WO2023155451A1 - 一种调节光功率的方法、站点和系统 - Google Patents

一种调节光功率的方法、站点和系统 Download PDF

Info

Publication number
WO2023155451A1
WO2023155451A1 PCT/CN2022/124867 CN2022124867W WO2023155451A1 WO 2023155451 A1 WO2023155451 A1 WO 2023155451A1 CN 2022124867 W CN2022124867 W CN 2022124867W WO 2023155451 A1 WO2023155451 A1 WO 2023155451A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical power
service
band
optical
wave
Prior art date
Application number
PCT/CN2022/124867
Other languages
English (en)
French (fr)
Inventor
李明
刘委
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023155451A1 publication Critical patent/WO2023155451A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2507Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
    • H04B10/2537Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to scattering processes, e.g. Raman or Brillouin scattering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/29Repeaters
    • H04B10/291Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form
    • H04B10/293Signal power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/29Repeaters
    • H04B10/291Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form
    • H04B10/293Signal power control
    • H04B10/294Signal power control in a multiwavelength system, e.g. gain equalisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/29Repeaters
    • H04B10/291Repeaters in which processing or amplification is carried out without conversion of the main signal from optical form
    • H04B10/293Signal power control
    • H04B10/294Signal power control in a multiwavelength system, e.g. gain equalisation
    • H04B10/2942Signal power control in a multiwavelength system, e.g. gain equalisation using automatic gain control [AGC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems

Definitions

  • the present application relates to the technical field of optical transmission, and, more particularly, relates to a method, station and system for adjusting optical power.
  • the network management system In the optical transport network, when the site of the original path fails, the network management system reschedules the service channel of the faulty line to the new path through automatic path selection algorithm and rerouting operation. Or, the network management system cancels some service channels according to the internal requirements of the site. Therefore, for the original service channel on the transmission path receiving new service or reducing service, its power will fluctuate due to the influence of adding and dropping waves by the system, and the security cannot be guaranteed.
  • the present application provides a method, a station and a system for adjusting optical power. Through the method, site and system of the present application, the security of the old wave on the service path where the wave is added or dropped can be improved, and the normal operation of the system can be guaranteed.
  • the embodiments of the present application provide a method for adjusting optical power.
  • the method includes: acquiring the optical power of a service in a first band, where the first band is the same band in the service path before and after wave addition or wave drop occurs. Calculate the variation of the optical power of the service in the first band relative to a reference value, where the reference value is the optical power of the service in the service path before wave addition or wave drop. Adjusting the optical power of the first band service to a target optical power according to the change amount.
  • the application obtains the change amount of the optical power of the first-band service relative to the reference value, and adjusts the optical power of the first-band service to the target optical power based on the change amount, thereby ensuring the safety of the first-band service .
  • the adjusting the optical power of the first band service to the target optical power according to the variation includes: obtaining the first optical power according to the variation An adjustment amount of the optical power of the band service, adjusting the optical power of the first band service to the target optical power based on the adjustment amount.
  • the present application obtains the adjustment amount of the optical power of the first-band service based on the change amount of the first-band service optical power relative to the reference value, and adjusts the first-band service optical power according to the adjustment amount , to ensure the security of the first-band service.
  • the k is an adjustment coefficient with a range of (0, 1]
  • the ⁇ is the variation
  • the m is a system preset threshold.
  • preset may include predefined definitions, for example, protocol definitions.
  • predefinition can be realized by pre-saving corresponding codes, tables or other methods that can be used to indicate related information in the device, and this application does not limit its specific implementation.
  • the adjusting the optical power of the first band service to the target optical power includes: adjusting the gain of the amplifier and/or the power of the line optical power attenuator The attenuation value is used to make the optical power of the service in the first band reach the target optical power.
  • this application adjusts the optical power of the first band service by using the amplifier or line optical power attenuator inside the site, without adding additional adjustment modules or components, compatible with the current system, and effectively saving the system cost.
  • the method further includes: receiving indication information, where the indication information is used to indicate wave addition or wave drop on the service path. Updating the band on the service path according to the indication information.
  • the method of the present application can be used in the scenario of service rerouting, and in the process of rerouting, it can realize the connection and provisioning of the wave adding and dropping service quickly.
  • the acquiring the optical power of services in the first band includes: acquiring the optical power of each single-wavelength service in the first band.
  • the method of this application can obtain the optical power of each single-wavelength service in the first band, and realize the adjustment of the wavelength level, so as to effectively keep the power of the original old wave on the service path unchanged.
  • keeping the original optical power of the old wave on the service path unchanged can be to keep the total The power remains unchanged, or the average power of the old wave remains unchanged, or the optical power of the service corresponding to the wavelength with the largest change in optical power before and after adding the wave in the old wave remains unchanged.
  • the embodiment of the present application provides a site for adjusting optical power
  • the site includes: a power detection module, which is used to obtain the optical power of the first band service, and the first band is the service before and after wave addition or wave drop the same band in the path.
  • a calculation module configured to calculate the amount of change of the optical power of the service in the first band relative to a reference value, the reference value being the optical power of the service in the service path before wave addition or wave drop.
  • a processing module configured to adjust the optical power of the first band service to a target optical power according to the change amount.
  • the processing module is specifically configured to: acquire an adjustment amount of the optical power of the first band service according to the change amount, and adjust the adjusted amount based on the adjustment amount. from the optical power of the first band service to the target optical power.
  • the k is an adjustment coefficient with a range of (0, 1]
  • the ⁇ is the variation
  • the m is a system preset threshold.
  • the processing module is specifically configured to: adjust the gain of the amplifier and/or the attenuation value of the line optical power attenuator, so that the optical power of the first band service to the target optical power.
  • the station further includes: a transceiver module configured to receive indication information, where the indication information is used to indicate wave addition or wave drop on the service path.
  • the processing module is further configured to update the band on the service path according to the indication information.
  • the power detection module is specifically configured to acquire the optical power of each single-wavelength service in the first band.
  • the embodiment of the present application provides a system for adjusting optical power, and the system includes: an optical amplification site and an optical multiplexing site.
  • the optical amplification site is used to amplify the optical power of the service on the service path.
  • the optical multiplexing site is used to receive the service signal output by the optical amplification site, and perform wave adding or wave dropping service configuration on the service signal, and perform any possible realization of the above first aspect and the first aspect methods in methods.
  • the system further includes: a network management system, the network management system is configured to send indication information to the optical multiplexing site, the indication information is used to indicate the The optical multiplexing site performs wave adding or dropping on the service path, and updates the wave band on the service path.
  • the embodiment of the present application provides a system for adjusting optical power, and the system includes: an optical amplification site and an optical multiplexing site.
  • the optical amplification site is used to amplify the optical power of the service on the service path, and execute the method in the above-mentioned first aspect and any possible implementation manner of the first aspect.
  • the optical multiplexing site is configured to receive the service signal output by the optical amplification site, and perform service configuration of adding waves or dropping waves to the service signals.
  • the system further includes: a network management system, the network management system is configured to send indication information to the optical multiplexing site, the indication information is used to indicate the The optical multiplexing site performs wave adding or dropping on the service path, and updates the wave band on the service path.
  • a computer-readable storage medium stores a computer program (also referred to as code, or an instruction) which, when running on a computer, causes the computer to perform the above-mentioned first aspect and The method in any possible implementation manner in the first aspect.
  • a computer program also referred to as code, or an instruction
  • a computer program product includes: a computer program (also referred to as code, or an instruction), when the computer program is executed, the computer executes the above-mentioned first aspect and the first aspect A method in any of the possible implementations.
  • a computer program also referred to as code, or an instruction
  • Fig. 1 shows a schematic diagram of an optical network of a WDM system applicable to an embodiment of the present application.
  • FIG. 2 shows a schematic diagram of the embodiment of the present application applied to ASON system networking.
  • Figure 3 shows the hole burning effect and gain competition effect of optical amplifiers under different wavelength channel combinations.
  • Figure 4 shows the SRS effect under combination of wavelength channels.
  • FIG. 5 shows a schematic flowchart of a method 500 for adjusting optical power provided by an embodiment of the present application.
  • FIG. 6 shows a schematic flowchart of adjusting optical power provided by the present application.
  • FIG. 7 shows a system architecture diagram provided by an embodiment of the present application.
  • FIG. 8 shows a schematic block diagram of a site 800 for adjusting optical power provided by an embodiment of the present application.
  • FIG. 9 shows a schematic block diagram of a site 900 for adjusting optical power provided by an embodiment of the present application.
  • the method, station, and system for adjusting optical power provided in the embodiments of the present application can be applied to wavelength division multiplexing (wavelength division multiplexing, WDM) technology.
  • WDM wavelength division multiplexing
  • words such as “exemplary” or “for example” are used to indicate examples, illustrations or illustrations, and the embodiments or designs described as “exemplary” or “for example” should not be construed as preferred or advantageous over other embodiments or designs. Words such as “exemplary” or “for example” are intended to present relevant concepts in a specific manner for easy understanding.
  • the same wave band before and after the wave is added to the service path can be called the original service channel, the original wavelength channel, or the old wave.
  • “for indication” may include direct indication and indirect indication, and may also include explicit indication and implicit indication.
  • the information indicated by a certain information (such as the indication information described below) is called the information to be indicated.
  • the information to be indicated In the specific implementation process, there are many ways to indicate the information to be indicated. For example, but not limited to, it is possible to directly indicate the information to be indicated. Information, such as the information to be indicated itself, or the index of the information to be indicated.
  • the information to be indicated may also be indicated indirectly by indicating other information, where there is an association relationship between the other information and the information to be indicated. It is also possible to indicate only a part of the information to be indicated, while other parts of the information to be indicated are known or agreed in advance.
  • the indication of specific information can also be realized by means of a pre-agreed (for example, protocol-specified) arrangement order of each information, thereby reducing the indication overhead to a certain extent.
  • Fig. 1 shows a schematic diagram of an optical network of a WDM system applicable to an embodiment of the present application.
  • sites can be divided into three categories according to different functions: optical terminal multiplexer (optical terminal multiplexer, OTM) sites (sites 101 and 104 in Figure 1), optical A line amplifier (optical line amplifier, OLA) site (as shown in Figure 1, site 102) and an optical multiplexing site (such as a reconfigurable optical add-drop multiplexer (reconfigurable optical add-drop multiplexer, ROADM) shown in Figure 1 site 103).
  • OTM optical terminal multiplexer
  • OLA optical line amplifier
  • ROADM reconfigurable optical add-drop multiplexer
  • the OTM station is the source node/starting point of the service of the WDM network.
  • the optical transponder unit (OTU) (including OTU1, OTU2, OTUn in Figure 1) completes the conversion from electrical signals to optical signals, and outputs optical signals of different wavelengths.
  • WSS optical transponder unit
  • WSS erbium-doped fiber amplifier
  • EDFA erbium-doped fiber amplifier
  • the OLA site 102 is a site for amplifying optical signals, and can implement relay amplification of multiplexed optical signals.
  • a WDM network generally speaking, there will be multiple consecutive OLA sites, and ultra-long-distance transmission of WDM services is realized through optical relay station by station.
  • the ROADM site 103 is an optical scheduling site for implementing mid-way service direction scheduling and re-up/downloading of some services for optical services.
  • the optical signal After the optical signal enters the ROADM station 103 through the FIU 131, the optical signal is amplified by the EDFA 132 and then demultiplexed by the WSS 133 to realize the downwave of the service.
  • the downwave signal reaches each OTU through the WSS 135.
  • the signal demultiplexed by WSS 133 is dispatched by WSS 134 to receive other service signals input from WSS 136.
  • the service is added at WSS 134, and after being combined by WSS 134 and amplified by EDFA 137, the FIU 138 re- into the delivery fiber. It should be understood that there may be multiple ROADM stations between the OTM station 101 and the OTM station 104 to comprehensively implement flexible scheduling of services.
  • the service optical signal enters the rightmost OTM station 104, after being amplified by EDFA 142 and demultiplexed by WSS 143, it is sent to different OTU units for photoelectric conversion to realize the reception of each electrical signal.
  • the above-mentioned WDM network system in Fig. 1 is only an example, and does not limit the protection scope of the present application.
  • the number of WSS 112 in the OTM site is not limited to one in the above-mentioned Fig. 1, and the OLA in the WDM network system
  • ASON is widely regarded as the mainstream technology of next-generation optical network.
  • ASON is a standardized intelligent optical transport network, which has the function of automatic repair and recovery of faulty services, and can convert the huge original bandwidth provided by the traditional point-to-point WDM system into the bandwidth that can be flexibly used in actual networking.
  • FIG. 2 it is a schematic diagram of the embodiment of the present application applied to ASON system networking.
  • the faulty path i.e., service path 1
  • a new transmission path i.e., service path 2
  • the faulty path can be called a wave-dropping path, and this process is called wave-dropping operate.
  • a new transmission path reconfigures the affected services, and the new transmission path may be called an addition path, and this process is called an addition operation.
  • the wavelength channels of different service paths are added and dropped, so that the combination of the wavelength channels in the optical fiber link changes.
  • SRS stimulated raman scattering
  • FIG. 3 shows the hole burning effect and gain competition effect of optical amplifiers under different wavelength channel combinations.
  • gain curves of optical signals under four different wavelength channel combinations are shown.
  • curves 1-4 respectively correspond to the gain curves of optical signals with four different wavelength combinations, which are full-band wavelength combinations (that is, including short-wave, medium-wave and long-wave), short-band wavelength combinations, short-band wavelengths, and medium-long wavelengths.
  • the gain of the amplifier for the optical signal of the specific wavelength will also be due to the combination varies with other wavelengths in the For the service path 2 shown in Figure 2, the wavelength combination in the service path 2 has changed after rerouting. Therefore, for the intermediate site 3 or the intermediate site 4, the original service channel on the service path The gain of the optical signal will change due to the existence of the hole burning effect and the gain competition effect of the amplifier, that is, the optical power after the gain of the amplifier changes.
