WO2014082200A1 - 光信号功率调节方法和装置 - Google Patents

光信号功率调节方法和装置 Download PDF

Info

Publication number
WO2014082200A1
WO2014082200A1 PCT/CN2012/085339 CN2012085339W WO2014082200A1 WO 2014082200 A1 WO2014082200 A1 WO 2014082200A1 CN 2012085339 W CN2012085339 W CN 2012085339W WO 2014082200 A1 WO2014082200 A1 WO 2014082200A1
Authority
WO
WIPO (PCT)
Prior art keywords
oms
segment
optical power
optical
power
Prior art date
Application number
PCT/CN2012/085339
Other languages
English (en)
French (fr)
Inventor
刘姗姗
苏年平
吴秉聪
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201280002150.5A priority Critical patent/CN103339877B/zh
Priority to PCT/CN2012/085339 priority patent/WO2014082200A1/zh
Publication of WO2014082200A1 publication Critical patent/WO2014082200A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0221Power control, e.g. to keep the total optical power constant
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/29Repeaters
    • H04B10/291Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form
    • H04B10/293Signal power control
    • H04B10/2933Signal power control considering the whole optical path
    • H04B10/2935Signal power control considering the whole optical path with a cascade of amplifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/29Repeaters
    • H04B10/291Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form
    • H04B10/293Signal power control
    • H04B10/2933Signal power control considering the whole optical path
    • H04B10/2939Network aspects

