WO2014081161A1 - 이리듐(ⅲ) 착화합물 및 이를 포함하는 유기 전계 발광 소자 - Google Patents

이리듐(ⅲ) 착화합물 및 이를 포함하는 유기 전계 발광 소자 Download PDF

Info

Publication number
WO2014081161A1
WO2014081161A1 PCT/KR2013/010453 KR2013010453W WO2014081161A1 WO 2014081161 A1 WO2014081161 A1 WO 2014081161A1 KR 2013010453 W KR2013010453 W KR 2013010453W WO 2014081161 A1 WO2014081161 A1 WO 2014081161A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
aryl
iridium
iii
alkyl
Prior art date
Application number
PCT/KR2013/010453
Other languages
English (en)
French (fr)
Inventor
엄민식
백영미
박호철
이창준
신진용
김태형
Original Assignee
주식회사 두산
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 두산 filed Critical 주식회사 두산
Publication of WO2014081161A1 publication Critical patent/WO2014081161A1/ko

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/0033Iridium compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/553Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having one nitrogen atom as the only ring hetero atom
    • C07F9/576Six-membered rings
    • C07F9/58Pyridine rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • H10K85/324Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising aluminium, e.g. Alq3
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/185Metal complexes of the platinum group, i.e. Os, Ir, Pt, Ru, Rh or Pd
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission

Definitions

  • the present invention relates to a novel iridium (III) complex and an organic electroluminescent device comprising the same.
  • An organic electroluminescent device typically has a structure including an anode and a cathode and an organic material layer therebetween.
  • the organic material layer is often composed of a multi-layered structure composed of different materials in order to increase the efficiency and stability of the organic EL device, for example, hole injection layer (HIL), hole transport layer (HTL), light emitting layer (EML), electron transport layer ( ETL), an electron injection layer (EIL), and the like.
  • the light emitting layer of the organic EL device may use a blue, green, or red light emitting material depending on the light emission color, or may use yellow and orange light emitting materials in order to realize a better natural color.
  • a host / dopant system may be used as a light emitting material in order to increase luminous efficiency through increasing color purity and energy transfer. The principle is that when a small amount of dopant having a smaller energy band gap and excellent luminous efficiency than the host mainly constituting the light emitting layer is mixed in the light emitting layer, excitons generated in the host are transported to the dopant to give high efficiency light. At this time, since the wavelength of the host is shifted to the wavelength of the dopant, light having a desired wavelength can be obtained according to the type of dopant to be used.
  • An object of the present invention is to provide a novel iridium (III) complex compound and an organic electroluminescent device comprising the same that can improve the color purity, luminous efficiency and lifespan of the organic electroluminescent device.
  • the present invention provides an iridium (III) complex compound represented by the following formula (1).
  • X-Y is an organic ligand, and is selected from the group consisting of structures represented by L1 to L24 below,
  • R 1 to R 8 and R 21 to R 32 of the L 1 to L 24 are each independently hydrogen, deuterium, halogen, cyano group, nitro group, amino group, C 1 -C 40 alkyl group, C 3 -C 40 cyclo Alkyl group, heterocycloalkyl group of 3 to 40 nuclear atoms, aryl group of C 6 to C 60 , heteroaryl group of 5 to 60 nuclear atoms, alkyloxy group of C 1 to C 40 , aryl of C 6 to C 60 Oxy group, C 1 ⁇ C 40 alkylsilyl group, C 6 ⁇ C 60 arylsilyl group C 1 ⁇ C 40 alkyl boron group, C 6 ⁇ C 60 aryl boron group, C 6 ⁇ C 60 aryl force It is selected from the group consisting of a pin group, a C 6 ⁇ C 60 aryl phosphine oxide group and a C 6 ⁇ C 60 arylamine group, may be combined with adjacent groups to
  • R 1 to R 8 and R 21 to R 32 is represented by the following Chemical Formula 2,
  • R 11 and R 12 are each independently selected from the group consisting of hydrogen, deuterium, an alkyl group of 1 to 40 carbon atoms, an aryl group of 6 to 60 carbon atoms and a heteroaryl group of 5 to 60 nuclear atoms,
  • the boron group, the arylphosphine group, the arylphosphine oxide group and the arylamine group are each independently a C 1 to C 40 alkyl group, a C 3 to C 40 cycloalkyl group, a nuclear atom having 3 to 40 heterocycloalkyl groups, and C 6 to C 60 aryl group, nuclear atom 5 to 60 heteroaryl group, C 1 ⁇ C 40 alkyloxy group, C 6 ⁇ C 60 aryloxy group, C 1 ⁇ C 40 alkylsilyl group, C 6 ⁇ group C 60 aryl silyl group, C 1 ⁇ alkyl boron C 40 of
  • n is an integer of 1-3.
  • R 1 to R 8 and R 21 to R 32 when each of R 1 to R 8 and R 21 to R 32 is substituted with a plurality of substituents, the plurality of substituents may be the same or different from each other.
  • the side may be in the form of one or plural to iridium (Ir), the organic ligand side of XY may be bound to iridium (Ir), or may be in the form of one or plural.
  • Alkyl used in the present invention means a monovalent functional group obtained by removing a hydrogen atom from a straight or branched chain saturated hydrocarbon of 1 to 40 carbon atoms, non-limiting examples thereof are methyl, ethyl, propyl, isobutyl, sec-butyl , Pentyl, iso-amyl, hexyl and the like.
  • Alkenyl used in the present invention means a monovalent functional group obtained by removing a hydrogen atom from a straight or branched chain unsaturated hydrocarbon having 2 to 40 carbon atoms having at least one carbon-carbon double bond.
  • Non-limiting examples thereof include vinyl, allyl, isopropenyl, 2-butenyl and the like.
  • Alkynyl used in the present invention means a monovalent functional group obtained by removing one or more carbon-carbon triple bonds and hydrogen atoms from straight or branched chain unsaturated hydrocarbons having 2 to 40 carbon atoms.
  • Non-limiting examples thereof include ethynyl, 2-propynyl and the like.
  • Cycloalkyl used in the present invention means a monovalent functional group obtained by removing a hydrogen atom from a monocyclic or polycyclic non-aromatic hydrocarbon having 3 to 40 carbon atoms (saturated cyclic hydrocarbon).
  • Non-limiting examples thereof include cyclopropyl, cyclopentyl, cyclohexyl, norbornyl, adamantine and the like.
  • Heterocycloalkyl used in the present invention means a monovalent functional group obtained by removing a hydrogen atom from a non-aromatic hydrocarbon (saturated cyclic hydrocarbon) having 3 to 40 nuclear atoms, and preferably at least one carbon in the ring, preferably 1 To 3 carbons are substituted with a hetero atom such as N, O or S.
  • Non-limiting examples thereof include morpholine, piperazine and the like.
  • Aryl used in the present invention means a monovalent functional group obtained by removing a hydrogen atom from an aromatic hydrocarbon having 6 to 60 carbon atoms, in which a single ring or two or more rings are combined.
  • the two or more rings may be attached in a simple or condensed form with each other.
  • Non-limiting examples thereof include phenyl, biphenyl, triphenyl, terphenyl, naphthyl, fluorenyl, phenanthryl, anthracenyl, indenyl and the like.
  • Heteroaryl used in the present invention is a monovalent functional group obtained by removing a hydrogen atom from a monoheterocyclic or polyheterocyclic aromatic hydrocarbon having 5 to 60 nuclear atoms, and at least one carbon in the ring, preferably 1 to 3 Carbons are substituted with heteroatoms such as nitrogen (N), oxygen (O), sulfur (S) or selenium (Se).
  • the heteroaryl may be attached in a form in which two or more rings are simply attached or condensed with each other, and may also include a condensed form with an aryl group.
  • heteroaryls include six-membered monocyclic rings such as pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl, triazinyl; Polycyclics such as phenoxathienyl, indolinzinyl, indolyl, purinyl, quinolyl, benzothiazole, carbazolyl ring; And 2-furanyl, N-imidazolyl, 2-isoxazolyl, 2-pyridinyl, 2-pyrimidinyl, and the like.
  • Alkyloxy used in the present invention means a monovalent functional group represented by RO-, wherein R is alkyl having 1 to 40 carbon atoms, and may include a linear, branched, or cyclic structure. Can be. Non-limiting examples of such alkyloxy include methoxy, ethoxy, n-propoxy, 1-propoxy, t-butoxy, n-butoxy, pentoxy and the like.
  • Aryloxy used in the present invention means a monovalent functional group represented by R'O-, wherein R 'is an aryl having 6 to 60 carbon atoms.
  • R ' is an aryl having 6 to 60 carbon atoms.
  • Non-limiting examples of such aryloxy include phenyloxy, naphthyloxy, diphenyloxy and the like.
  • Alkylsilyl used in the present invention means silyl substituted with alkyl having 1 to 40 carbon atoms
  • arylsilyl means silyl substituted with aryl having 6 to 60 carbon atoms
  • arylamine is substituted with aryl having 6 to 60 carbon atoms. Amine.
  • the condensed ring means a condensed aliphatic ring, a condensed aromatic ring, a condensed heteroaliphatic ring, a condensed heteroaromatic ring, or a combination thereof.
  • the present invention is an organic electroluminescent device comprising an anode, a cathode and one or more organic material layer interposed between the anode and the cathode, wherein at least one of the organic material layer comprises a compound represented by the formula (1)
  • An organic electroluminescent device is provided.
  • the present invention relates to an iridium (III) complex compound having a functional group (Formula 2) having a phosphonate group bonded thereto, wherein the iridium metal is directly covalently bonded to nitrogen (N) contained in the organic ligand.
  • Phosphonates group is a functional group or substituent which is introduced into ruthenium polypyridyl complexes of dye-sensitized solar cells, so long as the photophysical properties of the complex itself are not changed. Solubility can be changed to give water or alcohol soluble properties or to be easily converted to phosphonic acids group (-PO (OH) 2 ) for easy adsorption to metal oxides such as titania (TiO 2 ).
  • the iridium (III) complex of the present invention has such a phosphonate group introduced therein and contains nitrogen in the organic ligand to form an iridium polypyridyl complexes.
  • the iridium (III) complex of the present invention can be used in the conventional monomolecular deposition method due to the phosphate group.
  • the iridium (III) complex compound of the present invention when used as the dopant material of the light emitting layer in the organic material layer of the organic light emitting device, it is possible to provide an organic light emitting device having excellent driving voltage, luminous efficiency, lifetime and color purity.
  • This iridium (III) complex of the present invention is represented by the following formula (1).
  • X-Y is an organic ligand, and is selected from the group consisting of structures represented by L1 to L24 below,
  • R 1 to R 8 of Formula 1 and R 21 to R 32 of L1 to L24 are each independently hydrogen, deuterium, halogen, cyano group, nitro group, amino group, C 1 ⁇ C 40 alkyl group, C 3 ⁇ C 40 cycloalkyl group, C 3 -C 40 heterocycloalkyl group, C 6 -C 60 aryl group, C 5-60 heteroaryl group, C 1 -C 40 alkyloxy group, C 6- C 60 aryloxy group, C 1 ⁇ C 40 alkylsilyl group, C 6 ⁇ C 60 arylsilyl group C 1 ⁇ C 40 alkyl boron group, C 6 ⁇ C 60 aryl boron group, C 6 ⁇ C 60 is selected from the group consisting of an aryl phosphine group, a C 6 ⁇ C 60 aryl phosphine oxide group and a C 6 ⁇ C 60 arylamine group, may be combined with adjacent groups to form a condensed ring,
  • R 1 to R 8 and R 21 to R 32 is represented by the following Chemical Formula 2,
  • R 11 and R 12 are each independently selected from the group consisting of hydrogen, deuterium, an alkyl group of 1 to 40 carbon atoms, an aryl group of 6 to 60 carbon atoms and a heteroaryl group of 5 to 60 nuclear atoms,
  • the boron group, the arylphosphine group, the arylphosphine oxide group and the arylamine group are each independently a C 1 to C 40 alkyl group, a C 3 to C 40 cycloalkyl group, a nuclear atom having 3 to 40 heterocycloalkyl groups, and C 6 to C 60 aryl group, nuclear atom 5 to 60 heteroaryl group, C 1 ⁇ C 40 alkyloxy group, C 6 ⁇ C 60 aryloxy group, C 1 ⁇ C 40 alkylsilyl group, C 6 ⁇ group C 60 aryl silyl group, C 1 ⁇ alkyl boron C 40 of
  • n is an integer of 1-3.
  • a functional group having a phosphonate group is bonded (introduced) to any one of R 1 to R 8 and R 21 to R 32 as in Chemical Formula 2. Is characteristic.
  • R 1 to R 8 and R 21 to R 32 are each independently selected from the group consisting of hydrogen, C 1 ⁇ C 40 alkyl group and C 6 ⁇ C 60 aryl group It is preferable that it is preferable, and it is more preferable that it is hydrogen, a methyl group, or a phenyl group specifically.
  • R 11 and R 12 are each independently selected from the group consisting of hydrogen, methyl group, ethyl group, isobutyl group and phenyl group, and more preferably ethyl group.
  • the iridium (III) complex compound represented by the formula (1) of the present invention is preferably selected from the group consisting of complex compounds represented by the following 1 to 74.
  • the present invention provides an organic electroluminescent device comprising an anode, a cathode, and at least one organic layer interposed between the anode and the cathode, wherein at least one of the organic layers is represented by Formula 1 above.
  • An organic electroluminescent device comprising an iridium (III) complex is provided.
  • the iridium (III) complex represented by Formula 1 may include one or two or more kinds.
  • the organic layer including the iridium (III) complex represented by Formula 1 of the present invention may be a light emitting layer, and the iridium (III) complex represented by Formula 1 may be used as a dopant material of the light emitting layer.
  • the amount of the iridium (III) complex represented by Chemical Formula 1 as the dopant material of the light emitting layer is not particularly limited, but is preferably used in an amount of 1 to 30% by weight based on the total weight of the light emitting layer.
  • the organic electroluminescent device structure of the present invention is a structure in which one or two or more layers of organic material layers are laminated between electrodes, for example, (i) an anode, a light emitting layer, a cathode, (ii) an anode, a hole injection layer, a hole transport layer, The structure of a light emitting layer, an electron carrying layer, an electron injection layer, a cathode, (iii) an anode, a hole injection layer, a hole transport layer, a light emitting layer, and a cathode is mentioned.
  • the organic electroluminescent device of the present invention may have a structure in which an insulating layer or an adhesive layer is inserted between an electrode and an organic material layer interface.
  • Such an organic electroluminescent device of the present invention may be formed by applying materials and methods known in the art, except that at least one layer of the organic material layer is formed to include the iridium (III) complex compound represented by Formula 1 of the present invention. Can be.
  • the organic material layer included in the organic electroluminescent device of the present invention may form the iridium (III) complex compound represented by Chemical Formula 1 by vacuum deposition or solution coating.
  • the solution coating method include, but are not limited to, spin coating, dip coating, doctor blading, inkjet printing, or thermal transfer.
  • the substrate included in the organic electroluminescent device of the present invention may be used a silicon wafer, quartz, glass plate, metal plate, plastic film or sheet.
  • the anode material included in the organic electroluminescent device of the present invention may be a metal such as vanadium, chromium, copper, zinc, gold or an alloy thereof; Metal oxides such as zinc oxide, indium oxide, indium tin oxide (ITO), indium zinc oxide (IZO); Combinations of metals and oxides such as ZnO: Al or SnO 2 : Sb; Conductive polymers such as polythiophene, poly (3-methylthiophene), poly [3,4- (ethylene-1,2-dioxy) thiophene] (PEDT), polypyrrole and polyaniline; Or carbon black and the like can be used.
  • a metal such as vanadium, chromium, copper, zinc, gold or an alloy thereof
  • Metal oxides such as zinc oxide, indium oxide, indium tin oxide (ITO), indium zinc oxide (IZO); Combinations of metals and oxides such as ZnO: Al or SnO 2 : Sb
  • Conductive polymers such as polythi
  • the negative electrode material included in the organic electroluminescent device of the present invention may be a metal such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin, or lead or an alloy thereof; Multilayer structure materials such as LiF / Al or LiO 2 / Al and the like.
  • the hole injection layer the hole transport layer and the electron transport layer included in the organic electroluminescent device of the present invention may be used a conventional material known in the art.
  • the reaction mixture was further refluxed for 10 hours, the reaction was completed, and then the solvent was removed by distillation under reduced pressure.
  • the precipitate was extracted with CH 2 Cl 2 and water, and the obtained organic layer was passed through MgSO 4 layer and purified by column chromatography to obtain the title compound 1 (6.82 g, yield 72%).
  • the glass substrate coated with ITO (Indium tin oxide) to a thickness of 1500 ⁇ was ultrasonically washed with distilled water. After the washing of distilled water, ultrasonic washing with a solvent such as isopropyl alcohol, acetone, methanol, and the like was dried and then transferred to a plasma cleaner, and then the substrate was cleaned for 5 minutes using an oxygen plasma, and the substrate was transferred to a vacuum depositor.
  • ITO Indium tin oxide
  • BCP 2,9-dimethyl-4,7-diphenyl-1,10-phenanthrosine
  • BCP 2,9-dimethyl-4,7-diphenyl-1,10-phenanthrosine
  • Alq aluminum quinolate
  • Liq lithium quinolate
  • Al aluminum
  • Al aluminum
  • An organic electroluminescent device was manufactured in the same manner as in Example 1, except that Compounds 9 and 41 were used instead of Compound 1 to form the EML.
  • An organic electroluminescent device was manufactured in the same manner as in Example 1, except that Ir (ppy) 3 was used instead of Compound 1 when forming the emission layer.
  • the organic electroluminescent device adopting the compound according to the present invention as a phosphorescent dopant exhibits excellent performance in terms of driving voltage and efficiency.
  • the organic electroluminescent device of the present invention comprising the same can greatly improve the characteristics such as luminous efficiency, driving voltage, lifespan, color purity, accordingly It can be effectively applied to a color display panel and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