  • the gain of the optical amplifier changes after rerouting, so that the gain of the optical power of the old wave is no longer the same as the gain of adding the wavefront. That is, the optical power of the optical signal of the original service channel on the service path is affected by the new service channel.
  • FIG. 4 shows the SRS effect under combination of wavelength channels.
  • FIG. 4( a ) shows the change diagram of the optical power of short-wave and long-wave signals before and after optical fiber transmission. It can be seen that after optical fiber transmission, different wavelengths receive different gains under the SRS effect. Optical signals carried by short wavelengths receive negative gains, resulting in a decrease in optical power, while optical signals carried by long wavelengths receive positive gains, resulting in an increase in optical power. This process can be regarded as the transfer of short-wavelength energy to long-wavelength energy, thereby forming a spectral distribution with a certain slope in which the optical power of the short-wavelength optical signal is low and the optical power of the long-wavelength optical signal is high.
  • the optical power is transferred with different wavelengths.
  • the power of the optical signal carried by the wavelength or the combination of wavelength channels changes, the spectral tilt caused by the Raman effect will change, which will lead to the deterioration of the optical power flatness of the optical signals carried by different wavelength channels in the optical transmission system, that is, the original
  • the power of the optical signal carried by some service channels is affected by the new service channel.
  • the embodiment of the present application provides a method for adjusting the optical power.
  • VOA Variable Optical Attenuator
  • FIG. 5 shows a schematic flowchart of a method 500 for adjusting optical power provided by an embodiment of the present application.
  • the subject of execution of the method 500 may be an optical multiplexing site, such as a ROADM site.
  • the subject of execution of the method 500 may be an OLA site or the like.
  • the method embodiment shown in FIG. 5 is only described by taking an optical multiplexing site as an example. As shown in Fig. 5, the method includes the following steps.
  • the optical multiplexing site obtains the optical power of the first-band service through a built-in power detection module.
  • the first band is the same band in the service path before and after wave addition or wave drop occurs.
  • the built-in power detection module may include a spectrometer.
  • the spectrometer can detect the optical power of each single-wavelength service on the service path, and then the power detection module sends the optical power of each single-wavelength service to the processing module in the optical multiplexing site.
  • the OLA station when the method 500 is executed by the OLA station, the OLA station is configured with a power detection module.
  • the processing module of the optical multiplexing site obtains the optical power of the first-band service measured on the service path, it compares the optical power with the reference value, and obtains the change amount between the optical power of the old wave in the current service channel and the reference value .
  • the reference value is the optical power of the old wave service in the service path before wave adding or wave dropping.
  • the optical power of the services in the first band may be the sum of the optical powers of the services in the first band, specifically, it may be expressed as the following formula (1): .
  • the optical power of the first band service may also be the average optical power of the first band service, that is, the sum of the optical power of the first band service and the number of wavelengths contained in the first band ratio. Specifically, it can be expressed as the following formula (2):
  • the optical power of the service in the first band may also be the optical power of the single-wavelength service with the largest variation in the first band. Specifically, it can be expressed as the following formula (3):
  • the reference value is also the sum of the optical power of each band in the service path before wave addition or wave drop.
  • the reference value is the sum of the optical power of each band in the service path before wave addition or wave drop and the wavelength contained in the service path before wave addition or wave drop Quantity ratio.
  • the reference value is the optical power of the wavelength in the service path before the wave is added or dropped.
  • the optical power of the first-band service is adjusted back to the target optical power according to the variation.
  • FIG. 6 shows a schematic flow chart of adjusting optical power provided by the present application, including the following multiple steps.
  • the processing module of the optical multiplexing site calculates the change amount of the optical power of the service in the first band relative to the reference value.
  • the processing module of the optical multiplexing site judges the relationship between the change amount and the preset threshold.
  • the threshold is preset by the system, for example, it may be 1dB or other values.
  • Preset may refer to something that is predetermined in advance, for example, it may be stipulated in an agreement, which is not limited in this application.
  • the optical multiplexing site executes S630, otherwise executes S620.
  • the processing module of the optical multiplexing site adjusts the optical power of the first band service to the target optical power according to the variation.
  • the process of adjusting the optical power of the first-band service to the target optical power by the processing module of the multiplexing site according to the variation may be to adjust the attenuation value of the VOA in the site so that the optical signal received by the site Adjust the optical power of the old-wave services in the network to the target optical power.
  • the process of adjusting the optical power of the first band service to the target optical power by the processing module of the optical multiplexing site according to the change can be to first adjust the attenuation value of the VOA in the site, when the VOA attenuation has no margin After that, adjust the gain of the optical amplifier in the site so that the optical power of the old wave service in the optical signal received by the site returns to the target optical power.
  • the processing module of the optical multiplexing site can first obtain the adjustment amount ⁇ of the optical power of the first band according to the change amount, and adjust the attenuation value of the VOA in the site and/or the gain of the optical amplifier in the site based on the adjustment amount ⁇ .
  • the adjustment amount ⁇ can be expressed as shown in the following formula (4):
  • k is the adjustment coefficient
  • the range is (0, 1]
  • is the change amount
  • m is the threshold value preset by the system.
  • the absolute value of the adjustment amount is the change amount of the first-band service, that is, in this scenario, the target optical power is the reference value.
  • the station can detect the change of the optical power of the service of the old wave channel in the link through the fast detection unit when the wave is added or dropped on the service path, and the processing unit Adjust the site OA gain and/or line VOA attenuation value so that the power of the old wave signal remains unchanged.
  • the service path can still guarantee the security of the old wave after a new service is added (corresponding to wave addition) or the original service is interrupted (corresponding to wave drop).
  • FIG. 7 is a system architecture diagram provided by an embodiment of the present application, and the system is a schematic diagram of ASON system networking. As shown in FIG. 7 , the method for adding and dropping wavelengths provided by this application is described by taking the ROADM station as an optical multiplexing station as an example.
  • both site 710 ie, site 1 in FIG. 7
  • site 730 ie, site 3 in FIG. 7
  • Station 720 is an OLA station.
  • the transmission service can be freely scheduled at the site 710 and the site 730, and can pass through several OLA sites in the middle.
  • station 710 to station 730 form an optical multiplexing section (OMS) unit
  • station 710 is an OMS sending end
  • station 730 is an OMS receiving end.
  • OMS optical multiplexing section
  • the method for adjusting optical power provided by the embodiment of the present application is applied to the receiving end of the OMS, that is, the station 730 in FIG. 7 above.
  • the network management system 700 determines to reroute the service in the second band to the service path in the first band
  • the network management system 700 sends indication information to the OMS sending end 710, and the indication information is used to indicate that the service in the first band
  • the service of the second band is added to the service path.
  • the processor 711 in the OMS sending end 710 controls the WSS 712 to perform wave adding operation, and adds the second band service output by the OTU sending end 740 to the path of the original first band service.
  • WSS 712 performs wavelength division multiplexing on the first band and the second band, and at the same time, adds the indication information received by the processor 711 to the combined signal, and outputs the combined optical signal, which is amplified by the amplifier 713 , output from the OMS sending end 710 through the FIU 715. Subsequently, the multiplexed optical signal output by the OMS transmitting end 710 is transmitted to the OLA site 720 through optical fiber, and after being received by the FIU 722, amplified by the amplifier 723, and the FIU 725, it is output from the OLA site 720 and then reaches the OMS receiving end 730 after being transmitted by optical fiber.
  • the power detection module detects each single wave in the combined optical signal output by the VOA 736
  • the service performs power detection, and reports the detection result to the processor 731 .
  • the processor 731 can determine the first band and the second band in the service path according to the instruction information, and according to the information in the first band reported by the power detection module
  • the optical power of the single-wavelength service determines the attenuation value of the VOA 733 and/or the gain of the amplifier 734, so as to ensure that the optical power of the first-band service can be restored to the target optical power.
  • S520 and S530 in FIG. 5 For the calculation and adjustment process, reference may be made to S520 and S530 in FIG. 5 , which will not be repeated here.
  • the OMS receiving end 730 can also adjust the attenuation value of the VOA 736. Or when the adjustment margin is relatively large, that is, when the optical power of the first-band service is greatly affected by the second-band service, the OMS receiver 730 can also adjust the VOA 736 and the VOA 733 at the same time.
  • the power detection module 735 can directly report the measured result to the network management system 700, and the network management system 700 calculates the attenuation value of the VOA 733 according to the reported optical power of the first band service And/or the gain of the amplifier 734, and send the adjusted amount to the processor 731, and the processor 731 realizes the adjustment and control of the VOA 733 and/or the amplifier 734.
  • the method for adjusting optical power may also be applied to site 2, that is, OLA site 720 .
  • site 2 that is, OLA site 720 .
  • the OLA station 720 should be configured with a power detection unit, such as 724 in FIG. 7 .
  • the adjustment process can be calculated and adjusted by the processor 721 itself, or calculated by the network management system 700 and sent to the processor 721 for implementation, which will not be repeated here.
  • the methods and operations implemented by the site for adjusting optical power may also be implemented by components (such as chips) that can be used for the site for adjusting optical power.
  • the functional modules of the site for adjusting optical power can be divided.
  • each functional module can be divided corresponding to each function, or two or more functions can be integrated into one processing module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or in the form of software function modules. It should be noted that the division of modules in the embodiment of the present application is schematic, and is only a logical function division, and there may be other division methods in actual implementation. In the following, description will be made by taking the division of each functional module corresponding to each function as an example.
  • FIG. 8 shows a schematic block diagram of a site 800 for adjusting optical power provided by an embodiment of the present application.
  • the station 800 for adjusting optical power includes a power detection module 810 , a processing module 820 and a transceiver module 830 .
  • the transceiver module 830 is used for exchanging services with the outside, for example, including adding and dropping services or receiving services from other sites and outputting optical signals to downstream sites.
  • the transceiver module 830 also includes an optical fiber connection interface or an optical fiber connection module.
  • the power detection module 810 is used to implement S510 in FIG. 5
  • the processing module 820 is used to implement S520 and S530 in FIG. 5 .
  • S610, S620 and S630 in FIG. 6 .
  • the site 800 for adjusting optical power may further include a calculation module 840 .
  • the calculation module 840 is used to undertake the calculation function in the processing module 820, that is, the calculation module 840 is used to implement S520 in FIG. 5 . And implement S610 in FIG. 6 .
  • the embodiment of the present application also provides a schematic block diagram of a station 900 for adjusting optical power.
  • the station 900 for adjusting optical power includes a processor 910, the processor 910 is coupled with a memory 920, and the memory 920 is used to store computer programs or instructions or and/or data, and the processor 910 is used to execute the computer programs or instructions stored in the memory 920 and /or data, so that the methods in the above method embodiments are executed.
  • the site 900 for adjusting optical power includes one or more processors 910 .
  • the station 900 for adjusting optical power may include one or more memories 920 .
  • the memory 920 may be integrated with the processor 910, or set separately.
  • the site 900 for adjusting optical power may further include a transceiver 930 and/or an optical communication interface, and the transceiver 930 and/or the optical communication interface are used for receiving and/or sending signals.
  • the processor 910 is configured to control the transceiver 930 and/or the optical communication interface to receive and/or send signals.
  • the station 900 for adjusting optical power is used to implement the operations performed by the optical multiplexing station or the OLA station in the above method embodiments.
  • the processor 910 is used to implement the operations performed by the optical multiplexing site or the OLA site in the above method embodiments
  • the transceiver 930 is used to implement the receiving or sending operations performed by the optical multiplexing site or the OLA site in the above method embodiments operation.
  • the processing module 820 in the apparatus 800 may be the processor 910 in FIG. 9
  • the transceiver module 830 may be the transceiver 930 in FIG. 9 .
  • the operations performed by the processor 910 refer to the description of the processing module 820 above, and for the operations performed by the transceiver 930, refer to the description of the transceiver module 830, which will not be repeated here.
  • the embodiment of the present application also provides a computer storage medium, in which a software program is stored.
  • a software program is stored.
  • the computer storage medium may include: various media capable of storing program codes such as U disk, mobile hard disk, read-only memory, random access memory, magnetic disk or optical disk.
  • An embodiment of the present application further provides a chip, where the chip includes a processor, configured to implement the functions involved in any one or more embodiments above, for example, detecting whether the multiplexed optical signal carries the first modulation information.
  • the chip further includes a memory for necessary program instructions and data executed by the processor.
  • the chip may consist of chips, or may include chips and other discrete devices.
  • the embodiments of the present application may be provided as methods, systems, or computer program products. Accordingly, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present application may take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to operate in a specific manner, such that the instructions stored in the computer-readable memory produce an article of manufacture comprising instruction means, the instructions
  • the device realizes the function specified in one or more procedures of the flowchart and/or one or more blocks of the block diagram.
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the functions described above are realized in the form of software function units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disc and other media that can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optical Communication System (AREA)

