一化を図ることが可能となる。
 (12)上記実施形態では、温度検知線として熱電対を用いたが、測温抵抗体等その他の温度検知線を用いてもよい。例えば、測温抵抗体を用いる場合には、その先端に設けられた温度検出部(センサ部)を環状部材22に接触させた状態で設けることになる。
 (13)上記実施形態では、膨張部をバルーン13により構成したが、膨張部をステントや網状のバスケット等、バルーン以外のもので構成してもよい。
 (14)上記実施形態では、カテーテルチューブ11を、流体用ルーメン(外側管孔15a)を有する外側チューブ15と、リード線21挿通用のルーメン(内側管孔16a)を有する内側チューブ16との複数管構造としたが、これを変更してもよい。例えば、カテーテルチューブを複数のルーメンを有するマルチルーメンチューブにより構成し、それら複数のルーメンのうちいずれか2つのルーメンを流体用ルーメン及びリード線挿通用ルーメンとして利用することが考えられる。また、マルチルーメンチューブの複数のルーメンのうちいずれかのルーメンを熱電対27挿通用に利用したり、ガイドワイヤG挿通用に利用したりしてもよい。
 (15)上記実施形態では、本発明のアブレ-ションカテーテルをバルーンカテーテルに適用した場合について説明したが、本発明をカテーテル本体の外周側に複数の電極線を備える他のカテーテルに適用してもよい。
 (本明細書の開示範囲から抽出される他の発明について)
 以下に、本明細書の開示範囲内において課題を解決するための手段欄に記載した発明以外に抽出可能な発明について、必要に応じて効果等を示しつつ説明する。
 (A-1)
 管状をなすカテーテル本体を備え、
 前記カテーテル本体は、その遠位端側に流体を利用して膨張又は収縮される膨張部を有するバルーンを備え、
 前記バルーンの外周側には、前記膨張部を少なくとも当該バルーンの軸線方向に跨ぐようにして電極線が設けられているアブレーションカテーテルにおいて、
 前記軸線方向における前記膨張部を挟んだ両側のうち少なくともいずれかに設けられるとともに前記カテーテル本体の外周面の一部を囲むように配置され、かつ、前記電極線が接合された環状部材を備え、
 前記環状部材は、前記膨張部の膨張に伴う前記電極線の変位に追従して動作することが可能となっていることを特徴とするアブレーションカテーテル。
 本構成によれば、環状部材がバルーンの膨張に伴う電極線の変位に追従して動作することが可能となっているため、変位に際して電極線にかかる負荷を吸収することができる。これにより、電極線に無理な引っ張り力が加わって電極線が断線したりバルーンの膨張が阻害されたりする不都合を抑制することができる。
 (A-2)
 前記環状部材は、前記バルーンの膨張に伴う前記電極線の変位に追従して弾性変形することを特徴とする(A-1)に記載のアブレーションカテーテル。
 (A-3)
 前記環状部材は、コイルばねを含んで形成されており、
 そのコイルばねが前記バルーンの膨張に伴う前記電極線の変位に追従して弾性変形するようになっていることを特徴とする(A-2)に記載のアブレーションカテーテル。
 (A-4)