본 발명은 포스포네이트기가 치환된 유기 리간드를 가지는 이리듐(Ⅲ) 착화합물 및 이를 발광층의 도펀트 물질로 적용하여 발광효율, 구동전압, 수명, 색순도 등의 특성이 향상된 유기 전계 발광 소자에 관한 것이다.

Description

이리듐(Ⅲ) 착화합물 및 이를 포함하는 유기 전계 발광 소자
본 발명은 신규의 이리듐(Ⅲ) 착화합물 및 이를 포함하는 유기 전계 발광 소자에 관한 것이다.
유기 전계 발광 소자(organic electroluminescent device)는 통상 양극과 음극 및 이들 사이에 유기물층을 포함하는 구조를 가진다. 여기서 유기물층은 유기 전계 발광 소자의 효율과 안정성을 높이기 위하여 각기 다른 물질로 구성된 다층의 구조로 이루어진 경우가 많으며, 예컨대 정공 주입층(HIL), 정공 수송층(HTL), 발광층(EML), 전자 수송층(ETL), 전자 주입층(EIL) 등을 포함할 수 있다.
이러한 유기 전계 발광 소자의 두 전극 사이에 전압을 걸어주게 되면 양극에서는 정공이, 음극에서는 전자가 유기물층으로 주입되고, 주입된 정공과 전자가 만났을 때 엑시톤(exciton)이 형성되며, 이 엑시톤이 바닥상태로 떨어질 때 빛이 나게 된다.
유기 전계 발광 소자의 발광층은 발광색에 따라 청색, 녹색, 적색 발광 재료를 사용하거나, 보다 나은 천연색을 구현하기 위해 노란색 및 주황색 발광 재료를 사용하기도 한다. 또한, 색순도의 증가와 에너지 전이를 통해 발광 효율을 높이기 위해 발광 재료로서 호스트/도펀트 계를 사용할 수 있다. 그 원리는 발광층을 주로 구성하는 호스트보다 에너지 대역 간극이 작고 발광 효율이 우수한 도펀트를 발광층에 소량 혼합하면, 호스트에서 발생한 엑시톤이 도펀트로 수송되어 효율이 높은 빛을 내는 것이다. 이때 호스트의 파장이 도펀트의 파장대로 이동하므로, 이용하는 도판트의 종류에 따라 원하는 파장의 빛을 얻을 수 있다.
종래에는 적색의 빛을 얻기 위해서 (acac)Ir(btp)2를, 녹색의 빛을 얻기 위해서 Ir(ppy)3를, 청색의 빛을 얻기 위해서 Firpic를 도판트 물질로 주로 사용하였다. 그러나 이러한 이리듐(Ⅲ)계 착화합물들은 유기 전계 발광 소자의 실용화를 위한 색순도, 발광효율 등의 측면을 만족시키는데 한계가 있었다.
본 발명은 상기한 문제점을 해결하기 위해, 유기 전계 발광 소자의 색순도, 발광효율 및 수명 등을 향상시킬 수 있는 신규 이리듐(Ⅲ) 착화합물 및 이를 포함하는 유기 전계 발광 소자를 제공하는 것을 목적으로 한다.
상기 목적을 달성하기 위하여 본 발명은 하기 화학식 1로 표시되는 이리듐(Ⅲ) 착화합물을 제공한다.
[화학식 1]
Figure PCTKR2013010453-appb-I000001
상기 화학식 1에서,
X-Y는 유기 리간드로서, 하기 L1 내지 L24로 표시되는 구조로 이루어진 군에서 선택되고,
Figure PCTKR2013010453-appb-I000002
R1 내지 R8 및 상기 L1 내지 L24의 R21 내지 R32는 각각 독립적으로, 수소, 중수소, 할로겐, 시아노기, 니트로기, 아미노기, C1~C40의 알킬기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40의 헤테로시클로알킬기, C6~C60의 아릴기, 핵원자수 5 내지 60의 헤테로아릴기, C1~C40의 알킬옥시기, C6~C60의 아릴옥시기, C1~C40의 알킬실릴기, C6~C60의 아릴실릴기 C1~C40의 알킬보론기, C6~C60의 아릴보론기, C6~C60의 아릴포스핀기, C6~C60의 아릴포스핀옥사이드기 및 C6~C60의 아릴아민기로 이루어진 군에서 선택되고, 인접한 기와 결합하여 축합 고리를 형성할 수 있으며,
상기 R1 내지 R8 및 R21 내지 R32 중 하나는 하기 화학식 2로 표시되며,
[화학식 2]
Figure PCTKR2013010453-appb-I000003
상기 화학식 2에서,
R11 및 R12는 각각 독립적으로 수소, 중수소, C1~C40의 알킬기, C6~C60의 아릴기 및 핵원자수 5 내지 60의 헤테로아릴기로 이루어진 군에서 선택되고,
상기 R1 내지 R8 및 R21 내지 R32의 알킬기, 시클로알킬기, 헤테로시클로알킬기, 아릴기, 헤테로아릴기, 알킬옥시기, 아릴옥시기, 알킬실릴기, 아릴실릴기, 알킬보론기, 아릴보론기, 아릴포스핀기, 아릴포스핀옥사이드기 및 아릴아민기는 각각 독립적으로 C1~C40의 알킬기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40의 헤테로시클로알킬기, C6~C60의 아릴기, 핵원자수 5 내지 60의 헤테로아릴기, C1~C40의 알킬옥시기, C6~C60의 아릴옥시기, C1~C40의 알킬실릴기, C6~C60의 아릴실릴기, C1~C40의 알킬보론기, C6~C60의 아릴보론기, C6~C60의 아릴포스핀기, C6~C60의 아릴포스핀옥사이드기 및 C6~C60의 아릴아민기로 이루어진 군에서 선택된 1종 이상으로 치환될 수 있으며,
n은 1 내지 3의 정수이다.
여기서, R1 내지 R8 및 R21 내지 R32 각각이 복수개의 치환기로 치환될 경우, 복수개의 치환기는 서로 동일하거나 상이할 수 있다.
또한, n의 값에 따라
Figure PCTKR2013010453-appb-I000004
측은 이리듐(Ir)에 하나 또는 복수개로 결합된 형태일 수 있으며, X-Y의 유기 리간드측은 이리듐(Ir)에 결합되지 않거나, 하나 또는 복수개로 결합된 형태일 수 있다.
본 발명에서 사용되는 알킬은 탄소수 1 내지 40의 직쇄 또는 측쇄의 포화 탄화수소로부터 수소 원자를 제거하여 얻어지는 1가의 작용기를 의미하며, 이의 비제한적인 예로는 메틸, 에틸, 프로필, 이소부틸, sec-부틸, 펜틸, iso-아밀, 헥실 등이 있다.
본 발명에서 사용되는 알케닐(alkenyl)은 탄소-탄소 이중 결합을 1개 이상 가진 탄소수 2 내지 40의 직쇄 또는 측쇄의 불포화 탄화수소로부터 수소 원자를 제거하여 얻어지는 1가의 작용기를 의미한다. 이의 비제한적인 예로는 비닐(vinyl), 알릴(allyl), 이소프로펜일(isopropenyl), 2-부텐일(2-butenyl) 등이 있다.
본 발명에서 사용되는 알키닐(alkynyl)은 탄소-탄소 삼중 결합을 1개 이상 가, 탄소수 2 내지 40의 직쇄 또는 측쇄의 불포화 탄화수소로부터 수소 원자를 제거하여 얻어지는 1가의 작용기를 의미한다. 이의 비제한적인 예로는 에타인일(ethynyl), 2-프로파인일(2-propynyl) 등이 있다.
본 발명에서 사용되는 시클로알킬은 탄소수 3 내지 40의 모노사이클릭 또는 폴리사이클릭 비-방향족 탄화수소(포화 고리형 탄화수소)로부터 수소 원자를 제거하여 얻어지는 1가의 작용기를 의미한다. 이의 비제한적인 예로는 시클로프로필, 시클로펜틸, 시클로헥실, 노르보닐(norbornyl), 아다만틴(adamantine)등이 있다.
본 발명에서 사용되는 헤테로시클로알킬은 핵원자수 3 내지 40의 비-방향족 탄화수소(포화 고리형 탄화수소)로부터 수소 원자를 제거하여 얻어지는 1가의 작용기를 의미하며, 고리 중 하나 이상의 탄소, 바람직하게는 1 내지 3개의 탄소가 N, O 또는 S와 같은 헤테로 원자로 치환된다. 이의 비제한적인 예로는 모르폴린, 피페라진 등이 있다.
본 발명에서 사용되는 아릴은 단독 고리 또는 2 이상의 고리가 조합된, 탄소수 6 내지 60의 방향족 탄화수소로부터 수소 원자를 제거하여 얻어지는 1가의 작용기를 의미한다. 이때, 2 이상의 고리는 서로 단순 부착되거나 축합된 형태로 부착될 수 있다. 이의 비제한적인 예로는 페닐, 비페닐, 트리페닐, 터페닐(terphenyl), 나프틸, 플루오레닐, 페난트릴, 안트라세닐, 인데닐 등이 있다.