Abstract

本申请提供了一种调节光功率的方法、站点和系统。该方法包括:获取第一波段业务的光功率后,计算第一波段业务的光功率相对于基准值的变化量,并根据变化量调节第一波段业务的光功率至目标光功率。其中,第一波段为发生加波或掉波前后业务路径中相同的波段,基准值为加波或掉波之前业务路径中业务的光功率。通过本申请提供的调节功率的方法,能够保证业务路径中第一波段业务的光功率不受到业务路径上加波或掉波的影响,从而提升系统的安全性。

Description

一种调节光功率的方法、站点和系统
本申请要求于2022年2月17日提交中国国家知识产权局、申请号为202210145276.3、申请名称为“一种调节光功率的方法、站点和系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及光传输技术领域,并且,更具体地,涉及一种调节光功率的方法、站点和系统。
背景技术
在光传送网络中,当原有路径的站点出现故障时,网管系统通过自动选路算法和重路由操作重新将故障线路的业务通道调度到新的路径上。或者,网管系统根据站点内部的需求,将某些业务通道取消。因此,对于接受新业务或者减少业务的传输路径上原有的业务信道来讲,其功率将受到系统加掉波的影响而产生波动,安全性无法得到保障。
发明内容
本申请提供一种调节光功率的方法、站点和系统。通过本申请的方法、站点和系统能够提升发生加波或掉波的业务路径上老波的安全性,保证系统的正常运行。
第一方面,本申请实施例提供了一种调节光功率的方法。该方法包括:获取第一波段业务的光功率,所述第一波段为发生加波或掉波前后业务路径中相同的波段。计算所述第一波段业务的光功率相对于基准值的变化量,所述基准值为加波或掉波之前业务路径中业务的光功率。根据所述变化量调节所述第一波段业务的光功率至目标光功率。
基于上述方案,本申请通获取第一波段业务光功率相对于基准值的变化量,并基于该变化量对第一波段业务的光功率调节至目标光功率,保证了第一波段业务的安全性。
结合第一方面,在第一方面的某些实现方式中,所述根据所述变化量调节所述第一波段业务的光功率至目标光功率,包括:根据所述变化量获取所述第一波段业务的光功率的调节量,基于所述调节量调节所述第一波段业务的光功率至所述目标光功率。基于上述方案,进一步地,本申请基于第一波段业务光功率相对于基准值的变化量获取第一波段业务的光功率的调节量,并根据该调节量对第一波段业务的光功率进行调节,以保证第一波段业务的安全性。
结合第一方面,在第一方面的某些实现方式中,所述调节量根据δ=-k*(Δ-m)确定。其中,所述k为调节系数,范围为(0,1],所述Δ为所述变化量,所述m为系统预设的阈值。
应理解,该“预设”可包括预先定义,例如,协议定义。其中,“预先定义”可以通过在设备中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。
结合第一方面,在第一方面的某些实现方式中,所述调节所述第一波段业务的光功率至所述目标光功率,包括:调节放大器的增益和/或线路光功率衰减器的衰减值,使所述第一波段业务的光功率至所述目标光功率。
基于上述方案,本申请通过利用站点内部的放大器或者线路光功率衰减器调节第一波段业务的光功率,不必增加额外的调节模块或者元件,能够与当前系统相兼容,有效的节约了系统成本。
结合第一方面,在第一方面的某些实现方式中,所述方法还包括:接收指示信息,所述指示信息用于指示所述业务路径加波或掉波。根据所述指示信息更新所述业务路径上的波段。
基于上述方案,本申请的方法可用于业务重新路由的场景下,在重路由的过程中,能够实现快速加掉波业务的打通和发放。
结合第一方面,在第一方面的某些实现方式中,所述获取第一波段业务的光功率,包括:获取所述第一波段中的每个单波业务的光功率。
基于上述方案,本申请的方法能够获取第一波段中每个单波业务的光功率,并实现波长级别的调节,从而有效的保持业务路径上原有的老波的功率不变。
需要说明的是,由于本申请提供的方法可以针对单波光信号的光功率进行调节,因此,在本申请中,保持业务路径上原有的老波的光功率不变,可以是保持老波的总功率不变,或者是老波的平均功率不变,或者也可以是保持老波中在加掉波前后光功率变化最大的波长对应的业务的光功率保持不变。
第二方面,本申请实施例提供了一种调节光功率的站点,该站点包括:功率检测模块,用于获取第一波段业务的光功率,所述第一波段为发生加波或掉波前后业务路径中相同的波段。计算模块,用于计算所述第一波段业务的光功率相对于基准值的变化量,所述基准值为加波或掉波之前业务路径中业务的光功率。处理模块,用于根据所述变化量调节所述第一波段业务的光功率至目标光功率。
结合第二方面,在第二方面的某些实现方式中,所述处理模块具体用于:根据所述变化量获取所述第一波段业务的光功率的调节量,基于所述调节量调节所述第一波段业务的光功率至所述目标光功率。
结合第二方面,在第二方面的某些实现方式中,所述调节量根据δ=-k*(Δ-m)确定。其中,所述k为调节系数,范围为(0,1],所述Δ为所述变化量,所述m为系统预设的阈值。
结合第二方面,在第二方面的某些实现方式中,所述处理模块具体用于:调节放大器的增益和/或线路光功率衰减器的衰减值,使所述第一波段业务的光功率至所述目标光功率。
结合第二方面,在第二方面的某些实现方式中,所述站点还包括:收发模块,用于接收指示信息,所述指示信息用于指示所述业务路径加波或掉波。所述处理模块,还用于根据所述指示信息更新所述业务路径上的波段。
结合第二方面,在第二方面的某些实现方式中,所述功率检测模块,具体用于获取所述第一波段中的每个单波业务的光功率。
第三方面,本申请实施例提供了一种调节光功率的系统,该系统包括:光放大站点和光复用站点。其中,所述光放大站点,用于放大业务路径上的业务的光功率。所述光复用站点,用于接收所述光放大站点输出的业务信号,并对所述业务信号进行加波或掉波的业务配置,以及执行上述第一方面及第一方面中任一种可能实现方式中的方法。
结合第三方面,在第三方面的某些实现方式中,所述系统还包括:网管系统,所述网管系统,用于向所述光复用站点发送指示信息,所述指示信息用于指示所述光复用站点进行业务路径加波或掉波,并更新所述业务路径上的波段。
第四方面,本申请实施例提供了一种调节光功率的系统,该系统包括:光放大站点和光复用站点。其中,所述光放大站点,用于放大业务路径上的业务的光功率,以及执行上述第 一方面及第一方面中任一种可能实现方式中的方法。所述光复用站点,用于接收所述光放大站点输出的业务信号,并对所述业务信号进行加波或掉波的业务配置。
结合第四方面,在第四方面的某些实现方式中,所述系统还包括:网管系统,所述网管系统,用于向所述光复用站点发送指示信息,所述指示信息用于指示所述光复用站点进行业务路径加波或掉波,并更新所述业务路径上的波段。
第五方面,提供了一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序(也可以称为代码,或指令)当其在计算机上运行时,使得计算机执行上述第一方面以及第一方面中任一种可能实现方式中的方法。
第六方面,提供了一种计算机程序产品,该计算机程序产品包括:计算机程序(也可以称为代码,或指令),当该计算机程序被运行时,使得计算机执行上述第一方面以及第一方面中任一种可能实现方式中的方法。
上述第二方面至第六方面带来的有益效果具体可以参考第一方面中有益效果的描述,此处不再赘述。
附图说明
图1示出了适用于本申请实施例的一种WDM系统的光网络示意图。
图2示出了本申请实施例应用于ASON系统组网的示意图。
图3示出了不同波长通道组合下的光放大器的烧孔效应和增益竞争效应。
图4示出了波长通道组合下的SRS效应。
图5示出了本申请实施例提供的一种调节光功率的方法500的示意性流程框图。
图6示出了本申请提供的一种调节光功率的示意性流程图。
图7示出了本申请提供的一种本申请实施例提供的一种系统架构图。
图8示出了本申请实施例提供的一种调节光功率的站点800的示意性框图。
图9示出了本申请实施例提供的一种调节光功率的站点900的示意性框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例提供的调节光功率的方法、站点和系统可以应用于波分复用(wavelength division multiplexing,WDM)技术中。
为了便于理解本申请实施例,作出以下说明。
第一、在下文示出的本申请实施例中的文字说明或者附图中的术语,“第一”、“第二”、“第三”、“第四”等以及各种数字编号仅为描述方便进行的区分,而不必用于描述特定的顺序或者先后次序,并不用来限制本申请实施例的范围。例如,在本申请实施例中用于区分不同的波段等。
第二、下文示出的本申请实施例中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可以包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其他步骤或者单元。
第三、在本申请实施例中,“示例性的”或者“例如”等词用于表示例子、例证或说明,被描述为“示例性的”或者“例如”的实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念, 便于理解。
第四、在本申请实施例中,业务路径发生加掉波前后相同的波段可以称为原业务通道、原波长通道,或者老波。