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to an optical signal power adjustment method and apparatus.
  • the power of the optical transceiver (OMS) section of the optical multiplexing section (OMS) may be degraded, or the single-wave power is not flat.
  • the network needs to be optimized for online power.
  • the optical input power of the transmitting end of the first OMS segment is adjusted, and the error rate of the Optical Transponder Unit (OTU) of the receiving end is detected. If no degradation occurs, the next OMS segment is detected. The light input power is adjusted, otherwise the next OMS segment is not adjusted.
  • the adjustment of the optical power of the upstream OMS segment affects the optical power of the downstream OMS segment, causing the optical signal of the downstream OMS segment to jitter, thereby affecting the error rate of the OTU at the receiving end.
  • the embodiments of the present invention provide an optical signal power adjustment method and apparatus, which reduce the influence of the adjustment of optical power in the upstream OMS segment on the optical power of the downstream OMS segment, and reduce the error rate of the OTU at the receiving end.
  • an embodiment of the present invention provides an optical signal power adjustment method, including: performing positive adjustment on optical power of a 0MS segment of a first optical conversion unit;
  • the optical power of the second 0MS segment is inversely adjusted according to the forward adjustment of the optical power of the first 0MS segment, where the second 0MS segment is the downstream 0MS segment of the first 0MS segment in the optical network.
  • the optical power comprises: a light input power and/or a single wave power.
  • the pair of first optical conversion units 0MS Forward adjustment of the optical power of the segment includes: adjusting attenuation of optical power of the first OMS segment to reduce attenuation of optical power of the first OMS segment, and improving optical power of the first OMS segment
  • the reverse adjusting the optical power of the second OMS segment according to the forward adjustment of the optical power of the first OMS segment including: adjusting the first OMS segment adjusted according to the forward adjustment Attenuation amplitude of the optical power, the attenuation of the optical power of the second OMS segment is adjusted to increase the attenuation of the optical power of the second OMS segment, and reduce the optical power of the second OMS segment.
  • the positive adjustment adjusts an optical power amplitude of the first OMS segment
  • the reverse adjustment adjusts the light of the second OMS segment
  • the power amplitude is the same.
  • the method further includes: Correcting and adjusting the optical power of the inversely adjusted second OMS segment according to the set baseline value of the optical power of the second OMS segment, so as to correct the adjusted optical power of the second OMS segment and the baseline The difference between the values is within the set range.
  • the method further includes: detecting a bit error rate of the optical wavelength conversion unit OTU of the receiving end; When the error rate is greater than or equal to the set threshold, the optical power of the first OMS segment is restored to the forward adjustment, and the optical power of the second OMS segment is restored to the reverse adjustment.
  • an embodiment of the present invention further provides an optical signal power adjustment apparatus, including: a forward adjustment module, configured to perform positive adjustment on optical power of an OMS segment of a first optical conversion unit; and a reverse adjustment module, configured to Performing a reverse adjustment of the optical power of the second OMS segment according to the forward adjustment of the optical power of the first OMS segment by the forward adjustment module, where the second OMS segment is the first OMS in the optical network
  • an optical signal power adjustment apparatus including: a forward adjustment module, configured to perform positive adjustment on optical power of an OMS segment of a first optical conversion unit; and a reverse adjustment module, configured to Performing a reverse adjustment of the optical power of the second OMS segment according to the forward adjustment of the optical power of the first OMS segment by the forward adjustment module, where the second OMS segment is the first OMS in the optical network
  • the downstream OM S segment of the segment including: a forward adjustment module, configured to perform positive adjustment on optical power of an OMS segment of a first optical conversion unit; and a reverse adjustment module, configured to Performing
  • the optical power comprises: a light input power and/or a single wave power.
  • the forward adjustment module is specifically configured to: adjust an attenuation of optical power of the first OMS segment to reduce optical power of the first OMS segment Attenuating, increasing the optical power of the first OMS segment;
  • the reverse adjustment module is specifically configured to: according to the attenuation amplitude of the optical power of the first OMS segment adjusted by the forward adjustment module, The attenuation of the optical power of the second OMS segment is adjusted to increase the optical power of the second OMS segment The attenuation reduces the optical power of the second OMS segment.
  • the optical power amplitude of the first OMS segment adjusted by the forward adjustment module and the second OMS segment adjusted by the reverse adjustment module is the same.
  • the method further includes: a correction adjustment module, configured to: according to the set optical power baseline value of the second OMS segment, the reverse-adjusted second OMS segment The optical power is adjusted and adjusted so that the difference between the optical power of the second OMS segment after the correction is adjusted and the baseline value is within a set range.
  • a correction adjustment module configured to: according to the set optical power baseline value of the second OMS segment, the reverse-adjusted second OMS segment The optical power is adjusted and adjusted so that the difference between the optical power of the second OMS segment after the correction is adjusted and the baseline value is within a set range.
  • the method further includes: a detecting module, configured to detect a bit error rate of the optical wavelength conversion unit OTU of the receiving end; and a recovery module, configured to: if the error rate is greater than or equal to And setting a threshold, returning the optical power of the first OMS segment to the forward adjustment, and restoring the optical power of the second OMS segment to before the reverse adjustment.
  • a detecting module configured to detect a bit error rate of the optical wavelength conversion unit OTU of the receiving end
  • a recovery module configured to: if the error rate is greater than or equal to And setting a threshold, returning the optical power of the first OMS segment to the forward adjustment, and restoring the optical power of the second OMS segment to before the reverse adjustment.
  • an embodiment of the present invention further provides an optical signal power adjustment apparatus, including: a regulator, configured to perform positive adjustment on optical power of an OMS segment of a first optical conversion unit; and the regulator is further configured to The forward adjustment module performs forward adjustment of the optical power of the first OMS segment, and inversely adjusts the optical power of the second OMS segment, where the second OMS segment is the first OM S segment in the optical network.
  • the downstream OM S segment is the optical signal power adjustment apparatus, including: a regulator, configured to perform positive adjustment on optical power of an OMS segment of a first optical conversion unit; and the regulator is further configured to The forward adjustment module performs forward adjustment of the optical power of the first OMS segment, and inversely adjusts the optical power of the second OMS segment, where the second OMS segment is the first OM S segment in the optical network.
  • the downstream OM S segment is the downstream OM S segment.
  • the optical power comprises: a light input power and/or a single wave power.
  • the regulator is specifically configured to: adjust an attenuation of optical power of the first OMS segment to reduce attenuation of optical power of the first OMS segment And improving the optical power of the first OMS segment; the regulator is further configured to: adjust, according to the forward adjustment, the attenuation of the optical power of the first OMS segment, and the light of the second OMS segment The attenuation of the power is adjusted to increase the attenuation of the optical power of the second OMS section and reduce the optical power of the second OMS section.
  • the positive adjustment adjusts an optical power amplitude of the first OMS segment
  • the reverse adjustment adjusts the light of the second OMS segment
  • the power amplitude is the same.
  • the regulator is further configured to: illuminate the reverse-adjusted second OMS segment according to the set optical power baseline value of the second OMS segment Work The correction is adjusted so that the difference between the optical power of the second OMS section after the correction is adjusted and the baseline value is within a set range.
  • the method further includes: a detector, configured to detect a bit error rate of the optical wavelength conversion unit OTU of the receiving end; and the regulator is further configured to: if the error occurs The rate is greater than or equal to the set threshold, and the optical power of the first OMS segment is restored to the forward adjustment, and the optical power of the second OMS segment is restored to the reverse adjustment.