본 발명에서 사용되는 헤테로아릴은 핵원자수 5 내지 60의 모노헤테로사이클릭 또는 폴리헤테로사이클릭 방향족 탄화수소로부터 수소 원자를 제거하여 얻어지는 1가의 작용기로서, 고리 중 하나 이상의 탄소, 바람직하게는 1 내지 3개의 탄소가 질소(N), 산소(O), 황(S) 또는 셀레늄(Se)과 같은 헤테로원자로 치환된다. 이때, 헤테로아릴은 2 이상의 고리가 서로 단순 부착되거나 축합된 형태로 부착될 수 있고, 나아가 아릴기와의 축합된 형태도 포함할 수 있다. 이러한 헤테로아릴의 비제한적인 예로는 피리딜, 피라지닐, 피리미디닐, 피리다지닐, 트리아지닐과 같은 6원 모노사이클릭 고리; 페녹사티에닐(phenoxathienyl), 인돌리지닐(indolizinyl), 인돌릴(indolyl), 퓨리닐(purinyl), 퀴놀릴(quinolyl), 벤조티아졸(benzothiazole), 카바졸릴(carbazolyl)과 같은 폴리사이클릭 고리; 및 2-퓨라닐, N-이미다졸릴, 2-이속사졸릴, 2-피리디닐, 2-피리미디닐 등을 들 수 있다.
본 발명에서 사용되는 알킬옥시는 RO-로 표시되는 1가의 작용기를 의미하며, 상기 R은 탄소수 1 내지 40개의 알킬로서, 직쇄(linear), 측쇄(branched) 또는 사이클릭(cyclic) 구조를 포함할 수 있다. 이러한 알킬옥시의 비제한적인 예로는 메톡시, 에톡시, n-프로폭시, 1-프로폭시, t-부톡시, n-부톡시, 펜톡시 등을 들 수 있다.
본 발명에서 사용되는 아릴옥시는 R'O-로 표시되는 1가의 작용기를 의미하며, 상기 R'는 탄소수 6 내지 60의 아릴이다. 이러한 아릴옥시의 비제한적인 예로는 페닐옥시, 나프틸옥시, 디페닐옥시 등이 있다.
본 발명에서 사용되는 알킬실릴은 탄소수 1 내지 40의 알킬로 치환된 실릴을 의미하며, 아릴실릴은 탄소수 6 내지 60의 아릴로 치환된 실릴을 의미하고, 아릴아민은 탄소수 6 내지 60의 아릴로 치환된 아민을 의미한다.
본 발명에서 사용되는 축합 고리는 축합 지방족 고리, 축합 방향족 고리, 축합 헤테로지방족 고리, 축합 헤테로방향족 고리 또는 이들의 조합된 형태를 의미한다.
한편, 본 발명은 양극, 음극 및 상기 양극과 음극 사이에 개재(介在)된 1층 이상의 유기물층을 포함하는 유기 전계 발광 소자로서, 상기 유기물층 중 적어도 하나는 상기 화학식 1로 표시되는 화합물을 포함하는 것을 특징으로 하는 유기 전계 발광 소자를 제공한다.
이하, 본 발명을 설명한다.
본 발명은 포스포네이트기를 가지는 작용기(화학식 2)가 결합되어 있으며, 이리듐 금속이 유기 리간드에 포함된 질소(N)와 직접적으로 공유결합한 것을 특징으로 하는 이리듐(Ⅲ) 착화합물에 관한 것이다.
포스포네이트기(Phosphonates group)는 염료 감응형 태양전지(dye-sensitized solar cell)의 루테늄 피리딜 착화합물(ruthenium polypyridyl complexes)에 도입되고 있는 작용기 또는 치환기로서 착화합물 자체의 광물리학적 성질은 변화시키지 않으면서 용해도를 변화시켜 물이나 알코올류에 녹는 성질을 주거나 쉽게 phosphonic acids group(-PO(OH)2)로 바꾸어 티타니아(TiO2)와 같은 메탈 옥사이드(metal oxides)에 용이하게 흡착할 수 있도록 한다.
본 발명의 이리듐(Ⅲ) 착화합물은 이러한 포스포네이트기가 도입되어 있고, 유기 리간드에 질소를 함유하여 이리듐 폴리피리딜 착화합물(iridium polypyridyl complexes) 형태를 가지고 있는 것이다. 이러한 본 발명의 이리듐(Ⅲ) 착화합물은 포스포테이트기로 인해 기존의 단분자 증착 방식에도 사용될 수 있다. 또한, 유기물층을 형성하기 위한 용액 공정(wet공정)에서 유기물층 형성 물질(재료)의 용해도를 증가시킬 수 있으며, 형성되는 유기물층의 특성도 향상시킬 수 있다.
특히, 본 발명의 이리듐(Ⅲ) 착화합물을 유기 전계 발광 소자의 유기물층 중 발광층의 도펀트 물질로 사용할 경우 구동전압, 발광효율, 수명뿐만 아니라 색순도가 우수한 유기 전계 발광 소자를 제공할 수 있다.
이러한 본 발명의 이리듐(Ⅲ) 착화합물은 하기 화학식 1로 표시된다.
[화학식 1]
Figure PCTKR2013010453-appb-I000005
상기 화학식 1에서,
X-Y는 유기 리간드로서, 하기 L1 내지 L24로 표시되는 구조로 이루어진 군에서 선택되고,
Figure PCTKR2013010453-appb-I000006
상기 화학식 1의 R1 내지 R8 및 상기 L1 내지 L24의 R21 내지 R32는 각각 독립적으로, 수소, 중수소, 할로겐, 시아노기, 니트로기, 아미노기, C1~C40의 알킬기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40의 헤테로시클로알킬기, C6~C60의 아릴기, 핵원자수 5 내지 60의 헤테로아릴기, C1~C40의 알킬옥시기, C6~C60의 아릴옥시기, C1~C40의 알킬실릴기, C6~C60의 아릴실릴기 C1~C40의 알킬보론기, C6~C60의 아릴보론기, C6~C60의 아릴포스핀기, C6~C60의 아릴포스핀옥사이드기 및 C6~C60의 아릴아민기로 이루어진 군에서 선택되고, 인접한 기와 결합하여 축합 고리를 형성할 수 있으며,
상기 R1 내지 R8 및 R21 내지 R32 중 하나는 하기 화학식 2로 표시되며,
[화학식 2]
Figure PCTKR2013010453-appb-I000007
상기 화학식 2에서,
R11 및 R12는 각각 독립적으로 수소, 중수소, C1~C40의 알킬기, C6~C60의 아릴기 및 핵원자수 5 내지 60의 헤테로아릴기로 이루어진 군에서 선택되고,
상기 R1 내지 R8 및 R21 내지 R32의 알킬기, 시클로알킬기, 헤테로시클로알킬기, 아릴기, 헤테로아릴기, 알킬옥시기, 아릴옥시기, 알킬실릴기, 아릴실릴기, 알킬보론기, 아릴보론기, 아릴포스핀기, 아릴포스핀옥사이드기 및 아릴아민기는 각각 독립적으로 C1~C40의 알킬기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40의 헤테로시클로알킬기, C6~C60의 아릴기, 핵원자수 5 내지 60의 헤테로아릴기, C1~C40의 알킬옥시기, C6~C60의 아릴옥시기, C1~C40의 알킬실릴기, C6~C60의 아릴실릴기, C1~C40의 알킬보론기, C6~C60의 아릴보론기, C6~C60의 아릴포스핀기, C6~C60의 아릴포스핀옥사이드기 및 C6~C60의 아릴아민기로 이루어진 군에서 선택된 1종 이상으로 치환될 수 있으며,
n은 1 내지 3의 정수이다.
이와 같이 본 발명의 화학식 1로 표시되는 이리듐(Ⅲ) 착화합물은 상기 화학식 2와 같이 포스포네이트기를 가지는 작용기가 상기 R1 내지 R8 및 R21 내지 R32 중 어느 하나에 결합(도입)되어 있는 것이 특징이다.
한편, 유기 전계 발광 소자의 특성을 고려할 때, 상기 R1 내지 R8 및 R21 내지 R32는 각각 독립적으로 수소, C1~C40의 알킬기 및 C6~C60의 아릴기로 이루어진 군에서 선택되는 것이 바람직하며, 구체적으로는 수소, 메틸기 또는 페닐기인 것이 더욱 바랍직하다.
또한, 상기 화학식 2에서 R11 및 R12는 각각 독립적으로 수소, 메틸기, 에틸기, 이소부틸기 및 페닐기로 이루어진 군에서 선택되는 것이 바람직하며, 에틸기인 것이 더욱 바람직하다.
