WO2022042378A1 - 光信号控制方法及装置、光传输节点和光传输系统 - Google Patents

光信号控制方法及装置、光传输节点和光传输系统 Download PDF

Info

Publication number
WO2022042378A1
WO2022042378A1 PCT/CN2021/113099 CN2021113099W WO2022042378A1 WO 2022042378 A1 WO2022042378 A1 WO 2022042378A1 CN 2021113099 W CN2021113099 W CN 2021113099W WO 2022042378 A1 WO2022042378 A1 WO 2022042378A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
optical signal
wavelength channel
wavelength
signal
Prior art date
Application number
PCT/CN2021/113099
Other languages
English (en)
French (fr)
Inventor
罗俊
冯志勇
钟健
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21860216.7A priority Critical patent/EP4199388A4/en
Publication of WO2022042378A1 publication Critical patent/WO2022042378A1/zh
Priority to US18/175,055 priority patent/US20230224062A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0221Power control, e.g. to keep the total optical power constant
    • H04J14/02214Power control, e.g. to keep the total optical power constant by re-allocation of data channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0202Arrangements therefor
    • H04J14/021Reconfigurable arrangements, e.g. reconfigurable optical add/drop multiplexers [ROADM] or tunable optical add/drop multiplexers [TOADM]
    • H04J14/0212Reconfigurable arrangements, e.g. reconfigurable optical add/drop multiplexers [ROADM] or tunable optical add/drop multiplexers [TOADM] using optical switches or wavelength selective switches [WSS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
    • H04B10/0791Fault location on the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
    • H04B10/0795Performance monitoring; Measurement of transmission parameters
    • H04B10/07953Monitoring or measuring OSNR, BER or Q
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
    • H04B10/0795Performance monitoring; Measurement of transmission parameters
    • H04B10/07955Monitoring or measuring power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0202Arrangements therefor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0221Power control, e.g. to keep the total optical power constant
    • H04J14/02219Distributed control