  • the method and device for adjusting the power of the optical signal provided by the embodiment of the present invention, by performing positive adjustment on the optical power of the upstream OMS segment of the optical network, and inversely adjusting the optical power of the downstream OMS segment to obtain the error rate of the OTU at the receiving end .
  • FIG. 1 is a flow chart of an embodiment of an optical signal power adjustment method provided by the present invention
  • FIG. 2 is a schematic structural diagram of an optical network
  • FIG. 3 is a flowchart of still another embodiment of an optical signal power adjustment method according to the present invention
  • FIG. 5 is a schematic structural diagram of an optical signal power adjustment apparatus according to an embodiment of the present invention
  • FIG. 7 is a schematic structural view of still another embodiment of an optical signal power adjusting device according to the present invention
  • FIG. 8 is a schematic structural view of still another embodiment of an optical signal power adjusting device according to the present invention.
  • FIG. 1 is a flowchart of an embodiment of an optical signal power adjustment method according to the present invention. As shown in FIG. 1 , the method includes:
  • S101 Perform positive adjustment on optical power of the OMS segment of the first optical conversion unit
  • S102 Perform reverse adjustment on the optical power of the second OMS segment according to the forward adjustment of the optical power of the first OMS segment, where the second OMS segment is a downstream OMS segment of the first OMS segment in the optical network.
  • FIG. 2 provides a schematic structural diagram of an optical network to which the embodiment of the present invention is applied.
  • the optical network may include multiple OTU transmitting ends, and the multiple optical signals sent by the multiple OTU transmitting ends are synthesized into one optical signal by using a Wavelength Selective Switching Multiplexing Board (WSM), and the optical signal passes through several After the OMS segment, the Wavelength Selective Switching Demultiplexing Board (WSD) is divided into multiple optical signals corresponding to the transmitting end, which are respectively input to multiple OTU receiving ends.
  • WSM Wavelength Selective Switching Multiplexing Board
  • each ROADM unit may generally include an optical amplifier, a WSD, and a WSM.
  • the OMS segment involved in the embodiment of the present invention generally includes a light emitting device, a WSD and a WSM, and the optical device may include an optical amplifier (OA) and an adjustable The variable optical attenuator board (VOA)schreib
  • the first OMS segment in the optical network usually the WSM output of the first ROADM to the WSD input of the next ROADM, ie, the multiplexing of service input and output
  • the output port of the board goes to the input port of the demultiplexed board of the next service input and output.
  • the optical network shown in Figure 2 includes three segments of OMS, which are 0MS1, OMS2, and OMS3. The specific division of each OMS segment is shown in the figure. 2, but it is not intended to limit the embodiments of the present invention.
  • the first OMS segment involved in the embodiment of the present invention is not specifically referred to as the first OMS segment in the optical network, but may refer to any OMS segment in the optical network, but may generally refer to an optical network.
  • the upstream OMS segment is the OMS segment closer to the transmitting end OTU than the receiving OTU.
  • the second OMS segment refers to the downstream OMS segment of the first OMS segment, that is, the second OMS segment is located closer to the receiving end OTU in the optical network than the first OMS segment.
  • the second OMS segment may be a downstream OMS segment adjacent to the first OMS segment, or may be a downstream OMS segment not adjacent to the first OMS segment.
  • the device with the power detection function can perform real-time detection or periodic detection on the optical power of the first OMS segment. If the optical power of the first OMS segment is degraded, that is, the optical power exceeds a certain threshold, the first OMS segment can be used. The optical power is adjusted.
  • the optical power referred to in the embodiment of the present invention may include: optical input power and/or single wave power. That is, the optical input power of the first OMS segment can be adjusted to achieve the nominal input power of the optical amplifier, and the single-wave power of the first OMS segment can be adjusted to make the single-wave flat.
  • the adjustment of the optical power of the first OMS segment may affect the second OMS segment of the first OMS segment. Therefore, in the embodiment of the present invention, after the optical power of the first OMS segment is positively adjusted, The optical power of the second OMS section is inversely adjusted.
  • the so-called forward adjustment and reverse adjustment refer to adjusting the optical power in the opposite direction, for example: the positive adjustment is to control the attenuation of the optical power, and the optical power is increased, then the reverse adjustment is the control light. Attenuation of power to reduce optical power and vice versa.
  • the reverse adjustment may be reverse-adjusted according to the wavelength scheduling direction of each second OMS segment.
  • the optical power amplitude of the first OMS segment adjusted by the forward adjustment may be adjusted with the reverse adjustment.
  • the optical power amplitude of the two OMS segments is the same.
  • the optical power of the second OMS segment may be first detected to determine the first OMS segment.
  • the influence of the optical power adjustment on the optical power of the second OMS section is inversely adjusted according to the influence range of the optical power, so as to achieve a good effect of reducing the influence.
  • the optical input power can be used as the adjustment target: adjusting the combined VOA and/or single-wave VOA before the light is placed; and the flatness can also be used as the adjustment target:
  • the adjustment adjustment tool can manually set the attenuation value and issue the adjustment command. Thereby adjusting the optical power. or, The optical power of the first OMS segment and the second OMS segment can also be automatically identified by the tool, and the attenuation value is set to adjust the optical power.
  • FIG. 3 is a flowchart of still another embodiment of an optical signal power adjustment method according to the present invention. As shown in FIG. 3, this embodiment provides a specific embodiment of an optical signal power adjustment method. In this embodiment, a pair of attenuation adjustments is performed. The magnitude of the step, for example: can be adjusted by 0.5dB.
  • the method specifically includes:
  • the attenuation adjustment of the optical power of the first OMS segment may specifically be to adjust the multiplexed wave attenuation, that is, to adjust the attenuation of the combined channel.
  • Adjusting the attenuation of the optical power of the second OMS segment may specifically adjust the single-wave attenuation of the second OMS segment, that is, adjusting the attenuation of the single-wave channel.
  • the OMS1 segment is used as the first OMS segment and the OMS2 is used as the second OMS segment. If the OMS1 segment wavelength power is degraded, the optical power attenuation of the OMS1 segment needs to be adjusted to ensure that the optical input power reaches the optical broadcast standard. The input power is called to ensure that the single-wave power is flat. Specifically, the optical power attenuation of the OMS1 segment can be reduced, thereby increasing the optical power of the OMS1 segment.
  • the same attenuation value as the OMS 1-segment adjustment amplitude can be increased, thereby reducing the optical power of the OMS2 and restoring the single-wave power to the set baseline value.
  • Fig. 2 also shows the single-wave power values of the first OMS segment (OMS1), the second OMS segment (OMS2), and the third OMS segment (OMS3) before forward adjustment.
  • S203 is an optional step.
  • the single-wave power value in the downstream OMS2 segment can be further checked.
  • the spectrum analysis board can be checked, for example: MCA4 (4-channel spectrum analyzer board), MCA8
  • MCA4 4-channel spectrum analyzer board
  • MCA8 The single-wave power value of the OPM8 (8-channel optical power monitor board) determines whether the single-wave power value at this time deviates from the single-wave power value recorded before the OMS1 segment power adjustment, that is, in the optical network.
  • the single-wave power value recorded before the power adjustment of each OMS segment is used as the baseline value of the optical power of the second OMS segment.
  • the optical power of the OMS segment can be corrected.
  • the number of adjustments can be set according to the actual situation or need, for example: You can set the correction adjustment up to two times.
  • the modified adjustment can further ensure that the downstream OMS2 segment is not affected by the upstream OMS1 segment, or the upstream OMS1 segment is affected by the downstream OMS2 segment.
  • the wavelengths of the OMS2 segment can be reverse-adjusted to restore the set baseline value. If the deviation between a single-wave power value of the OMS2 segment and the set baseline value exceeds the set range by 0.5dB, the optical power of the OMS2 segment is corrected and adjusted to restore the set baseline value.
  • the pair is to be The attenuation value of the first OMS segment is restored to before the forward adjustment; likewise, before the second OMS segment optical power is restored to the reverse adjustment, specifically, the attenuation value of the second OMS segment is restored to the reverse positive adjustment.