이러한 본 발명의 화학식 1로 표시되는 이리듐(Ⅲ) 착화합물은 구체적으로 하기 1 내지 74로 표시되는 착화합물로 이루어진 군에서 선택되는 것이 바람직하다.
Figure PCTKR2013010453-appb-I000008
Figure PCTKR2013010453-appb-I000009
Figure PCTKR2013010453-appb-I000010
본 발명은 양극(anode), 음극(cathode), 및 상기 양극과 음극 사이에 개재(介在)된 1층 이상의 유기물층을 포함하는 유기 전계 발광 소자로서, 상기 유기물층 중 적어도 하나는 상기 화학식 1로 표시되는 이리듐(Ⅲ) 착화합물을 포함하는 것을 특징으로 하는 유기 전계 발광 소자를 제공한다. 이때, 상기 화학식 1로 표시되는 이리듐(Ⅲ) 착화합물은 1종 또는 2종 이상이 포함될 수 있다.
바람직하게는, 본 발명의 화학식 1로 표시되는 이리듐(Ⅲ) 착화합물을 포함하는 유기물층은 발광층일 수 있으며, 상기 화학식 1로 표시되는 이리듐(Ⅲ) 착화합물은 발광층의 도펀트 물질로 사용될 수 있다. 여기서, 발광층의 도펀트 물질로 상기 화학식 1로 표시되는 이리듐(Ⅲ) 착화합물을 사용할 경우 그 사용량은 특별히 한정되지 않으나, 발광층 전체 중량%을 기준으로 1~30중량%로 사용되는 것이 바람직하다.
한편, 본 발명의 유기 전계 발광 소자 구조는 전극간에 유기물층을 1층 또는 2층 이상 적층한 구조이며, 예를 들면 (i) 양극, 발광층, 음극, (ii) 양극, 정공주입층, 정공수송층, 발광층, 전자수송층, 전자주입층, 음극, (iii) 양극, 정공주입층, 정공수송층, 발광층, 음극등의 구조를 들 수 있다.
또한, 본 발명의 유기 전계 발광 소자는 전극과 유기물층 계면에 절연층 또는 접착층이 삽입된 구조일 수도 있다.
이러한 본 발명의 유기 전계 발광 소자는 유기물층 중 1층 이상을 본 발명의 화학식 1로 표시되는 이리듐(Ⅲ) 착화합물을 포함하도록 형성하는 것을 제외하고는 당업계에 공지된 재료 및 방법을 적용하여 형성할 수 있다.
여기서, 본 발명의 유기 전계 발광 소자에 포함되는 유기물층은 상기 화학식 1로 표시되는 이리듐(Ⅲ) 착화합물을 진공증착법이나 용액 도포법으로 형성할 수 있다. 상기 용액 도포법의 예로는 스핀 코팅, 딥코팅, 닥터 블레이딩, 잉크젯 프린팅 또는 열 전사법 등이 있으나, 이에 한정되는 것은 아니다.
한편, 본 발명의 유기 전계 발광 소자에 포함되는 기판은 실리콘 웨이퍼, 석영, 유리판, 금속판, 플라스틱 필름이나 시트 등이 사용될 수 있다.
또, 본 발명의 유기 전계 발광 소자에 포함되는 양극 물질은 바나듐, 크롬, 구리, 아연, 금과 같은 금속 또는 이들의 합금; 아연산화물, 인듐산화물, 인듐 주석 산화물(ITO), 인듐 아연 산화물(IZO)과 같은 금속 산화물; ZnO:Al 또는 SnO2:Sb와 같은 금속과 산화물의 조합; 폴리티오펜, 폴리(3-메틸티오펜), 폴리[3,4-(에틸렌-1,2-디옥시)티오펜](PEDT), 폴리피롤 및 폴리아닐린과 같은 전도성 고분자; 또는 카본블랙 등이 사용될 수 있다.
또, 본 발명의 유기 전계 발광 소자에 포함되는 음극 물질은 마그네슘, 칼슘, 나트륨, 칼륨, 타이타늄, 인듐, 이트륨, 리튬, 가돌리늄, 알루미늄, 은, 주석, 또는 납과 같은 금속 또는 이들의 합금; LiF/Al 또는 LiO2/Al과 같은 다층 구조 물질 등이 사용될 수 있다.
이외에 본 발명의 유기 전계 발광 소자에 포함되는 정공 주입층, 정공 수송층 및 전자 수송층은 당업계에 공지된 통상적인 물질이 사용될 수 있다.
이하, 본 발명을 제조예를 통하여 상세히 설명하면 다음과 같다. 단, 하기 제조예는 본 발명을 예시하는 것일 뿐 본 발명이 하기 제조예에 의해 한정되는 것은 아니다.
[제조예 1] 화합물 1의 제조
<단계 1> C2(용매 배위 양이온성 중간체)의 합성
Figure PCTKR2013010453-appb-I000011
C1의 합성
질소 기류 하에서 5.0 g (13.8 mmol)의 IrClH2O와 5-bromo-2-phenylpyridine (9.7 g, 41.4 mmol)을 120 ml의 2-methoxyethanol과 40 ml의 물이 혼합된 혼합용매에 넣어 20 시간 동안 환류 시켰다. 반응혼합물의 온도를 실온까지 내린 후 생성된 침전물을 여과하고 아세톤과 에탄올 1:1 비율의 용매로 생성물을 정제하여 C1 (8.62 g, 수율 89 %)을 얻었다.
C2의 합성
상기에서 얻어진 화합물 C1 (8.0 g, 5.70 mmol)과 AgOTf (4.39 g, 17.10 mmol)을 메틸렌클로라이드 300 ml와 메탄올 100 ml의 혼합용매에 넣어주고 질소 기류하에서 6시간 동안 실온에서 교반시켰다. 반응 혼합물을 셀라이트에 통과시켜 AgCl를 제거하고 여액을 감압 증류하여 90 % 정도의 용매를 제거한 다음 추가로 에틸에테르와 헥산을 넣어주어 중간체 화합물인 C2 (8.64 g, 수율 87 %)을 분리하였다.
<단계 2> C3(tris-(5-Bromo-2-phenylpyridinato)iridium)의 합성
Figure PCTKR2013010453-appb-I000012
상기에서 분리한 중간체 화합물인 C2 (8.50 g, 9.8 mmol)와 5-bromo-2-phenylpyridine (6.88 g, 29.4 mmol)을 300 ml의 에탄올에 넣어 20시간 동안 질소 대기 하에서 환류시켰다. 반응이 종결된 후 여과하여 얻어진 침전물을 컬럼 크로마토그래피로 정제하여 C3 (7.43 g, 수율 85 %)을 얻었다.
<단계 3> 화합물 1(tris-(5-phosphonate-2-phenylpyridinato)iridium의 제조
Figure PCTKR2013010453-appb-I000013
Pd(OAc)2 (0.10 g, 0.45 mmol)와 1,1'-bis(diphenylphosphino)ferrocene (dppf, 0.5 g, 0.90 mmol), 무수 KOAc (0.17 g, 1.78 mmol)를 100 ml의 THF에 녹여 아르곤 대기 하에서 20분간 환류시킨 후 상기에서 얻어진 화합물 C3 (8.0 g, 8.91 mmol)와 diethyl phosphate (HP(O)(OEt)2, 3.15 ml, 32.1 mmol)를 20 ml의 THF에 녹여 반응 혼합물에 넣어 준다. 추가로 반응 혼합물을 10시간 환류시키고 반응을 종료한 다음 용매를 감압 증류하여 제거한다. 침전물을 CH2Cl2와 물을 사용하여 추출하여 얻어진 유기층을 MgSO4층에 통과시킨 후 컬럼 크로마토그래피로 정제하여 목적 화합물 1 (6.82 g, 수율 72 %)을 얻었다.
GC-Mass (이론치: 1063.04 g/mol, 측정치: 1063 g/mol)
[제조예 2] 화합물 9의 제조
<단계 1> C4의 합성
Figure PCTKR2013010453-appb-I000014
질소 기류 하에서 5.0 g (7.6 mmol)의 fac-Ir(ppy)3를 1 L의 CH2Cl2에 녹인 후 N-Bromosuccinimide (5.4 g, 30.4 mmol)을 넣어 주고 실온에서 20시간 동안 교반시킨 후 감압 증류하여 200 ml 정도까지 용매양을 줄인다. 반응 혼합물에 100ml의 에탄올과 100ml의 물을 넣어 주어 생성된 침전물을 세척하고 여과하여 C4 (6.30 g, 수율 93 %)을 얻었다.