第五,在本申请实施例中,“用于指示”可以包括用于直接指示和用于间接指示,也可以包括显式指示和隐式指示。将某一信息(如下文所述的指示信息)所指示的信息称为待指示信息,则具体实现过程中,对待指示信息进行指示的方式有很多种,例如但不限于,可以直接指示待指示信息,如待指示信息本身,或者该待指示信息的索引等。也可以通过指示其他信息来间接指示待指示信息,其中,该其他信息与待指示信息之间存在关联关系。还可以仅仅指示待指示信息的一部分,而待指示信息的其他部分则是已知的或者提前约定的。例如,还可以借助预先约定(例如协议规定)的各个信息的排列顺序来实现对特定信息的指示,从而在一定程度上降低指示开销。
第六,在本申请实施例中“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。
图1示出了适用于本申请实施例的一种WDM系统的光网络示意图。在图1所示的组网中,按照不同的功能,可以将站点分为三类:光终端复用器(optical terminal multiplexer,OTM)站点(如图1中的站点101和站点104)、光线路放大器(optical line amplifier,OLA)站点(如图1中的站点102)以及光复用站点(例如图1所示的可重新配置的光分插复用器(reconfigurable optical add-drop multiplexer,ROADM)站点103)。
其中,OTM站是波分网络的业务的源节点/起点。其中,光转换器单元(optical transponder unit,OTU)(包括图1中的OTU1、OTU2、OTUn)完成由电信号到光信号的转换,输出不同波长的光信号,在波长选择开关(wavelength selection switch,WSS)112中完成不同波长的合波,然后经由掺铒光纤放大器(erbium-doped fiber amplifier,EDFA)113实现光信号放大后,从设备接口单元(facilities interface unit,FIU)114进入传输光纤。
OLA站点102是对光信号进行放大的站点,能够实现对合波光信号的中继放大。在WDM网络中,一般来说,OLA站点会有连续多个,通过逐站光中继实现WDM业务的超长距传输。
ROADM站点103是光业务实现中途业务方向调度和部分业务重新上下的光调度站点。光信号经FIU 131进入ROADM站103后,经EDFA 132实现光信号放大后由WSS 133分波,实现业务的下波,下波的信号经由WSS 135到达各个OTU。WSS 133分波后的信号再经过WSS 134进行业务调度,接收来自WSS 136输入的其他业务信号,在WSS 134处实现业务上波,并经过WSS 134合波以及EDFA 137放大后,由FIU 138重新进入传输光纤。应理解,在OTM站101和OTM站104之间可以有多个ROADM站,来综合实现业务的灵活调度。
最终,业务光信号进入最右侧的OTM站104后,经EDFA 142放大和WSS 143分波后,送入不同的OTU单元进行光电转换,实现每一路电信号的接收。
上述图1的WDM网络系统仅为示例,并不对本申请的保护范围进行限定,例如,OTM站点中的WSS 112的个数并不限于上述图1中的1个,该WDM网络系统中的OLA站点以及ROADM站点也可以有多个。
随着传统WDM走向光传送网(optical transport network,OTN)和自动交换光网络(automatically switched optical network,ASON)的转变和升级,ASON被广泛地认为是下一代光网络的主流技术。ASON是一种标准化的智能光传送网,其具备故障业务自动修复恢复的功能,能够将传统的点到点WDM系统所提供的巨大原始带宽转化为实际组网可以灵活应 用的带宽。如图2所示,是本申请实施例应用于ASON系统组网的示意图。在图2中,当原有业务路径1上出现光纤故障(例如,光纤发生断路)后,ASON网络会通过自动的选路算法和重路由操作将原路径的业务调度到新的业务路径2上,新老路径的起点和终点一致,保证业务传输不受故障影响。
在重路由过程中,故障路径(即业务路径1)由于需要将受影响的业务切换到新的传输路径(即业务路径2),该故障路径可以称为掉波路径,该过程称为掉波操作。新的传输路径将受影响的业务重新配置上来,该新的传输路径可以称为加波路径,该过程称为加波操作。
上述重路由操作后,不同业务路径的波长通道发生加掉波,使得光纤链路中波长通道的组合发生变化。然而,由于光纤中存在受激拉曼散射(stimulated raman scattering,SRS)效应以及系统中的光放大器的烧孔效应和增益竞争效应,会使波长通道的组合发生变化的光纤链路(例如上述图2中的业务路径2)中原有的业务通道的功率受到波动,使其安全性受到较大影响。
具体地,图3示出了不同波长通道组合下的光放大器的烧孔效应和增益竞争效应。在图3中,共示出了四种不同波长通道组合下的光信号的增益曲线。其中,曲线1-4分别对应了四种不同的波长组合的光信号的增益曲线,分别为全波段波长组合(即包含短波、中波和长波)、短波段波长组合、短波段波长和中长波段波长组合以及短波段波长和长波段波长组合。从图3中可以看到,对于不同的波长通道组合,放大器会出现不同程度的烧孔效益,使得光信号的增益曲线发生不同程度的下降,平坦度变差。也就是说,对于某个特定波长来说,当与其构成合波光信号中的其他波长不同时,即该特定波长处于不同波长通道组合下,放大器对于该特定波长的光信号的增益也会由于组合中其他波长的不同而发生变化。对于如图2所示的业务路径2来讲,由于重路由后,业务路径2中的波长组合发生了改变,因此,对于中间站点3或者中间站点4来讲,该业务路径上原有的业务通道的光信号的增益会由于放大器的烧孔效应和增益竞争效应的存在而发生变化,即使得经过放大器增益后的光功率发生变化。也就是,重路由后光放大器的增益发生了改变,使得老波的光功率的增益不再与加掉波前的增益相同。即,该业务路径上原有的业务通道的光信号的光功率受到了新业务通道的影响。
图4示出了波长通道组合下的SRS效应。其中,图4(a)示出了光纤传输前后短波和长波信号的光功率的变化图。可以看到,经过光纤传输后,不同波长在SRS效应下受到的增益不同,短波长承载的光信号得到负增益导致光功率下降,长波长承载的光信号得到正增益使得光功率上升。该过程可以看作是短波长的能量向着长波长转移,从而形成短波长的光信号的光功率低,长波长的光信号的光功率高的带有一定倾斜度的光谱分布。
为了使系统中的不同波长承载的光信号的光功率在输出端具有相同的平坦度,通常会对放大器进行特殊的增益设置,使放大器输出的不同波长承载的光信号的光功率不同,即短波承载的光信号经过放大器后的输出光功率大于长波承载的光信号的光功率。经过光纤传输后,由于SRS效应,使不同的波长通道承载的光信号的光功率趋于一致,该过程可以如图4(b)所示。
因此,光纤中由于存在SRS效应,使得光功率随着波长的不同而发生转移。当波长承载的光信号的功率或者波长通道组合发生变化时,拉曼效应导致的光谱倾斜将发生改变,进而会导致光传输系统的不同波长通道承载的光信号的光功率平坦度劣化,即原有的业务通道承载的光信号的功率受到了新业务通道的影响。
为了解决加掉波对原有业务通道的安全性影响的问题,本申请实施例提供了一种调节光功率的方法,通过检测站点中原有波道业务的光功率变化,来调节放大器的增益以及上下游 的线路可变光衰减器(variable optical attenuator,VOA),保持线路中原有的老波信号的功率不变,以保证原业务通道承载的业务的安全性。
图5示出了本申请实施例提供的一种调节光功率的方法500的示意性流程框图。该方法500的执行主体可以光复用站点,例如ROADM站点。或者该方法500的执行主体可以是OLA站点等。图5所示的方法实施例仅以光复用站点为例进行说明。如图5所示,该方法包括如下多个步骤。
S501,获取第一波段业务的光功率。
具体地,光复用站点通过内置的功率检测模块获取第一波段业务的光功率。其中,该第一波段为发生加波或者掉波前后业务路径中相同的波段。
在一种可能的实现方式中,该内置的功率检测模块可以包括光谱仪。其中,光谱仪能够检测出业务路径上各个单波业务的光功率,然后该功率检测模块将每个单波业务的光功率发送给光复用站点中的处理模块。
需要说明的是,当该方法500由OLA站点执行时,OLA站点中配置有功率检测模块。
S502,计算第一波段业务的光功率相对于基准值的变化量。
具体地,光复用站点的处理模块获取业务路径上测量的第一波段业务的光功率后,将该光功率与基准值进行比较,获取当前业务通道中老波的光功率与基准值的变化量。
其中,该基准值为加波或者掉波之前业务路径中老波业务的光功率。
在一种可实现的方式中,第一波段业务的光功率可以是第一波段业务的光功率的总和,具体地,可以表示为下式(1):。
Figure PCTCN2022124867-appb-000001
在另一种可能的实现方式中,第一波段业务的光功率还可以是第一波段业务的平均光功率,即第一波段业务的光功率的总和与第一波段中包含的波长的数量的比值。具体地,可以表示为下式(2):
Figure PCTCN2022124867-appb-000002
此外,在另一种可实现的方式中,该第一波段业务的光功率还可以是在第一波段中变化最大的单波业务的光功率。具体地,可以表示为下式(3):
Figure PCTCN2022124867-appb-000003
其中,
Figure PCTCN2022124867-appb-000004
表示每个单波业务的光功率的变化量。
需要说明的是,当第一波段业务的光功率采用如式(1)的方式计算时,基准值同样为加波或掉波之前业务路径中各波段的光功率的和。当第一波段业务的光功率采用如式(2)的方式计算时,基准值为加波或掉波之前业务路径中各波段的光功率的和与加波或掉波之前业务路径上包含的波长的数量的比值。当第一波段业务的光功率采用如式(3)的方式计算时,基准值为加波或掉波之前业务路径中该波长的光功率。