Definitions

  • the present application relates to the field of optical communication, and in particular, to an optical signal control method and device, an optical transmission node and an optical transmission system.
  • the service information to be transmitted is modulated on different optical frequencies, that is, different wavelength channels for transmission.
  • the wavelength division multiplexed optical signal of the target band such as the C band
  • the wavelength division multiplexed optical signal of the target band such as the C band
  • SRS Stimulated Raman Scattering
  • Embodiments of the present application provide an optical signal control method and device, an optical transmission node, and an optical transmission system.
  • an optical signal control device comprising:
  • the light source is used to output a first optical signal; the first optical signal is usually an optical signal that does not carry service information, and may be called a false optical signal.
  • the light source is a broad-spectrum light source, and its wavelength band covers the preset target wavelength band.
  • An optical switch module has a first input terminal, a second input terminal and an output terminal, the first input terminal is used for receiving the first optical signal, and the second input terminal is used for receiving an external second optical signal , the output terminal is used for outputting the third optical signal.
  • the second optical signal is usually an optical signal carrying service information, which may be called a true wave signal.
  • a detection module configured to detect that the power change of the second optical signal in at least one wavelength channel is greater than a preset power change threshold.
  • the power change of the at least one wavelength channel is greater than the power change threshold to indicate a wave drop state or a wave addition state
  • the wave drop state is the state of the at least one wavelength channel from having a wave to a waveless state
  • the adding wave state is the at least one wavelength channel. From no wave to wave state.
  • the optical switch module is further configured to adjust the transmission of the at least one wavelength channel in the received first optical signal and the second optical signal after the detection module detects that the power change of the at least one wavelength channel is greater than the power change threshold off state, so that the adjusted first optical signal and the adjusted second optical signal are combined to obtain the third optical signal.
  • the optical switch module of the optical signal control device adjusts the received first optical signal and the second optical signal after the detection module detects that the power change of at least one wavelength channel of the second optical signal is greater than the power change threshold.
  • the on-off state of the at least one wavelength channel in the optical signal so that the adjusted first optical signal and the adjusted second optical signal are combined to obtain the third optical signal, and the third optical signal is output.
  • the power of at least one wavelength channel of the second optical signal changes greatly, it is updated to output the third optical signal, which effectively reduces the deterioration of the optical transmission performance of the remaining wavelength channels caused by the power change of the at least one wavelength channel.
  • the aforementioned optical switch module can be used to realize the mutual replacement of the first wavelength channel of the first optical signal and the second optical signal, and the mutual replacement process includes: replacing the first wavelength channel of the second optical signal with the first optical signal or replace the first wavelength channel of the first optical signal with the first wavelength channel of the second optical signal; the first wavelength channel of the second optical signal and the first wavelength channel of the first optical signal A wavelength channel has the same wavelength.
  • the wavelength channel combination of the final output third optical signal relative to the second optical signal eg, the second optical signal with wave-added or wave-dropped transmitted by the previous transmitting end can be kept unchanged.
  • the wavelength channel carrying the service information in the second optical signal is modulated with a pilot signal having multiple pilot frequency points, the multiple pilot frequency points correspond to the multiple wavelength channels respectively, the The detection module is used to detect the pilot frequency signal; the optical switch module is used to: after the detection module detects that at least one pilot frequency point is switched from a signal loss state to a signal loss state, determine the corresponding at least one pilot frequency point.
  • the wavelength channel is in the dropped wave state; after the detection module detects that at least one pilot frequency point is switched from the signal loss state to the signal not lost state, it is determined that the wavelength channel corresponding to the at least one pilot frequency point is in the add wave state.
  • the state of the wavelength channel can be quickly detected by detecting the pilot signal.
  • the detection module may periodically detect the state of the pilot frequency point, and determine whether the state of the pilot frequency point is switched based on the state of the pilot frequency point in every two adjacent detection periods.
  • the state of the pilot frequency point of the current detection period is the signal loss state
  • the state of the pilot frequency point of the previous detection period is the signal loss state
  • it is determined that the pilot frequency point is switched from the signal loss state to the signal loss state
  • the current detection period The state of the pilot frequency point is the signal loss state
  • the state of the pilot frequency point in the previous detection period is the signal loss state
  • it is determined that the pilot frequency point is switched from the signal loss state to the signal loss state.
  • the optical signal control device is provided between a wavelength selective switch (WSS) and an optical amplifier.
  • WSS wavelength selective switch
  • the input end (ie, the detection end) of the detection module can be connected to the output end x of the WSS, that is, the multiplexing port of the WSS.
  • the detection module further includes at least one other input terminal, and the at least one other input terminal is respectively connected to at least one of the output terminal y of the optical signal control device and the output terminal z of the optical amplifier.
  • the output terminal y of the optical signal control device is the output terminal c of the third optical signal.
  • the detection module can also detect the output terminal x and the output terminal y from the aforementioned output terminal x and output terminal y. Based on the relationship of the acquired optical signals, whether the optical switch module is faulty is determined based on the relationship of the optical signals, and when it is determined that the optical signal control device is faulty, an alarm message indicating that the optical signal control device is faulty is issued.
  • the detection module can also detect the relationship between the optical signals obtained from the aforementioned output terminal y and the output terminal z, and determine the optical amplifier based on the relationship between the optical signals. Whether there is a fault, when it is determined that the optical amplifier is faulty, an alarm message indicating that the optical amplifier is faulty is issued.
  • the detection module can also detect the relationship between the optical signals obtained from the aforementioned output terminal x and the output terminal z, and determine whether the optical amplifier is faulty based on the relationship between the optical signals. When the optical amplifier fails, an alarm message indicating the failure of the optical amplifier is issued.
  • the function of the optical transmission node can be calibrated in time, so as to avoid service interruption or transmission error caused by the failure of the optical device in the optical transmission node.
  • the optical switch module is configured to: after determining that the first wavelength channel of the second optical signal is in the dropped wave state, control the first optical signal received by the first input end. A wavelength channel is turned on, and the first wavelength channel of the second optical signal received by the second input end is controlled to be turned off; or, after it is determined that the first wavelength channel of the second optical signal is in the adding state, the first wavelength channel of the second optical signal is controlled The first wavelength channel of the first optical signal received by the input end is turned off, and the first wavelength channel of the second optical signal received by the second input end is controlled to be turned on, and the first wavelength channel of the first optical signal and the The first wavelength channels of the second optical signal have the same wavelength.
  • the optical switch module is configured to: perform a first filtering process on the first wavelength channel, so that the first wavelength channel is turned on, and the wavelength of the turned on first wavelength channel is within the band-pass filtering range; By performing the second filtering process on the first wavelength channel, the first wavelength channel is turned off, and the wavelength of the turned off first wavelength channel is within the band-stop filtering range.
  • first filtering process and second filtering process are opposite filtering processes, which can be implemented in various ways.
  • the embodiments of the present application are described by taking the following two implementation manners as examples:
  • the first filtering process and the second filtering process are overall filtering processes loaded on the optical signal.
  • the process of conducting the first wavelength channel by performing the first filtering process on the first wavelength channel includes the following steps: : load a first filtering curve for the optical signal M, the filtering characteristic of the first filtering curve at the first wavelength channel is a conduction characteristic, and the filtering characteristic at other wavelength channels other than the first wavelength channel is an off characteristic;
  • the process of turning off the first wavelength channel by performing the second filtering process on the first wavelength channel includes: loading the optical signal M with a second filtering curve, and the filtering characteristics of the second filtering curve at the first wavelength channel For the off characteristic, the filtering characteristic at other wavelength channels than the first wavelength channel is the on characteristic.
  • the filtering curve loaded on the optical signal is only the first filtering curve or the second filtering curve, and the processing process is simple.
  • the first filtering process and the second filtering process are partial filtering processes loaded on the optical signal.
  • An optical signal control device such as an optical switch module, is configured with a plurality of grid windows in the target wavelength band, and the grid windows include grid windows corresponding to a plurality of designated wavelength channels of the target wavelength band.
  • the division method of the plurality of grid windows can refer to the division method of the grid windows of the wavelength division multiplexing system defined by the ITU Telecommunication Standardization Sector (ITU-T, ITU-T) G.694.1 standard, that is, each grid window The center wavelength of each grid window is preset.
  • segment filtering of the optical signal is performed by means of a grid window, so that precise filtering can be realized.
  • the detection module can detect the aforementioned pilot signal in various ways.
  • the optical signal control device further includes: an optical splitter, configured to split the second optical signal into a fourth optical signal with partial power; exemplary, the power of the fourth optical signal and the second optical signal The power ratio ranges from 1% to 10%, eg 5%.
  • the photoelectric converter is used for converting the fourth optical signal into an electrical signal, and outputting the converted electrical signal to the detection module.
  • the photoelectric converter may be a photodiode (PhotoDiode, PD).
  • the optical switch module 202 has two input terminals and one output terminal, which can realize the scheduling of optical signals. Therefore, it can be regarded as a 2 ⁇ 1 WSS (that is, a WSS with two input terminals and one output terminal), and the 2 ⁇
  • the structure of 1WSS can have many optional implementations. This embodiment of the present application uses the following two optional implementation manners as examples for description:
  • the optical switch module mainly includes at least two optical filters.
  • the optical switch module includes:
  • a first optical filter with an input end and an output end, the input end of the first optical filter is the first input end, the first optical filter is used for filtering the received first optical signal; having an input end and an output end
  • the second optical filter at the end of the second optical filter, the input end of the second optical filter is the second input end, the second optical filter is used to filter the received second optical signal, for the wavelength channel of the same wavelength, the first optical filter
  • the filtering characteristics of the optical filter and the second optical filter are opposite;
  • the optical combiner has two input ends and one output end, the two input ends are respectively connected with the output end of the first optical filter and the The output end of the second optical filter is connected, and the output end of the optical combiner is the output end of the optical switch module, and the optical combiner is used for the filtered first optical signal received by the two input ends and filtered.
  • the second optical signal is combined to obtain the third optical signal.
  • At least one of the first optical filter and the second optical filter is a wavelength blocker (WB).
  • WB wavelength blocker
  • both the first optical filter and the second optical filter are wavelength blockers.
  • the wavelength blocker has wavelength selective properties.
  • the first optical filter and the second optical filter may be implemented by one of the following technologies: Liquid Crystal On Silicon (LCOS) technology, Digital Light Processing (Digital Light Processing, DLP) technology, Planar Lightwave Circuit (PLC) technology, Liquid Crystal (LC) technology or Micro-Electro-Mechanical System (MEMS) technology.
  • LCOS Liquid Crystal On Silicon
  • DLP Digital Light Processing
  • PLC Planar Lightwave Circuit
  • LC Liquid Crystal
  • MEMS Micro-Electro-Mechanical System
  • the optical splitting ratio of the input end connected to the optical combiner and the first optical filter is not equal to the optical splitting ratio of the input terminal connected to the optical combiner and the second optical filter.
  • the optical splitting ratio of the input end connected to the optical combiner and the first optical filter is smaller than the optical splitting ratio of the input terminal connected to the optical combiner and the second optical filter.
  • the optical splitting ratio refers to the optical signal occupying and combining circuit (the optical combining circuit of the optical combiner and the second optical filter) of the branch (that is, the optical combiner is connected to the first optical filter or the optical combiner is connected to the second optical filter). The ratio of the optical signal of one channel of the output of the device.
  • the optical splitting ratio of the input end connected between the optical combiner and the first optical filter By setting the optical splitting ratio of the input end connected between the optical combiner and the first optical filter to be smaller than the optical splitting ratio of the input terminal connected between the optical combiner and the second optical filter, it can be ensured that the final output third optical signal contains
  • the optical power of the first optical signal accounts for a relatively small proportion
  • the optical power of the second optical signal accounts for a relatively large proportion.
  • the insertion loss of the path from the input end connected with the first optical filter to the output end is smaller than the insertion loss of the path from the input end connected with the second optical filter to the output end.
  • the insertion loss of the actual transmission of the second optical signal in the optical combiner is reduced, and the loss of service information is avoided.
  • the optical switch module 202 mainly includes a plurality of optical switches (also referred to as an optical switch array).
  • the optical switch module includes:
  • a first optical splitter with an input end and n third output ends, a second optical splitter with an input end and n fourth output ends, n optical switches and an optical combiner where n is a positive integer greater than 1 , each of the n optical switches has a third input end, a fourth input end and a fifth output end, the optical combiner has n input ends and an output end;
  • the input end is the first input end, and the first optical demultiplexer is used for demultiplexing the received first optical signal to obtain optical signals of n wavelength channels, and passing the optical signals of the n wavelength channels through the n wavelength channels respectively
  • the third output ends are input to the third input ends of the n optical switches;
  • the input end of the second optical demultiplexer is the second input end, and the second optical demultiplexer is used for the received second optical signal
  • the optical signals of n wavelength channels are obtained by demultiplexing, and the optical signals of the n wavelength channels are respectively input to the fourth input ends of the n optical switches through the
  • the optical switch module of the optical signal control device adjusts the received first optical signal after the detection module detects that the power change of at least one wavelength channel of the second optical signal is greater than the power change threshold the on-off state of the at least one wavelength channel in the signal and the second optical signal, so that the adjusted first optical signal and the adjusted second optical signal are combined to obtain the third optical signal, and the third optical signal is output light signal.
  • the power of at least one wavelength channel of the second optical signal varies greatly, the wavelength channel whose power varies greatly is replaced with the corresponding wavelength channel in the first optical signal, thereby obtaining a third optical signal, the third optical signal power is stable.
  • the combined change of the wavelength channels of the target band can be reduced, the gain change of each wavelength channel inside the optical amplifier and the optical power change of each wavelength channel caused by SRS can be reduced, thereby reducing the optical power of the wavelength channel and the degradation of the signal-to-noise ratio, reducing the The bit error of the receiver reduces the impact on the performance of the optical transmission system.
  • the third optical signal is an optical signal with the target wavelength band in a full-wave state
  • the performance degradation of the remaining wavelength channels can be further reduced.
  • the optical signal control apparatus provided in the embodiment of the present application is arranged outside the WSS of the optical transmission node.
  • the structure of the WSS of the optical transmission node is simplified, and the manufacturing cost of the WSS is reduced.
  • the simplified structure of the optical signal control device compared with the traditional WSS, the rapid replacement of false optical signals and true wave signals can be realized.
  • the replacement speed is increased from the traditional second level to the millisecond level, thereby reducing possible service interruptions. time, or compress the service interruption duration to less than 50ms to realize the non-perceptible interruption delay of upper-layer services.
  • an optical transmission node in a second aspect, includes a WSS and/or an optical amplifier, and further includes the optical signal control apparatus according to any one of the first aspect.
  • the optical transmission node includes one or more WSSs, and an optical signal control device is provided after at least one WSS.
  • an optical signal control device is provided after each WSS.
  • the optical transmission node includes: one or more of the WSSs, and a first-level optical amplifier provided after each WSS, and each optical signal control device is located between a WSS and a first-level optical amplifier;
  • the optical transmission node includes a multi-stage optical amplifier
  • the optical signal control device is located between any adjacent two-stage optical amplifiers of the multi-stage optical amplifier.
  • the optical amplifier may be an erbium-doped fiber amplifier (Erbium Doped Fiber Amplifier, EDFA) or an optical amplifier such as a Raman amplifier.
  • the target wavelength band where the second optical signal is located is an S-band, a C-band, or an L-band.
  • the optical signal control device after detecting that the power change of at least one wavelength channel of the second optical signal is greater than the power change threshold, the optical signal control device adjusts the received first optical signal and the power change threshold.
  • the power of at least one wavelength channel of the second optical signal changes greatly, it is updated to output the third optical signal, which effectively reduces the deterioration of the optical transmission performance of the remaining wavelength channels caused by the power change of the at least one wavelength channel.
  • an optical transmission system in a third aspect, includes at least two optical transmission nodes, and the optical transmission nodes are any of the optical transmission nodes in the second aspect; target wavelength bands corresponding to different optical transmission nodes are mutually Are not the same.
  • each of the optical transmission nodes includes an optical amplifier
  • the optical transmission system further includes: a power detection module for detecting power information of the at least two optical transmission nodes; a gain control module for based on The power information of the at least two optical transmission nodes is used to control the optical amplifier gain of at least two target wavelength bands corresponding to the at least two optical transmission nodes.
  • the power information is the instantaneous power value
  • the gain control module is used for:
  • a power variation value of each of the at least two optical transmission nodes is calculated; based on the power variation value of each of the optical transmission nodes, the at least two Optical amplifier gain control for the target band.
  • the first optical transmission structure is one of the one or more optical transmission structures, and the first optical transmission structure includes Q optical transmission nodes, and Q ⁇ 2, for example, 2 ⁇ Q ⁇ 3.
  • the first optical transmission structure includes a power detection module 401 and a gain control module 402 .
  • the power detection module 401 is configured to: determine the instantaneous power value of the optical power of each wavelength band in the Q target wavelength bands based on the received electrical signals transmitted by the Q photoelectric converters 406 , wherein the The instantaneous power value of the optical power of each band in the Q target bands refers to the instantaneous power values of Q optical amplifiers belonging to different target bands and in the same stage.
  • the Q optical amplifiers are the optical amplifiers used by the power detection module 401 for detection.
  • the gain control module 402 is further configured to: based on the determined power variation value of each of the Q target wavelength bands, respectively perform gain control on the optical amplifiers of the Q target wavelength bands. For example, the power variation caused by the stimulated Raman effect is reversely compensated, so that the system performance is more stable.
  • an optical signal control method comprising:
  • the at least one of the received first optical signal and the second optical signal is adjusted.
  • the on-off state of a wavelength channel, so that the adjusted first optical signal and the adjusted second optical signal are combined to obtain the third optical signal, and the third optical signal is output.
  • the power of at least one wavelength channel of the second optical signal changes greatly (for example, in an add-on state or a drop-off state)
  • replace the wavelength channel whose power changes greatly with the corresponding wavelength channel in the first optical signal thereby obtaining The third optical signal
  • the power of the third optical signal is stable.
  • the combined change of the wavelength channels of the target band can be reduced, the gain change of each wavelength channel inside the optical amplifier and the optical power change of each wavelength channel caused by SRS can be reduced, thereby reducing the optical power of the wavelength channel and the degradation of the signal-to-noise ratio, reducing the The bit error of the receiver reduces the impact on the performance of the optical transmission system.
  • the third optical signal is an optical signal with the target wavelength band in a full-wave state
  • the performance degradation of the remaining wavelength channels can be further reduced.
  • the power change of the at least one wavelength channel is greater than the power change threshold to indicate a wave-drop state or a wave-adding state
  • the wave-dropping state is a state in which the at least one wavelength channel changes from a wave-on to a no-wave state
  • the add-on state for the at least one wavelength channel to go from a waveless state to a state of having a wave.
  • the wavelength channel carrying the service information in the second optical signal is modulated with a pilot signal having multiple pilot frequency points, and the multiple pilot frequency points correspond to the multiple wavelength channels respectively, and the method further includes: in detecting After at least one pilot frequency point is switched from the signal loss state to the signal loss state, it is determined that the wavelength channel corresponding to the at least one pilot frequency point is in the drop wave state; after detecting that at least one pilot frequency point is switched from the signal loss state to the signal loss state After the state of not being lost, it is determined that the wavelength channel corresponding to the at least one pilot frequency point is in the adding state.
  • the communication of the at least one wavelength channel in the first optical signal and the second optical signal generated by the optical signal control device The off state, so that the adjusted first optical signal and the adjusted second optical signal are combined to obtain the third optical signal, comprising: after determining that the first wavelength channel of the second optical signal is in the off-wave state , control the first wavelength channel of the first optical signal to be turned on, and control the first wavelength channel of the second optical signal to be turned off; or, after determining that the first wavelength channel of the second optical signal is in the adding state, Controlling the first wavelength channel of the first optical signal to be turned off, controlling the first wavelength channel of the second optical signal to be turned on, the first wavelength channel of the first optical signal and the first wavelength of the second optical signal
  • the channels have the same wavelength.
  • the controlling the conduction of the first wavelength channel of the first optical signal includes: performing a first filtering process on the first wavelength channel, so that the first wavelength channel is turned on, and the conduction of the first wavelength channel is performed.
  • the wavelength of a wavelength channel is within the band-pass filtering range;
  • the controlling the turning off of the first wavelength channel of the second optical signal includes: performing a second filtering process on the first wavelength channel, so that the first wavelength channel When it is turned off, the wavelength of the first wavelength channel that is turned off is within the band-stop filtering range.
  • the on-off state of the at least one wavelength channel in the first optical signal and the second optical signal generated by the optical signal control device after detecting that the power change of the at least one wavelength channel is greater than the power change threshold, adjust the on-off state of the at least one wavelength channel in the first optical signal and the second optical signal generated by the optical signal control device. , so that the adjusted first optical signal and the adjusted second optical signal are combined to obtain the third optical signal, including: replacing the first wavelength channel of the second optical signal with the first optical signal of the first optical signal. a wavelength channel, or replace the first wavelength channel of the first optical signal with the first wavelength channel of the second optical signal; the first wavelength channel of the second optical signal and the first wavelength of the first optical signal
  • the channels have the same wavelength, and the first wavelength channel of the second optical signal is one or more wavelength channels of at least one wavelength channel whose detected power change is greater than a threshold.
  • the method further includes: detecting power information of the at least two optical transmission nodes; based on the power information of the at least two optical transmission nodes, performing optical amplifier gain control of at least two target wavelength bands corresponding to the at least two optical transmission nodes .
  • the process of performing gain control of the at least two target wavelength bands corresponding to the at least two optical transmission nodes includes: based on the instantaneous power values of the at least two optical transmission nodes, calculating The power variation value of each optical transmission node in the at least two optical transmission nodes; based on the power variation value of each optical transmission node, the optical amplifier gain control of at least two target wavelength bands is performed.
  • the optical transmission system includes one or more optical transmission structures, wherein the first optical transmission structure is one optical transmission structure among the one or more optical transmission structures, and the first optical transmission structure includes Q optical transmission structures. Node, Q ⁇ 2, eg 2 ⁇ Q ⁇ 3.
  • the power variation value of each of the Q target bands is determined.
  • gain control is performed on the optical amplifiers of the Q target bands respectively. For example, the power variation caused by the stimulated Raman effect is reversely compensated, so that the system performance is more stable.
  • a fifth aspect provides an optical signal control method, the method comprising:
  • the process of performing gain control of the at least two target wavelength bands corresponding to the at least two optical transmission nodes includes:
  • the optical transmission system includes one or more optical transmission structures, wherein the first optical transmission structure is one optical transmission structure among the one or more optical transmission structures, and the first optical transmission structure includes Q optical transmission structures.
  • the power variation value of each of the Q target bands is determined.
  • gain control is performed on the optical amplifiers of the Q target bands respectively. For example, the power variation caused by the stimulated Raman effect is reversely compensated, so that the system performance is more stable.
  • the present application provides an optical signal control device.
  • the optical signal control device may include at least one module, and the at least one module may be used to implement the optical signal provided by the fourth aspect or various possible implementations of the fourth aspect.
  • the present application provides a computer device including a processor and a memory.
  • the memory stores computer instructions; the processor executes the computer instructions stored in the memory, so that the computer device executes the fourth aspect or the optical signal control method provided by various possible implementations of the fourth aspect, and/or executes the aforementioned fourth aspect.
  • the fifth aspect or various possible implementations of the fifth aspect provide the optical signal control method.
  • the present application provides a computer-readable storage medium, where computer instructions are stored in the computer-readable storage medium, and the computer instructions instruct the computer device to execute the fourth aspect or various possible implementations of the fourth aspect.
  • the present application provides a computer program product comprising computer instructions stored in a computer-readable storage medium.
  • the processor of the computer device can read the computer instructions from the computer-readable storage medium, and the processor executes the computer instructions, so that the computer device executes the fourth aspect or the optical signal control method provided by various possible implementations of the fourth aspect , and/or, perform the optical signal control method provided by the fifth aspect or various possible implementations of the fifth aspect.
  • a tenth aspect provides a chip, the chip may include programmable logic circuits and/or program instructions, when the chip is running, for implementing the optical signal provided by the fourth aspect or various possible implementations of the fourth aspect
  • the detection module detects that the power change of at least one wavelength channel of the second optical signal is greater than the power change threshold, it adjusts the received signal.
  • the on-off state of the at least one wavelength channel in the first optical signal and the second optical signal so that the adjusted first optical signal and the adjusted second optical signal are combined to obtain the third optical signal, and
  • the third optical signal is output.
  • the power of at least one wavelength channel of the second optical signal changes greatly (for example, in an add-on state or a drop-off state), replace the wavelength channel whose power changes greatly with the corresponding wavelength channel in the first optical signal, thereby obtaining The third optical signal, the power of the third optical signal is stable.
  • the combined change of the wavelength channels of the target band can be reduced, the gain change of each wavelength channel inside the optical amplifier and the optical power change of each wavelength channel caused by SRS can be reduced, thereby reducing the optical power of the wavelength channel and the degradation of the signal-to-noise ratio, reducing the The bit error of the receiver reduces the impact on the performance of the optical transmission system.
  • the third optical signal is an optical signal with the target wavelength band in a full-wave state
  • the performance degradation of the remaining wavelength channels can be further reduced.
  • the optical signal control apparatus provided in the embodiment of the present application is arranged outside the WSS of the optical transmission node.
  • the WSS structure of the optical transmission node is simplified, and the manufacturing cost of the WSS is reduced.
  • the simplified structure of the optical signal control device compared with the traditional WSS, the rapid replacement of false optical signals and true wave signals can be realized.
  • the replacement speed is increased from the traditional second level to the millisecond level, thereby reducing possible service interruptions. time, or compress the service interruption duration to less than 50ms to realize the non-perceptible interruption delay of upper-layer services.
  • FIG. 1 is a schematic diagram of an application environment of an optical transmission system where an optical signal control device provided by an embodiment of the present application is located;
  • FIG. 2 is a schematic diagram of an application environment of an optical transmission system where another optical signal control device provided by an embodiment of the present application is located;
  • 3A is a schematic diagram of a gain variation of a wavelength channel in an optical amplifier provided by an embodiment of the present application.
  • FIG. 3B is a schematic diagram of an application principle of a stimulated Raman effect provided in an embodiment of the present application in an optical transmission system
  • FIG. 4 is a schematic structural diagram of an optical signal control device provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a second optical signal modulated by a transmitting end with a pilot signal having a plurality of pilot frequency points;
  • FIG. 6 is a schematic diagram of a schematic pilot frequency point detection provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of another schematic optical signal control apparatus provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of an optical transmission node where an optical signal control device according to an embodiment of the present application is located;
  • FIG. 9 is a schematic diagram of a principle of wavelength channel control provided by an embodiment of the present application.
  • FIG. 10 is a schematic diagram of a first filtering curve and a second filtering curve provided by an embodiment of the present application
  • FIG. 11 is a schematic diagram of a third filter curve and a fourth filter curve provided by an embodiment of the present application.
  • FIG. 12 is a schematic diagram of a third filter curve and a fourth filter curve provided by an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of a schematic optical switch module provided by an embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of a schematic optical switch module provided by an embodiment of the present application.
  • FIG. 15 is a schematic structural diagram of an optical transmission node provided by an embodiment of the present application.
  • FIG. 16 is a schematic structural diagram of an optical transmission node provided by an embodiment of the present application.
  • FIG. 17 is a schematic structural diagram of another optical transmission node provided by an embodiment of the present application.