<단계 2> 화합물 9(tris-{2-(2-pyridinyl)(5-phosphonated-phenyl)}iridium (III))의 제조
Figure PCTKR2013010453-appb-I000015
제조예 1의 <단계 3>에서 C3 대신 C4를 사용한 것을 제외하고는 화합물 1과 동일한 제조방법으로 목적 화합물 9 (5.71 g, 수율 76 %)를 얻었다.
GC-Mass (이론치: 1063.04 g/mol, 측정치: 1063 g/mol)
[제조예 3] 화합물 41의 제조
<단계 1> L1(2,5-Diphenylpyridine)의 합성
Figure PCTKR2013010453-appb-I000016
질소 기류 하에서 23.70 g (0.1 mol)의 2,5-dibromopyridine, 30.48 g (0.25 mol)의 phenylboronic acid, 41.46 g (0.3 mol)의 무수 K2CO3와 800 ml/300 ml의 toluene/H2O를 넣고 교반하였다. 40℃에서 5.78 g (5 mol%)의 Pd(PPh3)4를 넣고 80℃에서 12시간 동안 교반하였다. 반응 종결 후 메틸렌클로라이드로 추출하고 MgSO4를 넣고 필터하였다. 필터된 유기층의 용매를 제거한 후 컬럼 크로마토그래피를 이용하여 L1 (19.20 g, 수율: 83 %)을 얻었다.
<단계 2> 2,5-Diphenylpyridinato iridium dimer의 합성
Figure PCTKR2013010453-appb-I000017
질소 기류 하에서 5.0 g (13.8 mmol)의 IrClH2O와 상기에서 얻어진 화합물 L1(9.6 g, 41.4 mmol)을 120ml의 2-methoxyethanol과 40ml의 물이 혼합된 혼합용매에 넣어 20시간 동안 환류시켰다. 반응혼합물의 온도를 실온까지 내린 후 생성된 침전물을 여과하고 아세톤과 에탄올 1:1 비율의 용매로 생성물을 정제하여 C5 (9.31 g, 수율 98 %)을 얻었다.
<단계 3> C6(용매 배위 양이온성 중간체)의 합성
Figure PCTKR2013010453-appb-I000018
상기에서 얻어진 화합물 C5 (8.0 g, 5.81 mmol)과 AgOTf (3.73 g, 14.53 mmol)을 메틸렌클로라이드 300 ml와 메탄올 100 ml의 혼합용매에 넣어주고 질소 기류하에서 6시간 동안 실온에서 교반시켰다. 반응혼합물을 셀라이트에 통과시켜 AgCl를 제거하고 여액을 감압 증류하여 90 % 정도의 용매를 제거한 다음 추가로 에틸에테르와 헥산을 넣어 주어 중간체 화합물인 C6 (8.66 g, 수율 86 %)을 분리하였다.
<단계 4> L2(phosphonate-ppy 리간드)의 합성
Figure PCTKR2013010453-appb-I000019
Pd(OAc)2 (1.1 g, 5.0 mmol)와 1,1'-bis(diphenylphosphino)ferrocene (dppf, 5.5 g, 10.0 mmol), 무수 KOAc (1.9 g, 20.0 mmol)를 500 ml의 THF에 녹여 아르곤 대기 하에서 20분간 환류시킨 후 5-bromo-2-phenylpyridine (23.4 g, 0.1 mol)와 diethyl phosphate (HP(O)(OEt)2, 14.3 ml, 0.12 mol)를 100 ml의 THF에 녹여 반응혼합물에 넣어 준다. 추가로 반응 혼합물을 10시간 환류시키고 반응을 종료한 다음 용매를 감압증류하여 제거한다. 침전물을 CH2Cl2와 물을 사용하여 추출하여 얻어진 유기층을 MgSO4층에 통과시킨 후 컬럼 크로마토그래피로 정제하여 L2 (27.4 g, 수율 94 %)을 얻었다.
<단계 5> 화합물 41의 제조
Figure PCTKR2013010453-appb-I000020
상기에서 얻어진 화합물 C6 (8.66 g, 10.0 mmol)와 L2 (8.74 g, 30 mmol)을 300 ml의 에탄올에 넣어 20시간 동안 질소 대기 하에서 환류시켰다. 반응이 종결된 후 여과하여 얻어진 침전물을 컬럼 크로마토그래피로 정제하여 목적 화합물 41 (7.36 g, 수율 78 %)을 얻었다.
GC-Mass (이론치: 943.06 g/mol, 측정치: 943 g/mol)
[실시예 1] 유기 전계 발광 소자의 제조
ITO (Indium tin oxide)가 1500Å의 두께로 박막 코팅된 유리 기판을 증류수로 초음파 세척하였다. 증류수 세척이 끝나면 이소프로필 알코올, 아세톤, 메탄올 등의 용제로 초음파 세척하고 건조시킨 후 플라즈마 세정기로 이송시킨 다음 산소 플라즈마를 이용하여 상기 기판을 5분간 세정하고 진공 층착기로 기판을 이송하였다.
이렇게 준비한 ITO (양극) 위에 정공 수송 물질인 N,N'-비스(α-나프틸)-N,N'-디페닐-4,4'-디아민(N,N'-bis(α-naphthyl)-N,N'-diphenyl-4,4'-diamine, NPB)을 400Å의 두께로 진공 증착하여 정공 수송층을 형성하였다.
Figure PCTKR2013010453-appb-I000021
그 위에 호스트 물질로서 4,4'-N,N'-디카르바졸-비페닐 (4,4'-N,N'-dicarbazolebiphenyl,CBP)을 사용하고, 도펀트로서 제조예 1에서 제조한 화합물 1을 10% 도핑하여 200Å의 두께로 진공 증착하여 발광층을 형성하였다.
Figure PCTKR2013010453-appb-I000022
이후, 상기 발광층 위에 정공 저지 물질인 2,9-디메틸-4,7-디페닐-1,10-페난쓰롤린(BCP)를 100Å의 두께로 진공 증착한 다음, 전자 수송 물질인 알루미늄 퀴놀레이트(aluminum quinolate,Alq)를 400Å의 두께로 증착하여 전자 수송층을 형성하였다. 이후, 전자 주입 물질인 리튬 퀴놀레이트(lithium quinolate, Liq)를 10Å의 두께로 증착하여 전자 주입층을 형성하고, 그 위에 알루미늄(Al)을 1500Å의 두께로 진공 증착하여 음극을 형성하여 유기 전계 발광 소자를 제조하였다.
Figure PCTKR2013010453-appb-I000023
[실시예 2 및 3] 유기 전계 발광 소자의 제조
발광층 형성시 화합물 1 대신 화합물 9 및 41을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 유기 전계 발광 소자를 제조하였다.
[비교예 1] 유기 전계 발광 소자의 제조
발광층 형성시 화합물 1 대신 Ir(ppy)3을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 유기 전계 발광 소자를 제조하였다.
[실험예]
실시예 1 내지 3 및 비교예 1에서 제조된 각각의 유기 전계 발광 소자에 대하여 전류밀도 50 mA/㎠에서의 전류효율(발광효율) 및 구동전압을 측정하고, 그 결과를 하기 표 1에 나타내었다.
표 1
호스트 도펀트 구동전압(V) 전류효율(cd/A)
실시예 1 CBP 화합물 1 5.60 20.4
실시예 2 CBP 화합물 9 5.55 19.9
실시예 3 CBP 화합물 41 5.52 21.2
비교예 1 CBP Ir(ppy)3 6.0 16.2
상기 표 1에서 보는 바와 같이, 본 발명에 따른 화합물을 인광 도펀트로 채택한 유기 전계 발광 소자는 구동전압 및 효율면에서 우수한 성능을 나타내는 것을 알 수 있다.
본 발명의 화학식 1로 표시되는 화합물은 우수한 발광능을 가지고 있어, 이를 포함하는 본 발명의 유기 전계 발광 소자는 발광효율, 구동전압, 수명, 색순도 등의 특성이 크게 향상될 수 있으며, 이에 따라 풀 칼라 디스플레이 패널 등에 효과적으로 적용될 수 있다.