S503,根据变化量调节第一波段业务的光功率至目标光功率。
具体地,光复用站点的处理模块计算出第一波段业务的光功率相对于基准值的变化量后,根据变化量将第一波段业务的光功率调节回归至目标光功率。
在一种可实现的方式中,图6示出了本申请提供的一种调节光功率的示意性流程图,包括如下多个步骤。
S610,光复用站点的处理模块计算出第一波段业务的光功率相对于基准值的变化量。
S620,光复用站点的处理模块判断变化量与预设阈值的关系。
需要说明的,在本申请实施例中,该阈值为系统预设的,例如,可以是1dB或者其他数值。“预设”可以是指提前规定好的,例如,可以是协议规定等情况,本申请并不限定。
其中,当变化量大于阈值时,该光复用站点执行S630,否则执行S620。
S630,光复用站点的处理模块根据变化量调节第一波段业务的光功率至目标光功率。
在一种可实现的方式中,复用站点的处理模块根据变化量调节第一波段业务的光功率至目标光功率的过程可以是调节站点内的VOA的衰减值,使该站点接收的光信号中的老波业务的光功率调节至目标光功率。
在另一种可实现的方式中,光复用站点的处理模块根据变化量调节第一波段业务的光功率至目标光功率的过程可以是先调节站点内的VOA的衰减值,当VOA衰减无余量后,再调节站点内光放大器的增益以使该站点接收的光信号中的老波业务的光功率回归至目标光功率。
其中,光复用站点的处理模块可以先根据变化量获取第一波段光功率的调节量δ,并基于调节量δ调节站点内的VOA的衰减值和/或站点内光放大器的增益。
示例性的,该调节量δ可以表示为如下式(4)所示:
δ=-k*(Δ-m)    (4)
式中,k为调节系数,范围为(0,1],Δ为变化量,m为系统预设的阈值。
此外,当阈值为0且k等于1时,该调节量的绝对值即为第一波段业务的变化量,也就是说,在这种场景下,目标光功率为基准值。
基于本申请实施例提供的调节光功率的方法,使得站点可以在业务路径发生加波或掉波时,通过快速检测单元检测链路中的老波信道的业务的光功率的变化,并通过处理单元调节站点OA增益和/或线路VOA衰减值,以使老波信号的功率不变。从而使得业务路径在发生新业务加入(对应加波)或者原有的业务中断(对应掉波)后,仍然能够保证老波安全性。
图7是本申请实施例提供的一种系统架构图,该系统为ASON系统组网的示意图。如图7所示,是以ROADM站点作为光复用站点为例对本申请提供的上下波的方法进行说明的。
在图7中,站点710(即图7中的站点1)和站点730(即图7中的站点3)均为具备上下波功能的ROADM站点。站点720(即图7中的站点2)为OLA站点。传输业务可以在站点710和站点730进行自由调度,中间可以经过若干个OLA站点。其中,站点710至站点730组成一个光复用段(optical multiplexing section,OMS)单元,站点710为OMS发送端,站点730为OMS接收端。
需要说明的是,本申请实施例提供的调节光功率的方法应用于OMS的接收端,即上述图7中的站点730。
具体地,当网管系统700确定将第二波段的业务重路由到第一波段的业务路径上时,该网管系统700向OMS发送端710发送指示信息,该指示信息用于指示在第一波段的业务路径上加入第二波段的业务。OMS发送端710中的处理器711接收到该指示信息后,控制WSS 712进行加波操作,将OTU发送端740输出的第二波段业务添加到原第一波段业务的路径上。WSS 712将第一波段和第二波段进行波分复用后,同时,将处理器711接收到的指示信息添加到合波信号中,并输出合波光信号,该合波光信号经过放大器713放大后,经过FIU 715从OMS发送端710输出。随后,OMS发送端710输出的合波光信号经过光纤传输至OLA站点720,并经过FIU 722接收、放大器723的放大以及FIU 725后,从OLA站点720输出并经过光纤传输后到达OMS接收端730。OMS接收端730中的FIU 732接收到来自OLA站点720光信号后,该合波光信号经过VOA 733、放大器734以及VOA 736后,功率检测模块对 VOA 736输出的合波光信号中的每一个单波业务进行功率检测,并将检测结果上报给处理器731。由于合波光信号中还有网管系统下发的指示信息,因此,处理器731可以根据指示信息确定该业务路径中的第一波段和第二波段,并根据功率检测模块上报的第一波段中的单波业务的光功率确定VOA 733的衰减值和/或放大器734的增益,以保证第一波段业务的光功率能恢复至目标光功率。该计算与调节的过程可参考图5中的S520和S530,此处不再赘述。
应理解,该OMS接收端730也可以调节VOA 736的衰减值。或者当需要调节的余量比较大时,即第一波段业务的光功率受到第二波段业务的影响较大时,OMS接收端730也可以同时调节VOA 736和VOA 733。
此外,在另一种可能的实现方式中,该功率检测模块735可以将测量的结果直接上报给网管系统700,网管系统700根据上报的第一波段业务的光功率,计算出VOA 733的衰减值和/或放大器734的增益,并将调节量下发给处理器731,由处理器731实现对VOA 733和/或放大器734的调节控制。
需要说明的是,当本申请实施例提供的调节光功率的方法还可以应用于站点2,即OLA站点720。当应用于OLA站点720时,该OLA站点720应配置有功率检测单元,如图7中的724。同样的,该调节过程可以由处理器721自主计算并调节,也可以由网管系统700计算并下发给处理器721来实现,此处不再赘述。
上文结合附图描述了本申请实施例的方法实施例,下面描述本申请提供的调节光功率的站点实施例。可以理解,方法实施例的描述与调节光功率的站点实施例的描述可以相互对应,因此,未描述的部分可以参见前面方法实施例。
可以理解的是,上述各个方法实施例中,由调节光功率的站点实现的方法和操作,也可以由可用于调节光功率的站点的部件(例如芯片)实现。
本领域技术人员应该可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对调节光功率的站点进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。下面以采用对应各个功能划分各个功能模块为例进行说明。
图8示出了本申请实施例提供的一种调节光功率的站点800的示意性框图。如图8所示,该调节光功率的站点800包括功率检测模块810、处理模块820以及收发模块830。其中,收发模块830用于与外部进行业务的交换,例如,包括上下波业务或者接收来自其他站点的业务以及向下游站点输出光信号。该收发模块830还包括光纤连接接口或光纤连接模块。该功率检测模块810用于实现图5中的S510,该处理模块820用于实现图5中的S520和S530。以及实现图6中的S610、S620和S630。
可选地,该调节光功率的站点800还可以包括计算模块840。当该调节光功率的站点800包括计算模块840时,该计算模块840用于承担处理模块820中的计算功能,即该计算模块840用于实现图5中的S520。以及实现图6中的S610。
如图9所示,本申请实施例还提供一种调节光功率的站点900的示意性框图。该调节光 功率的站点900包括处理器910,处理器910与存储器920耦合,存储器920用于存储计算机程序或指令或者和/或数据,处理器910用于执行存储器920存储的计算机程序或指令和/或者数据,使得上文方法实施例中的方法被执行。
可选地,该调节光功率的站点900包括的处理器910为一个或多个。
可选地,该调节光功率的站点900包括的存储器920可以为一个或多个。
可选地,该存储器920可以与该处理器910集成在一起,或者分离设置。
可选地,如图9所示,该调节光功率的站点900还可以包括收发器930和/或光通信接口,收发器930和/或光通信接口用于信号的接收和/或发送。例如,处理器910用于控制收发器930和/或光通信接口进行信号的接收和/或发送。
作为一种方案,该调节光功率的站点900用于实现上文方法实施例中由光复用站点或者OLA站点执行的操作。例如,处理器910用于实现上文方法实施例中由光复用站点或者OLA站点内部执行的操作,收发器930用于实现上文方法实施例中由光复用站点或者OLA站点执行的接收或发送的操作。装置800中的处理模块820可以为图9中的处理器910,收发模块830可以为图9中的收发器930。处理器910执行的操作具体可以参见上文对处理模块820的说明,收发器930执行的操作可以参见对收发模块830的说明,这里不再赘述。
本申请实施例还提供了一种计算机存储介质,该存储介质中存储软件程序,该软件程序在被一个或多个处理器读取并执行时可实现上述任意一个或多个实施例提供的方法。所述计算机存储介质可以包括:U盘、移动硬盘、只读存储器、随机存取存储器、磁碟或者光盘等各种可以存储程序代码的介质。
本申请实施例还提供了一种芯片,该芯片包括处理器,用于实现上述任意一个或多个实施例所涉及的功能,例如检测合波光信号是否携带第一调制信息。可选地,所述芯片还包括存储器,所述存储器,用于处理器所执行必要的程序指令和数据。该芯片,可以由芯片构成,也可以包含芯片和其他分立器件。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多 个方框中指定的功能的步骤。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (14)