  • FIG. 18 is a schematic structural diagram of a specific optical transmission node provided by an embodiment of the present application.
  • FIG. 19 is a schematic structural diagram of an optical transmission system provided by an embodiment of the present application.
  • FIG. 20 is a schematic structural diagram of another optical transmission system provided by an embodiment of the present application.
  • FIG. 21 is a schematic structural diagram of another optical transmission system provided by an embodiment of the present application.
  • 22 is a schematic diagram of a power amplifier control structure provided by an embodiment of the present application.
  • 24 is a schematic flowchart of an optical signal control method provided by an embodiment of the present application.
  • FIG. 25 is a possible basic hardware architecture of the computer device provided by the embodiment of the present application.
  • FIG. 1 and FIG. 2 are schematic diagrams of application environments of an optical transmission system (also called an optical fiber communication system) where the optical signal control device provided by the embodiment of the present application is located.
  • the optical transmission system is based on optical fiber communication, which includes one or more optical transmission nodes (English: Optical Transmission nodes), and the optical transmission nodes may include at least one optical device, such as an optical amplifier.
  • Fig. 1 is schematic diagrams of application environments of an optical transmission system (also called an optical fiber communication system) where the optical signal control device provided by the embodiment of the present application is located.
  • the optical transmission system is based on optical fiber communication, which includes one or more optical transmission nodes (English: Optical Transmission nodes), and the optical transmission nodes may include at least one optical device, such as an optical amplifier.
  • the optical transmission system includes one optical transmission node 10, and the optical transmission node 10 includes a wavelength selective switch (Wavelength Selective Switching, WSS) 101 and an optical amplifier 102;
  • Fig. 2 assumes that the optical transmission system includes one optical transmission node 10 , the optical transmission node 10 includes two WSSs 101 and two optical amplifiers 102 .
  • the embodiments of the present application do not limit the number and types of optical devices included in the optical transmission system.
  • the optical transmission systems in FIG. 1 and FIG. 2 can use wavelength division multiplexing (Wavelength Division Multiplexing, WDM) technology to transmit service information through optical signals, and the service information is modulated on different wavelength channels.
  • WDM wavelength division multiplexing
  • FIG. 3A is a schematic diagram of a gain variation of a wavelength channel in an optical amplifier provided by an embodiment of the present application.
  • the horizontal axis represents the wavelength channel
  • the vertical axis represents the gain.
  • the gains of each wavelength channel in an optical amplifier are usually coupled with each other, and the gains of different wavelength channels are affected by the gain competition between wavelength channels. It is assumed that the gain curve is curve A when the target band is in a full-wave state. Curves B, C, and D respectively show that when the combination of three different wavelength channels in the target band changes (for example, some wavelength channels change from the state of having waves to the state of having no waves or from the state of having no waves to the states of having waves), the remaining wavelength channels are gain curve.
  • the target band refers to the preset service band
  • the full-wave state refers to that the power of all specified wavelength channels (these wavelength channels are used to carry service information) in the target band are greater than the preset power threshold.
  • all wavelength channels have waves, that is, have optical signals
  • the optical signals may be optical signals that carry service information or optical signals that do not carry service information.
  • the target band is the C-band
  • its optical wavelength range is 1530nm (nanometer) to 1565nm
  • there are 80 designated wavelength channels in the C-band when all the 80 wavelength channels have waves, the C-band is in a full-wave state.
  • the gain curve of the target band in the full-wave state is relatively smooth.
  • the gain curve of the remaining wavelength channels has a large deviation from the gain curve of the full-wave state.
  • FIG. 3B is a schematic diagram of an application principle of a stimulated Raman effect provided in an embodiment of the present application in an optical transmission system.
  • the stimulated Raman effect means that after the optical signal is transmitted through the optical fiber, the energy of the short-wavelength optical signal will be transferred to the long-wavelength optical signal, and finally a band with low optical power of the short-wavelength optical signal and high optical power of the long-wavelength optical signal is formed. Spectral distribution with a certain slope. When the wavelength band of the optical transmission system is the C+L band, the power transfer caused by the stimulated Raman effect is more severe.
  • the initially transmitted wavelength-division multiplexed optical signal is an optical signal of 80 waves in the C-band, and the 80 wavelength channels are wavelength channels 1 to 80 respectively.
  • wavelength channels 1 to 40 have dropped waves.
  • the gains of the remaining wavelength channels 41 to 80 are no longer constrained by the previous wavelength channels 1 to 40.
  • the gain has changed greatly; on the other hand, affected by the stimulated Raman effect, if the C-band is in a full-wave state, the wavelength channels 41 to 80 will absorb energy from the wavelength channels 1 to 40, but once the wavelength channel 1 appears When the wave drops to 40, the remaining wavelength channels 41 to 80 cannot absorb energy from the wavelength channels 1 to 40, resulting in a larger drop in optical power compared to the original C-band when it is in a full-wave state. Therefore, under the influence of the above two aspects, the optical transmission performance of the wavelength channels 41 to 80 is significantly deteriorated.
  • the embodiments of the present application provide an optical signal control device, which can be installed in the optical transmission system to control the on-off state of wavelength channels, so as to reduce the deterioration of optical transmission performance of remaining wavelength channels caused by changes in wavelength channels.
  • FIG. 4 is a schematic structural diagram of an optical signal control device 20 provided by an embodiment of the present application.
  • the optical signal control device 20 is used for the first optical signal inside the device and the second optical signal outside the device to be in the target wavelength band Control of different wavelength channels.
  • the device 20 can be applied to the optical transmission system shown in FIG. 1 or FIG. 2 , and the device 20 includes:
  • the light source 201 is used for outputting a first optical signal.
  • the first optical signal is usually an optical signal that does not carry service information, and may be referred to as a dummy light signal.
  • the target wavelength band corresponding to the optical signal control device is preset.
  • the wavelength band of the first optical signal output by the light source 201 is usually greater than or equal to the target wavelength band, that is, the light source is a broad-spectrum light source, and its wavelength band covers the target wavelength band. control of the channel.
  • the optical switch module has a first input terminal a, a second input terminal b and an output terminal c, the first input terminal a is used to receive the first optical signal, and the second input terminal b is used to receive
  • the output end c is used to output the third optical signal, for example, to output the third optical signal to the main line of the optical link.
  • the external second optical signal refers to the optical signal from outside the optical signal control device 20, that is, the optical signal received by the optical signal control device 20 from the optical link of the optical transmission system where the optical signal control device 20 is located.
  • a link is a link for transmitting optical signals, eg it is an optical fiber.
  • the second optical signal is usually an optical signal carrying service information, which may be called a true wave signal.
  • the detection module 203 is configured to detect the presence or absence of the second optical signal, for example, to detect that the power change of the second optical signal in at least one wavelength channel is greater than a preset power change threshold. It should be noted that, when the detection module 203 detects that the second optical signal does not have a power change of the wavelength channel that is greater than the preset power change threshold, the next detection is performed.
  • the power change of at least one wavelength channel is greater than the preset power change threshold, indicating a wave drop state or a wave addition state, and the wave drop state is that the at least one wavelength channel changes from a wave (ie, an optical signal) to no wave (ie, no light) signal), and the wave addition state is a state in which the at least one wavelength channel changes from no wave to a wave.
  • the target band is C-band, its full-wave state has 80 designated wavelength channels. If at least one wavelength channel is in the wave-drop state, the number of designated wavelength channels with waves is reduced and is less than 80. If at least one wavelength channel is in the state of adding waves, the number of the specified wavelength channels with waves increases and is less than or equal to 80.
  • the optical switch module 202 is configured to adjust the transmission of the at least one wavelength channel in the received first optical signal and the second optical signal after the detection module detects that the power change of the at least one wavelength channel is greater than the power change threshold off state, so that the adjusted first optical signal and the adjusted second optical signal are combined to obtain the aforementioned third optical signal.
  • the adjusting the on-off state of the at least one wavelength channel in the received first optical signal and the second optical signal refers to changing the on-off state of the at least one wavelength channel in the first optical signal and the second optical signal .
  • the detection module 203 determines that the wavelength channel ⁇ 1 of the second optical signal is in a state from no wave to a wave, and the original on-off state of the wavelength channel ⁇ 1 of the first optical signal is on, then the wavelength channel ⁇ 1 of the first optical signal is turned on. ⁇ 1 is adjusted to be off, and the original on-off state of the wavelength channel ⁇ 1 of the second optical signal is off, then the wavelength channel ⁇ 1 of the second optical signal is adjusted to be on.
  • the wavelength channel ⁇ 1 of the output third optical signal is in a wave-on state, and the optical signal thereof is the optical signal in the wavelength channel ⁇ 1 of the second optical signal.
  • the detection module 203 determines that the wavelength channel ⁇ 1 of the second optical signal is in the wave-free state, and the original on-off state of the wavelength channel ⁇ 1 of the first optical signal is off, then the wavelength channel ⁇ 1 of the first optical signal is turned off.
  • the channel ⁇ 1 is adjusted to be on, and the original on-off state of the wavelength channel ⁇ 1 of the second optical signal is on, then the wavelength channel ⁇ 1 of the second optical signal is adjusted to be off.
  • the wavelength channel ⁇ 1 of the output third optical signal is in a wave-on state, and the optical signal thereof is the optical signal in the wavelength channel ⁇ 1 of the first optical signal. It can be seen from this that, due to the adjustment of the on-off state of the at least one wavelength channel in the first optical signal and the second optical signal, the third optical signal obtained by combination can have at least one wavelength channel relative to the second optical signal. The power changes and gain changes of the system are compensated, thereby keeping the combination of wavelength channels in the target band unchanged or with small changes.
  • the optical switch module of the optical signal control device adjusts the received first optical signal after the detection module detects that the power change of at least one wavelength channel of the second optical signal is greater than the power change threshold the on-off state of the at least one wavelength channel in the signal and the second optical signal, so that the adjusted first optical signal and the adjusted second optical signal are combined to obtain the third optical signal, and the third optical signal is output light signal.
  • the power of at least one wavelength channel of the second optical signal changes greatly (for example, in the wave-adding state or the wave-dropping state), update it to the output of the third optical signal, effectively reducing the power change of the at least one wavelength channel.
  • the optical transmission performance of the remaining wavelength channels is degraded.
  • the detection module 203 may detect the dropped wave state or the added wave state by detecting the pilot signal.
  • the wavelength channel carrying the service information in the second optical signal is modulated with a pilot signal having multiple pilot frequency points.
  • the transmitter when the transmitter transmits the second optical signal, on the optical signal (that is, the true wave signal) carrying the service information, the transmitter modulates a pilot signal with multiple pilot frequencies (pilot frequencies), the multiple pilot frequencies Corresponding to multiple wavelength channels respectively, for example, one-to-one correspondence with multiple designated wavelength channels of the target frequency band.
  • the pilot signal is not modulated on the optical signal (ie, the false optical signal) that does not carry the service information.
  • Frequency points refer to absolute frequency values. It is the center frequency set in the modulated signal.
  • the multiple pilot frequency points are different from each other, for example, the multiple pilot frequency points include 1 MHz or 10 MHz, so that the detection module 203 can realize the effective identification of the pilot frequency points.
  • FIG. 5 is a schematic diagram of a second optical signal modulated by a transmitting end with a pilot signal having a plurality of pilot frequency points.
  • the pilot signal may be a low-frequency pilot signal whose frequency is lower than a preset frequency threshold, which may be 10 MHz.
  • the top of the second optical signal can be adjusted by modulating the low-frequency pilot signal when the second optical signal is sent.
  • the top of the corresponding light wave of the second optical signal before modulation is flush, that is, the heights of the wave crests are the same.
  • the top of the light wave corresponding to the signal is no longer flush, that is, a wave is formed.
  • the detection module 203 is used to detect the pilot signal.
  • the detection module 203 may be a detection circuit.
  • the optical switch module 202 is configured to: after the detection module 203 detects that at least one pilot frequency point is switched from a state of no signal loss (ie, there is a signal) to a state of signal loss (ie, no signal), determine the at least one pilot frequency point.
  • the wavelength channel corresponding to the frequency point is in a dropped wave state; after the detection module 203 detects that at least one pilot frequency point is switched from a signal loss state to a signal not lost state, it is determined that the wavelength channel corresponding to the at least one pilot frequency point is in an add wave state.
  • the detection module 203 may periodically detect the states of the pilot frequency points, and determine whether the state switching of the pilot frequency points occurs based on the states of the pilot frequency points in every two adjacent detection periods.
  • the state of the pilot frequency point of the current detection period is the signal loss state
  • the state of the pilot frequency point of the previous detection period is the signal loss state
  • the state of the pilot frequency point in the current detection period is the signal loss state
  • FIG. 6 is a schematic diagram of a schematic pilot frequency point detection provided by an embodiment of the present application.
  • the horizontal axis represents the frequency
  • the vertical axis represents the power
  • 1 to 13 are the numbers of the corresponding pilot frequency points, which do not represent the frequency.
  • the solid arrows with circles in Figure 6 indicate that the pilot frequency points are switched from the signal loss state to the signal loss state
  • the dotted arrows with crosses indicate that the pilot frequency points are switched from the signal loss state to the signal loss state
  • other solid line arrows Indicates that no state switching has occurred at the pilot frequency point.
  • the pilot frequency points numbered 6, 8, 9, 11, 12, and 13 are switched from the signal loss state to the signal loss state, indicating that the numbers are 6, 8, 9, 11, 12, The wavelength channel corresponding to the pilot frequency point of 13 is in the drop state. If the pilot frequency points numbered 4 and 5 are switched from the signal loss state to the signal non-loss state, it means that the wavelength channels corresponding to the pilot frequency points numbered 4 and 5 are in the adding state.
  • the optical control The wavelength channel carrying the service information in the output third optical signal of the signal device 20 is still modulated with the pilot signal. Assuming that a certain wavelength channel ⁇ 2 of the third optical signal does not carry service information, it is a false optical signal, then the certain wavelength channel ⁇ 2 does not modulate the pilot signal, and the optical signal control device 20 will not provide the certain wavelength channel. ⁇ 2 modulates the pilot signal. The pilot frequency point corresponding to the certain wavelength channel ⁇ 2 is detected as a signal loss state in the subsequent detection process.
  • FIG. 7 is a schematic structural diagram of another schematic optical signal control apparatus 20 provided by an embodiment of the present application. As shown in FIG. 7 , the optical signal control device 20 further includes: an optical splitter 204 and a photoelectric converter 205 .
  • the optical splitter 204 is used for splitting the second optical signal into a fourth optical signal with partial power, and the optical splitter 204 can be arranged on the optical link for transmitting the second optical signal. It has one input terminal and two output terminals, and the optical splitter 204 divides the second optical signal input from the input terminal into two paths, which are the fourth optical signal and the new second optical signal, which are the new second optical signal. The power of the signal is reduced relative to the power of the second optical signal input to the optical splitter, but the service information carried is not reduced. This process realizes that the second optical signal drop part is used for pilot signal detection.
  • the ratio of the power of the fourth optical signal to the power of the second optical signal ranges from 1% to 10%, for example, the ratio of the power of the fourth optical signal to the power of the second optical signal is 5%, and thus, It can be ensured that the branching of the optical signal has little influence on the power of the second optical signal.
  • the photoelectric converter 205 is configured to convert the fourth optical signal into an electrical signal, and output the converted electrical signal to the detection module 203 .
  • the photoelectric converter 205 may be a photodiode (PhotoDiode, PD).
  • the photoelectric converter 205 is a conversion device that matches the pilot signal.
  • the pilot signal is a low-frequency pilot signal
  • the photoelectric converter 205 is a conversion device for detecting the low-frequency pilot signal, which can convert the detected The low frequency pilot signal is converted into an electrical signal.
  • FIG. 8 is a schematic structural diagram of an optical transmission node 30 where an optical signal control apparatus 20 is located according to an embodiment of the present application.
  • the optical transmission node 30 includes a WSS 301 and an optical amplifier 302 , and it is assumed that an optical signal control device 20 is arranged between the WSS 301 and the optical amplifier 302 .
  • the input end (ie, the detection end) of the detection module 203 may be connected to the output end x of the WSS301, that is, the multiplexing port of the WSS301.
  • the detection module 203 further includes at least one other input terminal, and the at least one other input terminal is connected to at least one of the output terminal y of the optical signal control device 20 and the output terminal z of the optical amplifier 302, respectively. .
  • the output terminal y of the optical signal control device 20 is the output terminal c of the aforementioned third optical signal.
  • the detection module 203 can also detect the output terminals from the aforementioned output terminals x and y.
  • the relationship of the optical signals obtained by the output terminal y determines whether the optical switch module is faulty based on the relationship of the optical signals. When it is determined that the optical signal control device 20 is faulty, an alarm message indicating that the optical signal control device is faulty is issued.
  • the optical switch module does not perform optical signal switching. Adjusting, or there is a problem with the adjustment.
  • the detection module 203 can also detect the relationship between the optical signals obtained from the aforementioned output terminal y and the output terminal z, and determine the relationship based on the optical signal relationship. Whether the optical amplifier 302 is faulty, when it is determined that the optical amplifier 302 is faulty, an alarm message indicating that the optical amplifier is faulty is issued. For example, by detecting the optical signals obtained by the output terminal y and the output terminal z, it can be known that the optical amplifier does not perform signal amplification, or the signal amplification ratio is smaller than the preset ratio.
  • the detection module 203 can also detect the relationship between the optical signals obtained from the aforementioned output terminal x and the output terminal z, and determine whether the optical amplifier 302 is faulty based on the relationship between the optical signals , when it is determined that the optical amplifier 302 is faulty, an alarm message indicating that the optical amplifier is faulty is issued. For example, by detecting the optical signals obtained by the output terminal x and the output terminal z, it can be known that the optical amplifier does not perform signal amplification, or the signal amplification ratio is smaller than the preset ratio.
  • the function of the optical transmission node can be calibrated in time, so as to avoid service interruption or transmission error caused by the failure of the optical device in the optical transmission node. It should be noted that the aforementioned detection module 203 may also integrate other detection functions. This is not repeated in this embodiment of the present application.
  • FIG. 9 is a schematic diagram of a principle of wavelength channel control provided by an embodiment of the present application.
  • the dashed arrow represents the wavelength channel of the second optical signal
  • the solid arrow represents the wavelength channel of the first optical signal.
  • the optical switch module 202 is used to fill the first optical signal or the second optical signal in the designated wavelength channel of the target wavelength band, Thereby, the wavelength channel combination of the optical transmission system does not change as much as possible, or the change is small. For example, it is achieved that the target band satisfies a preset state, such as a full-wave state. Assuming that the first wavelength channel of the second optical signal is one or more wavelength channels of at least one wavelength channel whose detected power change is greater than the threshold value, based on the principle of FIG. 9 , the optical switch module 202 can be used to implement the first wavelength channel.
  • the mutual replacement of the first wavelength channel of the optical signal and the second optical signal, and the replacement process includes: replacing the first wavelength channel of the second optical signal with the first wavelength channel of the first optical signal (that is, replacing Fill the first wavelength channel of the first optical signal into the first wavelength channel of the second optical signal), or replace the first wavelength channel of the first optical signal with the first wavelength channel of the second optical signal (also That is, keeping the first wavelength channel of the second optical signal on and blocking the first wavelength channel of the first optical signal); the first wavelength channel of the second optical signal and the first wavelength channel of the first optical signal have the same wavelength.
  • the wavelength channel combination of the final output third optical signal relative to the second optical signal before input to the optical switch module 202 eg, the second optical signal before adding or dropping waves
  • the optical switch module 202 is configured to: after determining that the first wavelength channel of the second optical signal is in a wave-off state, control the first optical signal of the first optical signal received by the first input end a The wavelength channel is turned on, and the first wavelength channel of the second optical signal received by the second input end b is controlled to be turned off.
  • the optical switch module 202 determines that the first wavelength channel of the second optical signal is in a drop state, since there is no optical signal in the first wavelength channel of the second optical signal, it controls the first input end a.
  • the first wavelength channel of the received first optical signal After the first wavelength channel of the received first optical signal is turned on, there is no need to control the on-off state of the second optical signal received by the second input end b (that is, no on-off state of the second optical signal is required. control action). For example, if the original on-off state of the first wavelength channel of the second optical signal is off, the first wavelength channel of the second optical signal is kept off, or the original on-off state of the first wavelength channel of the second optical signal is: On, the first wavelength channel of the second optical signal is kept on. In this way, the on-off state control process of the wavelength channel can be reduced, and the control complexity can be reduced.
  • the optical switch module 202 is configured to control the first wavelength of the first optical signal received by the first input end a after determining that the first wavelength channel of the second optical signal is in the adding state The channel is turned off, and the first wavelength channel of the second optical signal received by the second input end b is controlled to be turned on.
  • the first wavelength channel of the first optical signal and the first wavelength channel of the second optical signal have the same wavelength.
  • the optical switch module 202 may implement on/off control of the wavelength channel by means of filtering.
  • the optical switch module 202 is used for:
  • the first wavelength channel By performing a first filtering process on the first wavelength channel, the first wavelength channel is turned on, and the wavelength of the turned on first wavelength channel is within the band-pass filtering range; by performing a second filtering process on the first wavelength channel The filtering process is performed to turn off the first wavelength channel, and the wavelength of the turned off first wavelength channel is within the band-stop filtering range.
  • first filtering process and second filtering process are opposite filtering processes, which can be implemented in various ways.
  • the embodiments of the present application are described by taking the following two implementations as examples:
  • the first filtering process and the second filtering process are overall filtering processes loaded on the optical signal.
  • the process of conducting the first wavelength channel by performing the first filtering process on the first wavelength channel includes the following steps: : load a first filtering curve for the optical signal M, the filtering characteristic of the first filtering curve at the first wavelength channel is a conduction characteristic, and the filtering characteristic at other wavelength channels other than the first wavelength channel is an off characteristic;
  • the process of turning off the first wavelength channel by performing the second filtering process on the first wavelength channel includes: loading the optical signal M with a second filtering curve, and the filtering characteristics of the second filtering curve at the first wavelength channel For the off characteristic, the filtering characteristic at other wavelength channels than the first wavelength channel is the on characteristic.
  • FIG. 10 is a schematic diagram of a first filtering curve and a second filtering curve provided by an embodiment of the present application.
  • the horizontal axis represents wavelength, and the unit is nm (nanometer); the vertical axis represents attenuation, and the unit is dB (decibel).
  • the ON characteristic indicates that there is no attenuation, or the attenuation is less than or equal to the first preset attenuation value, for example, the first preset attenuation value is 1 dB, and the OFF characteristic indicates that the attenuation is greater than or equal to the second preset attenuation value, such as the second preset attenuation value.
  • the attenuation value is 35dB.
  • the filter curve loaded on the first wavelength channel of the first optical signal and the filter curve loaded on the first wavelength channel of the second optical signal at the same time are the first filter curve and the first filter curve respectively.
  • one of a filter curve For example, after it is determined that the first wavelength channel of the second optical signal is in a dropped wave state, the first optical signal received by the first input end a is controlled to load the first filter curve, and the second optical signal received by the second input end b is controlled to be loaded with the first filter curve.
  • the second filter curve is loaded on the optical signal; after it is determined that the first wavelength channel of the second optical signal is in the wave-adding state, the first optical signal received by the first input terminal a is controlled to load the second filter curve, and the second input terminal is controlled b The second optical signal received is loaded with the first filter curve.
  • the first filtering process and the second filtering process are partial filtering processes loaded on the optical signal.
  • the optical signal control device such as an optical switch module, is configured with a plurality of grid windows in the target wavelength band, and the grid windows include grid windows corresponding to a plurality of designated wavelength channels of the target wavelength band.
  • the division method of the multiple grid windows please refer to the ITU Telecommunication Standardization Sector (ITU-T), the division method of the wavelength division multiplexing grid window defined by the G.694.1 standard, that is, each The center wavelength of the grid window is preset. For example, for a grid window with a central wavelength of 50 GHz, only the optical signals within the range of the grid window with a central wavelength of 50 GHz are filtered during filtering.
  • the process of conducting the first wavelength channel by performing the first filtering process on the first wavelength channel includes the following steps: : Load a third filter curve for the grid window corresponding to the first wavelength channel of the optical signal M, and the filter characteristic of the third filter curve is a conduction characteristic;
  • the process of turning off the first wavelength channel includes: loading a fourth filter curve for the grid window corresponding to the first wavelength channel of the optical signal M, and the filter characteristic of the fourth filter curve is a turn-off characteristic.
  • other wavelength channels except the first wavelength channel in the second optical signal are generally in an on state.
  • the other wavelength channels are not filtered; in another optional manner, a third filtering curve is loaded for the grid windows corresponding to the other wavelength channels of the second optical signal, and the third filtering curve is The filter characteristic of the curve is the conduction characteristic.
  • FIG. 11 and FIG. 12 are schematic diagrams of the third filter curve and the fourth filter curve provided by the embodiments of the present application, respectively.
  • the horizontal axis represents the wavelength, and the unit is nm; the vertical axis represents the attenuation, and the unit is dB.
  • the on characteristic indicates that there is no attenuation, or the attenuation is less than or equal to the first preset attenuation value, for example, the first preset attenuation value is 1dB, and the off characteristic indicates that the attenuation is smaller than or equal to the second preset attenuation value, such as the second preset attenuation value.
  • the preset attenuation value is 35dB.
  • the filter curve loaded on the first wavelength channel of the first optical signal and the filter curve loaded on the first wavelength channel of the second optical signal at the same time are one of the third filter curve and the fourth filter curve, respectively.
  • the third filter curve refers to the curve within the range of the 50GHz grid window in FIG. 11
  • the fourth filter curve refers to the 50GHz grid window in FIG. 12 . the curve in the range.
  • control the first optical signal received by the first input end a to load the third filter curve in the grid window corresponding to the first wavelength channel, and control the The second optical signal received by the second input end b is loaded with a fourth filter curve in the grid window corresponding to the first wavelength channel; after determining that the first wavelength channel of the second optical signal is in the adding state, control the first input The first optical signal received by the end a is loaded with the fourth filter curve in the grid window corresponding to the first wavelength channel, and the second optical signal received by the second input end b is controlled to be loaded in the grid window corresponding to the first wavelength channel. filter curve.
  • the optical switch module 202 has two input terminals and one output terminal, which can realize the scheduling of optical signals. Therefore, it can be regarded as a 2 ⁇ 1 WSS (that is, a WSS with two input terminals and one output terminal), and the 2 ⁇
  • the structure of 1WSS can have many optional implementations. This embodiment of the present application uses the following two optional implementation manners as examples for description:
  • the optical switch module 202 mainly includes at least two optical filters.
  • FIG. 13 is a schematic structural diagram of a schematic optical switch module 202 provided by an embodiment of the present application. As shown in FIG. 13 , the optical switch module 202 includes:
  • the first optical filter 2021 has an input terminal and an output terminal, the input terminal of the first optical filter 2021 is the first input terminal a, and the first optical filter 2021 is used for filtering the received first optical signal.
  • the second optical filter 2022 has an input terminal and an output terminal, the input terminal of the second optical filter 2022 is the second input terminal b, and the second optical filter 2022 is used for filtering the received second optical signal.
  • the filtering characteristics of the first optical filter and the second optical filter 2022 are opposite (also called complementary).
  • the filtering characteristic of the first optical filter when the filtering characteristic of the first optical filter is on, the filtering characteristic of the second optical filter 2022 is off; when the filtering characteristic of the first optical filter is off When off, the filtering characteristic of the second optical filter 2022 is on.
  • the optical combiner 2023 has two input ends and one output end, the two input ends are respectively connected to the output end of the first optical filter 2021 and the output end of the second optical filter 2022,
  • the output terminal of the optical combiner 2023 is the output terminal c of the optical switch module 202, and the optical combiner 2023 is used for the filtered first optical signal and the filtered second optical signal received by the two input terminals
  • the signals are combined to obtain the third optical signal.
  • combining refers to performing power combining.
  • the first optical filter in the default state, has an off characteristic (that is, a full off characteristic) for all wavelength channels of the received optical signal, and in the default state, the second optical filter has an off characteristic for all wavelength channels of the received optical signal.
  • the wavelength channel has an open characteristic (ie, an all-pass characteristic).
  • at least one of the first optical filter and the second optical filter is a wavelength blocker (WB).
  • WB wavelength blocker
  • both the first optical filter and the second optical filter are wavelength blockers.
  • the wavelength blocker has wavelength selective properties.
  • the first optical filter and the second optical filter may be implemented by one of the following technologies: Liquid Crystal On Silicon (LCOS) technology, Digital Light Processing (Digital Light Processing, DLP) technology, Planar Lightwave Circuit (PLC) technology, Liquid Crystal (LC) technology or Micro-Electro-Mechanical System (MEMS) technology.
  • LCOS Liquid Crystal On Silicon
  • DLP Digital Light Processing
  • PLC Planar Lightwave Circuit
  • LC Liquid Crystal
  • MEMS Micro-Electro-Mechanical System
  • the optical splitting ratio of the input end connected to the optical combiner and the first optical filter is not equal to the optical splitting ratio of the input terminal connected to the optical combiner and the second optical filter.