  • the S204 may be executed after the step S203, or may be performed after the step S202.
  • the adjustment process of S201 and S202 can be used as a step adjustment process.
  • the adjustment process of S201-S203 can be used as a step adjustment process. After the adjustment process of one step is completed, the bit error rate of the receiving end 0TU can be detected.
  • the adjustment can be paused, and the first OMS segment can be Before the optical power is restored to the forward adjustment, and before the optical power of the second OMS segment is restored to the reverse adjustment, the adjustment process of the last step is specifically rolled back, that is, the optical power of the first OMS segment is restored to the last one. Before the adjustment process of the step size, the optical power of the second OMS segment is restored to the adjustment process of the last step, thereby ensuring that the bit error rate does not deteriorate.
  • the optical signal power adjustment method provided by the embodiment of the present invention adjusts the optical power of the upstream OMS segment in a forward direction by adjusting the optical power of the upstream OMS segment of the optical network to reduce the optical power of the upstream OMS segment.
  • the effect on the optical power of the downstream OMS segment reduces the bit error rate of the OTU at the receiving end.
  • the method can also modify and adjust the optical power of the reverse-adjusted OMS segment to further ensure that the downstream OMS segment is not affected by the upstream OMS segment, or the upstream OMS segment is affected by the downstream OMS segment.
  • the method can also restore the upstream OMS and the downstream OMS to the forward adjustment and the reverse adjustment according to the deterioration of the error rate of the OTU at the receiving end after the forward adjustment and the reverse adjustment, thereby making the OTU of the receiving end Before the bit error rate can be restored to the forward adjustment and the reverse adjustment, the possibility of deterioration of the OTU at the receiving end is further reduced, and the performance of the OTU at the receiving end is improved.
  • FIG. 5 is a schematic structural diagram of an embodiment of an optical signal power adjusting apparatus according to the present invention, as shown in FIG.
  • the optical signal power adjustment device includes: a forward adjustment module 11 and a reverse adjustment module 12; and a forward adjustment module 11 configured to positively adjust the optical power of the OMS segment of the first optical conversion unit;
  • the reverse adjustment module 12 is configured to perform reverse adjustment on the optical power of the first OMS segment according to the forward adjustment module, and inversely adjust the optical power of the second OMS segment, where the second OMS segment is the first OMS segment in the optical network.
  • the downstream OMS segment is configured to perform reverse adjustment on the optical power of the first OMS segment according to the forward adjustment module, and inversely adjust the optical power of the second OMS segment, where the second OMS segment is the first OMS segment in the optical network.
  • the optical power may include: a light input power and/or a single wave power.
  • the forward adjustment module 11 may be specifically configured to: adjust attenuation of optical power of the first OMS segment to reduce attenuation of optical power of the first OMS segment, and improve optical power of the first OMS segment;
  • the reverse adjustment module 12 can be specifically configured to: adjust the attenuation of the optical power of the second OMS segment according to the attenuation amplitude of the optical power of the first OMS segment adjusted by the forward adjustment module, to improve the light of the second OMS segment.
  • the attenuation of power reduces the optical power of the second OMS section.
  • the optical power amplitude of the first OMS segment adjusted by the forward adjustment module 11 is the same as the optical power amplitude of the second OMS segment adjusted by the reverse adjustment module 12.
  • FIG. 6 is a schematic structural diagram of still another embodiment of an optical signal power adjusting apparatus according to the present invention. As shown in FIG. 6, on the basis of the embodiment shown in FIG. 5, the apparatus may further include:
  • the correction adjustment module 13 is configured to correct and adjust the optical power of the second OMS segment that is inversely adjusted according to the set baseline value of the optical power of the second OMS segment, so as to correct the adjusted light of the second OMS segment.
  • the difference between the power and the baseline value is within the set range.
  • the device may further include:
  • the detecting module 14 is configured to detect a bit error rate of the optical wavelength conversion unit OTU of the receiving end, and the recovery module 15 is configured to restore the optical power of the first OMS segment to the positive direction if the bit error rate is greater than or equal to the set threshold. Before the adjustment, the optical power of the second OMS section is restored to the reverse adjustment.
  • the optical signal power adjusting device provided by the embodiment of the present invention is an apparatus for performing an optical signal power adjusting method according to an embodiment of the present invention, and corresponds to an optical signal power adjusting method provided by an embodiment of the present invention, and the optical signal power adjusting method is performed.
  • the optical signal power adjusting method is performed.
  • FIG. 7 is a schematic structural diagram of still another embodiment of an optical signal power adjusting apparatus according to the present invention. As shown in FIG. 7, the optical signal power adjusting apparatus includes:
  • the adjuster 21 is configured to perform positive adjustment on the optical power of the first optical conversion unit OMS segment; the regulator 21 is further configured to perform positive adjustment on the optical power of the first OMS segment according to the forward adjustment module, The optical power of the second OMS segment is reversely adjusted, and the second OMS segment is the downstream OMS segment of the first OMS segment in the optical network.
  • the optical power may include: a light input power and/or a single wave power.
  • the regulator 21 is specifically configured to: adjust the attenuation of the optical power of the first OMS segment to reduce the attenuation of the optical power of the first OMS segment, and improve the optical power of the first OMS segment;
  • the method may be specifically configured to: adjust the attenuation of the optical power of the second OMS segment according to the attenuation amplitude of the optical power of the first OMS segment adjusted in the forward direction, to improve the attenuation of the optical power of the second OMS segment, and reduce the attenuation The optical power of the two OMS segments.
  • the optical power amplitude of the first OMS segment adjusted by the forward adjustment is the same as the optical power amplitude of the second OMS segment adjusted by the reverse adjustment.
  • the regulator 21 is further configured to: perform corrective adjustment on the optical power of the reverse-adjusted second OMS segment according to the set optical power baseline value of the second OMS segment, so as to modify the adjusted The difference between the optical power of the two OMS segments and the baseline value is within the set range.
  • FIG. 8 is a schematic structural diagram of still another embodiment of an optical signal power adjusting apparatus according to the present invention. As shown in FIG. 8, on the basis of the embodiment shown in FIG. 7, the apparatus may further include:
  • the detector 22 is configured to detect a bit error rate of the optical wavelength conversion unit OTU of the receiving end.
  • the regulator 21 can also be configured to restore the optical power of the first OMS segment to the bit error rate if the bit error rate is greater than or equal to the set threshold. Before the forward adjustment, the optical power of the second OMS section is restored to the reverse adjustment.
  • the optical signal power adjusting device provided by the embodiment of the present invention is an apparatus for performing an optical signal power adjusting method according to an embodiment of the present invention, and corresponds to an optical signal power adjusting method provided by an embodiment of the present invention, and the optical signal power adjusting method is performed.
  • the optical signal power adjusting method is performed.
  • the optical signal power adjusting device provided by the embodiment of the present invention adjusts the optical power of the downstream OMS segment in a forward direction by adjusting the optical power of the upstream OMS segment of the optical network to reduce the optical power of the upstream OMS segment.
  • the effect on the optical power of the downstream OMS segment reduces the bit error rate of the OTU at the receiving end.
  • the disclosed system, device and The method can be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the modules or units is only a logical function division.
  • there may be another division manner for example, multiple units or components may be used. Combined or can be integrated into another system, or some features can be ignored, or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software function unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • the instructions include a plurality of instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a removable hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk or an optical disk, and the like, which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optical Communication System (AREA)