 前記環状部材は、前記バルーンの膨張に伴う前記電極線の変位に追従して前記軸線方向に移動することが可能となっていることを特徴とする(A-1)に記載のアブレーションカテーテル。
 (B-1)
 管状をなすカテーテル本体と、
 前記カテーテル本体の外周側に設けられた電極線と、を備え、
 前記電極線は、コアと、そのコアの外側に形成された外層とを備え、
 前記コア及び前記外層のうちいずれか一方がNi-Tiよりなり、他方がPtよりなることを特徴とするアブレーションカテーテル。
 例えばバルーンの外周面に電極線が設けられる構成では、バルーンの膨張に伴い電極線が変位(変形)し病変部位に押し付けられ、その押し付け状態で電極線による焼灼が行われる。そして、焼灼が終了した後は、バルーンが収縮状態とされカテーテルが体外に引き出される。このような構成では、バルーンが収縮状態とされても、電極線がバルーンの膨張により変形されたままの状態から元の形状に復帰しない場合が想定され、その場合、バルーンを体外に引き出す際に電極線が引き出しの抵抗となり操作性の低下を招くおそれがある。そこで本構成では、この点に鑑みて、電極線をNi-TiとPtとの2層構造により形成している。この場合、超弾性合金であるNi-Tiによる形状復元効果により、バルーンを収縮状態とさせた際に電極線の形状を元の形状に復帰させ易くすることができる。そのため、バルーンを体外に引き出す際に電極線が抵抗となり操作性が低下してしまうのを抑制することができる。
 また、Pt(白金)は造影機能を有しているため、X線投影下において電極線の視認性向上を図ることが可能となる。これにより、電極線を目標の病変部位に配置する作業をし易くすることができる。
 (B-2)
 前記コアはNi-Tiよりなり、前記外層はPtよりなることを特徴とする(B-1)に記載のアブレーションカテ-テル。
 本発明によれば、Ni-Ti(ニッケルチタン合金)よりなるコアの外側にPt(白金)からなる外層が形成されているため、焼灼性の点でより好ましい構成とすることができる。また、Ptが外層にあるため、造影性の点でも好ましい。
 (C-1)
 管状をなすカテーテル本体と、
 カテーテル本体の外周側に設けられた電極線と、を備え、
 前記電極線の両端部にはそれぞれリード線が接続されており、それら各リード線を通じて電源装置より前記電極線に電力が供給されることを特徴とするアブレーションカテーテル。
 電極線に対して一端部からのみ電力を供給する構成では、電極線において当該一端部側から他端部側に向けて徐々に電圧が低くなっていくことが想定され、その場合、電極線において当該一端部側から他端部側に向けて発生する熱量も小さくなっていくことが想定される。その場合、電極線全体において均一の温度で焼灼することが困難となることが考えられる。その点本構成によれば、電極線の両端部からそれぞれ電極線に電力を供給することができるため、電極線全体において発生する熱量を均一にし易い。そのため、電極線全体において温度の均一化を図ることが可能となる。
 10…バルーンカテーテル、11…カテーテルチューブ、13…バルーン、15…外側チューブ、20…電極線、22…環状部材、27…熱電対、27a…温接点、28…絶縁テープ、29…カバーチューブ、30…高周波電源装置。