  • the optical splitting ratio of the input end connected to the optical combiner and the first optical filter is smaller than the optical splitting ratio of the input terminal connected to the optical combiner and the second optical filter.
  • the optical splitting ratio refers to the optical signal occupying and combining circuit (the optical combining circuit of the optical combiner and the second optical filter) of the branch (that is, the optical combiner is connected to the first optical filter or the optical combiner is connected to the second optical filter). The ratio of the optical signal of one channel of the output of the device.
  • the optical splitting ratio of the input end connected between the optical combiner and the first optical filter By setting the optical splitting ratio of the input end connected between the optical combiner and the first optical filter to be smaller than the optical splitting ratio of the input terminal connected between the optical combiner and the second optical filter, it can be ensured that the final output third optical signal contains
  • the optical power of the first optical signal accounts for a relatively small proportion
  • the optical power of the second optical signal accounts for a relatively large proportion.
  • the insertion loss of the path from the input end connected with the first optical filter to the output end is smaller than the insertion loss of the path from the input end connected with the second optical filter to the output end.
  • the insertion loss of the actual transmission of the second optical signal in the optical combiner is reduced, and the loss of service information is avoided.
  • the optical switch module 202 mainly includes a plurality of optical switches (also referred to as an optical switch array).
  • FIG. 14 is a schematic structural diagram of a schematic optical switch module 202 provided by an embodiment of the present application. As shown in FIG. 14 , the optical switch module 202 includes:
  • a first optical splitter 2024 with an input terminal and n third output terminals, a second optical splitter 2025 with an input terminal and n fourth output terminals, n optical switches 2026 and an optical combiner 2027, where n is greater than A positive integer of 1, where n is usually equal to the number of specified wavelength channels in the target band. For example, if the number of specified wavelength channels is 80, then n 80.
  • Each of the n optical switches 2026 has a third input terminal d, a fourth input terminal e and a fifth output terminal f, and the optical combiner 2027 has n input terminals and one output terminal.
  • the input end of the first optical demultiplexer 2024 is the first input end a, and the first optical demultiplexer 2024 is used to demultiplex (or demultiplex) the received first optical signal to obtain n wavelength channels
  • the optical signals of the n wavelength channels are respectively input to the third input terminals d of the n optical switches 2026 through the n third output terminals.
  • the input end of the second optical demultiplexer 2025 is the second input end b, and the second optical demultiplexer 2025 is used for demultiplexing the received second optical signal to obtain optical signals of n wavelength channels,
  • the optical signals of the n wavelength channels are respectively input to the fourth input terminals e of the n optical switches 2026 through the n fourth output terminals.
  • Each optical switch 2026 is a 2 ⁇ 1 optical switch (ie, an optical switch with two input terminals and one output terminal).
  • the wavelength channel of the optical signal received by the third input terminal d and the fourth input terminal e of each optical switch 2026 is the same, and each optical switch 2026 is used for the optical signal received at the third input terminal d and the fourth input terminal
  • One of the optical signals received by the terminal e is selected to be output from the fifth output terminal f.
  • the output terminal of the optical combiner 2027 is the output terminal c of the optical switch module 202 , and the n input terminals of the optical combiner 2027 are used to respectively receive n optical signals output by the n optical switches 2026 .
  • 2027 is used for combining the n optical signals to obtain the third optical signal.
  • combining refers to performing power combining.
  • the aforementioned optical switch module 202 may also include other structures.
  • the optical switch module 202 may further include a controller, and the controller is used to control the filtering characteristics of the two optical filters;
  • the optical switch module 202 may further include a controller for controlling the routing of each of the aforementioned light switches.
  • the controller can be a central processing unit (central processing unit, CPU) or a peripheral control circuit or the like.
  • the optical switching module 202 can also be connected to the controller in the optical signal control device where it is located or the controller of the optical transmission node, and under the control of a control signal outside the optical switching module 202, the first optical signal and the controller are realized. Adjustment of the on-off state of at least one wavelength channel in the second optical signal.
  • the optical switch module of the optical signal control device adjusts the received first optical signal after the detection module detects that the power change of at least one wavelength channel of the second optical signal is greater than the power change threshold the on-off state of the at least one wavelength channel in the signal and the second optical signal, so that the adjusted first optical signal and the adjusted second optical signal are combined to obtain the third optical signal, and the third optical signal is output light signal.
  • the power of at least one wavelength channel of the second optical signal changes greatly (for example, in an add-on state or a drop-off state)
  • replace the wavelength channel whose power changes greatly with the corresponding wavelength channel in the first optical signal thereby obtaining The third optical signal
  • the power of the third optical signal is stable.
  • the combined change of the wavelength channels of the target band can be reduced, the gain change of each wavelength channel inside the optical amplifier and the optical power change of each wavelength channel caused by SRS can be reduced, thereby reducing the optical power of the wavelength channel and the degradation of the signal-to-noise ratio, reducing the The bit error of the receiver reduces the impact on the performance of the optical transmission system.
  • the third optical signal is an optical signal with the target wavelength band in a full-wave state
  • the performance degradation of the remaining wavelength channels can be further reduced.
  • the WSS in the traditional optical transmission node can allocate an additional port, which is used to receive false optical signals.
  • the WSS is performing bandwidth adjustment of different wavelength channels, scheduling of different wavelengths between different ports, and wavelength channel optical power attenuation adjustment, etc.
  • false optical signals and true wave signals can be replaced with each other.
  • the hardware performance cannot support the rapid replacement of false optical signals and true-wave signals, resulting in long service interruptions during the replacement process, resulting in perceptible interruption delays for upper-layer services.
  • the optical signal control apparatus provided in the embodiment of the present application is arranged outside the WSS of the optical transmission node.
  • the WSS structure of the optical transmission node is simplified, and the manufacturing cost of the WSS is reduced.
  • the simplified structure of the optical signal control device compared with the traditional WSS, the rapid replacement of false optical signals and true wave signals can be realized.
  • the replacement speed is increased from the traditional second level to the millisecond level, thereby reducing possible service interruptions. time, or compress the service interruption duration to less than 50ms to realize the non-perceptible interruption delay of upper-layer services.
  • the optical signal control device 20 provided in the embodiment of the present application can be set at any position of the optical transmission system according to the needs of the optical transmission system. Illustratively, it may be provided in an optical transmission node.
  • 15 to 17 are schematic structural diagrams of three types of optical transmission nodes 30 provided in embodiments of the present application, where the optical transmission node 30 includes a WSS 301 and/or an optical amplifier 302 .
  • the optical transmission node 30 is a reconfigurable optical add-drop multiplexer (Reconfigurable Optical Add-Drop Multiplexer, ROADM) or an optical amplifier node, and the optical amplifier node includes one or more stages of optical amplifiers.
  • ROADM reconfigurable optical add-drop multiplexer
  • the optical transmission node 30 includes one or more WSS 301 , and at least one WSS 301 is provided with an optical signal control apparatus 20 provided in this embodiment of the present application.
  • an optical signal control device 20 is disposed behind each WSS 301 .
  • the optical transmission node 30 includes one or more optical amplifiers 302 , and at least one optical amplifier 302 is provided with an optical signal control apparatus 20 provided in this embodiment of the present application.
  • each optical amplifier 302 is provided with an optical signal control device 20 before.
  • the optical transmission node 30 may have various structures, and the structure may refer to FIG. 1 and FIG. 2 , FIG. 8 , FIG. 15 , FIG. 16 and FIG. 17 .
  • the embodiments of the application do not limit the structure of the optical transmission node.
  • each of the first-stage optical amplifiers 302 disposed after the WSS 301 and each of the optical signal control devices 20 are located between one of the WSS 301 and one of the first-stage optical amplifiers 302 .
  • the optical transmission node 30 includes a multi-stage optical amplifier 302 , and the optical signal control device 20 is located between any adjacent two-stage optical amplifiers 302 of the multi-stage optical amplifier 302 . It should be noted that the optical signal control device 20 may also be located before the first optical amplifier (also called the optical amplifier input stage) of the multi-stage optical amplifier 302 .
  • FIG. 18 is a schematic structural diagram of a specific optical transmission node 30 provided by an embodiment of the present application.
  • the optical switch module 202 of the optical signal control device 20 is taken as an example to be located between the two-stage optical amplifiers 302 .
  • the optical switch module 202 may also be located between the WSS 301 and the one-stage amplifier 302 .
  • the optical amplifier may be an optical amplifier such as an Erbium Doped Fiber Amplifier (EDFA) or a Raman amplifier.
  • EDFA Erbium Doped Fiber Amplifier
  • Raman amplifier a Raman amplifier
  • the target wavelength band in which the second optical signal is located may be an S-band, a C-band, or an L-band.
  • the S-band light has a wavelength range of 1460 nm to 1530 nm
  • the C-band light has a wavelength range of 1530 nm to 1565 nm
  • the L-band light has a wavelength range of 1565 nm to 1625 nm.
  • the optical signal control device after detecting that the power change of at least one wavelength channel of the second optical signal is greater than the power change threshold, the optical signal control device adjusts the received first optical signal and the power change threshold.
  • the power of at least one wavelength channel of the second optical signal changes greatly (for example, in the wave-adding state or the wave-dropping state), update it to the output of the third optical signal, effectively reducing the power change of the at least one wavelength channel.
  • the optical transmission performance of the remaining wavelength channels is degraded.
  • FIG. 19 is a schematic structural diagram of an optical transmission system 40 provided by an embodiment of the present application.
  • the optical transmission system 40 includes at least two optical transmission nodes, and the optical transmission nodes are any of the optical transmission nodes 30 in the foregoing embodiments; the target wavelength bands corresponding to different optical transmission nodes 30 are different from each other.
  • the target bands corresponding to the at least two optical transmission nodes are any two or three of the S-band, the C-band, and the L-band.
  • the wavelength band of the optical transmission system 40 may be referred to as the C+L-band; or, the optical transmission system 40 includes three
  • the optical transmission nodes 30 corresponds to the C-band, the L-band and the S-band, respectively, and the wavelength band of the optical transmission system 40 may be referred to as the S+C+L-band.
  • FIG. 20 is a schematic structural diagram of another optical transmission system 40 provided by an embodiment of the present application.
  • the optical transmission system 40 can reduce the influence of the stimulated Raman effect on the optical power.
  • Each of the aforementioned at least two optical transmission nodes includes an optical amplifier, and the optical transmission system 40 further includes:
  • the power detection module 401 is configured to detect the power information of the at least two optical transmission nodes 30 .
  • the power information is optical power information.
  • the gain control module 402 is configured to perform gain control of at least two target wavelength bands corresponding to the at least two optical transmission nodes 30 based on the power information of the at least two optical transmission nodes 30 .
  • the power detection module 401 is further configured to output alarm information indicating that the power information of a certain optical transmission node 30 is lower than the preset power value when it is detected that the power information of the optical transmission node 30 is lower than the preset power value.
  • the optical amplifier gains of the at least two target wavelength bands are controlled, so as to reduce the power transfer caused by the stimulated Raman effect based on the adjustment of the optical amplifier gains, Thereby, the reliability of the optical transmission system is improved.
  • FIG. 21 is a schematic structural diagram of another optical transmission system 40 provided by an embodiment of the present application. As shown in FIG. 21 , the optical transmission system 40 includes multiple optical transmission structures, each optical transmission structure includes multiple optical transmission nodes, and at least one optical transmission structure includes the aforementioned power detection module 401 and gain control module 402 . FIG. 21 illustrates by taking the optical transmission system 40 including two optical transmission structures as an example, and the two optical transmission structures are respectively a first optical transmission structure and a second optical transmission structure.
  • the first optical transmission structure includes a plurality of optical transmission nodes, each optical transmission node 30 includes an optical signal control device 20, and the second optical transmission structure includes a plurality of optical transmission nodes.
  • FIG. 21 illustrates by taking an example that the optical transmission node 30 included in the first optical transmission structure is a ROADM, and the optical transmission node 30 included in the second optical transmission structure is an optical amplifier node.
  • the optical transmission structure includes s groups of power amplifier control structures (not marked in the figure), s is a positive integer, and each group of power amplifier control structures includes a power A detection module 401 and a gain control module 402.
  • the power detection module 401 in each group of power amplifier control structures is configured to feed back the detected power information to the corresponding gain control module 402 .
  • the aforementioned optical transmission structure includes one or more stages of optical amplifiers, and a group of power amplifier control structures can be set after at least one stage of optical amplifiers.
  • a group of power amplifier control structures may be set after each stage of the optical amplifier R, and the group of power amplifier control structures is used to control the stage of the optical amplifier R.
  • the i-th optical amplifier of the optical transmission structure includes the ith optical amplifier arranged along the optical signal transmission direction (that is, the direction in which the optical signal is transmitted on the main line of the optical fiber) in each of the at least two optical transmission nodes.
  • each optical amplifier has an input terminal, an output terminal and a control terminal, and the optical amplifier is arranged in the main line of the optical link through the input terminal and the output terminal.
  • the power amplifier control structure M1 is used to control a certain stage of the optical amplifier M2 in the optical transmission system 40
  • the power detection modules 401 in the power amplifier control structure M1 are respectively used to obtain the output of each optical amplifier in the certain stage of the optical amplifier M2.
  • the power information of the output terminal; the gain control module 402 in the power amplifier control structure M1 is used to output a control signal to the control terminal of each optical amplifier in the optical amplifier M2 of a certain stage, so as to control the optical amplifier gain of the optical amplifier.
  • the optical transmission structure further includes other structures.
  • the optical transmission structure further includes a wavelength combiner and demultiplexer, and the wavelength combiner and demultiplexer is used to combine and/or demultiplex an optical signal.
  • FIG. 21 schematically takes the optical transmission system 40 as an example in which the first optical transmission structure includes a first wavelength combiner 403 and the second optical transmission structure includes a second wavelength combiner 404 and a third wavelength combiner 405 as an example. The description is given, but the number and position of the multiplexers and demultiplexers are not limited.
  • FIG. 21 only takes as an example that the optical signal control device 20 is provided in the first optical transmission structure.
  • the optical signal control device 20 may also be provided in the second optical transmission structure.
  • the optical signal control device 20 is not provided in the first optical transmission structure, and the optical signal control device 20 is provided in the second optical transmission structure.
  • the aforementioned power information is an instantaneous power value.
  • the gain control module 402 is configured to: calculate a power variation value of each of the at least two optical transmission nodes based on the instantaneous power values of the at least two optical transmission nodes; Based on the power variation value of each of the optical transmission nodes, the optical amplifier gain control of the at least two target wavelength bands is performed.
  • FIG. 22 is a schematic diagram of a power amplifier control structure provided by an embodiment of the present application. It is assumed that the optical transmission structure provided with the power amplifier control structure includes Q optical transmission nodes, Q ⁇ 2, for example, 2 ⁇ Q ⁇ 3.
  • the power amplifier control structure further includes: Q optical splitters 405 and a photoelectric converter 406 connected to each optical splitter. The Q optical splitters 405 are in one-to-one correspondence with the Q optical transmission nodes.
  • Each optical splitter 405 is used for splitting the fifth optical signal corresponding to the target wavelength band of the optical transmission node to a sixth optical signal with partial power, and the optical splitter 405 can be set to transmit the fifth optical signal on the optical link. It has one input terminal and two output terminals.
  • the optical splitter 405 divides the fifth optical signal input from the input terminal into two paths, which are the sixth optical signal of the target band and the seventh optical signal of the target band respectively.
  • the seventh optical signal is the new fifth optical signal, and its power is reduced relative to the power of the fifth optical signal input to the optical splitter, but the service information carried is not reduced. This process realizes that the fifth optical signal demultiplexing part is used for power information detection.
  • the ratio of the power of the seventh optical signal to the power of the fifth optical signal ranges from 1% to 10%.
  • the ratio of the power of the seventh optical signal to the fifth optical signal is 5%. In this way, it can be guaranteed that The branching of the optical signal has little influence on the power of the seventh optical signal.
  • the photoelectric converter 406 is used to convert the received sixth optical signal into an electrical signal, and output the converted electrical signal to the power detection module 401.
  • the photoelectric converter 406 can be a PD.
  • the power detection module 401 is configured to: based on the received electrical signals transmitted by the Q photoelectric converters 406, determine the instantaneous power value of the optical power of each of the Q target bands, wherein the Q The instantaneous power value of the optical power of each band in the target band refers to the instantaneous power values of Q optical amplifiers belonging to different target bands and in the same stage.
  • the Q optical amplifiers are the optical amplifiers used by the power detection module 401 for detection.
  • the gain control module 402 is configured to: based on the stimulated Raman effect model and the instantaneous power value of the optical power of each of the Q target bands, determine the optical power of each of the Q target bands Power change value.
  • the stimulated Raman effect model satisfies:
  • f represents the stimulated Raman effect model
  • P_1 to P_Q represent the instantaneous power value of the optical power in each of the Q target bands, respectively
  • ⁇ P_1 to ⁇ P_Q represent the power variation value of each band in the Q target bands, respectively.
  • the stimulated Raman effect model can be a machine learning model.
  • the stimulated Raman effect model also needs to determine the power variation value of each of the Q target bands based on other parameters and the instantaneous power value of the optical power of each of the Q target bands.
  • the other parameters include: fiber length, fiber type, optical amplifier type parameters, fixed insertion loss, and/or setting coefficients corresponding to the Q target bands.
  • the optical fiber length refers to the optical fiber length between the multiplexing ports of the Q optical transmission nodes and the demultiplexing ports of the next group of optical transmission nodes, that is, the optical fiber length from one optical transmission structure to the next optical transmission structure.
  • the optical fiber length of the first optical transmission structure refers to the optical fiber length between the first optical transmission structure and the second optical transmission structure.
  • the fiber type refers to the fiber type between the multiplexing ports of the Q optical transmission nodes and the demultiplexing ports of the next group of optical transmission nodes.
  • the other parameters may be pre-delivered to the gain control module 402 by the main controller or network management in the optical transmission system, and the other parameters may be updated periodically to ensure the accuracy of the parameters.
  • the gain control module 402 may store the other parameters in the form of a parameter table.
  • Table 1 is a schematic table of the parameter table stored by the gain control module 402 .
  • the other parameters recorded in it include: the fiber length is 80km (kilometers), the fiber type is G.652, the optical amplifier type is OA_x, and the fixed insertion loss is IL01.
  • the gain control module 402 is further configured to: based on the determined power variation values of each of the Q target bands: ⁇ P_1, ⁇ P_2, .
  • the aforementioned optical transmission system 40 may also include other structures, such as one or more of an optical transmitter, an optical receiver, a network management, a main controller, a wavelength division multiplexer, or an optical modulator. The embodiment will not describe this in detail.
  • optical signal control apparatus optical transmission node, and optical transmission system provided in the embodiments of the present application can be applied to the methods described below.
  • optical transmission node optical transmission node
  • optical transmission system provided in the embodiments of the present application
  • FIG. 23 is a schematic flowchart of an optical signal control method provided by an embodiment of the present application. The method can be applied to the aforementioned optical signal control apparatus. As shown in FIG. 23 , the method includes:
  • the power change of the at least one wavelength channel is greater than a power change threshold to indicate a wave drop state or a wave addition state
  • the wave drop state is a state in which the at least one wavelength channel changes from a wave to a wave-free state.
  • the state is a state in which the at least one wavelength channel changes from no wave to a wave.
  • the process of adjusting the on-off state of the at least one wavelength channel in the first optical signal and the second optical signal by the optical signal control device includes: controlling the wavelength channel of the same wavelength of the first optical signal and the second optical signal replace each other, and the process of replacement includes: replacing the first wavelength channel of the second optical signal with the first wavelength channel of the first optical signal, or replacing the first wavelength channel of the first optical signal with the first wavelength channel of the first optical signal
  • the first wavelength channel of the two optical signals; the first wavelength channel of the second optical signal and the first wavelength channel of the first optical signal have the same wavelength.
  • the optical signal control device eg, the detection module 203
  • the wavelength channel carrying the service information in the second optical signal is modulated with a pilot signal having multiple pilot frequency points, the multiple pilot frequency points correspond to the multiple wavelength channels respectively, and the optical signal
  • the control device determines that the wavelength channel corresponding to the at least one pilot frequency point is in a dropped wave state; after detecting that the at least one pilot frequency point changes from the signal loss state After switching to the state where the signal is not lost, it is determined that the wavelength channel corresponding to the at least one pilot frequency point is in the adding state.
  • the first wavelength channel of the first optical signal is controlled to be turned on, and the first wavelength channel of the second optical signal is controlled to be turned off.
  • the first wavelength channel is turned on, and the wavelength of the first wavelength channel that is turned on is within the band-pass filtering range.
  • the first wavelength channel of the first optical signal is controlled to be turned off, the first wavelength channel of the second optical signal is controlled to be turned on, and the first wavelength channel of the first optical signal is controlled to be turned on.
  • the first wavelength channel of the signal and the first wavelength channel of the second optical signal have the same wavelength.
  • the second filtering process on the first wavelength channel, the first wavelength channel is turned off, and the wavelength of the turned off first wavelength channel is within the band-stop filtering range.
  • the at least one of the received first optical signal and the second optical signal is adjusted.
  • the on-off state of a wavelength channel, so that the adjusted first optical signal and the adjusted second optical signal are combined to obtain the third optical signal, and the third optical signal is output.
  • the power of at least one wavelength channel of the second optical signal changes greatly (for example, in an add-on state or a drop-off state)
  • replace the wavelength channel whose power changes greatly with the corresponding wavelength channel in the first optical signal thereby obtaining The third optical signal
  • the power of the third optical signal is stable.
  • the combined change of the wavelength channels of the target band can be reduced, the gain change of each wavelength channel inside the optical amplifier and the optical power change of each wavelength channel caused by SRS can be reduced, thereby reducing the optical power of the wavelength channel and the degradation of the signal-to-noise ratio, reducing the The bit error of the receiver reduces the impact on the performance of the optical transmission system.
  • the third optical signal is an optical signal with the target wavelength band in a full-wave state
  • the performance degradation of the remaining wavelength channels can be further reduced.
  • the method can be applied to the aforementioned optical transmission system.
  • the optical transmission system includes at least two optical transmission nodes, and different optical transmission nodes correspond to target bands are different from each other. As shown in Figure 24, the method includes:
  • the aforementioned power information is the instantaneous power value, that is, the instantaneous power value of the optical power.
  • the instantaneous power value can be obtained by dividing the fifth optical signal transmitted by the main line of the optical link into a sixth optical signal of partial power, converting the sixth optical signal into an electrical signal, and based on the conversion The resulting electrical signal determines the instantaneous power value of the optical transmission node.
  • the process of performing gain control of the optical amplifier in S602 may include:
  • A1 Calculate the power variation value of each of the at least two optical transmission nodes based on the instantaneous power values of the at least two optical transmission nodes.
  • the optical transmission system 40 includes one or more optical transmission structures, wherein the first optical transmission structure is one optical transmission structure among the one or more optical transmission structures, and the first optical transmission structure includes Q optical transmission structures.
  • the power variation value of each of the Q target bands is determined.
  • the stimulated Raman effect model satisfies:
  • f represents the stimulated Raman effect model
  • P_1 to P_Q represent the instantaneous power value of the optical power in each of the Q target bands, respectively
  • ⁇ P_1 to ⁇ P_Q represent the power variation value of each band in the Q target bands, respectively.
  • the stimulated Raman effect model can be a machine learning model.
  • the stimulated Raman effect model also needs to determine the power variation value of each of the Q target bands based on other parameters and the instantaneous power value of the optical power of each of the Q target bands.
  • the other parameters include: fiber lengths, fiber types, optical amplifier type parameters, fixed insertion loss, and/or setting coefficients corresponding to the Q target wavelength bands to which the Q optical transmission nodes are connected.
  • the other parameters may be pre-delivered to the gain control module 402 by the main controller or network management in the optical transmission system, and the other parameters may be updated periodically to ensure the accuracy of the parameters.
  • the gain control module 402 may store the other parameters in the form of a parameter table as shown in Table 1.
  • A2 Based on the power variation value of each optical transmission node, perform optical amplifier gain control of at least two target wavelength bands.
  • ⁇ P_1, ⁇ P_2, . control based on the determined power variation values of each of the Q target bands: ⁇ P_1, ⁇ P_2, . control.
  • the power variation caused by the stimulated Raman effect is reversely compensated, so that the system performance is more stable.
  • the aforementioned optical signal control method may be performed by a set of power amplifier control structures in an optical transmission system.
  • at least two optical transmission nodes include one or more stages of optical amplifiers, and a group of power amplifier control structures may be set after at least one stage of optical amplifiers.
  • a group of power amplifier control structures may be set after each stage of the optical amplifier R, the group of power amplifier control structures is used to control the stage of the optical amplifier R, and each group of power amplifier control structures is used to perform the foregoing S601 and S602.
  • the optical amplifier gains of the at least two target wavelength bands are controlled, so as to reduce the power transfer caused by the Raman effect based on the adjustment of the optical amplifier gains, thereby improving the optical efficiency. reliability of the transmission system.
  • optical signal control methods provided in the aforementioned FIG. 23 and FIG. 24 can also be controlled and executed by the same computer device, which can be the main controller of the optical transmission system.
  • FIG. 25 is a possible basic hardware architecture of the computer device provided by the embodiment of the present application.
  • a computer device 700 includes a processor 701 , a memory 702 , a communication interface 703 and a bus 704 .
  • the number of processors 701 may be one or more, and FIG. 25 only illustrates one of the processors 701.
  • the processor 701 may be a CPU. If the computer device 700 has multiple processors 701, the multiple processors 701 may be of different types, or may be the same. Optionally, the multiple processors 701 of the computer device 700 may also be integrated into a multi-core processor.
  • the memory 702 stores computer instructions and data; the memory 702 may store computer instructions and data required to implement the optical signal control method provided by the present application, for example, the memory 702 stores instructions for implementing the steps of the optical signal control method.
  • the memory 702 may be any one or any combination of the following storage media: non-volatile memory (eg read only memory (ROM), solid state drive (SSD), hard disk (HDD), optical disk), volatile memory.
  • the communication interface 703 may be any one or any combination of the following devices: a network interface (eg, an Ethernet interface), a wireless network card, and other devices with a network access function.
  • the communication interface 703 is used for data communication between the computer device 700 and other computer devices or terminals.
  • a bus 704 may connect the processor 701 with the memory 702 and the communication interface 703 .
  • the processor 701 can access the memory 702, and can also use the communication interface 703 to perform data interaction with other computer devices or terminals.
  • the computer device 700 executes the computer instructions in the memory 702, so that the computer device 700 implements the optical signal control method provided in the present application, or enables the computer device 700 to deploy an optical signal control apparatus.
  • a non-transitory computer-readable storage medium including instructions such as a memory including instructions, is also provided, and the instructions can be executed by a processor of a computer device to complete the optical processing shown in the various embodiments of the present application.
  • Signal control method the non-transitory computer-readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, and the like.
  • the above-mentioned embodiments it may be implemented in whole or in part by software, hardware, firmware or any combination thereof.
  • software it may be implemented in whole or in part in the form of a computer program product comprising one or more computer instructions.
  • the computer program instructions When the computer program instructions are loaded and executed on a computer, all or part of the processes or functions described in the embodiments of the present application are generated.
  • the computer may be a general purpose computer, a computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be downloaded from a website, computer, server, or data
  • the center transmits to another website site, computer, server, or data center by wire (eg, coaxial cable, optical fiber, digital subscriber line) or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer-readable storage medium can be any available medium that can be accessed by a computer or a data storage device such as a server, a data center, etc. that includes one or more available media integrated.
  • the usable media may be magnetic media (eg, floppy disks, hard disks, magnetic tapes), optical media, or semiconductor media (eg, solid state drives), and the like.
  • the terms “first”, “second” and “third” are used for descriptive purposes only and should not be understood as indicating or implying relative importance.
  • the term “at least one” refers to one or more, and the term “plurality” refers to two or more, unless expressly limited otherwise.
  • A refers to B, which means that A is the same as B or A is a simple variation of B.
  • the wavelength channel A corresponds to the wavelength channel B means that the wavelengths of the wavelength channel A and the wavelength channel B are the same.
  • the “wavelength” in the foregoing embodiments of the present application all refer to the wavelength of light, and the “power” all refer to the power of the light.
  • optical signal control apparatus when the optical signal control apparatus provided in the above embodiment executes the optical signal control method, only the division of the above functional modules is used as an example for illustration. In practical applications, the above functions may be allocated by different The function module is completed, that is, the internal structure of the device is divided into different function modules, so as to complete all or part of the functions described above.
  • the optical signal control apparatus, optical transmission node, and optical transmission system provided in the above embodiments belong to the same concept as the optical signal control method embodiments, and the specific implementation process is detailed in the method embodiments, which will not be repeated here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optical Communication System (AREA)