Abstract

本发明实施例涉及一种光信号功率调节方法和装置,方法包括:对第一光转换单元OMS段的光功率进行正向调节;根据对所述第一OMS段的光功率进行的正向调节,对第二OMS段的光功率进行反向调节,所述第二OMS段为光网络中所述第一OMS段的下游OMS段。以减少上游OMS段进行光功率的调节对下游OMS段的光功率的影响,降低接收端OTU的误码率。

Description

光信号功率调节方法和装置
技术领域 本发明实施例涉及通信技术领域, 特别涉及一种光信号功率调节方法和 装置。 背景技术 光层网络长期运行后, 光转换单元 ( Optical multiplexing section, OMS ) 段的发送端光放入口功率可能出现劣化, 或者单波功率不平坦, 需要对网络 进行在线的功率优化调节。
现有技术中,对第一个 OMS段发送端光放输入功率进行调节,检测接收 端光波长转换单元(Optical Transponder Unit, OTU ) 的误码率, 若没有出现 劣化, 则对下一个 OMS段的光放输入功率进行调节, 否则不对下一个 OMS 段进行调节。 然而, 现有技术中, 对上游 OMS段进行光功率的调节会对下游 OMS段的光功率造成影响, 使下游 OMS段的光信号出现抖动, 从而影响接 收端 OTU的误码率。 发明内容 本发明实施例提供一种光信号功率调节方法和装置, 以减少上游 OMS 段进行光功率的调节对下游 OMS段的光功率的影响, 降低接收端 OTU的误 码率。
第一方面, 本发明实施例提供了一种光信号功率调节方法, 包括: 对第一光转换单元 0MS段的光功率进行正向调节;
根据对所述第一 0MS段的光功率进行的正向调节, 对第二 0MS段的光 功率进行反向调节, 所述第二 0MS段为光网络中所述第一 0MS段的下游 0MS段。
在第一方面的第一种可行的实施方式中, 所述光功率包括: 光放输入功 率和 /或单波功率。
在第一方面的第二种可行的实施方式中, 所述对第一光转换单元 0MS 段的光功率进行正向调节, 包括:对所述第一 OMS段的光功率的衰减进行调 节, 以降低所述第一 OMS段的光功率的衰减, 提高所述第一 OMS段的光功 率; 所述根据对所述第一 OMS段的光功率进行的正向调节, 对第二 OMS段 的光功率进行反向调节, 包括: 根据所述正向调节所调节的所述第一 OMS 段的光功率的衰减幅度,对所述第二 OMS段的光功率的衰减进行调节, 以提 高所述第二 OMS段的光功率的衰减, 降低所述第二 OMS段的光功率。
在第一方面的第三种可行的实施方式中, 所述正向调节所调节的所述第 一 OMS段的光功率幅度, 与所述反向调节所调节的所述第二 OMS段的光功 率幅度相同。
在第一方面的第四种可行的实施方式中,所述根据对所述第一 OMS段的 光功率进行的正向调节,对第二 OMS段的光功率进行反向调节之后,还包括: 根据设定的所述第二 OMS段的光功率基线值, 对经过反向调节的第二 OMS 段的光功率进行修正调节,以使修正调节后的第二 OMS段的光功率与所述基 线值的差值在设定范围内。 在第一方面的第五种可行的实施方式中, 所述对 第二 OMS段的光功率进行反向调节之后,还包括:对接收端光波长转换单元 OTU 的误码率进行检测; 若所述误码率大于等于设定门限, 则将所述第一 OMS段的光功率恢复至所述正向调节之前, 并将所述第二 OMS段的光功率 恢复至所述反向调节之前。
第二方面, 本发明实施例还提供一种光信号功率调节装置, 包括: 正向调节模块, 用于对第一光转换单元 OMS段的光功率进行正向调节; 反向调节模块,用于根据所述正向调节模块对所述第一 OMS段的光功率 进行的正向调节, 对第二 OMS段的光功率进行反向调节, 所述第二 OMS段 为光网络中所述第一 OM S段的下游 OM S段。
在第二方面的第一种可行的实施方式中, 所述光功率包括: 光放输入功 率和 /或单波功率。
在第二方面的第二种可行的实施方式中, 所述正向调节模块具体用于: 对所述第一 OMS段的光功率的衰减进行调节, 以降低所述第一 OMS段的光 功率的衰减, 提高所述第一 OMS段的光功率; 所述反向调节模块具体用于: 根据所述正向调节模块所调节的所述第一 OMS段的光功率的衰减幅度,对所 述第二 OMS段的光功率的衰减进行调节, 以提高所述第二 OMS段的光功率 的衰减, 降低所述第二 OMS段的光功率。
在第二方面的第三种可行的实施方式中, 所述正向调节模块所调节的所 述第一 OMS段的光功率幅度, 与所述反向调节模块所调节的所述第二 OMS 段的光功率幅度相同。
在第二方面的第四种可行的实施方式中, 还包括: 修正调节模块, 用于 根据设定的所述第二 OMS段的光功率基线值, 对经过反向调节的第二 OMS 段的光功率进行修正调节,以使修正调节后的第二 OMS段的光功率与所述基 线值的差值在设定范围内。
在第二方面的第五种可行的实施方式中, 还包括: 检测模块, 用于对接 收端光波长转换单元 OTU的误码率进行检测; 恢复模块, 用于若所述误码率 大于等于设定门限, 则将所述第一 OMS 段的光功率恢复至所述正向调节之 前, 并将所述第二 OMS段的光功率恢复至所述反向调节之前。
第三方面, 本发明实施例还提供一种光信号功率调节装置, 包括: 调节器, 用于对第一光转换单元 OMS段的光功率进行正向调节; 所述调节器,还用于根据所述正向调节模块对所述第一 OMS段的光功率 进行的正向调节, 对第二 OMS段的光功率进行反向调节, 所述第二 OMS段 为光网络中所述第一 OM S段的下游 OM S段。
在第三方面的第一种可行的实施方式中, 所述光功率包括: 光放输入功 率和 /或单波功率。
在第三方面的第二种可行的实施方式中, 所述调节器具体用于: 对所述 第一 OMS段的光功率的衰减进行调节, 以降低所述第一 OMS段的光功率的 衰减, 提高所述第一 OMS段的光功率; 所述调节器还具体用于: 根据正向调 节所调节的所述第一 OMS段的光功率的衰减幅度, 对所述第二 OMS段的光 功率的衰减进行调节, 以提高所述第二 OMS段的光功率的衰减, 降低所述第 二 OMS段的光功率。
在第三方面的第三种可行的实施方式中, 所述正向调节所调节的所述第 一 OMS段的光功率幅度, 与所述反向调节所调节的所述第二 OMS段的光功 率幅度相同。
在第三方面的第四种可行的实施方式中, 所述调节器还用于: 根据设定 的所述第二 OMS段的光功率基线值, 对经过反向调节的第二 OMS段的光功 率进行修正调节,以使修正调节后的第二 OMS段的光功率与所述基线值的差 值在设定范围内。
在第三方面的第五种可行的实施方式中, 还包括: 检测器, 用于对接收 端光波长转换单元 OTU的误码率进行检测; 所述调节器, 还用于若所述误码 率大于等于设定门限,则将所述第一 OMS段的光功率恢复至所述正向调节之 前, 并将所述第二 OMS段的光功率恢复至所述反向调节之前。
本发明实施例提供的光信号功率调节方法和装置, 通过对光网络的上游 OMS段的光功率进行正向调节, 对下游 OMS段的光功率进行反向调节, 以 收端 OTU的误码率。 附图说明 为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实 施例或现有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面 描述中的附图仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动的前提下, 还可以根据这些附图获得其他的附图。
图 1为本发明提供的光信号功率调节方法一个实施例的流程图; 图 2为光网络的结构示意图;
图 3为本发明提供的光信号功率调节方法又一个实施例的流程图; 图 5为本发明提供的光信号功率调节装置一个实施例的结构示意图; 图 6为本发明提供的光信号功率调节装置又一个实施例的结构示意图; 图 7为本发明提供的光信号功率调节装置又一个实施例的结构示意图; 图 8为本发明提供的光信号功率调节装置又一个实施例的结构示意图。 具体实施方式 下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进行 清楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而 不是全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有做 出创造性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。 本文中术语"和 /或", 仅仅是一种描述关联对象的关联关系, 表示可以存 在三种关系, 例如, A和 /或 B, 可以表示: 单独存在 A, 同时存在 A和 B, 单独存在 B这三种情况。 另外, 本文中字符 "/" , 一般表示前后关联对象是 一种 "或" 的关系。
图 1为本发明提供的光信号功率调节方法一个实施例的流程图, 如图 1 , 该方法包括:
S 101、 对第一光转换单元 OMS段的光功率进行正向调节;
S102、 根据对第一 OMS段的光功率进行的正向调节, 对第二 OMS段的 光功率进行反向调节,第二 OMS段为光网络中第一 OMS段的下游 OMS段。
本发明实施例提供的光信号功率调节方法, 可适用于现有的各种类型的 光网络, 如图 2所示, 图 2提供了本发明实施例适用的一种光网络的结构示 意图, 该光网络中可以包括多个 OTU发送端, 多个 OTU发送端发出的多路 光信号经由波长选择性倒换合波板 ( Wavelength Selective Switching Multiplexing Board, WSM )后合成为一路光信号, 光信号经过若干个 OMS 段后, 再经过波长选择性倒换分波板 ( Wavelength Selective Switching Demultiplexing Board, WSD )后分成与发送端对应的多路光信号, 分别输入 给多个 OTU接收端。 发送端的 WSM和接收端的 WSD之间通常可以包括若 干个动态光分插复用单元 ( Reconfiguration optical add/drop multiplexer , ROADM ), 每个 ROADM单元通常可以包括光放大器、 WSD和 WSM。
其中, 本发明实施例中涉及的 OMS段, 例如: 第一 OMS段和第二 OMS 段,通常包括光放器件, WSD和 WSM, 光放器件可以包括光放大器(Optical Amplifier, OA )和可调光衰减板 ( variable optical attenuator board, VOA )„ 光网络中的第一个 OMS段, 通常可以是第一个 ROADM的 WSM输出口至 下一个 ROADM的 WSD输入口, 即, 业务输入输出的复用单板输出口, 到 下一个业务输入输出的解复用单板输入口。 图 2 所示的光网络中包括 3 段 OMS,分别为 0MS1、 OMS2和 OMS3 ,各 OMS段的具体划分方式参见图 2, 但并不以此作为对本发明实施例的限制。
需要说明的是,本发明实施例中涉及的第一 OMS段并非特指光网络中的 第一个 OMS段, 而可以指光网络中的任意 OMS段, 但通常可以是指光网络 中的上游 OMS段, 所谓上游 OMS段, 即为相对于接收端 OTU而言, 更靠 近发送端 OTU的 OMS段。 第二 OMS段是指第一 OMS段的下游 OMS段, 即,相对于第一 OMS段,第二 OMS段在光网络中的位置更靠近接收端 OTU。 而第二 OMS段可以是与第一 OMS段相邻的下游 OMS段, 也可以是与第一 OMS段不相邻的下游 OMS段。
可以釆用具有功率检测功能的设备对第一 OMS 段的光功率进行实时检 测或周期性检测,如果第一 OMS段的光功率劣化,即,光功率超过一定门限, 则可以对第一 OMS段的光功率进行调节。其中,本发明实施例中所指的光功 率可以包括: 光放输入功率和 /或单波功率。 即, 可以对第一 OMS段的光放 输入功率进行调节,使之达到光放标称输入功率,还可以对第一 OMS段的单 波功率进行调节, 使之单波平坦。
由于对第一 OMS段光功率的调节可能会对第 ― OMS段的下游第二 OMS 段造成影响, 因此, 本发明实施例中, 对第一 OMS段的光功率进行正向调节 后, 可以对第二 OMS段的光功率进行反向调节。 可以理解的是, 所谓正向调 节和反向调节, 是指对光功率朝向相反的方向进行调节, 例如: 正向调节是 控制光功率的衰减, 提高光功率, 那么反向调节则是控制光功率的衰减以降 低光功率, 反之亦然。 需要说明的是, 对于与第一 OMS 段相邻的多个第二 OMS段,反向调节时可以根据各第二 OMS段的波长调度方向进行反向调节。
为了最大程度的抵消第一 OMS段的光功率调节对下游第二 OMS段的影 响, 可选的, 正向调节所调节的第一 OMS段的光功率幅度, 可以与反向调节 所调节的第二 OMS 段的光功率幅度相同。 当然, 可以理解的是, 在对第一 OMS段的光功率调节之前和对第二 OMS段的光功率进行反向调节之前, 可 以首先检测第二 OMS段的光功率, 以确定第一 OMS段的光功率调节对第二 OMS段光功率的影响, 进而根据光功率的影响幅度进行反向调节, 以达到良 好的降低影响效果。
需要说明的是, 本发明实施例中涉及的对 OMS段光功率调节, 可以釆 用现有的各种光功率调节方式。 具体可以以光放输入功率作为调节对象: 调 节光放前的合波 VOA和 /或单波 VOA; 还可以以平坦度作为调节对象: 调节 调节工具可以通过手动设置衰减值并下发调节命令, 从而调节光功率。 或者, 还可以通过工具自动识别第一 OMS段和第二 OMS段的光功率, 对衰减值进 行设置, 从而调节光功率。
本发明实施例提供的光信号功率调节方法, 通过对光网络的上游 OMS 段的光功率进行正向调节,对下游 OMS段的光功率进行反向调节, 以减少上 游 OMS段进行光功率的调节对下游 OMS段的光功率的影响, 降低接收端 OTU的误码率。 图 3为本发明提供的光信号功率调节方法又一个实施例的流程图, 如图 3 , 本实施例提供了光信号功率调节方法的一个具体实施例, 该实施例中, 对 的衰减调节一个步长的幅度, 例如: 可以调节 0.5dB。
该方法具体包括:
5201、 对第一 OMS段的光功率的衰减进行调节, 以降低第一 OMS段的 光功率的衰减, 提高第一 OMS段的光功率。
具体的, 对第一 OMS段的光功率的衰减调节具体可以是调节合波衰减, 即, 对合路通道的衰减进行调节。
5202、 根据正向调节所调节的第一 OMS段的光功率的衰减幅度, 对第 二 OMS段的光功率的衰减进行调节, 以提高第二 OMS段的光功率的衰减, 降低第二 OMS段的光功率。
对第二 OMS段的光功率的衰减进行调节具体可以是调节第二 OMS段的 单波衰减, 即, 对单波通道的衰减进行调节。
以图 2为例, 将 OMS1段作为第一 OMS段, OMS2作为第二 OMS段, 如果 OMS1段波长功率劣化, 则需要调节 OMS1段的光功率的衰减, 保证光 放的输入功率达到光放标称输入功率, 保证单波功率平坦。 具体的, 可以降 低 OMS1段的光功率衰减, 从而提高 OMS1段的光功率。
相反的, 在下游 OMS2段进行反向调节时, 可以提高与 OMS 1段调整幅 度相同的衰减值, 从而降低 OMS2的光功率, 使单波功率恢复为设定的基线 值。
5203、 根据设定的第二 OMS段的光功率基线值, 对经过反向调节的第 二 OMS段的光功率进行修正调节, 以使修正调节后的第二 OMS段的光功率 与基线值的差值在设定范围内。
如图 2所示, 图 2还给出了正向调节前, 第一 OMS段(OMS1 )、 第二 OMS段(OMS2 )和第三 OMS段( OMS3 ) 的单波功率值。 S203为可选步 骤。在对下游 OMS2段的光功率进行反向调节后,可以进一步检查下游 OMS2 段中的单波功率值,例如:可以检查光谱分析类单板,例如: MCA4 ( 4-channel spectrum analyzer board )、 MCA8、 OPM8 ( 8-channel optical power monitor board )等的单波功率值, 判断此时单波功率值, 与 OMS1段功率调节前所记 录的单波功率值是否存在偏差, 即,可以将光网络中各 OMS段功率调节前所 记录的单波功率值作为设定的第二 OMS段的光功率基线值,当偏差超出设定 范围, 例如: 超过 0.5dB, 则可以对 OMS2段的光功率进行修正调节, 修正 调节的次数可以根据实际情况或需要设定, 例如: 可以设定修正调节的次数 最多不超过两次。 修正调节可以进一步保证在下游 OMS2段不受上游 OMS1 段的影响, 或者减少上游 OMS1段对下游 OMS2段的影响。 对 OMS 1段光放输入功率进行调节, 使之达到光放标称输入功率, 还可以对 第一 OMS段的单波功率进行调节,使之单波平坦后, OMS2段各波长功率同 时升高, 据此, 可以对 OMS2段各波长进行反向调节, 使之恢复设定基线值。 若 OMS2 段某一单波功率值与设定基线值偏差超过设定范围 0.5dB, 则对 OMS2段的光功率进行修正调节, 使之恢复设定基线值。
S204、 对接收端光波长转换单元 OTU的误码率进行检测。
S205、 若误码率大于等于设定门限, 则将第一 OMS 段的光功率恢复至 正向调节之前, 并将第二 OMS段的光功率恢复至反向调节之前。
具体而言, 如果 S201和 S202中对光功率的正向调节和反向调节分别是 针对衰减值的调节, 则 S205中对第一 OMS段光功率恢复至正向调节之前, 具体是指将对第一 OMS段的衰减值恢复至正向调节之前;同样,对第二 OMS 段光功率恢复至反向调节之前,具体是指将对第二 OMS段的衰减值恢复至反 正向调节之前。