Claims (10)

  1.  管状をなすカテーテル本体と、
     当該カテーテル本体の遠位端側において当該カテーテル本体の外周側に設けられた複数の電極線と、を備えるアブレーションカテーテルにおいて、
     前記各電極線がそれぞれ接続された伝熱体と、
     前記伝熱体に設けられて当該伝熱体の温度を検知する温度検知部を有する温度検知線と、を備えることを特徴とするアブレーションカテーテル。
  2.  前記伝熱体は、前記カテーテル本体の外周面を囲むように当該外周面に沿って設けられていることを特徴とする請求項1に記載のアブレーションカテーテル。
  3.  前記伝熱体の内周面側及び外周面側のうちいずれか一方側に前記複数の電極線が接続されており、他方側に前記温度検知部が設けられていることを特徴とする請求項2に記載のアブレーションカテーテル。
  4.  前記伝熱体は、金属製であり、
     前記温度検知線は、熱電対からなり、
     前記熱電対における前記温度検知部としての温接点が、前記伝熱体の前記他方側において当該伝熱体との間に絶縁層を介在させた状態で設けられていることを特徴とする請求項3に記載のアブレーションカテーテル。
  5.  前記伝熱体の外周面に前記複数の電極線が接続されていることを特徴とする請求項2乃至4のいずれか一項に記載のアブレーションカテーテル。
  6.  前記温度検知部は、前記伝熱体の内周面と前記カテーテル本体の外周面との間に挟み込まれた状態で設けられていることを特徴とする請求項2乃至5のいずれか一項に記載のアブレーションカテーテル。
  7.  前記伝熱体は、金属製であり、
     前記温度検知線は、熱電対からなり、
     前記熱電対における前記温度検知部としての温接点は、前記カテーテル本体の外周面に絶縁材により外側から覆われた状態で設けられており、
     その絶縁材の外側に前記伝熱体が配設されることで、前記温接点が前記伝熱体と前記カテーテル本体との間に挟み込まれていることを特徴とする請求項6に記載のアブレーションカテーテル。
  8.  前記カテーテル本体の外周面には、前記伝熱体を外側から覆うようにしてカバーチューブが被せられており、
     前記カバーチューブと前記カテーテル本体とが互いに接合されることにより、前記伝熱体側への血液の入り込みが防止されていることを特徴とする請求項1乃至7のいずれか一項に記載のアブレーションカテーテル。
  9.  前記カテーテル本体は、その遠位端側に流体を利用して膨張又は収縮される膨張部を有するバルーンを備えており、
     前記複数の電極線は、前記バルーンの外周側において少なくとも前記膨張部を前記バルーンの軸線方向に跨ぐように設けられており、
     前記伝熱体は、前記カテーテル本体の外周面を囲む環状をなすとともに、前記軸線方向における前記膨張部を挟んだ両側のうちいずれかに設けられ、かつ前記複数の電極線の一端部とそれぞれ接合されており、
     当該伝熱体が前記膨張部の膨張に伴う前記電極線の変位に追従して動作可能とされているか、又は、前記膨張部を挟んで前記伝熱体とは反対側において前記カテーテル本体の外周面を囲む環状をなし前記複数の電極線の他端部とそれぞれ接合された環状部材が設けられている場合に当該環状部材が前記膨張部の膨張に伴う前記電極線の変位に追従して動作可能とされていることを特徴とする請求項1乃至8のいずれか一項に記載のアブレーションカテーテル。
  10.  前記複数の電極線はそれぞれ一端部が前記伝熱体を介してリード線と接続されており、他端部もリード線と接続されており、
     前記複数の電極線にはそれぞれ、前記各リード線を通じて電源装置から電力が供給されることを特徴とする請求項1乃至9のいずれか一項に記載のアブレーションカテーテル。
PCT/JP2012/081168 2012-11-30 2012-11-30 アブレーションカテーテル WO2014083698A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2012/081168 WO2014083698A1 (ja) 2012-11-30 2012-11-30 アブレーションカテーテル
JP2014549742A JP6059737B2 (ja) 2012-11-30 2012-11-30 アブレーションカテーテル

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/081168 WO2014083698A1 (ja) 2012-11-30 2012-11-30 アブレーションカテーテル

Publications (1)

Publication Number Publication Date
WO2014083698A1 true WO2014083698A1 (ja) 2014-06-05

Family

ID=50827368

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/081168 WO2014083698A1 (ja) 2012-11-30 2012-11-30 アブレーションカテーテル

Country Status (2)

Country Link
JP (1) JP6059737B2 (ja)
WO (1) WO2014083698A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016007333A (ja) * 2014-06-24 2016-01-18 株式会社グッドマン アブレーション用電極部材およびアブレーション用カテーテル
WO2019181634A1 (ja) * 2018-03-20 2019-09-26 テルモ株式会社 医療デバイス
WO2020035918A1 (ja) * 2018-08-15 2020-02-20 日本ライフライン株式会社 バルーン型電極カテーテル
WO2020035919A1 (ja) * 2018-08-15 2020-02-20 日本ライフライン株式会社 バルーン型電極カテーテル
WO2020067491A1 (ja) * 2018-09-27 2020-04-02 テルモ株式会社 医療デバイス
WO2021130877A1 (ja) * 2019-12-24 2021-07-01 日本ライフライン株式会社 バルーン型電極カテーテル

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000062699A2 (en) * 1999-04-21 2000-10-26 Broncus Technologies, Inc. Modification of airways by application of energy
WO2007001981A2 (en) * 2005-06-20 2007-01-04 Ablation Frontiers Ablation catheter
WO2010113914A1 (ja) * 2009-03-31 2010-10-07 東レ株式会社 バルーン付きアブレーションカテーテル用シャフト