Abstract

本申请公开了一种光信号控制方法及装置、光传输节点和光传输系统,属于光通信领域。该装置包括:光源,用于输出第一光信号;光开关模块,光开关模块具有第一输入端、第二输入端和输出端,第一输入端用于接收第一光信号,第二输入端用于接收外部的第二光信号,输出端用于输出第三光信号;检测模块,用于检测第二光信号在至少一个波长通道的功率变化大于预设的功率变化阈值;光开关模块,用于在检测模块检测到至少一个波长通道的功率变化大于功率变化阈值后,调整接收的第一光信号和第二光信号中至少一个波长通道的通断状态,以使调整后的第一光信号和调整后的第二光信号组合得到第三光信号。本申请能够减少波长通道的性能劣化。

Description

光信号控制方法及装置、光传输节点和光传输系统
本申请要求申请日为2020年8月31日、申请号为202010901207.1、申请名称为“光信号控制方法及装置、光传输节点和光传输系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及光通信领域,特别涉及一种光信号控制方法及装置、光传输节点和光传输系统。
背景技术
在波分复用(Wavelength Division Multiplexing,WDM)的光传输系统中,需要传递的业务信息被调制在不同光频率,即不同波长通道上进行传输。
当业务信息通过目标波段(如C波段)的波分复用光信号传输时,由于波分复用光信号中的各个波长通道是相互影响的,若波分复用光信号的某一波长通道的功率变化较大,例如该某一波长通道出现掉波状态或加波状态,在光传输系统的光放大器以及光纤的受激拉曼散射效应(Stimulated Raman Scattering,SRS)等作用下,会导致光信号中除该某一波长通道之外的剩余波长通道的光传输性能劣化。
发明内容
本申请实施例提供了一种光信号控制方法及装置、光传输节点和光传输系统。
第一方面,提供了一种光信号控制装置,该装置包括:
光源,用于输出第一光信号;该第一光信号通常为不携带业务信息的光信号,可以称为假光信号。该光源为宽谱光源,其波段覆盖预设的目标波段。
光开关模块,该光开关模块具有第一输入端、第二输入端和输出端,该第一输入端用于接收该第一光信号,该第二输入端用于接收外部的第二光信号,该输出端用于输出第三光信号。该第二光信号通常为携带业务信息的光信号,可以称为真波信号。
检测模块,用于检测该第二光信号在至少一个波长通道的功率变化大于预设的功率变化阈值。其中,该至少一个波长通道的功率变化大于功率变化阈值指示掉波状态或加波状态,该掉波状态为该至少一个波长通道从有波到无波的状态,该加波状态为该至少一个波长通道从无波到有波的状态。
该光开关模块,还用于在该检测模块检测到该至少一个波长通道的功率变化大于功率变化阈值后,调整接收的该第一光信号和该第二光信号中该至少一个波长通道的通断状态,以使调整后的该第一光信号和调整后的该第二光信号组合得到该第三光信号。
本申请实施例提供的光信号控制装置的光开关模块在该检测模块检测到第二光信号的至少一个波长通道的功率变化大于功率变化阈值后,调整接收的该第一光信号和该第二光信号 中该至少一个波长通道的通断状态,以使调整后的该第一光信号和调整后的该第二光信号组合得到该第三光信号,并输出该第三光信号。在第二光信号的至少一个波长通道的功率变化较大时,将其更新为第三光信号输出,有效减少该至少一个波长通道的功率变化所导致的剩余波长通道的光传输性能劣化。
前述光开关模块可以用于实现第一光信号和第二光信号的第一波长通道的相互替换,该相互替换过程包括:将该第二光信号的第一波长通道替换为该第一光信号的第一波长通道,或者,将该第一光信号的第一波长通道替换为该第二光信号的第一波长通道;该第二光信号的第一波长通道和该第一光信号的第一波长通道具有相同的波长。如此,可以使得最终输出的第三光信号中相对于前一发射端发射的第二光信号(如加波或掉波前的第二光信号)的波长通道组合不变化。
在一种可选实现方式中,该第二光信号中携带有业务信息的波长通道调制有具有多个导频频点的导频信号,该多个导频频点与多个波长通道分别对应,该检测模块,用于检测该导频信号;该光开关模块用于:在该检测模块检测到至少一个导频频点从信号未丢失状态切换为信号丢失状态后,确定该至少一个导频频点对应的波长通道处于该掉波状态;在该检测模块检测到至少一个导频频点从信号丢失状态切换为信号未丢失状态后,确定该至少一个导频频点对应的波长通道处于加波状态。通过检测导频信号的方式可以实现波长通道的状态的快速检测。
示例的,检测模块可以周期性地检测导频频点的状态,基于每相邻两个检测周期中导频频点的状态来确定导频频点是否出现状态切换。当当前检测周期的导频频点的状态为信号未丢失状态,前一检测周期的导频频点的状态为信号丢失状态,确定导频频点从信号未丢失状态切换为信号丢失状态;当当前检测周期的导频频点的状态为信号丢失状态,前一检测周期的导频频点的状态为信号未丢失状态,确定导频频点从信号丢失状态切换为信号未丢失状态。
假设光信号控制装置设置在波长选择开关(Wavelength selective switch,WSS)和光放大器之间。其中,检测模块的输入端(即检测端)可以连接WSS的输出端x,即WSS的合波端口。在一种可选实现方式中,检测模块还包括至少一个其他输入端,该至少一个其他输入端与光信号控制装置的输出端y,和光放大器的输出端z中的至少一个分别连接。
其中,光信号控制装置的输出端y即为前述第三光信号的输出端c,当检测模块的其他输入端与输出端y连接时,检测模块还可以检测从前述输出端x和输出端y所获取的光信号的关系,基于该光信号的关系确定光开关模块是否出现故障,在确定光信号控制装置出现故障时,发出指示光信号控制装置出现故障的告警信息。
当检测模块的其他输入端分别与输出端y以及输出端z连接时,检测模块还可以检测从前述输出端y和输出端z所获取的光信号的关系,基于该光信号的关系确定光放大器是否出现故障,在确定光放大器出现故障时,发出指示光放大器出现故障的告警信息。
当检测模块其他输入端与输出端z连接时,检测模块还可以检测从前述输出端x和输出端z所获取的光信号的关系,基于该光信号的关系确定光放大器是否出现故障,在确定光放大器出现故障时,发出指示光放大器出现故障的告警信息。
通过对前述输出端y和/或输出端z的检测,可以实现光传输节点的功能及时校准,避免光传输节点中光器件出现故障导致业务的中断或传输错误。
在一种可选实现方式中,该光开关模块用于:在确定该第二光信号的第一波长通道处于 该掉波状态后,控制该第一输入端接收的第一光信号的该第一波长通道导通,控制该第二输入端接收的第二光信号的该第一波长通道关断;或者,在确定该第二光信号的第一波长通道处于加波状态后,控制该第一输入端接收的第一光信号的该第一波长通道关断,控制该第二输入端接收的第二光信号的该第一波长通道导通,该第一光信号的第一波长通道和该第二光信号的第一波长通道具有相同的波长。
示例的,该光开关模块用于:通过对该第一波长通道进行第一滤波处理,以使该第一波长通道导通,导通的该第一波长通道的波长位于带通滤波范围内;通过对该第一波长通道进行第二滤波处理,以使该第一波长通道关断,关断的该第一波长通道的波长位于带阻滤波范围内。
前述第一滤波处理和第二滤波处理是相反的滤波处理,其有多种实现方式。本申请实施例以以下两种实现方式为例进行说明:
第一种实现方式,第一滤波处理和第二滤波处理是加载在光信号上的整体滤波处理。假设第一波长通道为第一光信号和第二光信号中任一光信号M的第一波长通道,通过对该第一波长通道进行第一滤波处理,以使该第一波长通道导通的过程包括:为光信号M加载第一滤波曲线,该第一滤波曲线在第一波长通道处的滤波特性为导通特性,在第一波长通道之外的其他波长通道处的滤波特性为关断特性;通过对该第一波长通道进行第二滤波处理,以使该第一波长通道关断的过程包括:为光信号M加载第二滤波曲线,该第二滤波曲线在第一波长通道处的滤波特性为关断特性,在第一波长通道之外的其他波长通道处的滤波特性为导通特性。
通过该第一种实现方式,在光信号上加载的滤波曲线仅为第一滤波曲线或第二滤波曲线,处理过程简单。
第二种实现方式,第一滤波处理和第二滤波处理是加载在光信号上的部分滤波处理。光信号控制装置,如光开关模块中配置有目标波段中的多个栅格(grid)窗口,该多个栅格窗口包括与目标波段的多个指定波长通道对应的栅格窗口。该多个栅格窗口的划分方式可以参考国际电信联盟电信标准分局(ITU Telecommunication Standardization Sector,ITU-T,)G.694.1标准定义的波分复用系统栅格窗口的划分方式,也即是每个栅格窗口的中心波长是预设的。通过该第二种实现方式,通过栅格窗口的方式进行光信号的分段滤波,可以实现精准滤波。
检测模块可以通过多种方式检测前述导频信号。示例的,该光信号控制装置,还包括:光分路器,用于将该第二光信号分出部分功率的第四光信号;示例的,该第四光信号的功率与第二光信号的功率的比值范围为1%至10%,例如5%。光电转换器,用于将该第四光信号转换成电信号,并将转换后的电信号输出给该检测模块。示例的,该光电转换器可以为光电二极管(PhotoDiode,PD)。
本申请实施例中,光开关模块202具有两个输入端和一个输出端,可以实现光信号的调度,因此可以视为一个2×1WSS(即两个输入端一个输出端的WSS),该2×1WSS的结构可以有多种可选实现方式。本申请实施例以以下两种可选实现方式为例进行说明:
在第一种可选实现方式中,光开关模块主要包括至少两个光滤波器。例如,该光开关模块,包括:
具有输入端和输出端的第一光滤波器,该第一光滤波器的输入端为该第一输入端,该第 一光滤波器用于对接收的第一光信号进行滤波;具有输入端和输出端的第二光滤波器,该第二光滤波器的输入端为该第二输入端,该第二光滤波器用于对接收的第二光信号进行滤波,对于相同波长的波长通道,该第一光滤波器和该第二光滤波器的滤波特性相反;光合路器,该光合路器具有两个输入端和一个输出端,该两个输入端分别与该第一光滤波器的输出端和该第二光滤波器的输出端连接,该光合路器的输出端为该光开关模块的输出端,该光合路器用于将该两个输入端接收的滤波后的该第一光信号和滤波后的该第二光信号组合得到该第三光信号。
示例的,第一光滤波器和该第二光滤波器中的至少一个为波长阻断器(Wavelength Blocker,WB)。例如,第一光滤波器和该第二光滤波器均为波长阻断器。该波长阻断器具有波长选择特性。
在一种可选方式中,第一光滤波器和该第二光滤波器可以采用以下技术中一种实现:硅基液晶(Liquid Crystal On Silicon,LCOS)技术、数字光处理(Digital Light Processing,DLP)技术、平面光波导(Planar Lightwave Circuit,PLC)技术、液晶(Liquid Crystal,LC)技术或微机电系统(Micro-Electro-Mechanical System,MEMS)技术。
在本申请实施例中,该光合路器与该第一光滤波器连接的输入端的分光比不等于该光合路器与该第二光滤波器连接的输入端的分光比。例如,该光合路器与该第一光滤波器连接的输入端的分光比小于该光合路器与该第二光滤波器连接的输入端的分光比。该分光比指的是分路(即光合路器与该第一光滤波器连接的一路或该光合路器与该第二光滤波器连接的另一路)的光信号占合路(该光合路器输出的一路)的光信号的比例。
通过将该光合路器与该第一光滤波器连接的输入端的分光比设置为小于该光合路器与该第二光滤波器连接的输入端的分光比,可以保证最终输出的第三光信号中第一光信号的光功率占比较小,第二光信号的光功率占比较大。使得光合路器中,从与该第一光滤波器连接的输入端到输出端的这个路径的插损小于从与该第二光滤波器连接的输入端到输出端这个路径的插损。从而减少第二光信号在光合路器中实际传输的插损,避免业务信息的丢失。
在第二种可选实现方式中,光开关模块202主要包括多个光开关(也称光开关阵列)。例如,该光开关模块,包括:
具有输入端和n个第三输出端的第一光分波器,具有输入端和n个第四输出端的第二光分波器,n个光开关以及光合路器,n为大于1的正整数,该n个光开关中每个光开关具有第三输入端、第四输入端和第五输出端,该光合路器具有n个输入端和1个输出端;该第一光分波器的输入端为该第一输入端,该第一光分波器用于对接收的第一光信号进行分波得到n个波长通道的光信号,并将该n个波长通道的光信号分别通过该n个第三输出端输入至该n个光开关的第三输入端;该第二光分波器的输入端为该第二输入端,该第二光分波器用于对接收的第二光信号进行分波得到n个波长通道的光信号,并将该n个波长通道的光信号分别通过该n个第四输出端输入至该n个光开关的第四输入端;每个该光开关的第三输入端和第四输入端接收的光信号的波长相同,每个该光开关用于在该第三输入端接收的光信号和该第四输入端接收的光信号中选择一路从第五输出端输出;该光合路器的输出端为该光开关模块的输出端,该光合路器的n个输入端用于分别接收n个该光开关输出的n个光信号,该光合路器用于将该n个光信号组合得到该第三光信号。
综上所述,本申请实施例提供的光信号控制装置的光开关模块在该检测模块检测到第二 光信号的至少一个波长通道的功率变化大于功率变化阈值后,调整接收的该第一光信号和该第二光信号中该至少一个波长通道的通断状态,以使调整后的该第一光信号和调整后的该第二光信号组合得到该第三光信号,并输出该第三光信号。在第二光信号的至少一个波长通道的功率变化较大时,将其功率变化较大的波长通道替换为第一光信号中相应的波长通道,从而得到第三光信号,该第三光信号的功率稳定。如此可以减少目标波段的波长通道的组合变化,降低光放大器内部的各波长通道的增益的变化以及SRS引起的各波长通道光功率变化,从而降低波长通道的光功率和信噪比的劣化,减少接收机的误码,减少对光传输系统的性能影响。
并且,当第三光信号为目标波段处于满波状态的光信号时,可以进一步减少剩余波长通道的性能劣化。
本申请实施例提供的光信号控制装置,设置在光传输节点的WSS之外。一方面,不需要占用WSS器件的额外端口,简化光传输节点的WSS的结构,减少WSS的制造成本。另一方面,由于光信号控制装置相对于传统的WSS的结构简化,可以实现假光信号和真波信号的快速替换,该替换速度由传统的秒级提升至毫秒级,从而降低可能的业务中断时间,或者将业务中断时长压缩至50ms以内,实现上层业务无感知的中断时延。
第二方面,提供一种光传输节点,该光传输节点包括WSS和/或光放大器,还包括如第一方面任一的光信号控制装置。
在一种可选实现方式中,光传输节点包括一个或多个WSS,至少一个WSS之后设置一个光信号控制装置。示例的,每个WSS之后设置一个光信号控制装置。
可选地,该光传输节点包括:一个或多个所述WSS,以及每个WSS之后设置的一级光放大器,每个光信号控制装置位于一个WSS与一个一级光放大器之间;
或者,该光传输节点包括多级光放大器,该光信号控制装置位于该多级光放大器的任意相邻的两级光放大器之间。该光放大器可以为掺铒光纤放大器(Erbium Doped Fiber Amplifier,EDFA)或拉曼放大器等光放大器。
示例的,该第二光信号所处的目标波段为S波段、C波段或L波段。
综上所述,本申请实施例提供的光传输节点中,光信号控制装置在检测到第二光信号的至少一个波长通道的功率变化大于功率变化阈值后,调整接收的该第一光信号和该第二光信号中该至少一个波长通道的通断状态,以使调整后的该第一光信号和调整后的该第二光信号组合得到该第三光信号,并输出该第三光信号。在第二光信号的至少一个波长通道的功率变化较大时,将其更新为第三光信号输出,有效减少该至少一个波长通道的功率变化所导致的剩余波长通道的光传输性能劣化。
第三方面,提供一种光传输系统,该光传输系统包括至少两个光传输节点,该光传输节点为第二方面任一该的光传输节点;不同的该光传输节点对应的目标波段互不相同。
在一种可选方式中,每个该光传输节点包括光放大器,该光传输系统还包括:功率检测模块,用于检测该至少两个光传输节点的功率信息;增益控制模块,用于基于该至少两个光传输节点的功率信息,进行该至少两个光传输节点对应的至少两个目标波段的光放增益控制。
其中,该功率信息为瞬时功率值,该增益控制模块,用于:
基于该至少两个光传输节点的瞬时功率值,计算该至少两个光传输节点中每个该光传输节点的功率变化值;基于每个该光传输节点的功率变化值,进行该至少两个目标波段的光放 增益控制。
假设光传输系统一个或多个光传输结构,其中,第一光传输结构为该一个或多个光传输结构中的一个光传输结构,该第一光传输结构包括Q个光传输节点,Q≥2,例如2≤Q≤3。该第一光传输结构包括功率检测模块401和增益控制模块402。
在该第一光传输结构中,功率检测模块401用于:基于接收的Q个光电转换器406传输的电信号,确定Q个目标波段中每个波段的光功率的瞬时功率值,其中,该Q个目标波段中每个波段的光功率的瞬时功率值指的是属于不同目标波段且处于同一级的Q个光放大器的瞬时功率值。该Q个光放大器是功率检测模块401用于检测的光放大器。
相应的,增益控制模块402,还用于:基于确定的Q个目标波段中每个波段的功率变化值,分别对Q个目标波段的光放大器进行增益控制。例如,反向补偿受激拉曼效应所引起的功率变化,如此使得系统性能更稳定。
第四方面,提供一种光信号控制方法,该方法包括:
检测光信号控制装置外部的第二光信号在至少一个波长通道的功率变化大于预设的功率变化阈值;在检测到该至少一个波长通道的功率变化大于功率变化阈值后,调整该光信号控制装置生成的第一光信号和该第二光信号中该至少一个波长通道的通断状态,以使调整后的该第一光信号和调整后的该第二光信号组合得到该第三光信号。
本申请实施例提供的光信号控制方法,在该检测到第二光信号的至少一个波长通道的功率变化大于功率变化阈值后,调整接收的该第一光信号和该第二光信号中该至少一个波长通道的通断状态,以使调整后的该第一光信号和调整后的该第二光信号组合得到该第三光信号,并输出该第三光信号。在第二光信号的至少一个波长通道的功率变化较大(如处于加波状态或掉波状态)时,将其功率变化较大的波长通道替换为第一光信号中相应的波长通道,从而得到第三光信号,该第三光信号的功率稳定。如此可以减少目标波段的波长通道的组合变化,降低光放大器内部的各波长通道的增益的变化以及SRS引起的各波长通道光功率变化,从而降低波长通道的光功率和信噪比的劣化,减少接收机的误码,减少对光传输系统的性能影响。
并且,当第三光信号为目标波段处于满波状态的光信号时,可以进一步减少剩余波长通道的性能劣化。
在一种可选方式中,该至少一个波长通道的功率变化大于功率变化阈值指示掉波状态或加波状态,该掉波状态为该至少一个波长通道从有波到无波的状态,该加波状态为该至少一个波长通道从无波到有波的状态。
示例的,该第二光信号中携带有业务信息的波长通道调制有具有多个导频频点的导频信号,该多个导频频点与多个波长通道分别对应,该方法还包括:在检测到至少一个导频频点从信号未丢失状态切换为信号丢失状态后,确定该至少一个导频频点对应的波长通道处于该掉波状态;在检测到至少一个导频频点从信号丢失状态切换为信号未丢失状态后,确定该至少一个导频频点对应的波长通道处于加波状态。
在一种示例中,该在检测到该至少一个波长通道的功率变化大于功率变化阈值后,调整该光信号控制装置生成的第一光信号和该第二光信号中该至少一个波长通道的通断状态,以使调整后的该第一光信号和调整后的该第二光信号组合得到该第三光信号,包括:在确定该第二光信号的第一波长通道处于该掉波状态后,控制该第一光信号的该第一波长通道导通,控制该第二光信号的该第一波长通道关断;或者,在确定该第二光信号的第一波长通道处于 加波状态后,控制该第一光信号的该第一波长通道关断,控制该第二光信号的该第一波长通道导通,该第一光信号的第一波长通道和该第二光信号的第一波长通道具有相同的波长。
可选地,该控制该第一光信号的该第一波长通道导通,包括:通过对该第一波长通道进行第一滤波处理,以使该第一波长通道导通,导通的该第一波长通道的波长位于带通滤波范围内;该控制该第二光信号的该第一波长通道关断,包括:通过对该第一波长通道进行第二滤波处理,以使该第一波长通道关断,关断的该第一波长通道的波长位于带阻滤波范围内。
可选地,该在检测到该至少一个波长通道的功率变化大于功率变化阈值后,调整该光信号控制装置生成的第一光信号和该第二光信号中该至少一个波长通道的通断状态,以使调整后的该第一光信号和调整后的该第二光信号组合得到该第三光信号,包括:将该第二光信号的第一波长通道替换为该第一光信号的第一波长通道,或者,将该第一光信号的第一波长通道替换为该第二光信号的第一波长通道;该第二光信号的第一波长通道和该第一光信号的第一波长通道具有相同的波长,该第二光信号的第一波长通道为检测到的功率变化大于阈值的至少一个波长通道的一个或多个波长通道。
可选地,该方法还包括:检测至少两个光传输节点的功率信息;基于至少两个光传输节点的功率信息,进行至少两个光传输节点对应的至少两个目标波段的光放增益控制。
示例的,基于至少两个光传输节点的功率信息,进行至少两个光传输节点对应的至少两个目标波段的光放增益控制的过程包括:基于至少两个光传输节点的瞬时功率值,计算至少两个光传输节点中每个光传输节点的功率变化值;基于每个光传输节点的功率变化值,进行至少两个目标波段的光放增益控制。
示例的,假设光传输系统包括一个或多个光传输结构,其中,第一光传输结构为该一个或多个光传输结构中的一个光传输结构,该第一光传输结构包括Q个光传输节点,Q≥2,例如2≤Q≤3。对于该光传输结构,基于受激拉曼效应模型以及Q个目标波段中每个波段的光功率的瞬时功率值,确定Q个目标波段中每个波段的功率变化值。基于确定的Q个目标波段中每个波段的功率变化值,分别对Q个目标波段的光放大器进行增益控制。例如,反向补偿受激拉曼效应所引起的功率变化,如此使得系统性能更稳定。
第五方面,提供一种光信号控制方法,该方法包括:
检测至少两个光传输节点的功率信息;基于至少两个光传输节点的功率信息,进行至少两个光传输节点对应的至少两个目标波段的光放增益控制。
可选地,基于至少两个光传输节点的功率信息,进行至少两个光传输节点对应的至少两个目标波段的光放增益控制的过程包括:
基于至少两个光传输节点的瞬时功率值,计算至少两个光传输节点中每个光传输节点的功率变化值;基于每个光传输节点的功率变化值,进行至少两个目标波段的光放增益控制。
示例的,假设光传输系统包括一个或多个光传输结构,其中,第一光传输结构为该一个或多个光传输结构中的一个光传输结构,该第一光传输结构包括Q个光传输节点,Q≥2,例如2≤Q≤3。基于受激拉曼效应模型以及Q个目标波段中每个波段的光功率的瞬时功率值,确定Q个目标波段中每个波段的功率变化值。基于确定的Q个目标波段中每个波段的功率变化值,分别对Q个目标波段的光放大器进行增益控制。例如,反向补偿受激拉曼效应所引起的功率变化,如此使得系统性能更稳定。
第六方面,本申请提供一种光信号控制装置,该光信号控制装置可以包括至少一个模块, 该至少一个模块可以用于实现上述第四方面或者第四方面的各种可能实现提供的该光信号控制方法,和/或,用于实现上述第五方面或者第五方面的各种可能实现提供的该光信号控制方法。
第七方面,本申请提供一种计算机设备,该计算机设备包括处理器和存储器。该存储器存储计算机指令;该处理器执行该存储器存储的计算机指令,使得该计算机设备执行上述第四方面或者第四方面的各种可能实现提供的该光信号控制方法,和/或,执行上述第五方面或者第五方面的各种可能实现提供的该光信号控制方法。
第八方面,本申请提供一种计算机可读存储介质,该计算机可读存储介质中存储有计算机指令,该计算机指令指示该计算机设备执行上述第四方面或者第四方面的各种可能实现提供的该光信号控制方法,和/或,执行上述第五方面或者第五方面的各种可能实现提供的该光信号控制方法。
第九方面,本申请提供一种计算机程序产品,该计算机程序产品包括计算机指令,该计算机指令存储在计算机可读存储介质中。计算机设备的处理器可以从计算机可读存储介质读取该计算机指令,处理器执行该计算机指令,使得该计算机设备执行上述第四方面或者第四方面的各种可能实现提供的该光信号控制方法,和/或,执行上述第五方面或者第五方面的各种可能实现提供的该光信号控制方法。
第十方面,提供一种芯片,该芯片可以包括可编程逻辑电路和/或程序指令,当该芯片运行时用于实现如上述第四方面或者第四方面的各种可能实现提供的该光信号控制方法,和/或,实现如上述第五方面或者第五方面的各种可能实现提供的该光信号控制方法。
综上所述,本申请实施例提供的光信号控制装置、光传输节点和光传输系统,在该检测模块检测到第二光信号的至少一个波长通道的功率变化大于功率变化阈值后,调整接收的该第一光信号和该第二光信号中该至少一个波长通道的通断状态,以使调整后的该第一光信号和调整后的该第二光信号组合得到该第三光信号,并输出该第三光信号。在第二光信号的至少一个波长通道的功率变化较大(如处于加波状态或掉波状态)时,将其功率变化较大的波长通道替换为第一光信号中相应的波长通道,从而得到第三光信号,该第三光信号的功率稳定。如此可以减少目标波段的波长通道的组合变化,降低光放大器内部的各波长通道的增益的变化以及SRS引起的各波长通道光功率变化,从而降低波长通道的光功率和信噪比的劣化,减少接收机的误码,减少对光传输系统的性能影响。
并且,当第三光信号为目标波段处于满波状态的光信号时,可以进一步减少剩余波长通道的性能劣化。
本申请实施例提供的光信号控制装置,设置在光传输节点的WSS之外。一方面,不需要占用WSS器件的额外端口,简化光传输节点的WSS是结构,减少WSS的制造成本。另一方面,由于光信号控制装置相对于传统的WSS的结构简化,可以实现假光信号和真波信号的快速替换,该替换速度由传统的秒级提升至毫秒级,从而降低可能的业务中断时间,或者将业务中断时长压缩至50ms以内,实现上层业务无感知的中断时延。
附图说明
图1是本申请实施例提供的一种光信号控制装置的所在光传输系统的应用环境示意图;
图2是本申请实施例提供的另一种光信号控制装置的所在光传输系统的应用环境示意 图;
图3A是本申请实施例提供的一种波长通道的在光放大器中的增益变化示意图;
图3B是本申请实施例提供的一种受激拉曼效应在光传输系统中的应用原理示意图;
图4是本申请实施例提供的一种光信号控制装置的结构示意图;
图5是一种通过发射端调制有具有多个导频频点的导频信号的第二光信号的示意图;
图6是本申请实施例提供的一种示意性的导频频点检测示意图;
图7是本申请实施例提供的另一种示意性的光信号控制装置的结构示意图;
图8是本申请实施例提供的一种光信号控制装置所在的光传输节点的结构示意图;
图9是本申请实施例提供的一种波长通道控制的原理示意图;
图10是本申请实施例提供的第一滤波曲线和第二滤波曲线的示意图;
图11是本申请实施例提供的第三滤波曲线和第四滤波曲线的示意图;
图12是本申请实施例提供的第三滤波曲线和第四滤波曲线的示意图;
图13是本申请实施例提供的一种示意性的光开关模块的结构示意图;
图14是本申请实施例提供的一种示意性的光开关模块的结构示意图;
图15是本申请实施例提供的一种光传输节点的结构示意图;
图16是本申请实施例提供的一种光传输节点的结构示意图;
图17是本申请实施例提供的另一种光传输节点的结构示意图;
图18是本申请实施例提供的一种具体的光传输节点的结构示意图;
图19是本申请实施例提供的一种光传输系统的结构示意图;
图20是本申请实施例提供的另一种光传输系统的结构示意图;
图21是本申请实施例提供的又一种光传输系统的结构示意图;
图22是本申请实施例提供的一种功放控制结构的示意图;
图23是本申请是实施例提供的一种光信号控制方法的流程示意图;
图24是本申请是实施例提供的一种光信号控制方法的流程示意图;
图25是本申请实施例提供的计算机设备的一种可能的基本硬件架构。
具体实施方式
为使本申请的原理和技术方案更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。
光纤(也称线路光纤)通信是以光信号作为信息载体,以光纤作为传输媒介的一种通信方式。具有传输频带宽、抗干扰性高和信号衰减小等优点。图1和图2是本申请实施例提供的光信号控制装置的所在光传输系统(也称光纤通信系统)的应用环境示意图。该光传输系统基于光纤通信,其包括一个或多个光传输节点(英文:Optical Transmission node),该光传输节点可以包括至少一个光器件,如光放大器。图1假设该光传输系统包括1个光传输节点10,该光传输节点10包括波长选择开关(Wavelength Selective Switching,WSS)101和光放大器102;图2假设该光传输系统包括1个光传输节点10,该光传输节点10包括2个WSS101和2个光放大器102。本申请实施例对光传输系统包括的光器件的数量和类型并不限定。图1和图2中的光传输系统可以采用波分复用((Wavelength Division Multiplexing,WDM)技术通过光信号进行业务信息的传输,该业务信息被调制在不同波长通道上。
由于光信号中的各个波长通道是相互影响的,若波分复用光信号的某一波长通道的功率变化较大,例如该某一波长通道出现掉波(drop)状态或加波(add)状态,在光传输系统的光放大器以及光纤的受激拉曼散射效应等作用下,会导致剩余波长通道的光传输性能劣化。图3A是本申请实施例提供的一种波长通道的在光放大器中的增益变化示意图。图3A中横轴表示波长通道,纵轴表示增益。如图3A所示,光放大器中各波长通道的增益通常是相互耦合在一起的,不同波长通道的增益会受到波长通道间增益竞争的影响。假设在目标波段处于满波状态时,增益曲线为曲线A。曲线B、C和D分别是目标波段中三种不同的波长通道的组合发生变化时(如部分波长通道从有波到无波的状态或从无波到有波的状态),剩余波长通道的增益曲线。目标波段指的是预先设置的业务波段,满波状态指的是目标波段的所有指定波长通道(这些波长通道用于携带业务信息)的功率均大于预设的功率阈值。也即是,所有的波长通道均有波,即有光信号,该光信号可以为携带业务信息的光信号或者不携带业务信息的光信号。例如,该目标波段为C波段,其光波长范围为1530nm(纳米)至1565nm,该C波段的指定波长通道有80个,则该80个波长通道均有波时,C波段处于满波状态。由图3A可以看出,处于满波状态的目标波段的增益曲线较为平滑。在某一波长通道的功率变化大于功率变化阈值时,增益曲线变化明显,剩余部分波长通道的增益曲线与满波状态的增益曲线的偏差较大。
图3B是本申请实施例提供的一种受激拉曼效应在光传输系统中的应用原理示意图。受激拉曼效应指的是光信号经过光纤传输后,短波长光信号的能量会向长波长光信号转移,最后形成短波长光信号的光功率低、长波长光信号的光功率高的带有一定倾斜度的光谱分布。在光传输系统的波段为C+L波段时,受激拉曼效应导致的功率转移更加剧烈。
受到光放大器中各波长通道的增益竞争的影响,以及受激拉曼效应的影响,一旦目标波段的波长通道的组合发生变化,光放大器内部的各波长通道的增益和光功率也会发生剧烈变化。这种剧烈变化可能会导致某些波长通道增益和光功率过高或者过低,经过多跨光纤和多个光放大器传输之后,这部分的波长通道的光功率和信噪比会严重劣化,导致接收机产生误码,严重影响了光传输系统的性能。
例如光传输系统中,初始传输的波分复用光信号为C波段80波的光信号,80个波长通道分别为波长通道1至80。在传输过程中,波长通道1至40产生了掉波状态。一方面,受到光放大器中各波长通道的增益竞争的影响,剩余的波长通道41至80的增益不再受之前的波长通道1至40的制衡,导致相对于原来C波段处于满波状态时的增益发生了较大变化;另一方面,受到受激拉曼效应的影响,若C波段处于满波状态,波长通道41至80会从波长通道1至40吸收能量,但是一旦出现了波长通道1至40的掉波,剩余的波长通道41至80无法从波长通道1至40吸收能量,导致相对于原来C波段处于满波状态时的光功率产生较大的跌落。因此,受到上述两方面的影响,波长通道41至80的光传输性能出现明显劣化。
本申请实施例提供一种光信号控制装置,可以设置在该光传输系统中,进行波长通道的通断状态的控制,以减少波长通道的变化所导致的剩余波长通道的光传输性能劣化。
图4是本申请实施例提供的一种光信号控制装置20的结构示意图,该光信号控制装置20用于对该装置内部的第一光信号和该装置外部的第二光信号在目标波段上不同波长通道的 控制。该装置20可以应用于图1或图2所示的光传输系统中,该装置20包括:
光源201,用于输出第一光信号。该第一光信号通常为不携带业务信息的光信号,可以称为假光(dummy light)信号。光信号控制装置对应的目标波段是预先设置的。该光源201所输出的第一光信号的波段通常大于或等于目标波段,也即是该光源为宽谱光源,其波段覆盖目标波段,如此可以保证后续对第一光信号在目标波段中各个波长通道的控制。
光开关模块202,该光开关模块具有第一输入端a、第二输入端b和输出端c,该第一输入端a用于接收该第一光信号,该第二输入端b用于接收外部的第二光信号,该输出端c用于输出第三光信号,例如向光链路的主线路输出第三光信号。其中,外部的第二光信号指的是来自于光信号控制装置20外部的光信号,也即是光信号控制装置20从其所在的光传输系统的光链路上接收的光信号,该光链路为用于传输光信号的链路,例如其为光纤。该第二光信号通常为携带业务信息的光信号,可以称为真波信号。
检测模块203,用于检测第二光信号的有无,例如检测该第二光信号在至少一个波长通道的功率变化大于预设的功率变化阈值。需要说明的是,当检测模块203检测到第二光信号不存在波长通道的功率变化大于预设的功率变化阈值的情况时,则进行下一次检测。
其中,至少一个波长通道的功率变化大于预设的功率变化阈值指示掉波状态或加波状态,该掉波状态为该至少一个波长通道从有波(即有光信号)到无波(即无光信号)的状态,该加波状态为该至少一个波长通道从无波到有波的状态。如目标波段是C波段,其满波状态有80个指定波长通道。若至少一个波长通道处于掉波状态时,则有波的指定波长通道的个数减少,且小于80。若至少一个波长通道处于加波状态时,则有波的指定波长通道的个数增加,且小于或等于80。
该光开关模块202,用于在该检测模块检测到该至少一个波长通道的功率变化大于功率变化阈值后,调整接收的该第一光信号和该第二光信号中该至少一个波长通道的通断状态,以使调整后的第一光信号和调整后的第二光信号组合得到前述第三光信号。
该调整接收的该第一光信号和该第二光信号中该至少一个波长通道的通断状态指的是改变该第一光信号和该第二光信号中该至少一个波长通道的通断状态。例如,在检测模块203确定第二光信号的波长通道λ1从无波到有波的状态后,第一光信号的波长通道λ1原通断状态为导通,则将第一光信号的波长通道λ1调整为关断,第二光信号的波长通道λ1原通断状态为关断,则将第二光信号的波长通道λ1调整为导通。如此,输出的第三光信号的波长通道λ1处于有波状态,其光信号为第二光信号的波长通道λ1中的光信号。又例如,在检测模块203确定第二光信号的波长通道λ1从有波到无波的状态后,第一光信号的波长通道λ1原通断状态为关断,则将第一光信号的波长通道λ1调整为导通,第二光信号的波长通道λ1原通断状态为导通,则将第二光信号的波长通道λ1调整为关断。如此,输出的第三光信号的波长通道λ1处于有波状态,其光信号为第一光信号的波长通道λ1中的光信号。由此可知,由于进行了第一光信号和该第二光信号中该至少一个波长通道的通断状态的调整,可以使得组合得到的第三光信号相对于第二光信号,至少一个波长通道的功率变化和增益变化得到补偿,从而保持目标波段的波长通道的组合不变或变化较小。
综上所述,本申请实施例提供的光信号控制装置的光开关模块在该检测模块检测到第二光信号的至少一个波长通道的功率变化大于功率变化阈值后,调整接收的该第一光信号和该第二光信号中该至少一个波长通道的通断状态,以使调整后的该第一光信号和调整后的该第 二光信号组合得到该第三光信号,并输出该第三光信号。在第二光信号的至少一个波长通道的功率变化较大(如处于加波状态或掉波状态)时,将其更新为第三光信号输出,有效减少该至少一个波长通道的功率变化所导致的剩余波长通道的光传输性能劣化。
本申请实施例中,检测模块203可以通过检测导频信号来实现对掉波状态或加波状态的检测。在一种可选示例中,第二光信号中携带有业务信息的波长通道调制有具有多个导频频点的导频信号。例如,发射机在发射第二光信号时,在携带有业务信息的光信号(即真波信号)上,调制具有多个导频频点(pilot frequency)的导频信号,该多个导频频点与多个波长通道分别对应,例如与目标频段的多个指定波长通道一一对应。可选地,发射机在发射第二光信号时,在未携带有业务信息的光信号(即假光信号)上,不调制导频信号。频点指绝对频率值。其为调制信号中设定的中心频率。在本申请实施例中,多个导频频点互不相同,例如该多个导频频点包括1MHz或10MHz,如此检测模块203才能实现导频频点的有效识别。
图5是一种通过发射端调制有具有多个导频频点的导频信号的第二光信号的示意图。示例的,假设第二光信号的各个波长通道均携带业务信息,即为真波信号,该导频信号可以为低频导频信号,其频率小于预设的频率阈值,该频率阈值可以为10MHz。通过在发送第二光信号时,调制低频导频信号可以实现第二光信号的调顶,调制前的第二光信号对应光波的顶部平齐,即波峰的高度相同,调制后的第二光信号所对应的光波的顶部不再平齐,也即是形成了波动。
该检测模块203,用于检测该导频信号。示例的,该检测模块203可以为一个检测电路。
该光开关模块202用于:在该检测模块203检测到至少一个导频频点从信号未丢失状态(即有信号)切换为信号丢失(signal loss,即无信号)状态后,确定该至少一个导频频点对应的波长通道处于掉波状态;在该检测模块203检测到至少一个导频频点从信号丢失状态切换为信号未丢失状态后,确定该至少一个导频频点对应的波长通道处于加波状态。示例的,检测模块203可以周期性地检测导频频点的状态,基于每相邻两个检测周期中导频频点的状态来确定导频频点是否出现状态切换。当当前检测周期的导频频点的状态为信号未丢失状态,前一检测周期的导频频点的状态为信号丢失状态,确定导频频点从信号未丢失状态切换为信号丢失状态;当当前检测周期的导频频点的状态为信号丢失状态,前一检测周期的导频频点的状态为信号未丢失状态,确定导频频点从信号丢失状态切换为信号未丢失状态。在实际实现时,当当前检测周期的导频频点的状态为信号丢失状态,也可以不检测前一检测周期的导频频点的状态是否为信号丢失状态,直接确定导频频点从信号丢失状态切换为信号丢失状态切换。
图6是本申请实施例提供的一种示意性的导频频点检测示意图。图6中,横轴表示频率,纵轴表示功率,1至13是对应导频频点的编号,并不代表频率大小。图6中带有圈的实线箭头表示导频频点从信号丢失状态切换为信号未丢失状态,带有叉的虚线箭头表示导频频点从信号未丢失状态切换为信号丢失状态,其他实线箭头表示导频频点未发生状态切换。则由图6可以看出,编号为6、8、9、11、12、13的导频频点从信号未丢失状态切换为信号丢失状态,则说明编号为6、8、9、11、12、13的导频频点对应的波长通道处于掉波状态。编号为4、5的导频频点从信号丢失状态切换为信号未丢失状态,则说明编号为4、5的导频频点对应的波长通道处于加波状态。
值得说明的是,由于光信号控制装置20接收的第二光信号中携带有业务信息的波长通道 已调制有具有多个导频频点的导频信号,在一种可选实现方式中,光控制信号装置20在输出的第三光信号中携带有业务信息的波长通道仍然调制有该导频信号。假设第三光信号的某一波长通道λ2未携带业务信息,其为假光信号,则该某一波长通道λ2未调制导频信号,该光信号控制装置20也不会为该某一波长通道λ2进行导频信号的调制。该某一波长通道λ2对应导频频点在后续检测过程中被检测为信号丢失状态。
本申请实施例中,检测模块203可以通过多种方式检测导频信号。图7是本申请实施例提供的另一种示意性的光信号控制装置20的结构示意图。如图7所示,该光信号控制装置20,还包括:光分路器204和光电转换器205。
光分路器204,用于将该第二光信号分出部分功率的第四光信号,该光分路器204可以设置在用于传输第二光信号的光链路上。其具有一个输入端和两个输出端,光分路器204将输入端输入的第二光信号分为两路,分别是第四光信号和新的第二光信号,该新的第二光信号的功率相对于输入光分路器的第二光信号的功率有所降低,但携带的业务信息并未减少。该过程实现将第二光信号分出部分用于进行导频信号检测。示例的,该第四光信号的功率与第二光信号的功率的比值范围为1%至10%,例如该第四光信号的功率与第二光信号的功率的比值为5%,如此,可以保证光信号的分路对第二光信号的功率影响较小。