  1. 一种调节光功率的方法,其特征在于,包括:
    获取第一波段业务的光功率,所述第一波段为发生加波或掉波前后业务路径中相同的波段;
    计算所述第一波段业务的光功率相对于基准值的变化量,所述基准值为加波或掉波之前业务路径中业务的光功率;
    根据所述变化量调节所述第一波段业务的光功率至目标光功率。
  2. 根据权利要求1所述的方法,其特征在于,所述根据所述变化量调节所述第一波段业务的光功率至目标光功率,包括:
    根据所述变化量获取所述第一波段业务的光功率的调节量,基于所述调节量调节所述第一波段业务的光功率至所述目标光功率。
  3. 根据权利要求2所述的方法,其特征在于,
    所述调节量根据δ=-k*(Δ-m)确定,
    其中,所述k为调节系数,范围为(0,1],所述Δ为所述变化量,所述m为系统预设的阈值。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述调节所述第一波段业务的光功率至所述目标光功率,包括:
    调节放大器的增益和/或线路光功率衰减器的衰减值,使所述第一波段业务的光功率至所述目标光功率。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述方法还包括:
    接收指示信息,所述指示信息用于指示所述业务路径加波或掉波;
    根据所述指示信息更新所述业务路径上的波段。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述获取第一波段业务的光功率,包括:
    获取所述第一波段中的每个单波业务的光功率。
  7. 一种调节光功率的站点,其特征在于,包括:
    功率检测模块,用于获取第一波段业务的光功率,所述第一波段为发生加波或掉波前后业务路径中相同的波段;
    计算模块,用于计算所述第一波段业务的光功率相对于基准值的变化量,所述基准值为加波或掉波之前业务路径中业务的光功率;
    处理模块,用于根据所述变化量调节所述第一波段业务的光功率至目标光功率。
  8. 根据权利要求7所述的站点,其特征在于,所述处理模块具体用于:
    根据所述变化量获取所述第一波段业务的光功率的调节量,基于所述调节量调节所述第一波段业务的光功率至所述目标光功率。
  9. 根据权利要求8所述的站点,其特征在于,
    所述调节量根据δ=-k*(Δ-m)确定,
    其中,所述k为调节系数,范围为(0,1],所述Δ为所述变化量,所述m为系统预设的阈值。
  10. 根据权利要求7至9中任一项所述的站点,其特征在于,所述处理模块具体用于:
    调节放大器的增益和/或线路光功率衰减器的衰减值,使所述第一波段业务的光功率至所 述目标光功率。
  11. 根据权利要求7至10中任一项所述的站点,其特征在于,所述站点还包括:
    收发模块,用于接收指示信息,所述指示信息用于指示所述业务路径加波或掉波;
    所述处理模块,还用于根据所述指示信息更新所述业务路径上的波段。
  12. 根据权利要求7至11中任一项所述的站点,其特征在于,
    所述功率检测模块,具体用于获取所述第一波段中的每个单波业务的光功率。
  13. 一种调节光功率的系统,其特征在于,包括:光放大站点和光复用站点,
    所述光放大站点,用于放大业务路径上的业务的光功率;
    所述光复用站点,用于接收所述光放大站点输出的业务信号,并对所述业务信号进行加波或掉波的业务配置,以及执行如权利要求1至6中任一项所述的方法。
  14. 根据权利要求13所述的系统,其特征在于,所述系统还包括:网管系统,
    所述网管系统,用于向所述光复用站点发送指示信息,所述指示信息用于指示所述光复用站点进行业务路径加波或掉波,并更新所述业务路径上的波段。
PCT/CN2022/124867 2022-02-17 2022-10-12 一种调节光功率的方法、站点和系统 WO2023155451A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210145276.3A CN116667930A (zh) 2022-02-17 2022-02-17 一种调节光功率的方法、站点和系统
CN202210145276.3 2022-02-17