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8657814B2 (en) * 2005-08-22 2014-02-25 Medtronic Ablation Frontiers Llc User interface for tissue ablation system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000062699A2 (en) * 1999-04-21 2000-10-26 Broncus Technologies, Inc. Modification of airways by application of energy
JP2002541905A (ja) * 1999-04-21 2002-12-10 ブロンカス テクノロジーズ, インコーポレイテッド エネルギーの適用による気道の改変
WO2007001981A2 (en) * 2005-06-20 2007-01-04 Ablation Frontiers Ablation catheter
US20070083194A1 (en) * 2005-06-20 2007-04-12 Kunis Christopher G Ablation catheter
JP2009500052A (ja) * 2005-06-20 2009-01-08 アブレーション フロンティアズ,インコーポレーテッド アブレーションカテーテル
WO2010113914A1 (ja) * 2009-03-31 2010-10-07 東レ株式会社 バルーン付きアブレーションカテーテル用シャフト
EP2415495A1 (en) * 2009-03-31 2012-02-08 Toray Industries, Inc. Shaft for balloon-equipped ablation catheter

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016007333A (ja) * 2014-06-24 2016-01-18 株式会社グッドマン アブレーション用電極部材およびアブレーション用カテーテル
WO2019181634A1 (ja) * 2018-03-20 2019-09-26 テルモ株式会社 医療デバイス
JPWO2019181634A1 (ja) * 2018-03-20 2021-03-25 テルモ株式会社 医療デバイス
JP7279018B2 (ja) 2018-03-20 2023-05-22 テルモ株式会社 医療デバイス
WO2020035918A1 (ja) * 2018-08-15 2020-02-20 日本ライフライン株式会社 バルーン型電極カテーテル
WO2020035919A1 (ja) * 2018-08-15 2020-02-20 日本ライフライン株式会社 バルーン型電極カテーテル
TWI710351B (zh) * 2018-08-15 2020-11-21 日商日本來富恩有限公司 氣球型電極導管
WO2020067491A1 (ja) * 2018-09-27 2020-04-02 テルモ株式会社 医療デバイス
WO2021130877A1 (ja) * 2019-12-24 2021-07-01 日本ライフライン株式会社 バルーン型電極カテーテル

Also Published As

Publication number Publication date
JP6059737B2 (ja) 2017-01-11
JPWO2014083698A1 (ja) 2017-01-05

Similar Documents

Publication Publication Date Title
JP6059737B2 (ja) アブレーションカテーテル
JP6259099B2 (ja) 可撓性を備える導電性ワイヤを備えるバルーン・カテーテル、並びに関連する使用および製造方法
US9808311B2 (en) Deflectable medical devices
US20130231659A1 (en) Off-wall and contact electrode devices and methods for nerve modulation
WO2015049784A1 (ja) バルーンカテーテルアブレーションシステム
JP2016534842A (ja) 除神経フレックス回路における埋め込み熱電対
JP2016524515A (ja) ねじりバルーンを備えた腎神経アブレーションカテーテル
JP7407119B2 (ja) 医療デバイス
CN105555348A (zh) 具有能量递送热电偶组件的神经调节导管装置和系统以及相关方法
JP7279018B2 (ja) 医療デバイス
TW201106915A (en) Guide wire and system of ablation catheter with balloon
JPWO2010113915A1 (ja) ガイドワイヤ及びそれを備えるバルーン付きアブレーションカテーテルシステム
KR20200031139A (ko) 카테터
CN105324090A (zh) 用于肾神经消融的医疗器械
CN109925049A (zh) 射频消融导管及射频消融系统
CN109965973A (zh) 消融导管和消融系统
JP2015112114A (ja) 神経電位測定用カテーテル
JP2018079332A (ja) 入れ子型の重ね連結部および融合された導電性要素を有する医療デバイス、ならびにこの医療デバイスを作製する方法
TW201446213A (zh) 附有氣球之電燒導管及附有氣球之電燒導管系統
US20130245622A1 (en) Expandable electrode device and methods for nerve modulation
JP2007236633A (ja) カテーテル
JP2015116309A (ja) カテーテルの製造方法およびカテーテル
JP2020130428A (ja) バルーンカテーテル
JP6383250B2 (ja) アブレーションカテーテル
US11090100B2 (en) Catheter with micro-peltier cooling components

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12889307

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014549742

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12889307

Country of ref document: EP

Kind code of ref document: A1