光电转换器205,用于将该第四光信号转换成电信号,并将转换后的电信号输出给该检测模块203。示例的,该光电转换器205可以为光电二极管(PhotoDiode,PD)。该光电转换器205是与导频信号匹配的转换器件,例如该导频信号为低频导频信号,则该光电转换器205为用于检测低频导频信号的转换器件,其可以将检测到的低频导频信号转换为电信号。
图8是本申请实施例提供的一种光信号控制装置20所在的光传输节点30的结构示意图。该光传输节点30包括WSS301和光放大器302,假设WSS301和光放大器302之间设置有一个光信号控制装置20。其中,检测模块203的输入端(即检测端)可以连接WSS301的输出端x,即WSS301的合波端口。在一种可选实现方式中,检测模块203还包括至少一个其他输入端,该至少一个其他输入端与光信号控制装置20的输出端y,和光放大器302的输出端z中的至少一个分别连接。
其中,光信号控制装置20的输出端y即为前述第三光信号的输出端c,当检测模块203的其他输入端与输出端y连接时,检测模块203还可以检测从前述输出端x和输出端y所获取的光信号的关系,基于该光信号的关系确定光开关模块是否出现故障,在确定光信号控制装置20出现故障时,发出指示光信号控制装置出现故障的告警信息。例如,通过检测在输出端x和输出端y所获取的光信号可知,当第二光信号在至少一个波长通道的功率变化大于预设的功率变化阈值时,光开关模块并未进行光信号的调整,或者调整出现问题。
当检测模块203的其他输入端分别与输出端y以及输出端z连接时,检测模块203还可以检测从前述输出端y和输出端z所获取的光信号的关系,基于该光信号的关系确定光放大器302是否出现故障,在确定光放大器302出现故障时,发出指示光放大器出现故障的告警信息。例如,通过检测输出端y和输出端z所获取的光信号可知,光放大器并未进行信号放大,或者信号放大比例小于预设比例。
当检测模块203其他输入端与输出端z连接时,检测模块203还可以检测从前述输出端x和输出端z所获取的光信号的关系,基于该光信号的关系确定光放大器302是否出现故障,在确定光放大器302出现故障时,发出指示光放大器出现故障的告警信息。例如,通过检测 输出端x和输出端z所获取的光信号可知,光放大器并未进行信号放大,或者信号放大比例小于预设比例。
通过对前述输出端y和/或输出端z的检测,可以实现光传输节点的功能及时校准,避免光传输节点中光器件出现故障导致业务的中断或传输错误。值得说明的是,前述检测模块203还可以集成其他检测功能。本申请实施例对此不再赘述。
如前所述,若波分复用光信号的某一波长通道的功率变化较大,例如该某一波长通道出现掉波状态或加波状态,保证光传输系统的波长通道组合不变化,可以有效保证剩余波长通道的性能稳定。图9是本申请实施例提供的一种波长通道控制的原理示意图。图9中虚线箭头表示第二光信号的波长通道,实线箭头表示第一光信号的波长通道,光开关模块202用于在目标波段的指定波长通道填充第一光信号或者第二光信号,从而尽量减少光传输系统的波长通道组合不变化或者变化较小。例如,实现目标波段满足预设的状态,如满波状态。假设该第二光信号的第一波长通道为检测到的功率变化大于阈值的至少一个波长通道的一个或多个波长通道,基于图9的原理可知,该光开关模块202可以用于实现第一光信号和第二光信号的第一波长通道的相互替换,该相互替换过程包括:将该第二光信号的第一波长通道替换为该第一光信号的第一波长通道(也即是将第一光信号的第一波长通道填充至第二光信号的第一波长通道中),或者,将该第一光信号的第一波长通道替换为该第二光信号的第一波长通道(也即是保持第二光信号的第一波长通道导通,并阻断第一光信号的第一波长通道);该第二光信号的第一波长通道和该第一光信号的第一波长通道具有相同的波长。如此,可以使得最终输出的第三光信号中相对于输入光开关模块202前的第二光信号(如加波或掉波前的第二光信号)的波长通道组合不变化。
在第一种情况中,该光开关模块202用于:在确定该第二光信号的第一波长通道处于掉波状态后,控制该第一输入端a接收的第一光信号的该第一波长通道导通,控制该第二输入端b接收的第二光信号的该第一波长通道关断。在实际实现时,当该光开关模块202确定该第二光信号的第一波长通道处于掉波状态时,由于第二光信号的第一波长通道没有光信号,在控制该第一输入端a接收的第一光信号的该第一波长通道导通后,可以无需对该第二输入端b接收的第二光信号的通断状态进行控制(即不进行第二光信号的通断状态的控制动作)。例如,第二光信号的第一波长通道原通断状态为关断,则保持第二光信号的第一波长通道为关断,或者,第二光信号的第一波长通道原通断状态为导通,则保持第二光信号的第一波长通道为导通。如此可以减少波长通道的通断状态控制流程,降低控制复杂度。
在第二种情况中,该光开关模块202用于:在确定该第二光信号的第一波长通道处于加波状态后,控制该第一输入端a接收的第一光信号的该第一波长通道关断,控制该第二输入端b接收的第二光信号的该第一波长通道导通。其中,该第一光信号的第一波长通道和该第二光信号的第一波长通道具有相同的波长。
在本申请实施例中,光开关模块202可以通过滤波的方式来实现对波长通道的通断的控制。示例的,该光开关模块202用于:
通过对该第一波长通道进行第一滤波处理,以使该第一波长通道导通,导通的该第一波长通道的波长位于带通滤波范围内;通过对该第一波长通道进行第二滤波处理,以使该第一波长通道关断,关断的该第一波长通道的波长位于带阻滤波范围内。
前述第一滤波处理和第二滤波处理是相反的滤波处理,其有多种实现方式。本申请实施 例以以下两种实现方式为例进行说明:
第一种实现方式,第一滤波处理和第二滤波处理是加载在光信号上的整体滤波处理。假设第一波长通道为第一光信号和第二光信号中任一光信号M的第一波长通道,通过对该第一波长通道进行第一滤波处理,以使该第一波长通道导通的过程包括:为光信号M加载第一滤波曲线,该第一滤波曲线在第一波长通道处的滤波特性为导通特性,在第一波长通道之外的其他波长通道处的滤波特性为关断特性;通过对该第一波长通道进行第二滤波处理,以使该第一波长通道关断的过程包括:为光信号M加载第二滤波曲线,该第二滤波曲线在第一波长通道处的滤波特性为关断特性,在第一波长通道之外的其他波长通道处的滤波特性为导通特性。
图10是本申请实施例提供的第一滤波曲线和第二滤波曲线的示意图。图10中,横轴表示波长,其单位为nm(纳米);纵轴表示衰减,其单位为dB(分贝)。开启特性表示没有衰减,或者衰减小于或等于第一预设衰减值,例如该第一预设衰减值为1dB,关断特性表示衰减大于或等于第二预设衰减值,例如该第二预设衰减值为35dB。假设第一波长通道的波长为λ,在同一时刻加载在第一光信号的第一波长通道的滤波曲线和加载在第二光信号的第一波长通道的滤波曲线分别为第一滤波曲线和第一滤波曲线中的一者。例如,在确定该第二光信号的第一波长通道处于掉波状态后,控制该第一输入端a接收的第一光信号加载第一滤波曲线,控制该第二输入端b接收的第二光信号加载第二滤波曲线;在确定该第二光信号的第一波长通道处于加波状态后,控制该第一输入端a接收的第一光信号加载第二滤波曲线,控制该第二输入端b接收的第二光信号加载第一滤波曲线。
第二种实现方式,第一滤波处理和第二滤波处理是加载在光信号上的部分滤波处理。光信号控制装置,如光开关模块,中配置有目标波段中的多个栅格(grid)窗口,该多个栅格窗口包括与目标波段的多个指定波长通道对应的栅格窗口。该多个栅格窗口的划分方式可以参考国际电信联盟电信标准分局(ITU Telecommunication Standardization Sector,ITU-T),G.694.1标准定义的波分复用栅格窗口的划分方式,也即是每个栅格窗口的中心波长是预设的。例如,对于中心波长为50GHz的栅格窗口,在进行滤波时仅对中心波长为50GHz的栅格窗口所在范围内的光信号进行滤波。
假设第一波长通道为第一光信号和第二光信号中任一光信号M的第一波长通道,通过对该第一波长通道进行第一滤波处理,以使该第一波长通道导通的过程包括:为光信号M的第一波长通道对应的栅格窗口加载第三滤波曲线,该第三滤波曲线的滤波特性为导通特性;通过对该第一波长通道进行第二滤波处理,以使该第一波长通道关断的过程包括:为光信号M的第一波长通道对应的栅格窗口加载第四滤波曲线,该第四滤波曲线的滤波特性为关断特性。值得说明的是,第二光信号中除第一波长通道之外的其他波长通道通常都是导通状态。在一种可选方式中,不对该其他波长通道进行滤波处理;在另一种可选方式中,为第二光信号的其他波长通道对应的栅格窗口加载第三滤波曲线,该第三滤波曲线的滤波特性为导通特性。
图11和图12分别是本申请实施例提供的第三滤波曲线和第四滤波曲线的示意图。图11和图12中,横轴表示波长,其单位为nm;纵轴表示衰减,其单位为dB。开启特性表示没有衰减,或者衰减小于或等于第一预设衰减值,例如该第一预设衰减值为1dB,关断特性表示衰减到小大于或等于第二预设衰减值,例如该第二预设衰减值为35dB。在同一时刻加载在第一光信号的第一波长通道的滤波曲线和加载在第二光信号的第一波长通道的滤波曲线分别为 第三滤波曲线和第四滤波曲线中的一者。其中,假设第一波长通道的中心波长为50GHz,则第三滤波曲线指的是图11中该50GHz栅格窗口所在范围内的曲线,第四滤波曲线指的是图12中该50GHz栅格窗口所在范围内的曲线。
例如,在确定该第二光信号的第一波长通道处于掉波状态后,控制该第一输入端a接收的第一光信号在第一波长通道对应的栅格窗口加载第三滤波曲线,控制该第二输入端b接收的第二光信号在第一波长通道对应的栅格窗口加载第四滤波曲线;在确定该第二光信号的第一波长通道处于加波状态后,控制该第一输入端a接收的第一光信号在第一波长通道对应的栅格窗口加载第四滤波曲线,控制该第二输入端b接收的第二光信号在第一波长通道对应的栅格窗口加载第三滤波曲线。
本申请实施例中,光开关模块202具有两个输入端和一个输出端,可以实现光信号的调度,因此可以视为一个2×1WSS(即两个输入端一个输出端的WSS),该2×1WSS的结构可以有多种可选实现方式。本申请实施例以以下两种可选实现方式为例进行说明:
在第一种可选实现方式中,光开关模块202主要包括至少两个光滤波器。图13是本申请实施例提供的一种示意性的光开关模块202的结构示意图,如图13所示,该光开关模块202,包括:
具有输入端和输出端的第一光滤波器2021,该第一光滤波器2021的输入端为该第一输入端a,该第一光滤波器2021用于对接收的第一光信号进行滤波。
具有输入端和输出端的第二光滤波器2022,该第二光滤波器2022的输入端为该第二输入端b,该第二光滤波器2022用于对接收的第二光信号进行滤波。对于相同波长的波长通道,该第一光滤波器和该第二光滤波器2022的滤波特性相反(也称互补)。示例的,对于相同波长的波长通道,当该第一光滤波器的滤波特性为开启时,该第二光滤波器2022的滤波特性为关断;当该第一光滤波器的滤波特性为关断时,该第二光滤波器2022的滤波特性为开启。
光合路器2023,该光合路器2023具有两个输入端和一个输出端,该两个输入端分别与该第一光滤波器2021的输出端和该第二光滤波器2022的输出端连接,该光合路器2023的输出端为该光开关模块202的输出端c,该光合路器2023用于将该两个输入端接收的滤波后的该第一光信号和滤波后的该第二光信号组合得到该第三光信号。其中,组合指的是进行功率组合。
示例的,第一光滤波器在默认状态下,对接收的光信号的所有波长通道为关断特性(即全断特性),第二光滤波器在默认状态下,对接收的光信号的所有波长通道为开启特性(即全通特性)。在一种可选示例中,第一光滤波器和该第二光滤波器中的至少一个为波长阻断器(Wavelength Blocker,WB)。例如,第一光滤波器和该第二光滤波器均为波长阻断器。该波长阻断器具有波长选择特性。
在一种可选方式中,第一光滤波器和该第二光滤波器可以采用以下技术中一种实现:硅基液晶(Liquid Crystal On Silicon,LCOS)技术、数字光处理(Digital Light Processing,DLP)技术、平面光波导(Planar Lightwave Circuit,PLC)技术、液晶(Liquid Crystal,LC)技术或微机电系统(Micro-Electro-Mechanical System,MEMS)技术。
在本申请实施例中,该光合路器与该第一光滤波器连接的输入端的分光比不等于该光合路器与该第二光滤波器连接的输入端的分光比。例如,该光合路器与该第一光滤波器连接的输入端的分光比小于该光合路器与该第二光滤波器连接的输入端的分光比。该分光比指的是 分路(即光合路器与该第一光滤波器连接的一路或该光合路器与该第二光滤波器连接的另一路)的光信号占合路(该光合路器输出的一路)的光信号的比例。
通过将该光合路器与该第一光滤波器连接的输入端的分光比设置为小于该光合路器与该第二光滤波器连接的输入端的分光比,可以保证最终输出的第三光信号中第一光信号的光功率占比较小,第二光信号的光功率占比较大。使得光合路器中,从与该第一光滤波器连接的输入端到输出端的这个路径的插损小于从与该第二光滤波器连接的输入端到输出端这个路径的插损。从而减少第二光信号在光合路器中实际传输的插损,避免业务信息的丢失。
在第二种可选实现方式中,光开关模块202主要包括多个光开关(也称光开关阵列)。图14是本申请实施例提供的一种示意性的光开关模块202的结构示意图,如图14所示,该光开关模块202,包括:
具有输入端和n个第三输出端的第一光分波器2024,具有输入端和n个第四输出端的第二光分波器2025,n个光开关2026以及光合路器2027,n为大于1的正整数,该n通常等于目标波段中指定波长通道的个数。例如,指定波长通道的个数为80,则n=80。该n个光开关2026中每个光开关2026具有第三输入端d、第四输入端e和第五输出端f,该光合路器2027具有n个输入端和1个输出端。
该第一光分波器2024的输入端为该第一输入端a,该第一光分波器2024用于对接收的第一光信号进行分波(或称分路)得到n个波长通道的光信号,并将该n个波长通道的光信号分别通过该n个第三输出端输入至该n个光开关2026的第三输入端d。
该第二光分波器2025的输入端为该第二输入端b,该第二光分波器2025用于对接收的第二光信号进行分波得到n个波长通道的光信号,并将该n个波长通道的光信号分别通过该n个第四输出端输入至该n个光开关2026的第四输入端e。
每个光开关2026为一个2×1光开关(也即是两个输入端一个输出端的光开关)。每个光开关2026的第三输入端d和第四输入端e接收的光信号的波长通道相同,每个该光开关2026用于在该第三输入端d接收的光信号和该第四输入端e接收的光信号中选择一路从第五输出端f输出。
该光合路器2027的输出端为该光开关模块202的输出端c,该光合路器2027的n个输入端用于分别接收n个该光开关2026输出的n个光信号,该光合路器2027用于将该n个光信号组合得到该第三光信号。其中,组合指的是进行功率组合。
值得说明的是,前述光开关模块202中还可以包括其他结构。例如,对于前述第一种可选实现方式,该光开关模块202还可以包括控制器,该控制器用于控制两个光滤波器的滤波特性;对于前述第二种可选实现方式,该光开光模块202还可以包括控制器,该控制器用于控制前述每个光开光的选路。该控制器可以为中央处理器(central processing unit,CPU)或外围控制电路等。可选地,该光开光模块202也可以与其所在的光信号控制装置中的控制器或者光传输节点的控制器连接,在光开光模块202外部的控制信号的控制下,实现第一光信号和所述第二光信号中至少一个波长通道的通断状态的调整。
综上所述,本申请实施例提供的光信号控制装置的光开关模块在该检测模块检测到第二光信号的至少一个波长通道的功率变化大于功率变化阈值后,调整接收的该第一光信号和该第二光信号中该至少一个波长通道的通断状态,以使调整后的该第一光信号和调整后的该第二光信号组合得到该第三光信号,并输出该第三光信号。在第二光信号的至少一个波长通道 的功率变化较大(如处于加波状态或掉波状态)时,将其功率变化较大的波长通道替换为第一光信号中相应的波长通道,从而得到第三光信号,该第三光信号的功率稳定。如此可以减少目标波段的波长通道的组合变化,降低光放大器内部的各波长通道的增益的变化以及SRS引起的各波长通道光功率变化,从而降低波长通道的光功率和信噪比的劣化,减少接收机的误码,减少对光传输系统的性能影响。
并且,当第三光信号为目标波段处于满波状态的光信号时,可以进一步减少剩余波长通道的性能劣化。
传统的光传输节点中的WSS可以额外分配一个端口,该端口用于接收假光信号,WSS在进行不同波长通道带宽调整、不同波长在不同端口之间的调度、以及波长通道光功率衰减调节等各种复杂功能的同时,可以进行假光信号和真波信号的相互替换。但是,由于光传输节点中的WSS的功能较为复杂,硬件性能无法支持假光信号和真波信号的快速替换,导致替换过程中业务中断时间过长,产生上层业务可感知的中断时延。
本申请实施例提供的光信号控制装置,设置在光传输节点的WSS之外。一方面,不需要占用WSS器件的额外端口,简化光传输节点的WSS结构,减少WSS的制造成本。另一方面,由于光信号控制装置相对于传统的WSS的结构简化,可以实现假光信号和真波信号的快速替换,该替换速度由传统的秒级提升至毫秒级,从而降低可能的业务中断时间,或者将业务中断时长压缩至50ms以内,实现上层业务无感知的中断时延。
本申请实施例所提供的光信号控制装置20可以根据光传输系统的需要设置在光传输系统的任意位置。示例的,其可以设置在光传输节点中。图15至图17是本申请实施例提供的三种光传输节点30的结构示意图,该光传输节点30包括WSS301和/或光放大器302。示例的,该光传输节点30为可重构光分插复用器(Reconfigurable Optical Add-Drop Multiplexer,ROADM)或者光放节点,该光放节点包括一级或多级光放大器。
在一种可选方式中,光传输节点30包括一个或多个WSS301,至少一个WSS301之后设置有一个本申请实施例提供的光信号控制装置20。示例的,每个WSS301之后设置有一个光信号控制装置20。在另一种可选方式中,光传输节点30包括一个或多个光放大器302,至少一个光放大器302之前设置有一个本申请实施例提供的光信号控制装置20。示例的,每个光放大器302之前设置有一个光信号控制装置20。
本申请实施例中,光传输节点30可以有多种结构,其结构可以参考图1和图2、图8、图15、图16和图17,也可以在前述几种结构上进行形变,本申请实施例对光传输节点的结构不做限定。在图8中,每个该WSS301之后设置的一级光放大器302,每个该光信号控制装置20位于一个该WSS301与一个该一级光放大器302之间。
图16和图17中,该光传输节点30包括多级光放大器302,该光信号控制装置20位于该多级光放大器302的任意相邻的两级光放大器302之间。值得说明的是,该光信号控制装置20还可以位于该多级光放大器302的第一级光放大器(也称光放输入级)之前。
图18是本申请实施例提供的一种具体的光传输节点30的结构示意图。图18中以光信号控制装置20的光开关模块202位于两级光放大器302之间为例进行说明,该光开关模块202也可以位于WSS301与一级放大器302之间。
本申请实施例中,该光放大器可以为掺铒光纤放大器(Erbium Doped Fiber Amplifier,EDFA)或拉曼放大器等光放大器。
在本申请实施例中,前述第二光信号所处的目标波段可以为S波段、C波段或L波段。例如,S波段的光波长范围为1460nm至1530nm,C波段的光波长范围为1530nm至1565nm,L波段的光波长范围为1565nm至1625nm。
综上所述,本申请实施例提供的光传输节点中,光信号控制装置在检测到第二光信号的至少一个波长通道的功率变化大于功率变化阈值后,调整接收的该第一光信号和该第二光信号中该至少一个波长通道的通断状态,以使调整后的该第一光信号和调整后的该第二光信号组合得到该第三光信号,并输出该第三光信号。在第二光信号的至少一个波长通道的功率变化较大(如处于加波状态或掉波状态)时,将其更新为第三光信号输出,有效减少该至少一个波长通道的功率变化所导致的剩余波长通道的光传输性能劣化。
本申请实施例提供一种光传输系统,该光传输系统可以包括本申请实施例提供的光信号控制装置20。图19是本申请实施例提供的一种光传输系统40的结构示意图。该光传输系统40包括至少两个光传输节点,该光传输节点为前述实施例中任一的光传输节点30;不同的该光传输节点30对应的目标波段互不相同。示例的,该至少两个光传输节点对应的目标波段为S波段、C波段和L波段中的任意两种或三种。例如,光传输系统40包括两个光传输节点30,对应的目标波段分别为C波段和L波段,则该光传输系统40的波段可以称为C+L波段;或者,光传输系统40包括三个光传输节点30,对应的目标波段分别为C波段、L波段和S波段,则该光传输系统40的波段可以称为S+C+L波段。
图20是本申请实施例提供的另一种光传输系统40的结构示意图。该光传输系统40可以降低受激拉曼效应对光功率的影响。前述至少两个光传输节点中每个光传输节点包括光放大器,则光传输系统40还包括:
功率检测模块401,用于检测该至少两个光传输节点30的功率信息。该功率信息为光功率信息。
增益控制模块402,用于基于该至少两个光传输节点30的功率信息,进行该至少两个光传输节点30对应的至少两个目标波段的光放增益控制。
可选地,该功率检测模块401还用于在检测到某一光传输节点30的功率信息低于预设功率值,输出指示该光传输节点30的功率信息低于预设功率值的告警信息。
本申请实施例,基于至少两个光传输节点30的功率信息,对该至少两个目标波段的光放增益进行控制,以基于光放增益的调整减少受激拉曼效应所引起的功率转移,从而提高光传输系统的可靠性。
本申请实施例提供一种光传输结构,该光传输结构包括前述至少两个光传输节点30。前述实施例以光传输系统包括一个光传输结构为例进行说明。实际实现时,光传输系统可以包括多个光传输结构。图21是本申请实施例提供的又一种光传输系统40的结构示意图。如图21所示,该光传输系统40包括多个光传输结构,每个光传输结构包括多个光传输节点,至少一个光传输结构包括前述功率检测模块401和增益控制模块402。图21以该光传输系统40包括2个光传输结构为例进行说明,该两个光传输结构分别为第一光传输结构和第二光传输结构。第一光传输结构包括多个光传输节点,每个光传输节点30包括光信号控制装置20,第二光传输结构包括多个光传输节点。图21以第一光传输结构包括的光传输节点30为ROADM, 第二光传输结构包括的光传输节点30为光放节点为例进行说明。
以光传输系统中的一个设置有功放控制结构的光传输结构为例,该光传输结构中包括s组功放控制结构(图中未标示),s为正整数,每组功放控制结构包括一个功率检测模块401和一个增益控制模块402。每组功放控制结构中的功率检测模块401用于向对应的增益控制模块402反馈检测到的功率信息。前述光传输结构包括一级或多级光放大器,至少一级光放大器后可以设置一组功放控制结构。示例的,每级光放大器R后可以设置一组功放控制结构,该组功放控制结构用于对该级光放大器R进行控制。可选地,光传输结构的第i级光放大器包括该至少两个光传输节点中每个光传输节点沿光信号传输方向(即光信号在光纤的主线路上传输的方向)上排布的第i个光放大器。1≤i≤I,I为每个光传输节点上光放大器的总数。可选地,s≤I,例如I=s。图21分别假设第一光传输结构和第二光传输结构均包括一级光放大器,也即是两个光传输结构中,I=1,在每一级光放大器后均设置有一组功放控制结构。
其中,每个光放大器具有输入端、输出端和控制端,光放大器通过输入端和输出端设置在光链路的主线路中。假设功放控制结构M1用于控制光传输系统40中的某一级光放大器M2,则该功放控制结构M1中的功率检测模块401分别用于获取该某一级光放大器M2中每个光放大器的输出端的功率信息;该功放控制结构M1中的增益控制模块402用于向该某一级光放大器M2中每个光放大器的控制端输出控制信号,如此来控制光放大器的光放增益。
本申请实施例中,光传输结构还包括其他结构,例如该光传输结构还包括合分波器,合分波器用于进行光信号的合波和/或分波。图21示意性地以该光传输系统40中,第一光传输结构包括第一合分波器403,第二光传输结构包括第二合分波器404和第三合分波器405为例进行说明,但并不对合分波器的数量和位置进行限定。并且,图21仅以第一光传输结构中设置有光信号控制装置20为例进行说明。实际实现时,在第一光传输结构中设置有光信号控制装置20的同时,第二光传输结构中也可以设置光信号控制装置20。或者,第一光传输结构中未设置光信号控制装置20,第二光传输结构中设置光信号控制装置20。
在一种可选方式中,前述功率信息为瞬时功率值。对于每一组功放控制结构,该增益控制模块402,用于:基于该至少两个光传输节点的瞬时功率值,计算该至少两个光传输节点中每个该光传输节点的功率变化值;基于每个该光传输节点的功率变化值,进行该至少两个目标波段的光放增益控制。
图22是本申请实施例提供的一种功放控制结构的示意图。假设设置有功放控制结构的光传输结构包括Q个光传输节点,Q≥2,例如2≤Q≤3。该功放控制结构还包括:Q个光分路器405和与每个光分路器连接的光电转换器406。Q个光分路器405与Q个光传输节点一一对应。
每个光分路器405,用于将该对应光传输节点的目标波段的第五光信号分出部分功率的第六光信号,该光分路器405可以设置在用于传输第五光信号的光链路上。其具有一个输入端和两个输出端,光分路器405将输入端输入的第五光信号分为两路,分别是目标波段的第六光信号和目标波段的第七光信号,该第七光信号即为新的第五光信号,其功率相对于输入光分路器的第五光信号的功率有所降低,但携带的业务信息并未减少。该过程实现将第五光信号分出部分用于进行功率信息检测。示例的,该第七光信号的功率与第五光信号的功率的比值范围为1%至10%,例如该第七光信号的功率与第五光信号的比值为5%,如此,可以保证光信号的分路对第七光信号的功率影响较小。
光电转换器406,用于将接收的第六光信号转换成电信号,并将转换后的电信号输出给 该功率检测模块401。示例的,该光电转换器406可以为PD。
对于一组功放控制结构,功率检测模块401用于:基于接收的Q个光电转换器406传输的电信号,确定Q个目标波段中每个波段的光功率的瞬时功率值,其中,该Q个目标波段中每个波段的光功率的瞬时功率值指的是属于不同目标波段且处于同一级的Q个光放大器的瞬时功率值。该Q个光放大器是功率检测模块401用于检测的光放大器。
在一种可选方式中,增益控制模块402,用于:基于受激拉曼效应模型以及Q个目标波段中每个波段的光功率的瞬时功率值,确定Q个目标波段中每个波段的功率变化值。受激拉曼效应模型满足:
(ΔP_1,ΔP_2,……ΔP_Q)=f(P_1,P_2,……P_Q);
其中,f表示受激拉曼效应模型,P_1至P_Q分别表示Q个目标波段中每个波段的光功率的瞬时功率值;ΔP_1至ΔP_Q分别表示Q个目标波段中每个波段的功率变化值。示例的,该受激拉曼效应模型可以为一个机器学习模型。
可选地,该受激拉曼效应模型还需要基于其他参数以及该Q个目标波段中每个波段的光功率的瞬时功率值,确定Q个目标波段中每个波段的功率变化值。该其他参数包括:光纤长度、光纤类型、光放类型参数、固定插损和/或Q个目标波段对应的设定系数。其中,光纤长度指的是Q个光传输节点的合波端口到下一组光传输节点的分波端口之间的光纤长度,即一个光传输结构到下一个光传输结构之间的光纤长度。以图21为例,第一光传输结构的光纤长度指的是第一光传输结构到第二光传输结构之间的光纤长度。同理,光纤类型指的是Q个光传输节点的合波端口到下一组光传输节点的分波端口之间的光纤类型。
该其他参数可以是光传输系统中的主控制器或者网管预先下发至增益控制模块402的,该其他参数可以周期性更新,以保证参数的准确性。该增益控制模块402可以以参数表的方式存储该其他参数。示例的,如表1所示,表1为增益控制模块402所存储的参数表的示意性表格。以表标识为K1的表为例,其记录的其他参数包括:光纤长度为80km(千米)、光纤类型为G.652、光放类型为OA_x、固定插损为IL01。
表1
Figure PCTCN2021113099-appb-000001
相应的,增益控制模块402,还用于:基于确定的Q个目标波段中每个波段的功率变化值:ΔP_1,ΔP_2,……ΔP_Q,分别对Q个目标波段的光放大器进行增益控制。例如,反向补偿受激拉曼效应所引起的功率变化,如此使得系统性能更稳定。示例的,假设ΔP_1=5dB,则控制对应的波段1的光放大器减去5dB的功率变化值;ΔP_1=-5dB,则控制对应的波段1的光放大器增加5dB的功率变化值。
需要说明的是,前述光传输系统40还可以包括其他结构,例如光发射机、光接收机、网管、主控制器、波分复用器或光调制器中的一种或多种,本申请实施例对此不做赘述。
本申请实施例提供的光信号控制装置、光传输节点、光传输系统可以应用于下文所述的方法,本申请实施例中各个模块的工作流程和工作原理可以参见下文各实施例中的描述。
图23是本申请是实施例提供的一种光信号控制方法的流程示意图,该方法可以应用于前述光信号控制装置,如图23所示,该方法包括:
S501、检测光信号控制装置外部的第二光信号在至少一个波长通道的功率变化大于预设的功率变化阈值。
在一种可选实现方式中,该至少一个波长通道的功率变化大于功率变化阈值指示掉波状态或加波状态,该掉波状态为该至少一个波长通道从有波到无波的状态,该加波状态为该至少一个波长通道从无波到有波的状态。
S502、在检测到该至少一个波长通道的功率变化大于功率变化阈值后,调整该光信号控制装置生成的第一光信号和该第二光信号中该至少一个波长通道的通断状态,以使调整后的该第一光信号和调整后的该第二光信号组合得到该第三光信号。
参考图9,光信号控制装置调整第一光信号和该第二光信号中该至少一个波长通道的通断状态的过程包括:控制第一光信号和第二光信号的相同波长的波长通道的相互替换,该相互替换过程包括:将该第二光信号的第一波长通道替换为该第一光信号的第一波长通道,或者,将该第一光信号的第一波长通道替换为该第二光信号的第一波长通道;该第二光信号的第一波长通道和该第一光信号的第一波长通道具有相同的波长。如此,可以使得最终输出的第三光信号中相对于发射端发射的第二光信号(即加波或掉波前的第二光信号)的波长通道组合不变化。
在一种可选方式中,光信号控制装置(如检测模块203)可以通过检测导频信号来实现对掉波状态或加波状态的检测。在一种可选示例中,该第二光信号中携带有业务信息的波长通道调制有具有多个导频频点的导频信号,该多个导频频点与多个波长通道分别对应,光信号控制装置在检测到至少一个导频频点从信号未丢失状态切换为信号丢失状态后,确定该至少一个导频频点对应的波长通道处于掉波状态;在检测到至少一个导频频点从信号丢失状态切换为信号未丢失状态后,确定该至少一个导频频点对应的波长通道处于加波状态。
相应的,在一种可选实现方式中,S502中在检测到该至少一个波长通道的功率变化大于功率变化阈值后,调整该光信号控制装置生成的第一光信号和该第二光信号中该至少一个波长通道的通断状态,以使调整后的该第一光信号和调整后的该第二光信号组合得到该第三光信号的过程,包括:
在确定该第二光信号的第一波长通道处于掉波状态后,控制该第一光信号的该第一波长通道导通,控制该第二光信号的该第一波长通道关断。示例的,通过对该第一波长通道进行第一滤波处理,以使该第一波长通道导通,导通的该第一波长通道的波长位于带通滤波范围内。
在另一种可选实现方式中,S502中在检测到该至少一个波长通道的功率变化大于功率变化阈值后,调整该光信号控制装置生成的第一光信号和该第二光信号中该至少一个波长通道的通断状态,以使调整后的该第一光信号和调整后的该第二光信号组合得到该第三光信号的过程,包括:
在确定该第二光信号的第一波长通道处于加波状态后,控制该第一光信号的第一波长通 道关断,控制该第二光信号的该第一波长通道导通,该第一光信号的第一波长通道和该第二光信号的第一波长通道具有相同的波长。示例的,通过对该第一波长通道进行第二滤波处理,以使该第一波长通道关断,关断的该第一波长通道的波长位于带阻滤波范围内。
前述对波长通道的通断控制过程可以参考前述光开关模块202执行的相应过程。
本申请实施例提供的光信号控制方法,在该检测到第二光信号的至少一个波长通道的功率变化大于功率变化阈值后,调整接收的该第一光信号和该第二光信号中该至少一个波长通道的通断状态,以使调整后的该第一光信号和调整后的该第二光信号组合得到该第三光信号,并输出该第三光信号。在第二光信号的至少一个波长通道的功率变化较大(如处于加波状态或掉波状态)时,将其功率变化较大的波长通道替换为第一光信号中相应的波长通道,从而得到第三光信号,该第三光信号的功率稳定。如此可以减少目标波段的波长通道的组合变化,降低光放大器内部的各波长通道的增益的变化以及SRS引起的各波长通道光功率变化,从而降低波长通道的光功率和信噪比的劣化,减少接收机的误码,减少对光传输系统的性能影响。
并且,当第三光信号为目标波段处于满波状态的光信号时,可以进一步减少剩余波长通道的性能劣化。
需要说明的是,本申请实施例提供的光信号控制方法的先后顺序可以进行适当调整,步骤也可以根据情况进行相应增减,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化的方法,都应涵盖在本申请的保护范围之内,因此不再赘述。
图24是本申请是实施例提供的一种光信号控制方法的流程示意图,该方法可以应用于前述光传输系统,该光传输系统包括至少两个光传输节点,不同的所述光传输节点对应的目标波段互不相同。如图24所示,该方法包括:
S601、检测至少两个光传输节点的功率信息。
前述功率信息为瞬时功率值,也即是光功率的瞬时功率值。对于每个光传输节点,该瞬时功率值可以通过将光链路的主线路传输的第五光信号分出部分功率的第六光信号,将该第六光信号转换成电信号,并基于转换得到的电信号确定该光传输节点的瞬时功率值。
S602、基于至少两个光传输节点的功率信息,进行至少两个光传输节点对应的至少两个目标波段的光放增益控制。
示例的,S602中进行光放增益控制的过程可以包括:
A1、基于至少两个光传输节点的瞬时功率值,计算至少两个光传输节点中每个光传输节点的功率变化值。
示例的,假设光传输系统40包括一个或多个光传输结构,其中,第一光传输结构为该一个或多个光传输结构中的一个光传输结构,该第一光传输结构包括Q个光传输节点,Q≥2,例如2≤Q≤3。则对于该第一光传输结构,基于受激拉曼效应模型以及Q个目标波段中每个波段的光功率的瞬时功率值,确定Q个目标波段中每个波段的功率变化值。受激拉曼效应模型满足:
(ΔP_1,ΔP_2,……ΔP_Q)=f(P_1,P_2,……P_Q);
其中,f表示受激拉曼效应模型,P_1至P_Q分别表示Q个目标波段中每个波段的光功率的瞬时功率值;ΔP_1至ΔP_Q分别表示Q个目标波段中每个波段的功率变化值。示例的,该受激拉曼效应模型可以为一个机器学习模型。
可选地,该受激拉曼效应模型还需要基于其他参数以及该Q个目标波段中每个波段的光功率的瞬时功率值,确定Q个目标波段中每个波段的功率变化值。该其他参数包括:Q个光传输节点所连接的光纤长度、光纤类型、光放类型参数、固定插损和/或Q个目标波段对应的设定系数。该其他参数可以是光传输系统中的主控制器或者网管预先下发至增益控制模块402的,该其他参数可以周期性更新,以保证参数的准确性。该增益控制模块402可以以如表1所示的参数表的方式存储该其他参数。
A2、基于每个光传输节点的功率变化值,进行至少两个目标波段的光放增益控制。
示例的,基于确定的Q个目标波段中每个波段的功率变化值:ΔP_1,ΔP_2,……ΔP_Q(即每个光传输节点的功率变化值),分别对Q个目标波段的光放大器进行增益控制。例如,反向补偿受激拉曼效应所引起的功率变化,如此使得系统性能更稳定。
前述光信号控制方法可以由光传输系统中的一组功放控制结构执行。在实际实现时,至少两个光传输节点包括一级或多级光放大器,至少一级光放大器后可以设置一组功放控制结构。示例的,每级光放大器R后可以设置一组功放控制结构,该组功放控制结构用于对该级光放大器R进行控制,每组功放控制结构用于执行前述S601和S602。
本申请实施例,基于至少两个光传输节点的功率信息,对该至少两个目标波段的光放增益进行控制,以基于光放增益的调整减少拉曼效所引起的功率转移,从而提高光传输系统的可靠性。
前述图23和图24所提供的光信号控制方法也可以由同一计算机设备控制执行,该计算机设备可以为光传输系统的主控制器。
需要说明的是,本申请实施例提供的光信号控制方法的先后顺序可以进行适当调整,步骤也可以根据情况进行相应增减,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化的方法,都应涵盖在本申请的保护范围之内,因此不再赘述。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的方法的具体步骤,可以参考前述光信号控制装置、光传输节点和光传输系统的实施例中的对应过程,在此不再赘述。
可选地,图25是本申请实施例提供的计算机设备的一种可能的基本硬件架构。
参见图25,计算机设备700包括处理器701、存储器702、通信接口703和总线704。
计算机设备700中,处理器701的数量可以是一个或多个,图25仅示意了其中一个处理器701。可选地,处理器701,可以是CPU。如果计算机设备700具有多个处理器701,多个处理器701的类型可以不同,或者可以相同。可选地,计算机设备700的多个处理器701还可以集成为多核处理器。
存储器702存储计算机指令和数据;存储器702可以存储实现本申请提供的光信号控制方法所需的计算机指令和数据,例如,存储器702存储用于实现光信号控制方法的步骤的指令。存储器702可以是以下存储介质的任一种或任一种组合:非易失性存储器(例如只读存储器(ROM)、固态硬盘(SSD)、硬盘(HDD)、光盘),易失性存储器。
通信接口703可以是以下器件的任一种或任一种组合:网络接口(例如以太网接口)、无线网卡等具有网络接入功能的器件。
通信接口703用于计算机设备700与其它计算机设备或者终端进行数据通信。
总线704可以将处理器701与存储器702和通信接口703连接。这样,通过总线704,处理器701可以访问存储器702,还可以利用通信接口703与其它计算机设备或者终端进行数据交互。
在本申请中,计算机设备700执行存储器702中的计算机指令,使得计算机设备700实现本申请提供的光信号控制方法,或者使得计算机设备700部署光信号控制装置。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器,上述指令可由计算机设备的处理器执行以完成本申请各个实施例所示的光信号控制方法。例如,该非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现,所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机的可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线)或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质,或者半导体介质(例如固态硬盘)等。
在本申请中,术语“第一”、“第二”和“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。术语“至少一个”表示1个或多个,术语“多个”指两个或两个以上,除非另有明确的限定。A参考B,指的是A与B相同或者A为B的简单变形。波长通道A与波长通道B对应指的是波长通道A与波长通道B的波长相同。本申请前述实施例中的“波长”均指光波长,“功率”均指光功率。
需要说明的是:上述实施例提供的光信号控制装置在执行该光信号控制方法时,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将设备的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。另外,上述实施例提供的光信号控制装置、光传输节点、光传输系统与光信号控制方法实施例属于同一构思,其具体实现过程详见方法实施例,这里不再赘述。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。
以上所述仅为本申请的可选实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (25)