其中, S204可以在 S203步骤后执行, 也可以在 S202步骤后执行。 可以 将 S201和 S202的调节过程作为一个步长的调节过程, 或者, 在该方法中包 括 S203时, 可以将 S201-S203的调节过程作为一个步长的调节过程。 在一个步长的调节过程结束后, 可以对收端 0TU的误码率进行检测, 如 果误码率大于等于设定门限, 即劣化到一定程度, 则可以暂停调节, 可以将 第一 OMS段的光功率恢复至正向调节之前, 并将第二 OMS段的光功率恢复 至反向调节之前, 具体是将最后一个步长的调节过程回滚, 即将第一 OMS 段的光功率恢复至最后一个步长的调节过程之前,将第二 OMS段的光功率恢 复至最后一个步长的调节过程之前, 从而保证误码率不会劣化。
在一个步长的调节过程结束后, 如果误码率小于设定门限, 则可以继续 进行下一个步长的调节。
本发明实施例提供的光信号功率调节方法, 通过对光网络的上游 OMS 段的光功率进行正向调节,对下游 OMS段的光功率进行反向调节, 以减少上 游 OMS段进行光功率的调节对下游 OMS段的光功率的影响, 降低接收端 OTU的误码率。 进一步的, 该方法还可以对经过反向调节后的 OMS段的光 功率进行修正调节, 以进一步保证在下游 OMS段不受上游 OMS段的影响, 或者降低上游 OMS段对下游 OMS段的影响。 另外, 该方法还可以在正向调 节和反向调节后, 根据接收端 OTU的误码率恶化情况, 将上游 OMS和下游 OMS恢复至正向调节和反向调节之前, 从而使接收端 OTU的误码率能够恢 复到正向调节和反向调节之前, 进一步减少了接收端 OTU劣化的可能性,提 高了接收端 OTU的性能。 图 5为本发明提供的光信号功率调节装置一个实施例的结构示意图,如图
5所示, 该光信号功率调节装置包括: 正向调节模块 11和反向调节模块 12; 正向调节模块 11 , 用于对第一光转换单元 OMS段的光功率进行正向调 节;
反向调节模块 12, 用于根据正向调节模块对第一 OMS段的光功率进行 的正向调节, 对第二 OMS段的光功率进行反向调节, 第二 OMS段为光网络 中第一 OMS段的下游 OMS段。
可选的, 光功率可以包括: 光放输入功率和 /或单波功率。
可选的, 正向调节模块 11可以具体用于: 对第一 OMS段的光功率的衰 减进行调节, 以降低第 ― OMS段的光功率的衰减, 提高第一 OMS段的光功 率; 反向调节模块 12可以具体用于: 根据正向调节模块所调节的第一 OMS 段的光功率的衰减幅度,对第二 OMS段的光功率的衰减进行调节, 以提高第 二 OMS段的光功率的衰减, 降低第二 OMS段的光功率。
可选的, 正向调节模块 11所调节的第一 OMS段的光功率幅度, 与反向 调节模块 12所调节的第二 OMS段的光功率幅度相同。
图 6为本发明提供的光信号功率调节装置又一个实施例的结构示意图, 如图 6所示, 在图 5所示实施例的基础上, 该装置还可以包括:
修正调节模块 13 , 用于根据设定的第二 OMS段的光功率基线值, 对经 过反向调节的第二 OMS 段的光功率进行修正调节, 以使修正调节后的第二 OMS段的光功率与基线值的差值在设定范围内。
可选的, 该装置还可以包括:
检测模块 14, 用于对接收端光波长转换单元 OTU的误码率进行检测; 恢复模块 15 , 用于若误码率大于等于设定门限, 则将第一 OMS段的光 功率恢复至正向调节之前, 并将第二 OMS段的光功率恢复至反向调节之前。
本发明实施例提供的光信号功率调节装置, 为本发明实施例提供的光信 号功率调节方法的执行设备, 与本发明实施例提供的光信号功率调节方法相 对应, 其执行光信号功率调节方法的具体过程可参见图 1-图 3所示实施例中 的相关描述, 在此不再赘述。
本发明实施例提供的光信号功率调节装置, 通过对光网络的上游 OMS 段的光功率进行正向调节,对下游 OMS段的光功率进行反向调节, 以减少上 游 OMS段进行光功率的调节对下游 OMS段的光功率的影响, 降低接收端 OTU的误码率。 图 7为本发明提供的光信号功率调节装置又一个实施例的结构示意图, 如图 7所示, 该光信号功率调节装置包括:
调节器 21 , 用于对第一光转换单元 OMS段的光功率进行正向调节; 调节器 21 , 还可以用于根据正向调节模块对第一 OMS段的光功率进行 的正向调节, 对第二 OMS段的光功率进行反向调节, 第二 OMS段为光网络 中第一 OMS段的下游 OMS段。
可选的, 光功率可以包括: 光放输入功率和 /或单波功率。 可选的, 调节器 21可以具体用于: 对第一 OMS段的光功率的衰减进行 调节, 以降低第一 OMS段的光功率的衰减, 提高第一 OMS段的光功率; 调节器 21还可以具体用于: 根据正向调节所调节的第一 OMS段的光功 率的衰减幅度, 对第二 OMS段的光功率的衰减进行调节, 以提高第二 OMS 段的光功率的衰减, 降低第二 OMS段的光功率。
可选的,正向调节所调节的第一 OMS段的光功率幅度,与反向调节所调 节的第二 OMS段的光功率幅度相同。
可选的, 调节器 21还可以用于: 根据设定的第二 OMS段的光功率基线 值,对经过反向调节的第二 OMS段的光功率进行修正调节, 以使修正调节后 的第二 OMS段的光功率与基线值的差值在设定范围内。
图 8为本发明提供的光信号功率调节装置又一个实施例的结构示意图, 如图 8所示, 在图 7所示实施例的基础上, 该装置还可以包括:
检测器 22, 用于对接收端光波长转换单元 OTU的误码率进行检测; 调节器 21 , 还可以用于若误码率大于等于设定门限, 则将第一 OMS段 的光功率恢复至正向调节之前,并将第二 OMS段的光功率恢复至反向调节之 前。
本发明实施例提供的光信号功率调节装置, 为本发明实施例提供的光信 号功率调节方法的执行设备, 与本发明实施例提供的光信号功率调节方法相 对应, 其执行光信号功率调节方法的具体过程可参见图 1-图 3所示实施例中 的相关描述, 在此不再赘述。
本发明实施例提供的光信号功率调节装置, 通过对光网络的上游 OMS 段的光功率进行正向调节,对下游 OMS段的光功率进行反向调节, 以减少上 游 OMS段进行光功率的调节对下游 OMS段的光功率的影响, 降低接收端 OTU的误码率。
所属领域的技术人员可以清楚地了解到, 为描述的方便和简洁, 仅以上 述各功能模块的划分进行举例说明, 实际应用中, 可以根据需要而将上述功 能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块, 以完成以上描述的全部或者部分功能。 上述描述的系统, 装置和单元的具体 工作过程, 可以参考前述方法实施例中的对应过程, 在此不再赘述。
在本申请所提供的几个实施例中, 应该理解到, 所揭露的系统, 装置和 方法, 可以通过其它的方式实现。 例如, 以上所描述的装置实施例仅仅是示 意性的, 例如, 所述模块或单元的划分, 仅仅为一种逻辑功能划分, 实际实 现时可以有另外的划分方式, 例如多个单元或组件可以结合或者可以集成到 另一个系统, 或一些特征可以忽略, 或不执行。 另一点, 所显示或讨论的相 互之间的耦合或直接耦合或通信连接可以是通过一些接口, 装置或单元的间 接耦合或通信连接, 可以是电性, 机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的, 作 为单元显示的部件可以是或者也可以不是物理单元, 即可以位于一个地方, 或者也可以分布到多个网络单元上。 可以根据实际的需要选择其中的部分或 者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中, 也可以是各个单元单独物理存在, 也可以两个或两个以上单元集成在一个单 元中。 上述集成的单元既可以釆用硬件的形式实现, 也可以釆用软件功能单 元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售 或使用时, 可以存储在一个计算机可读取存储介质中。 基于这样的理解, 本 申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的 全部或部分可以以软件产品的形式体现出来, 该计算机软件产品存储在一个 存储介质中, 包括若干指令用以使得一台计算机设备(可以是个人计算机, 服务器, 或者网络设备等)或处理器(processor )执行本申请各个实施例所 述方法的全部或部分步骤。 而前述的存储介质包括: U 盘、 移动硬盘、 只读 存储器 (ROM , Read-Only Memory ), 随机存取存储器 (RAM , Random Access Memory ), 磁碟或者光盘等各种可以存储程序代码的介质。
以上所述, 以上实施例仅用以说明本申请的技术方案, 而非对其限制; 尽管参照前述实施例对本申请进行了详细的说明, 本领域的普通技术人员应 当理解: 其依然可以对前述各实施例所记载的技术方案进行修改, 或者对其 中部分技术特征进行等同替换; 而这些修改或者替换, 并不使相应技术方案 的本质脱离本申请各实施例技术方案的精神和范围。