Publications (1)

Publication Number Publication Date
WO2023155451A1 true WO2023155451A1 (zh) 2023-08-24

Family

ID=87577435

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/124867 WO2023155451A1 (zh) 2022-02-17 2022-10-12 一种调节光功率的方法、站点和系统

Country Status (2)

Country Link
CN (1) CN116667930A (zh)
WO (1) WO2023155451A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040208518A1 (en) * 2002-02-28 2004-10-21 Bosloy Jonathan L Apparatus and method for planned wavelength addition and removal in a wavelength division multiplexed system
CN101449494A (zh) * 2006-05-25 2009-06-03 三菱电机株式会社 光中继装置以及光中继传输系统
US20100091357A1 (en) * 2008-10-14 2010-04-15 Fujitsu Limited Control apparatus of optical amplifier
WO2013132596A1 (ja) * 2012-03-06 2013-09-12 三菱電機株式会社 波長多重光伝送システム、光中継装置および光強度制御方法
US20190165861A1 (en) * 2017-11-30 2019-05-30 Adva Optical Networking Se Method and apparatus for automatic signal gain setting

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040208518A1 (en) * 2002-02-28 2004-10-21 Bosloy Jonathan L Apparatus and method for planned wavelength addition and removal in a wavelength division multiplexed system
CN101449494A (zh) * 2006-05-25 2009-06-03 三菱电机株式会社 光中继装置以及光中继传输系统
US20100091357A1 (en) * 2008-10-14 2010-04-15 Fujitsu Limited Control apparatus of optical amplifier
WO2013132596A1 (ja) * 2012-03-06 2013-09-12 三菱電機株式会社 波長多重光伝送システム、光中継装置および光強度制御方法
US20190165861A1 (en) * 2017-11-30 2019-05-30 Adva Optical Networking Se Method and apparatus for automatic signal gain setting

Also Published As

Publication number Publication date
CN116667930A (zh) 2023-08-29

Similar Documents

Publication Publication Date Title
US7515829B2 (en) Wavelength division multiplexing optical transmission system
JP5446944B2 (ja) 光ネットワークおよびその制御方法
US10003429B2 (en) Optical transmission device that transmits wavelength division multiplexed optical signal and optical transmission system
US10608775B2 (en) Optical transmission apparatus, optical transmission method, and optical transmission system
US8620160B2 (en) Optical transmission apparatus
US9172475B2 (en) Method and apparatus for equalizing link performance
US20060126165A1 (en) Method and system for determining gain for an optical signal
JPH11331127A (ja) 波長分割多重システム、及びその端局
EP2765717B1 (en) Method for capacity expansion and commissioning of wavelength multiplexing optical network, and controller
JP2013172375A (ja) 光受信装置
US7689131B2 (en) WDM system
US20200209108A1 (en) Calibration Apparatus and Method, and Wavelength Division Multiplexing System
CN102281110A (zh) 光功率调节方法和装置
WO2014182874A1 (en) Adaptive optical amplifier for wdm systems
US7151895B2 (en) Method and system for automatically setting gain for an amplifier in an optical network
US20120321300A1 (en) Node equipment
JP6455297B2 (ja) 光増幅器、光伝送装置、及び光中継装置
US11245487B2 (en) Optical transmission control method and optical transmission system
WO2022042378A1 (zh) 光信号控制方法及装置、光传输节点和光传输系统
US9287992B2 (en) Wavelength division multiplexing transmission device
US7308200B2 (en) Pre-emphasis control method in consideration of nonlinear deterioration
WO2023155451A1 (zh) 一种调节光功率的方法、站点和系统
EP1134925B1 (en) Optical transmission system including performance optimization
US8102595B2 (en) Optical transmission system with optical amplifier gain setup based on difference between signal loss and noise light loss
JP5251661B2 (ja) 光アンプ装置とその制御方法、光伝送システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22926756

Country of ref document: EP

Kind code of ref document: A1