  1. 一种光信号控制装置,其特征在于,所述装置包括:
    光源,用于输出第一光信号;
    光开关模块,所述光开关模块具有第一输入端、第二输入端和输出端,所述第一输入端用于接收所述第一光信号,所述第二输入端用于接收外部的第二光信号,所述输出端用于输出第三光信号;
    检测模块,用于检测所述第二光信号在至少一个波长通道的功率变化大于预设的功率变化阈值;
    所述光开关模块,用于在所述检测模块检测到所述至少一个波长通道的功率变化大于功率变化阈值后,调整接收的所述第一光信号和所述第二光信号中所述至少一个波长通道的通断状态,以使调整后的所述第一光信号和调整后的所述第二光信号组合得到所述第三光信号。
  2. 根据权利要求1所述的光信号控制装置,其特征在于,所述至少一个波长通道的功率变化大于功率变化阈值指示掉波状态或加波状态,所述掉波状态为所述至少一个波长通道从有波到无波的状态,所述加波状态为所述至少一个波长通道从无波到有波的状态。
  3. 根据权利要求2所述的光信号控制装置,其特征在于,所述第二光信号中携带有业务信息的波长通道调制有具有多个导频频点的导频信号,所述多个导频频点与多个波长通道分别对应,
    所述检测模块,用于检测所述导频信号;
    所述光开关模块用于:
    在所述检测模块检测到至少一个导频频点从信号未丢失状态切换为信号丢失状态后,确定所述至少一个导频频点对应的波长通道处于所述掉波状态;
    在所述检测模块检测到至少一个导频频点从信号丢失状态切换为信号未丢失状态后,确定所述至少一个导频频点对应的波长通道处于所述加波状态。
  4. 根据权利要求2或3所述的光信号控制装置,其特征在于,所述光开关模块用于:
    在确定所述第二光信号的第一波长通道处于所述掉波状态后,控制所述第一输入端接收的第一光信号的所述第一波长通道导通,控制所述第二输入端接收的第二光信号的所述第一波长通道关断;或者,
    在确定所述第二光信号的第一波长通道处于所述加波状态后,控制所述第一输入端接收的第一光信号的所述第一波长通道关断,控制所述第二输入端接收的第二光信号的所述第一波长通道导通,所述第一光信号的第一波长通道和所述第二光信号的第一波长通道具有相同的波长。
  5. 根据权利要求4所述的光信号控制装置,其特征在于,所述光开关模块用于:
    通过对所述第一波长通道进行第一滤波处理,以使所述第一波长通道导通,导通的所述第一波长通道的波长位于带通滤波范围内;通过对所述第一波长通道进行第二滤波处理,以 使所述第一波长通道关断,关断的所述第一波长通道的波长位于带阻滤波范围内。
  6. 根据权利要求1至5任一所述的光信号控制装置,其特征在于,所述光开关模块用于:
    将所述第二光信号的第一波长通道替换为所述第一光信号的第一波长通道,或者,将所述第一光信号的第一波长通道替换为所述第二光信号的第一波长通道;所述第二光信号的第一波长通道和所述第一光信号的第一波长通道具有相同的波长,所述第二光信号的第一波长通道为检测到的功率变化大于阈值的至少一个波长通道的一个或多个波长通道。
  7. 根据权利要求1至6任一所述的光信号控制装置,其特征在于,所述光信号控制装置,还包括:
    光分路器,用于将所述第二光信号分出部分功率的第四光信号;
    光电转换器,用于将所述第四光信号转换成电信号,并将转换后的电信号输出给所述检测模块。
  8. 根据权利要求1至7任一所述的光信号控制装置,其特征在于,所述光开关模块,包括:
    具有输入端和输出端的第一光滤波器,所述第一光滤波器的输入端为所述第一输入端,所述第一光滤波器用于对接收的第一光信号进行滤波;
    具有输入端和输出端的第二光滤波器,所述第二光滤波器的输入端为所述第二输入端,所述第二光滤波器用于对接收的第二光信号进行滤波,对于相同波长的波长通道,所述第一光滤波器和所述第二光滤波器的滤波特性相反;
    光合路器,所述光合路器具有两个输入端和一个输出端,所述两个输入端分别与所述第一光滤波器的输出端和所述第二光滤波器的输出端连接,所述光合路器的输出端为所述光开关模块的输出端,所述光合路器用于将所述两个输入端接收的滤波后的所述第一光信号和滤波后的所述第二光信号组合得到所述第三光信号。
  9. 根据权利要求8所述的光信号控制装置,其特征在于,
    第一光滤波器和所述第二光滤波器中的至少一个为波长阻断器。
  10. 根据权利要求8或9所述的光信号控制装置,其特征在于,所述光合路器与所述第一光滤波器连接的输入端的分光比小于所述光合路器与所述第二光滤波器连接的输入端的分光比。
  11. 根据权利要求1至7任一所述的光信号控制装置,其特征在于,所述光开关模块,包括:
    具有输入端和n个第三输出端的第一光分波器,具有输入端和n个第四输出端的第二光分波器,n个光开关以及光合路器,n为大于1的正整数,所述n个光开关中每个光开关具有第三输入端、第四输入端和第五输出端,所述光合路器具有n个输入端和1个输出端;
    所述第一光分波器的输入端为所述第一输入端,所述第一光分波器用于对接收的第一光 信号进行分波得到n个波长通道的光信号,并将所述n个波长通道的光信号分别通过所述n个第三输出端输入至所述n个光开关的第三输入端;
    所述第二光分波器的输入端为所述第二输入端,所述第二光分波器用于对接收的第二光信号进行分波得到n个波长通道的光信号,并将所述n个波长通道的光信号分别通过所述n个第四输出端输入至所述n个光开关的第四输入端;
    每个所述光开关的第三输入端和第四输入端接收的光信号的波长相同,每个所述光开关用于在所述第三输入端接收的光信号和所述第四输入端接收的光信号中选择一路从第五输出端输出;
    所述光合路器的输出端为所述光开关模块的输出端,所述光合路器的n个输入端用于分别接收n个所述光开关输出的n个光信号,所述光合路器用于将所述n个光信号组合得到所述第三光信号。
  12. 一种光传输节点,其特征在于,包括波长选择开关WSS和/或光放大器,所述光传输节点还包括如权利要求1至11任一所述的光信号控制装置。
  13. 根据权利要求12所述的光传输节点,其特征在于,所述光传输节点包括:一个或多个所述WSS,以及每个所述WSS之后设置的一级光放大器,每个所述光信号控制装置位于一个所述WSS与一个所述一级光放大器之间;
    或者,所述光传输节点包括多级光放大器,所述光信号控制装置位于所述多级光放大器的任意相邻的两级光放大器之间。
  14. 根据权利要求12或13所述的光传输节点,其特征在于,所述第二光信号所处的目标波段为S波段、C波段或L波段。
  15. 一种光传输系统,其特征在于,所述光传输系统包括至少两个光传输节点,所述光传输节点为权利要求12至14任一所述的光传输节点;
    不同的所述光传输节点对应的目标波段互不相同。
  16. 根据权利要求15所述的光传输系统,其特征在于,每个所述光传输节点包括光放大器,所述光传输系统还包括:
    功率检测模块,用于检测所述至少两个光传输节点的功率信息;
    增益控制模块,用于基于所述至少两个光传输节点的功率信息,进行所述至少两个光传输节点对应的至少两个目标波段的光放增益控制。
  17. 根据权利要求16所述的光传输系统,其特征在于,所述功率信息为瞬时功率值,所述增益控制模块,用于:
    基于所述至少两个光传输节点的瞬时功率值,计算所述至少两个光传输节点中每个所述光传输节点的功率变化值;
    基于每个所述光传输节点的功率变化值,进行所述至少两个目标波段的光放增益控制。
  18. 一种光信号控制方法,其特征在于,所述方法包括:
    检测光信号控制装置外部的第二光信号在至少一个波长通道的功率变化大于预设的功率变化阈值;
    在检测到所述至少一个波长通道的功率变化大于功率变化阈值后,调整所述光信号控制装置生成的第一光信号和所述第二光信号中所述至少一个波长通道的通断状态,以使调整后的所述第一光信号和调整后的所述第二光信号组合得到所述第三光信号。
  19. 根据权利要求18所述的方法,其特征在于,所述至少一个波长通道的功率变化大于功率变化阈值指示掉波状态或加波状态,所述掉波状态为所述至少一个波长通道从有波到无波的状态,所述加波状态为所述至少一个波长通道从无波到有波的状态。
  20. 根据权利要求19所述的方法,其特征在于,所述第二光信号中携带有业务信息的波长通道调制有具有多个导频频点的导频信号,所述多个导频频点与多个波长通道分别对应,所述方法还包括:
    在检测到至少一个导频频点从信号未丢失状态切换为信号丢失状态后,确定所述至少一个导频频点对应的波长通道处于所述掉波状态;
    在检测到至少一个导频频点从信号丢失状态切换为信号未丢失状态后,确定所述至少一个导频频点对应的波长通道处于所述加波状态。
  21. 根据权利要求18或19所述的方法,其特征在于,所述在检测到所述至少一个波长通道的功率变化大于功率变化阈值后,调整所述光信号控制装置生成的第一光信号和所述第二光信号中所述至少一个波长通道的通断状态,以使调整后的所述第一光信号和调整后的所述第二光信号组合得到所述第三光信号,包括:
    在确定所述第二光信号的第一波长通道处于所述掉波状态后,控制所述第一光信号的所述第一波长通道导通,控制所述第二光信号的所述第一波长通道关断;或者,
    在确定所述第二光信号的第一波长通道处于所述加波状态后,控制所述第一光信号的所述第一波长通道关断,控制所述第二光信号的所述第一波长通道导通,所述第一光信号的第一波长通道和所述第二光信号的第一波长通道具有相同的波长。
  22. 根据权利要求21所述的方法,其特征在于,所述控制所述第一光信号的所述第一波长通道导通,包括:
    通过对所述第一波长通道进行第一滤波处理,以使所述第一波长通道导通,导通的所述第一波长通道的波长位于带通滤波范围内;
    所述控制所述第二光信号的所述第一波长通道关断,包括:
    通过对所述第一波长通道进行第二滤波处理,以使所述第一波长通道关断,关断的所述第一波长通道的波长位于带阻滤波范围内。
  23. 根据权利要求18至22任一所述的方法,其特征在于,所述在检测到所述至少一个 波长通道的功率变化大于功率变化阈值后,调整所述光信号控制装置生成的第一光信号和所述第二光信号中所述至少一个波长通道的通断状态,以使调整后的所述第一光信号和调整后的所述第二光信号组合得到所述第三光信号,包括:
    将所述第二光信号的第一波长通道替换为所述第一光信号的第一波长通道,或者,将所述第一光信号的第一波长通道替换为所述第二光信号的第一波长通道;所述第二光信号的第一波长通道和所述第一光信号的第一波长通道具有相同的波长,所述第二光信号的第一波长通道为检测到的功率变化大于阈值的至少一个波长通道的一个或多个波长通道。
  24. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机指令,所述计算机指令指示计算机设备执行权利要求18至23任一所述的光信号控制方法。
  25. 一种芯片,其特征在于,所述芯片包括可编程逻辑电路和/或程序指令,当所述芯片运行时用于执行权利要求18至23任一所述的光信号控制方法。
PCT/CN2021/113099 2020-08-31 2021-08-17 光信号控制方法及装置、光传输节点和光传输系统 WO2022042378A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21860216.7A EP4199388A4 (en) 2020-08-31 2021-08-17 METHOD AND DEVICE FOR CONTROLLING OPTICAL SIGNALS, OPTICAL TRANSMISSION NODE AND OPTICAL TRANSMISSION SYSTEM
US18/175,055 US20230224062A1 (en) 2020-08-31 2023-02-27 Optical Signal Control Method and Apparatus, Optical Transmission Node, and Optical Transmission System