Claims (6)

  1. 하기 화학식 1로 표시되는 이리듐(Ⅲ) 착화합물:
    [화학식 1]
    Figure PCTKR2013010453-appb-I000024
    상기 화학식 1에서,
    X-Y는 유기 리간드로서, 하기 L1 내지 L24로 표시되는 구조로 이루어진 군에서 선택되고,
    Figure PCTKR2013010453-appb-I000025
    R1 내지 R8 및 상기 L1 내지 L24의 R21 내지 R32는 각각 독립적으로, 수소, 중수소, 할로겐, 시아노기, 니트로기, 아미노기, C1~C40의 알킬기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40의 헤테로시클로알킬기, C6~C60의 아릴기, 핵원자수 5 내지 60의 헤테로아릴기, C1~C40의 알킬옥시기, C6~C60의 아릴옥시기, C1~C40의 알킬실릴기, C6~C60의 아릴실릴기 C1~C40의 알킬보론기, C6~C60의 아릴보론기, C6~C60의 아릴포스핀기, C6~C60의 아릴포스핀옥사이드기 및 C6~C60의 아릴아민기로 이루어진 군에서 선택되고, 인접한 기와 결합하여 축합 고리를 형성할 수 있으며,
    상기 R1 내지 R8 및 R21 내지 R32 중 하나는 하기 화학식 2로 표시되고,
    [화학식 2]
    Figure PCTKR2013010453-appb-I000026
    상기 화학식 2에서,
    R11 및 R12는 각각 독립적으로 수소, 중수소, C1~C40의 알킬기, C6~C60의 아릴기 및 핵원자수 5 내지 60의 헤테로아릴기로 이루어진 군에서 선택되고,
    상기 R1 내지 R8 및 R21 내지 R32의 알킬기, 시클로알킬기, 헤테로시클로알킬기, 아릴기, 헤테로아릴기, 알킬옥시기, 아릴옥시기, 알킬실릴기, 아릴실릴기, 알킬보론기, 아릴보론기, 아릴포스핀기, 아릴포스핀옥사이드기 및 아릴아민기는 각각 독립적으로 C1~C40의 알킬기, C3~C40의 시클로알킬기, 핵원자수 3 내지 40의 헤테로시클로알킬기, C6~C60의 아릴기, 핵원자수 5 내지 60의 헤테로아릴기, C1~C40의 알킬옥시기, C6~C60의 아릴옥시기, C1~C40의 알킬실릴기, C6~C60의 아릴실릴기, C1~C40의 알킬보론기, C6~C60의 아릴보론기, C6~C60의 아릴포스핀기, C6~C60의 아릴포스핀옥사이드기 및 C6~C60의 아릴아민기로 이루어진 군에서 선택된 1종 이상으로 치환될 수 있으며,
    n은 1 내지 3의 정수이다.
  2. 제1항에 있어서,
    상기 R1 내지 R8 및 R21 내지 R32는 각각 독립적으로 수소, C1~C40의 알킬기 및 C6~C60의 아릴기로 이루어진 군에서 선택되는 것을 특징으로 하는 이리듐(Ⅲ) 착화합물.
  3. 제1항에 있어서,
    상기 R11 및 R12는 각각 독립적으로 수소, 메틸기, 에틸기, 이소부틸기 및 페닐기로 이루어진 군에서 선택되는 것을 특징으로 하는 이리듐(Ⅲ) 착화합물.
  4. 제1항에 있어서,
    상기 화학식 1로 표시되는 이리듐(Ⅲ) 착화합물은 하기 1 내지 74로 표시되는 착화합물로 이루어진 군에서 선택되는 것을 특징으로 하는 이리듐(Ⅲ) 착화합물.
    Figure PCTKR2013010453-appb-I000027
    Figure PCTKR2013010453-appb-I000028
    Figure PCTKR2013010453-appb-I000029
  5. 양극, 음극 및 상기 양극과 음극 사이에 개재(介在)된 1층 이상의 유기물층을 포함하는 유기 전계 발광 소자로서,
    상기 유기물층 중 적어도 하나는 제1항 내지 제4항 중 어느 한 항에 따른 이리듐(Ⅲ) 착화합물을 포함하는 것을 특징으로 하는 유기 전계 발광 소자.
  6. 제5항에 있어서,
    상기 유기물층은 발광층이며,
    상기 이리듐(Ⅲ) 착화합물은 상기 발광층의 도펀트 물질인 것을 특징으로 하는 유기 전계 발광 소자.
PCT/KR2013/010453 2012-11-21 2013-11-18 이리듐(ⅲ) 착화합물 및 이를 포함하는 유기 전계 발광 소자 WO2014081161A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020120132504A KR101520527B1 (ko) 2012-11-21 2012-11-21 이리듐(ⅲ) 착화합물 및 이를 포함하는 유기 전계 발광 소자
KR10-2012-0132504 2012-11-21