Claims

权 利 要求
1、 一种光信号功率调节方法, 其特征在于, 包括:
对第一光转换单元 OMS段的光功率进行正向调节;
根据对所述第一 OMS段的光功率进行的正向调节, 对第二 OMS段的光 功率进行反向调节, 所述第二 OMS段为光网络中所述第一 OMS段的下游 OMS段。
2、 根据权利要求 1所述的方法, 其特征在于, 所述光功率包括: 光放输 入功率和 /或单波功率。
3、 根据权利要求 1或 2所述的方法, 其特征在于, 所述对第一光转换单 元 OMS段的光功率进行正向调节, 包括:
对所述第一 OMS段的光功率的衰减进行调节, 以降低所述第一 OMS段 的光功率的衰减, 提高所述第一 OMS段的光功率;
所述根据对所述第一 OMS段的光功率进行的正向调节, 对第二 OMS段 的光功率进行反向调节, 包括:
根据所述正向调节所调节的所述第一 OMS段的光功率的衰减幅度,对所 述第二 OMS段的光功率的衰减进行调节, 以提高所述第二 OMS段的光功率 的衰减, 降低所述第二 OMS段的光功率。
4、 根据权利要求 1-3任一项所述的方法, 其特征在于, 所述正向调节所 调节的所述第一 OMS 段的光功率幅度, 与所述反向调节所调节的所述第二 OMS段的光功率幅度相同。
5、 根据权利要求 1-4任一项所述的方法, 其特征在于, 所述根据对所述 第一 OMS段的光功率进行的正向调节, 对第二 OMS段的光功率进行反向调 节之后, 还包括:
根据设定的所述第二 OMS 段的光功率基线值, 对经过反向调节的第二 OMS段的光功率进行修正调节, 以使修正调节后的第二 OMS段的光功率与 所述基线值的差值在设定范围内。
6、根据权利要求 1-5任一项所述的方法, 其特征在于, 所述对第二 OMS 段的光功率进行反向调节之后, 还包括:
对接收端光波长转换单元 OTU的误码率进行检测;
若所述误码率大于等于设定门限,则将所述第一 OMS段的光功率恢复至 所述正向调节之前, 并将所述第二 OMS 段的光功率恢复至所述反向调节之 前。
7、 一种光信号功率调节装置, 其特征在于, 包括:
正向调节模块, 用于对第一光转换单元 OMS段的光功率进行正向调节; 反向调节模块,用于根据所述正向调节模块对所述第一 OMS段的光功率 进行的正向调节, 对第二 OMS段的光功率进行反向调节, 所述第二 OMS段 为光网络中所述第一 OM S段的下游 OM S段。
8、 根据权利要求 7所述的装置, 其特征在于, 所述光功率包括: 光放输 入功率和 /或单波功率。
9、 根据权利要求 7或 8所述的装置, 其特征在于, 所述正向调节模块具 体用于:对所述第一 OMS段的光功率的衰减进行调节,以降低所述第一 OMS 段的光功率的衰减, 提高所述第一 OMS段的光功率;
所述反向调节模块具体用于: 根据所述正向调节模块所调节的所述第一 OMS段的光功率的衰减幅度,对所述第二 OMS段的光功率的衰减进行调节, 以提高所述第二 OMS段的光功率的衰减, 降低所述第二 OMS段的光功率。
10、 根据权利要求 7-9任一项所述的装置, 其特征在于, 所述正向调节 模块所调节的所述第一 OMS段的光功率幅度,与所述反向调节模块所调节的 所述第二 OMS段的光功率幅度相同。
11、 根据权利要求 7-10任一项所述的装置, 其特征在于, 还包括: 修正调节模块,用于根据设定的所述第二 OMS段的光功率基线值,对经 过反向调节的第二 OMS 段的光功率进行修正调节, 以使修正调节后的第二 OMS段的光功率与所述基线值的差值在设定范围内。
12、 根据权利要求 7-11任一项所述的装置, 其特征在于, 还包括: 检测模块, 用于对接收端光波长转换单元 OTU的误码率进行检测; 恢复模块, 用于若所述误码率大于等于设定门限, 则将所述第一 OMS 段的光功率恢复至所述正向调节之前,并将所述第二 OMS段的光功率恢复至 所述反向调节之前。
13、 一种光信号功率调节装置, 其特征在于, 包括:
调节器, 用于对第一光转换单元 OMS段的光功率进行正向调节; 所述调节器,还用于根据所述正向调节模块对所述第一 OMS段的光功率 进行的正向调节, 对第二 OMS段的光功率进行反向调节, 所述第二 OMS段 为光网络中所述第一 OM S段的下游 OM S段。
14、 根据权利要求 13所述的装置, 其特征在于, 所述光功率包括: 光放 输入功率和 /或单波功率。
15、 根据权利要求 13或 14所述的装置, 其特征在于, 所述调节器具体 用于: 对所述第一 OMS段的光功率的衰减进行调节, 以降低所述第一 OMS 段的光功率的衰减, 提高所述第一 OMS段的光功率;
所述调节器还具体用于:根据正向调节所调节的所述第一 OMS段的光功 率的衰减幅度,对所述第二 OMS段的光功率的衰减进行调节, 以提高所述第 二 OMS段的光功率的衰减, 降低所述第二 OMS段的光功率。
16、 根据权利要求 13-15 所述的装置, 其特征在于, 所述正向调节所调 节的所述第一 OMS段的光功率幅度,与所述反向调节所调节的所述第二 OMS 段的光功率幅度相同。
17、 根据权利要求 13-16任一项所述的装置, 其特征在于, 所述调节器 还用于:根据设定的所述第二 OMS段的光功率基线值,对经过反向调节的第 二 OMS段的光功率进行修正调节, 以使修正调节后的第二 OMS段的光功率 与所述基线值的差值在设定范围内。
18、 根据权利要求 13-17任一项所述的装置, 其特征在于, 还包括: 检测器, 用于对接收端光波长转换单元 OTU的误码率进行检测; 所述调节器, 还用于若所述误码率大于等于设定门限, 则将所述第一
OMS段的光功率恢复至所述正向调节之前, 并将所述第二 OMS段的光功率 恢复至所述反向调节之前。
PCT/CN2012/085339 2012-11-27 2012-11-27 光信号功率调节方法和装置 WO2014082200A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201280002150.5A CN103339877B (zh) 2012-11-27 2012-11-27 光信号功率调节方法和装置
PCT/CN2012/085339 WO2014082200A1 (zh) 2012-11-27 2012-11-27 光信号功率调节方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/085339 WO2014082200A1 (zh) 2012-11-27 2012-11-27 光信号功率调节方法和装置

Publications (1)

Publication Number Publication Date
WO2014082200A1 true WO2014082200A1 (zh) 2014-06-05

Family

ID=49246708

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/085339 WO2014082200A1 (zh) 2012-11-27 2012-11-27 光信号功率调节方法和装置

Country Status (2)

Country Link
CN (1) CN103339877B (zh)
WO (1) WO2014082200A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104202094A (zh) * 2014-08-28 2014-12-10 北京邮电大学 一种模式光功率控制方法及装置
CN112583489A (zh) * 2019-09-30 2021-03-30 中兴通讯股份有限公司 一种光网络功率控制自动方法及装置、存储介质
CN114389739A (zh) * 2020-10-22 2022-04-22 南京中兴软件有限责任公司 光网络的功率均衡方法、光传送网网元及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1472892A (zh) * 2002-08-02 2004-02-04 华为技术有限公司 一种归零码超长距离传输的方法及系统
CN1665175A (zh) * 2004-03-03 2005-09-07 华为技术有限公司 光网络中基于功率检测的自动功率控制的实现方法
CN101043288A (zh) * 2006-03-20 2007-09-26 中兴通讯股份有限公司 一种光复用层功率优化系统及其方法
CN102598707A (zh) * 2011-12-28 2012-07-18 华为技术有限公司 一种均衡链路性能的方法和装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6025947A (en) * 1996-05-02 2000-02-15 Fujitsu Limited Controller which controls a variable optical attenuator to control the power level of a wavelength-multiplexed optical signal when the number of channels are varied

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1472892A (zh) * 2002-08-02 2004-02-04 华为技术有限公司 一种归零码超长距离传输的方法及系统
CN1665175A (zh) * 2004-03-03 2005-09-07 华为技术有限公司 光网络中基于功率检测的自动功率控制的实现方法
CN101043288A (zh) * 2006-03-20 2007-09-26 中兴通讯股份有限公司 一种光复用层功率优化系统及其方法
CN102598707A (zh) * 2011-12-28 2012-07-18 华为技术有限公司 一种均衡链路性能的方法和装置

Also Published As

Publication number Publication date
CN103339877B (zh) 2015-12-23
CN103339877A (zh) 2013-10-02

Similar Documents

Publication Publication Date Title
US8135280B2 (en) Method and system for power stability control in wavelength division multiplexing networks
JP5446944B2 (ja) 光ネットワークおよびその制御方法
US10003429B2 (en) Optical transmission device that transmits wavelength division multiplexed optical signal and optical transmission system
US9172475B2 (en) Method and apparatus for equalizing link performance
JP2013172375A (ja) 光受信装置
EP2765717B1 (en) Method for capacity expansion and commissioning of wavelength multiplexing optical network, and controller
JP3837704B2 (ja) 光多重通信システム及び光送信装置及び光多重通信制御方法
US10985838B1 (en) Handling compensation for losses in optical fiber links
WO2007107065A1 (fr) Système d'optimisation de puissance de la couche de multiplexage optique et procédé correspondant
WO2017050129A1 (zh) 无源光网络功率均衡的方法、装置、终端、单元及系统
WO2014082200A1 (zh) 光信号功率调节方法和装置
JP2003101514A (ja) Wdm光通信システムにおけるアド/ドロップ・ノードでの光信号パワーの制御方法
US9191143B2 (en) Optical transmission device and optical transmission device control method
WO2022042378A1 (zh) 光信号控制方法及装置、光传输节点和光传输系统
CN102263591A (zh) 一种光通道层功率管理优化系统及方法
JP6827530B2 (ja) 光伝送路切替装置及び光伝送システム、並びに伝送路切替方法
CN111262643B (zh) 一种功率调整控制方法及装置
JP5703611B2 (ja) 信号光補正装置及び信号光補正方法
WO2023155451A1 (zh) 一种调节光功率的方法、站点和系统
US8102595B2 (en) Optical transmission system with optical amplifier gain setup based on difference between signal loss and noise light loss
JP5251661B2 (ja) 光アンプ装置とその制御方法、光伝送システム
JP6931367B2 (ja) 光通信システム、当該光通信システムの等化装置、接続装置及び受信装置、並びに、当該等化装置が与える減衰量の決定装置、決定方法及びプログラム
JP4545757B2 (ja) 光波長分岐挿入装置
WO2023011039A1 (zh) 光通道功率调节方法、系统和网络设备
JP2009253426A (ja) 中継装置及びその光信号レベル補正方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12889037

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12889037

Country of ref document: EP

Kind code of ref document: A1