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010901207.1 2020-08-31
CN202010901207.1A CN114124287A (zh) 2020-08-31 2020-08-31 光信号控制方法及装置、光传输节点和光传输系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/175,055 Continuation US20230224062A1 (en) 2020-08-31 2023-02-27 Optical Signal Control Method and Apparatus, Optical Transmission Node, and Optical Transmission System

Publications (1)

Publication Number Publication Date
WO2022042378A1 true WO2022042378A1 (zh) 2022-03-03

Family

ID=80354619

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/113099 WO2022042378A1 (zh) 2020-08-31 2021-08-17 光信号控制方法及装置、光传输节点和光传输系统

Country Status (4)

Country Link
US (1) US20230224062A1 (zh)
EP (1) EP4199388A4 (zh)
CN (1) CN114124287A (zh)
WO (1) WO2022042378A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115412193A (zh) * 2022-08-29 2022-11-29 北京百度网讯科技有限公司 光信号的传输方法、装置、设备以及存储介质

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117527129A (zh) * 2022-07-30 2024-02-06 华为技术有限公司 光网络节点及光网络系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060221435A1 (en) * 2005-03-30 2006-10-05 Fujitsu Limited Wavelength division multiplexing device, an optical leakage prevention method, and a wavelength division multiplexing communication system
CN1859061A (zh) * 2006-01-24 2006-11-08 华为技术有限公司 一种提高波分复用系统光层保护可靠性的方法
US20180069627A1 (en) * 2015-05-14 2018-03-08 Solid, Inc. Optical signal monitoring device of wavelength division multiplexing based network
WO2018187930A1 (zh) * 2017-04-11 2018-10-18 华为技术有限公司 发送设备、接收设备、光传输系统、光功率控制方法
CN110380809A (zh) * 2019-07-31 2019-10-25 瑞斯康达科技发展股份有限公司 一种波分复用传输系统及其传输方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3522509B2 (ja) * 1997-10-17 2004-04-26 富士通株式会社 光伝送装置及び光通信システム
US6907195B2 (en) * 2001-08-28 2005-06-14 Dorsal Networks, Inc. Terminals having sub-band substitute signal control in optical communication systems
FR2849305B1 (fr) * 2002-12-24 2005-04-29 Cit Alcatel Procede et dispositif perfectionnes de controle de la puissance delivree en sortie d'un noeud d'un reseau optique a commutation de bandes de longueurs d'onde
WO2013170909A1 (en) * 2012-05-15 2013-11-21 Telefonaktiebolaget L M Ericsson (Publ) Dummy optical signals for optical networks

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060221435A1 (en) * 2005-03-30 2006-10-05 Fujitsu Limited Wavelength division multiplexing device, an optical leakage prevention method, and a wavelength division multiplexing communication system
CN1859061A (zh) * 2006-01-24 2006-11-08 华为技术有限公司 一种提高波分复用系统光层保护可靠性的方法
US20180069627A1 (en) * 2015-05-14 2018-03-08 Solid, Inc. Optical signal monitoring device of wavelength division multiplexing based network
WO2018187930A1 (zh) * 2017-04-11 2018-10-18 华为技术有限公司 发送设备、接收设备、光传输系统、光功率控制方法
CN110380809A (zh) * 2019-07-31 2019-10-25 瑞斯康达科技发展股份有限公司 一种波分复用传输系统及其传输方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4199388A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115412193A (zh) * 2022-08-29 2022-11-29 北京百度网讯科技有限公司 光信号的传输方法、装置、设备以及存储介质

Also Published As

Publication number Publication date
US20230224062A1 (en) 2023-07-13
EP4199388A4 (en) 2024-01-31
EP4199388A1 (en) 2023-06-21
CN114124287A (zh) 2022-03-01

Similar Documents

Publication Publication Date Title
US7826748B2 (en) Systems and methods for adaptive gain control to compensate OSNR penalty caused by side-lobe of MEMS-based reconfigurable optical add-drop multiplexers
JP5446944B2 (ja) 光ネットワークおよびその制御方法
US8280257B2 (en) Systems and methods for side-lobe compensation in reconfigurable optical add-drop multiplexers
CA2789653C (en) Flexible branching unit and system including the same
US8260141B2 (en) Method to transform a dynamic analog optical network to a digital representation
US20040234262A1 (en) Optical transmission systems including optical switching devices, control apparatuses, and methods
US20030223751A1 (en) Optical transmission system
US20230224062A1 (en) Optical Signal Control Method and Apparatus, Optical Transmission Node, and Optical Transmission System
JP5807338B2 (ja) 光伝送装置および光フィルタ回路
US9094148B2 (en) Adaptive optical amplifier for WDM systems
WO2019179320A1 (en) Method and system for controlling channel replacement and spectral occupancy
EP1043859A2 (en) Optical add/drop multiplexer node device
JP2015019289A (ja) 光伝送装置、光伝送システム、及び光伝送方法
CN111355554A (zh) 路由合波器、路由合波方法、波分路由方法及网络系统
JP2016163209A (ja) 光伝送装置及び波長制御方法
US20090034974A1 (en) Banded Semiconductor Optical Amplifiers and Waveblockers
JP2015533271A (ja) 分岐した光ネットワークにおける障害回復
US20050286896A1 (en) Hybrid optical ring network
US20080181612A1 (en) Method and system for wavelength division multiplex optical signal combining
JP2006279610A (ja) 光伝送装置
US6907158B2 (en) Configurable optical add/drop multiplexer with partial or complete wavelength drop capability
JP2008503886A (ja) 波長分割多重(wdm)光分波器
US9124382B2 (en) Transmission device, transmission system, and method for adjusting passband
EP3327963B1 (en) Optical multiplexing device and associated equipment and method
WO2023109279A1 (zh) 一种光传输设备和系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21860216

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021860216

Country of ref document: EP

Effective date: 20230313

NENP Non-entry into the national phase

Ref country code: DE