Publications (1)

Publication Number Publication Date
WO2014081161A1 true WO2014081161A1 (ko) 2014-05-30

Family

ID=50776290

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/010453 WO2014081161A1 (ko) 2012-11-21 2013-11-18 이리듐(ⅲ) 착화합물 및 이를 포함하는 유기 전계 발광 소자

Country Status (2)

Country Link
KR (1) KR101520527B1 (ko)
WO (1) WO2014081161A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107163082A (zh) * 2016-03-08 2017-09-15 上海和辉光电有限公司 一种有机化合物及oled显示装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019107467A1 (ja) * 2017-11-29 2019-06-06 三菱ケミカル株式会社 イリジウム錯体化合物、該化合物および溶剤を含有する組成物、該化合物を含有する有機電界発光素子、表示装置および照明装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050043427A (ko) * 2003-11-06 2005-05-11 삼성에스디아이 주식회사 유기 금속 착물 및 이를 이용한 유기 전계 발광 소자
KR20050100103A (ko) * 2004-04-13 2005-10-18 삼성에스디아이 주식회사 이리듐 화합물 및 이를 이용한 유기 전계 발광 소자
US20090093060A1 (en) * 2007-10-09 2009-04-09 The Hong Kong Polytechnic University Luminescent Protein Staining
KR20110043675A (ko) * 2008-07-18 2011-04-27 조지아 테크 리서치 코포레이션 개질된 일함수를 갖는 안정적인 전극 및 유기 전자 소자의 제조 방법
WO2011134013A1 (en) * 2010-04-28 2011-11-03 Commonwealth Scientific And Industrial Research Organisation Electroluminescent devices based on phosphorescent iridium and related group viii metal multicyclic compounds
WO2012107419A1 (en) * 2011-02-09 2012-08-16 Roche Diagnostics Gmbh New iridium-based complexes for ecl

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050043427A (ko) * 2003-11-06 2005-05-11 삼성에스디아이 주식회사 유기 금속 착물 및 이를 이용한 유기 전계 발광 소자
KR20050100103A (ko) * 2004-04-13 2005-10-18 삼성에스디아이 주식회사 이리듐 화합물 및 이를 이용한 유기 전계 발광 소자
US20090093060A1 (en) * 2007-10-09 2009-04-09 The Hong Kong Polytechnic University Luminescent Protein Staining
KR20110043675A (ko) * 2008-07-18 2011-04-27 조지아 테크 리서치 코포레이션 개질된 일함수를 갖는 안정적인 전극 및 유기 전자 소자의 제조 방법
WO2011134013A1 (en) * 2010-04-28 2011-11-03 Commonwealth Scientific And Industrial Research Organisation Electroluminescent devices based on phosphorescent iridium and related group viii metal multicyclic compounds
WO2012107419A1 (en) * 2011-02-09 2012-08-16 Roche Diagnostics Gmbh New iridium-based complexes for ecl

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107163082A (zh) * 2016-03-08 2017-09-15 上海和辉光电有限公司 一种有机化合物及oled显示装置

Also Published As

Publication number Publication date
KR20140065232A (ko) 2014-05-29
KR101520527B1 (ko) 2015-05-14

Similar Documents

Publication Publication Date Title
KR102611317B1 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
KR102283293B1 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2011126224A1 (en) Novel organic electroluminescent compounds and organic electroluminescent device using the same
WO2010147319A2 (ko) 아크리딘 유도체 및 이를 포함하는 유기 전계 발광 소자
WO2013085243A1 (en) Novel organic electroluminescent compounds and organic electroluminescent device using the same
WO2011136484A1 (en) Novel organic electroluminescent compounds and organic electroluminescent device using the same
WO2011136520A1 (en) Novel organic electroluminescent compounds and organic electroluminescent device using the same
WO2011126225A1 (en) Novel compounds for organic electronic material and organic electroluminescent device using the same
EP3919482A1 (en) Organic light-emitting compound, and organic electroluminescent device using same
WO2011132865A1 (en) Novel organic electroluminescent compounds and organic electroluminescent device using the same
KR20200120560A (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2014092431A1 (ko) 신규 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2012030145A1 (en) Novel compounds for organic electronic material and organic electroluminescent device using the same
KR20160085603A (ko) 유기 전계 발광 소자
KR20200076004A (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
KR101585303B1 (ko) 유기발광 화합물 및 이를 이용한 유기 전계 발광 소자
KR20200120561A (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
KR20150119653A (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
KR102559589B1 (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
KR20150098526A (ko) 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
KR20230047988A (ko) 유기 발광 화합물 및 이를 포함하는 유기 전계 발광 소자
KR20150077175A (ko) 유기 화합물 및 이를 이용한 유기 전계 발광 소자
WO2014081161A1 (ko) 이리듐(ⅲ) 착화합물 및 이를 포함하는 유기 전계 발광 소자
WO2013100506A1 (ko) 유기발광 화합물 및 이를 이용한 유기 전계 발광 소자
WO2011093603A1 (en) Novel organic electroluminescent compounds and organic electroluminescent device using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13856768

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 04/09/2015)

122 Ep: pct application non-entry in european phase

Ref document number: 13856768

Country of ref document: EP

Kind code of ref document: A1